
Citation for published version
López-Soriano, S. [Sergio](2023).'Plug-and-Play' Inventory Robots: 
Autonomous Itinerary Planning through Autonomous Waypoint Generation. 
IEEE Internet of Things Journal, -(), 2327-4662. doi: 10.1109/
JIOT.2023.3290395

DOI
https://doi.org/10.1109/JIOT.2023.3290395

Handle
http://hdl.handle.net/10609/148804

Document Version
This is the Accepted Manuscript version.
The version published on the UOC’s O2 Repository may differ from the 
final published version.

Copyright
© IEEE

Enquiries
If you believe this document infringes copyright, please contact the UOC’s 
O2 Repository administrators: repositori@uoc.edu

Universitat Oberta de Catalunya

https://doi.org/10.1109/JIOT.2023.3290395
mailto:repositori@uoc.edu


JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, JANUARY 2023 2

”Plug-and-Play” Inventory Robots: Autonomous
Itinerary Planning through Autonomous Waypoint

Generation
Sergio Lopez-Soriano

Abstract—Current robotic inventory systems rely on human
interaction for installation, configuration, and reconfiguration
tasks. However, this dependence on human involvement hampers
the efficiency of the process chain in the industry and can
lead to bottlenecks in the supply chain and the overall system.
In this study, we present a ”plug-and-play” methodology that
enables the deployment of inventory robots and the autonomous
reconfiguration of the map and inventory itineraries. This work
introduces, for the first time, an autonomous waypoint generation
method based on RFID exploration and the first fully autonomous
solution for designing efficient itineraries for inventory robots.
The proposed methodology is extensively detailed, and a series
of experiments are conducted in a real environment with physical
robots. The results demonstrate that the autonomously designed
inventory itineraries achieved through the proposed method
exhibit similar performances to those designed by humans.

Index Terms—e-logistics, autonomous exploration, autonomous
waypoint generation, autonomous planning, inventory robots.

I. INTRODUCTION

NOWADAYS, radiofrequency identification (RFID) in-
ventory robots are being commercialized and used in

different environments such as libraries, stores, warehouses,
etc. [1]–[3]. While current solutions promise reducing costs
and improving the system efficiency [4], they are far from
being fully efficient and their deployment entails complications
that have not yet been addressed by the scientific community
or the industry. In fact, the main barriers to achieving fully
autonomous solutions are the lack of adaptability and scala-
bility.

In terms of adaptability, fully autonomous inventory robots
shouldn’t require an installation phase in which a human
operator performs the system configuration. Similarly, au-
tonomous inventory robots should be able to self-reconfigure
after environment variations. Indeed, inventory robots need
a map and an itinerary, that depends on the environment
layout, for proper operation [5]. Currently, the map and the
itinerary waypoints are generated while a human operator
drives the robot through the preferred itinerary [6]. Designing
an itinerary for inventory applications is a relatively simple
task for humans, but it reduces the robot autonomy and
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decreases the overall efficiency, since the human operator
needs to leave its current task and the robot must wait for the
operator to configure it, which, in addition, has a detrimental
impact on the scalability of these solutions.

By contrast, there is no current solution to obtain an
itinerary adapted to a specific inventory layout autonomously.
This is due to the fact that, at present, there aren’t any methods
that can generate, autonomously, a set of waypoints which are
limited to the area of interest (AOI) of the inventory scenario,
and that, at the same time, can represent with enough granu-
larity the AOI. The AOI is defined as the minimum fraction
of all the available space that includes the actual inventoried
items, and that is bounded by a closed contour. Consequently,
to date, either at the installation or reconfiguration phases, it
is necessary for a human operator to carry out the mapping
and the design of the itinerary.

A. Inventory itinerary problem

Currently, route planning for autonomous robots remains
a hot topic of research [7]–[11]. However, the literature on
RFID-assisted systems indicates that current approaches [12]–
[14] perform poorly in terms of area coverage and inventory
time. In addition, those approaches are based on selecting the
shortest paths which, in a general unknown environment, is
unlikely to optimize the inventory accuracy. Moreover, neither
RFID-based approaches, nor any other techniques [15], [16],
have shown to provide the essential autonomous generation of
waypoints, specifically optimized for the inventory application,
in a general inventory layout.

