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Abstract

In the context of pig farming, this paper deals with the optimization problem of collecting
fattened pigs from farms to deliver them the abattoir. Assuming that the pig sector is
organised as a competitive supply chain with narrow profit margins, our aim is to put
analytics into practice coping at a time with the uncertainty in production costs and sale
prices. Motivated by a real-life case, the paper analyses a rich team oriented problem
with homogeneous fleet, stochastic demands, and maximum work load. After describing
the problem and reviewing the related literature, we introduce the PJs heuristic. Our
approach is validated and tested using a series of adapted instances to explore the gap
between the solutions it provides and the ones generated by existing approaches.

Keywords: marketing problem; stochastic production and demand; VRP; PJs heuristic





Resumen

En el contexto de la ganadería porcina, este artículo aborda el problema de optimización
de la recogida de cerdos de engorde al matadero. Asumiendo que el sector porcino está
organizado como una cadena de suministro competitiva con estrechos márgenes de ben-
eficio, nuestro objetivo es poner en práctica métodos analíticos para hacer frente a la
incertidumbre en los costes de producción y los precios de venta. Motivado por un caso
real, el trabajo analiza un problema orientado a equipos con flota homogénea, demandas
estocásticas y capacidad máxima de carga. Tras describir el problema y revisar la liter-
atura relacionada, introducimos la heurística PJs. Nuestro enfoque se valida y se pone
a prueba utilizando una serie de instancias reales adaptadas para explorar la diferencia
entre las soluciones que proporciona y las generadas por los enfoques existentes.

Palabras clave: problema comercialización; producción y demanda estocástica; VRP;
heurística PJs
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1| Introduction

The pig sector is very important in Spain and it is very competitive (see Figure 1.1). For
that reason decision making processes are becoming more and more complex and pig com-
panies require specialized models to maintain competitiveness. Spain is the first producer
in Europe with a particular organization of the sector where vertically integrated compa-
nies abounds while independent individual farmers are scarce. The integration of the pig
sector started mostly around feed mills in the seventies of last century and less, but also,
around meat packing plants. During last decades, economies of scale have continued to ac-
celerate changes and promoting vertical integration (Nadal-Roig et al., 2019; Perez et al.,
2009) and Spanish pig production evolved embracing other connected business activities
like consultant services, medical products, veterinary services or engineering offices being
part or participated by the integrator, legally established as private company or cooper-
ative. Therefore, while in the past, the farmer was the main decision-maker, now main
decisions relies on integrator headquarters since they have to coordinated the pig supply
chain (PSC) conformed by different decision making units or agents. Consumer concerns
about climate change, environmental impact, animal welfare, food safety and food quality
are new challenges to consider (Rodríguez et al., 2014; Plà-Aragonès, 2021). As conse-
quence, the specialization and technical improvement in the sector have complicated the
way of making decisions as it requires a whole chain vision (Perez et al., 2009; Rodríguez
et al., 2014) . New Decision Support Systems (DSS) emanated from the Internet of Things
(IoT) are needed to improve the coordination of the PSC (Mateo-Fornés et al., 2021).

Most of the models proposed for pig production planning have adopted the perspective
of individual farms responding to realities existing in countries where farmers have more
autonomy. The schematic representation of the problem is shown in Figure 1.2 and
illustrates the problem of optimal delivery of pigs to the abattoir studied by different
authors like Jones et al. (2017). As result, almost none decision model in the literature
adopts the PSC perspective that involve the management of many fattening farms at a
time (Nadal-Roig et al., 2019; Perez et al., 2009). Thus, the interest of a PSC manager
relies on the optimization of the abattoir operation and the coordination of fattening
farms to deliver optimal fattened pigs on time to cover pig-meat demand. This way, the
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Figure 1.1: Pig census in the European Union (source EUROSTAT).

collection of fattened pigs within a marketable weight among integrated farms has to
be planned weekly by the abattoir and coordinated by the pig supply chain manager to
avoid disruptions at farming level and stops in the meat packing plant. The integrator
has a fleet of vehicles to do the transportation and it can be assisted by subcontracted
companies when needed.

Therefore, according to the previous example, the optimal solution of delivery pigs to
the abattoir for an individual farmer is not useful nor optimal for the abattoir. The
optimization model suitable for the abattoir must consider the coordination of all the
fattening farms marketing pigs. So that, the fleet of vehicles in charge of the collection
and delivery of pigs to the abattoir correspond to the Team Orienteering Problem (TOP).
The TOP approach to this specific problem aims to optimize the routing of a set of
trucks who can collect pigs of different reward value by visiting a subset of farms within
a limited time frame. The objective is to maximize the total collected rewards while
considering constraints such as time limitations and limited capacity. The goal of TOP
is to maximize the collected rewards or rather than solely optimizing the routing. In
addition, the postponement of a visit to a farm and the collection of pigs may have a cost
or a reward depending on the growth state of the pigs and sales’ price.

Considering that farms and abattoir’s operations planning are