The inventory itinerary problem (IIP) is defined here as the
task of creating an itinerary resembling an itinerary designed
by a human expert. The classical approach for representing
an inventory environment consists of structuring the AOI in
aisles [6]. In fact, the IIP goal is to find an itinerary that
traverses all the aisles efficiently, i.e., minimizing the path
overlapping. Such itinerary must be composed of an ordered
set of waypoints or intermediate goals that enables traversing
all the aisles while optimizing the inventory accuracy. In
addition, coping with dead ends and poorly connected areas
requires that waypoints can be visited multiple times, and,
therefore, the number of cycles (re-visiting waypoints) must
be minimized to optimize the itinerary.

The IIP problem cannot be efficiently solved by any of
the classical planning algorithms in their current form [17],
such as coverage path planning (CPP) [18] or probabilistic
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roadmap (PRM) [19], due to the reasons mentioned next. First,
only the starting point is known by the robot at the beginning
of the installation stage, and all waypoints are potential final
destinations. Second, waypoints can be visited more than one
time. Third, in the IIP, the coverage is not related to the
range sensors but to the RFID system. Therefore, shorter
paths are not specially optimal and, in general, longer paths
are preferred (as long as all waypoints are inside the AOI).
In conclusion, solving the IIP is very different from solving
the traveling salesman problem (TSP) [20]. Therefore, a new
specific methodology must be formulated.

This contribution introduces, for the first time till date, to the
best of the knowledge of the author, an autonomous waypoint
generation method based on RFID-driven exploration. The
proposed method (Fig.1) is the first of its kind, and it enables
fully autonomous design of itineraries for inventory robots.
This is possible since the RFID-based exploration technique
generates a set of robot poses which are naturally enclosed
within the AOI, i.e., the RFID-based exploration never drives
the robot away from the AOI. This document also presents a
real life experiment consisting in the ”plug-and-play” installa-
tion of an inventory robot in a library containing 6000 tagged
books. The dataset used in these experiments is a subset of a
larger dataset that can be found at [21]. In other words, the
robot knowledge about the environment before the installation
starts is completely null. The robot doesn’t have a map, nor a
set of valid waypoints, nor a predefined itinerary. Instead, the
proposed method enables the robot to autonomously produce
a map of the AOI, a set of representative waypoints and an
efficient itinerary. The results show that the itinerary, designed
with the proposed method, can be recursively walked, back and
forth, to perform inventory missions of an initially unknown
environment. The results also show that the inventory accuracy
reached during the experiments, using the proposed method,
is comparable to the accuracy obtained using an itinerary
designed by a human operator.

II. METHODS

The proposed methodology consists of five stages (Fig.2a):
autonomous mapping, autonomous waypoint generation, way-
point filtering, edge removal and itinerary design. During
the stages one to four, a set of waypoints is obtained from
autonomously generated robot poses to obtain the vertices
and edges of a graph. First, a map of the AOI is created
autonomously, following the process described in [22], in order
to provide accurate robot localization. Then, the robot executes
an autonomous RFID-based navigation mission [23], through
which the robot records a set of poses, scattered across the
AOI (Fig.1(a)). Then, a set of candidate vertices is filtered out
from all the possible poses depending on their distance to the
selected ones (Fig.1(b)). Then, the graph edges are computed
using the Dijkstra’s algorithm [24]. At this point, the problem
complexity of finding the longest itinerary with a limited
number of revisited nodes is extremely high. Thus, the problem
complexity is reduced by filtering the set of current edges, so
that the complete graph is transformed into a planar graph [25].
Finally, the autonomous itinerary planning algorithm computes

(a)

(b)

(c)

Fig. 1: Different stages of the proposed methodology for
autonomous itinerary planning. (a) This image illustrates the
autonomous waypoint generation process. The schematic rep-
resents an inventory environment with seven shelves contain-
ing RFID-tagged items. The robot’s position is depicted as a
yellow circle, and the small green circles indicate the robot’s
location during tag readings. The density of undiscovered tags
in the shelves is represented by squares of various colors,
as shown in the color bar at the bottom of the image. The
attraction felt by the robot towards the RFID tags in the front,
back, left, and right directions is depicted by blue arrows, with
their size corresponding to the magnitude of the attraction.
(b) As time passes, the robot covers all the aisles multiple
times, leading to a significant increase in the number of tag
reading locations (unfiltered set of waypoints), as indicated by
the green/red dots. Subsequently, a waypoint filtering process
is carried out, selecting only the red dots as the final set of
waypoints. (c) The final stage involves constructing a complete
graph using the selected waypoints. Then, edges enabling the
drawing of a planar connected graph are selected, while the
rest are removed. Finally, the optimal itinerary is computed
based on specific criteria (related to the area coverage).

the itinerary that traverses all waypoints while maximizing the
area coverage and minimizing the number of steps (Fig.1(c)).
Tree search is used to find the optimal itinerary after applying
a set of rules for the branch pruning.

The proposed method is tested on a ground robot equiped
with a range sensor, a sensor for collision avoidance, a
single board computer, an RFID reader, and four RFID reader
antennas with orientations at 0, 90, 180, and 270 degrees. The
experiments presented in the following sections are performed
in the library of the Univesritat Pompeu Fabra, campus Poble-
nou [26]. The rest of this section details the processes involved
in the autonomous design of itineraries for inventory robots.

A. Autonomous mapping

As soon as the robot starts the inventory for the first time
it will look for an available itinerary (Fig.2a). Not finding the
itinerary will trigger the autonomous mapping process, also
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(a)

(b) (c)

Fig. 2: Materials and methods: (a) The flowchart of the
proposed methodology, (b) the relative position of the four
antennas with respect to the robot frame, and (c) the represen-
tation of the map of the environment.

called RFID exploration. From this moment, the robot starts
reading tags, i.e., it starts taking the inventory of the environ-
ment. The difference is that, during this process, instead of
following a predefined itinerary, the robot explores the terrain
driven by the attraction that the RFID reader feels from each
of the connected antennas (Fig.2b). Thus, the robot selects
the next exploration goal to be at one meter in the direction
of the antenna with higher RFID attraction. Therefore, the
exploration task is divided in steps, where each step starts
at the moment when the robot computes the next goal until it
reaches such goal, and the next step starts. The RFID attraction
perceived from the antenna i at the step s is calculated as in
(1).

Attractioni,s = new tagsi +
tags readi,s

read tags total count
, (1)

where new tagsi is the number of tags added to the
inventory for the first time, which are read by the antenna i;

Fig. 3: Example of the calculation of the RFID attraction
during an inventory mission, at the kth step.

tags readi,s is the number of the tags read from the antenna
i at the step s, that were added in previous steps; and the
read tags total count is the total number of times that the
tags, accounted for in the numerator, have been read since the
beginning of the inventory mission. Therefore, the first term
of the equation accounts for the attraction to areas where the
inventory is still required, and the second term is intended to
let the robot stay more time in tag-crowded areas, where a
high number of tags can be more difficult to inventory.

The map of the AOI (Fig.2c) is built using RFID-based
exploration [22] and gmapping, a laser-based simultaneous
localization and mapping (SLAM) algorithm [27].

TABLE I: Computation of the RFID attraction for the example
of Fig.3

Antenna direction Front Left Back Right

new tags 16 2 1 5
tags read 0 6 8 1
read tags total count 0 18 20 4
Attraction 16 2.33 1.2 5.25

For illustrative purposes, an example of a robot performing
an inventory mission using RFID-based navigation is presented
in Fig.3. The figure depicts a simple scenario with eight
shelves arranged in two columns. The inventory items are
represented by small colored squares, with unread tags shown
in red and tags discovered in previous steps displayed in green.
The tags discovered in the current step are colored based on
the antenna that first read them (front = blue, left = pink, back
= brown, right = golden). Tags that have been read during the
current step but were previously discovered remain green and
are surrounded by a larger square colored according to the
specific antenna that read in this step. The robot’s footprint
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is depicted as a yellow circle, the previous route is indicated
by a dotted meandering line, and the attraction in the four
directions is represented by arrows, with colors corresponding
to the antenna colors and sizes reflecting the level of attraction
in each direction. The numerical values for the attraction felt
by the robot in the four inspected directions are calculated
in Table I using Equation 1. The results demonstrate that
the highest attraction value is sensed by the front antenna.
Consequently, the robot will set its next goal in the forward
direction (blue arrow).

B. Autonomous waypoint generation

This is the core concept of the proposed solution. Once
the map has been created, the robot can localize itself on it
using adaptive Montecarlo localization (AMCL) [28]. Then,
the autonomous waypoint generation process starts. Again, the
robot navigates the environment autonomously following the
attraction (1) felt towards the RFID tags, while storing tag
reading information.

For each tag reading, the robot pose estimate is stored in a
database. Then, after the navigation has finished, the algorithm
uses the stored poses to generate NR waypoints. However, the
number of initial waypoints (|NR|) can be huge (the RFID
reader can record over a million tag readings per mission [29]),
and therefore, the waypoints need to be filtered in order to
produce a tractable problem. The results of the autonomous
waypoint generation is illustrated in Fig.4a. The results clearly
show that the RFID navigation is automatically bounded by
the AOI ((Fig.2c) during all the inventory mission due to the
attraction-based setting of goals.

C. Waypoint filtering

The waypoint filtering process is designed to efficiently
remove unnecessary redundancy while tackling the inventory
application specific requirements of granularity and coverage.

Three filters are applied in order to reduce the set size. Once
the starting waypoint is defined, the first filter will select one
sample each tf seconds. Next, the waypoints close to obstacles
will be filtered out. In the example shown in Fig.4b, the
green circles represent the filtered waypoints while the yellow
ones remain unfiltered. The last filter consists of dropping the
waypoints within a circle of radius rin = 1.5 m from the
previous waypoint. Then, jumping to the next waypoint being
the one with the closest distance inside a circle of radius rout
= 3 m. Then, it’s appended to a list of final waypoints. The
process is repeated until the number of waypoints in the final
waypoints list is equal to the size of the list to be filtered
(Fig.4c).

rin and rout are design parameters and must be tuned to a
particular layout. They balance the density of waypoints. Since
an inventory environment can be characterized by the number
of aisles [6], the optimal density is the minimum number
of waypoints required to generate tracks that traverse all the
aisles in a particular layout. Accordingly, an aisle is marked
as covered by a robot crossing it, if the width of the aisle is
at most twice as large as the reading range of the system.

(a) (b)

(c) (d)

Fig. 4: Snapshots of the Rviz visualization software showing
(a) the set of generated waypoints, (b) the set of waypoints
after time and cost filtering (yellow circles) and the filtered
ones (green circles), (c) the set of remaining waypoints after
the whole filtering process (red circles) and, (d) the set of se-
lected edges after the removal process. The map in the images
has been obtained autonomously according using RFID-based
exploration.

In the following experiments, rin and rout values will be
fixed for the whole area. This is because the library can be
seen as an organized grid consisting of 17 shelves arranged in
two columns. However, other approaches might require using
different configuration values at different regions to better
represent an heterogeneous layout.

D. Edge removal

At this point, the problem can be described as a complete
graph G(V , E) [25], where V is the set of N vertices or
nodes {vi} corresponding to the final set of filtered waypoints
(Fig.4c), and i is the node index. E is the set of edges {ejk}
connecting each node to the rest of nodes in the set, and j and
k refer to the origin and goal nodes respectively. The set of all
ejk is a set of paths obtained using the Dijkstra’ algorithm.
Thus, all edges are computed to be the shortest paths from
one node j to another node k.

In most IIP problems, the number of edges can be signifi-
cantly reduced without affecting the efficiency of the solution.
The only condition is that the final set of edges must provide
full coverage of the whole environment. In other words, the
{ejk} need to connect the waypoints in a way that produces
pathways across all the aisles in the layout.

First, the parameter rmax is set so that every edge separating
two nodes at a distance higher than rmax is discarded, thus
discarding edges that pass close to another node. The optimal
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rmax depends on the specific geometry of the obstacles in the
layout and it must be either configured according to a policy
or learnt using a learning algorithm. For these experiments,
rmax = 7 m which is slightly higher than the aisle length. The
remaining edges must form a planar and generally irregular
grid, without coincident paths, like the one shown in Fig.4d.
Finally, the edges of distances lower than rmax are discarded
according to the following policy: whenever three nodes {vi,
vj , vk} are connected through edges {eij , ejk, eki}, the two
nodes separated by the longest edge will be disconnected.

As a result, only the neighboring nodes (n) are left con-
nected by edges. However, in order to include all the casuistry
of real environments, such as dead ends, cycles [25] are al-
lowed. Therefore, once the starting node is set, the complexity
of the problem is

O

(
n · (n− 1)

(N−2) ·
K∏

k=0

n(k·Ck)

)
, (2)

where {Ck} = {C0, C1, C2, ..., CK} is the set whose elements
contain the number of nodes that are revisited k times, and C0

= 1 (For instance, k = 1 and C1 = 3 means revisiting 3 nodes
one time each).

E. itinerary planning

The last process consists of finding an itinerary through
a planar connected dynamically weighted graph (Fig.4d) that
maximizes the inventory coverage, while minimizing the over-
lap. To that end, all edges must have a weight value (Rij),
or reward, assigned to them, and a number of times it has
been traversed (num trips). Then, the inventory coverage
can be approximated by the return of the itinerary, which
is defined as the sum of rewards of the ordered set of edges
it is composed of, including repetitions.

More specifially, the goal of the itinerary planner is to obtain
an open walk w={v0, e0a, va, eab, ..., vx} that contains all
graph nodes, while minimizing the repetition of edges and
nodes, and maximizing the return. The reward for traversing
an edge is initially weighted by its length |eij |, and it is
updated, once the edge has been traversed, according to the
following function:

Rij =

{
|eij |, if num trips = 0

−|eij | · num trips, if num trips > 0
(3)

num trips and Rij are updated simultaneously for |eij | and
|eji| when one of them is updated. Since n is much smaller
than N , the problem can now be tackled using tree search
with problem specific pruning conditions (Alg.1). For instance,
branches are pruned if they don’t fulfill the cycle conditions
(Alg.1-L7), i.e. a node has been revisited more than K times
or more than Ck nodes have been revisited more than k times.

The proposed algorithm Alg.1 is a recursive algorithm
(Alg.1-L12) intended to search through a tree composed by
all the possible itineraries that can be formed from expanding
the graph G according to each node edges (Alg.1-L11). The
starting node is set to the pose where the robot was turned on.
The algorithm first tries to find an optimal itinerary without

Algorithm 1 Tree search with selective pruning

c l a s s S t a t e :
a t t r i b u t e s :

b r a nc h : l i s t
Re tu rn : f l o a t
graph [ o r i g i n ] [ d e s t i n a t i o n ] :

{ l e n g t h : f l o a t , r eward : f l o a t ,
n u m t r i p s : i n t }

b e s t i t i n e r a r y : l i s t
methods :

u p d a t e ( )
r o l l b a c k ( )
u p d a t e b e s t i t i n e r a r y ( )

1: function CONSTRAINED SEARCH(state, K, Ck)
2: if IS ITINERARY COMPLETE(state) then
3: state.UPDATE BEST ITINERARY()
4: state.ROLLBACK()
5: return
6: end if
7: if not CYCLE CONDITIONS(state, K, Ck) then
8: state.ROLLBACK()
9: return

10: end if
11: for node in EDGES(state) do
12: state.UPDATE(node)
13: CONSTRAINED SEARCH(state, K, Ck)
14: end for
15: if IS TREE FULLY INSPECTED(state) then
16: SAVE(state.best itinerary)
17: else
18: state.ROLLBACK()
19: return
20: end if
21: end function

node repetitions (k = 0), and if it doesn’t find a feasible
solution, it progressively increases k and Ck until a solution
that visits all graph nodes is found.

The information of the current state of the search is stored in
an object of the class State Alg.1. It contains the information
about the branch that is currently being inspected, the branch
return, the whole graph and the best itinerary found so
far. The state object maintains an up to date snapshot of the
graph features, namely the edges rewards, edges distances
and number of times that all edges have been traversed. The
update method modifies the state attributes given the next
selected node and the current edge rewards and num trips.
The rollback method reverts the last state update. And the
update best itinerary method compares the best itinerary
return to the branch return and updates the best itinerary
according to the itinerary with highest return.

Fig.5 shows the four itineraries used in these experi-
ments, namely itinerary A corresponding to Fig.5a, itinerary
B (Fig.5b), itinerary C (Fig.5c) and itinerary D (Fig.5d).
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(a) (b)

(c) (d)

Fig. 5: Snapshots of Rviz visualization software of the tested
itineraries: (a) itinerary A, (b) itinerary B, (c) itinerary C, (d)
itinerary D.

Itineraries A and B are designed by a human operator. Itinerary
A is designed with the intention of optimizing the inventory
mission, i.e. maximizing the inventory accuracy and minimiz-
ing the mission time. Itinerary B is designed to achieve the
shortest possible itinerary. Itinerary C and itinerary D show
the results of the algorithm using two different datasets. In
the case of itinerary C the autonomous navigation mission
didn’t travel across two aisles (left column second row and
right column tenth row) during the waypoint generation stage,
as we can appreciate from the image. Itinerary D traverses
all aisles, while the order differs from the human-optimized
itinerary.

III. RESULTS

In this section, the performance of the proposed autonomous
methodology is evaluated through real life experiments, and
compared to manually designed itinerary plans. The ground
truth of the library consists of 6000 books labeled with UHF
RFID tags and spread around the library shelves.

The following experiments consist of unitary tests, i.e.,
the robot performs a one-way walk throughout the itineraries
of Fig.5. This way, the accuracy results can be precisely
compared while the effect of the time exposure to the RFID
multi-path environment can be mitigated.

The results of the experiments are illustrated in Fig.6. These
plots include the real time estimation of the robot pose at the
top-left corner of the figures. The reader can appreciate that the
experiments for the itinerary A (Fig.6a) and the autonomously
designed itineraries C (Fig.6c) and D (Fig.6d) produce similar
results in terms of mission time and inventory accuracy. As
expected, the itinerary B (Fig.6b) produces lower inventory
accuracy and shortest test times. However, it still obtains a

(a) (b)

(c) (d)

Fig. 6: Experimental results of three different robot walks
through the (a) itinerary A, (b) itinerary B, (c) itinerary C,
and (d) itinerary D. The robot trajectories are displayed in the
top left corner of all figures.

considerable accuracy, especially if we take into account that
the itinerary does not cross most of the aisles. The numerical
data is summarized in the Table II.

The results show that, on average, the optimal itinerary (A)
achieves slightly lower inventory accuracy (67.3%) in a shorter
time than the autonomously designed itineraries (71.2% for
itinerary C and 71.8% for itinerary D) for a one-way trip. The
results are even closer for itineraries A and D, and with lower
standard deviation, in the case of ten-trip realizations.

In other words, the autonomously designed itineraries ob-
tained by the here-proposed planner achieve very similar
performance when compared to the human-optimized itinerary,
where the inventory mission performance is defined as the
number of unique tag readings per second.

The results highlight the effect of the time that the tags are
exposed to the reader signal in the inventory accuracy. In some
environments, some tags can be more difficult to read than
others. In these situations, the exposure of such tags to the
reader interrogation signal, for a longer period of time, can
favor their activation. In addition, the environment contains
highly reflective objects such as the book shelves. Therefore,
the multi-path effect can’t be underestimated [30].

IV. DISCUSSION

This section presents some arguments regarding the per-
formance of the proposed method, its main advantages and
drawbacks, the future research lines, and a few ideas on how
to address them.

In the previous section, we saw how this method provides
results comparable to the optimal itinerary that a human
operator can intuitively design. This can be a complex task
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TABLE II: Numerical results

itinerary One-way accuracy (%) One-way Itinerary time (s) Ten-trip accuracy (%) Average performance
avg std avg std avg std (unique tags/s)

A 67.3 7.7 1288 250 97.2 4.4 3.1
B 32.3 16.9 1006 126 68.1 8.9 1.8
C 71.2 6 1312 275 92.4 3.9 3.3
D 71.8 3 1427 333 97.0 3.2 3.1

for a robot and it depends strongly on the environment or the
layout of the application scenario. For example, a grocery store
will differ from a sports store, a library or a warehouse. The
articles in grocery stores tend to be placed in shelves organized
forming a grid across the available area. However, in clothes
shops, while they keep some geometrical organization, the
items are organized in a more artistic way and using furniture
of different sizes and shapes.

The proposed solution handles this heterogeneity of the
environments using the configuration parameters rin, rout and
rmax. A conservative configuration of the parameter values
will try to generate a slightly high number of waypoints in
order to cover all the AOI, including corners and surrounding
relatively small objects, by controlling the values of all three
parameters. Nevertheless, these configurations can lead, in
some cases, to large graphs, which in turn can increase the
computation time of the best solution. The approach used in
the presented experiments involves setting rin to the minimum
distance between aisles, setting rout to be twice rin, and letting
rout to be slightly larger than the longest aisle length. There
are a number of artificial intelligence algorithms [31] that
could optimize these parameters using the number of aisles
and the maximum and minimum dimensions of the aisles in
the environment as inputs. However, it would require a large
number of realizations in many different layouts until acquir-
ing a dataset large enough to achieve good generalization.

Another issue that requires special attention is the appear-
ance of unexplored areas. In previous sections, we investigated
the case, illustrated in Fig.6c, of a itinerary that didn’t navigate
all the aisles of the AOI. While this fact didn’t affect the per-
formance of the presented experiments, unexplored areas lead
to suboptimal itinerary solutions, which in turn can decrease
the inventory accuracy (see itinerary C in Table II). The main
reasons leading to this issue are: the incomplete navigation
of the AOI during the autonomous RFID-based navigation
and the configuration of the waypoint filtering and the edge
selection algorithms. In the last paragraph, we have already
discussed the problem of finding the proper configuration of
the waypoint selection stages. As for the incomplete navigation
of the AOI, the RFID attraction based navigation can get stuck
in local maxima or just not get enough attraction to reach
areas of local or global minima. While this problem is meant
to be addressed in future works, adding the data from several
missions tends to solve this issue in the vast majority of cases.

Providing full scalability to a fully autonomous solution

for robotic inventory systems will require the development of
multi-robot itinerary planners. Although a methodology like
the one presented in this work can be applied, this problem
requires an additional step that considers the distribution of the
AOI among the members of the robot fleet. The areas could
be divided using tag information matched to a database with
the item details, or using a geometrical approach to sectorize
the area in clusters.

V. CONCLUSIONS

This paper has presented the first autonomous waypoint
generation method based on RFID exploration. The proposed
method provides a set of wapypoints that represents the AOI
layout to efficiently draw aisles. All in all, the presented
methodology enables fully autonomous itinerary planning
for inventory robots. It has been proved that, the presented
methodology solves the adaptability and scalability issues of
the current commercial solutions by enabling the autonomous
installation and re-configuration of robotic inventory systems.
The presented solution has been tested in the installation of an
autonomous inventory robot in a real library. The results have
shown that autonomously designed itineraries reach similar
inventory accuracy compared to those designed by humans.
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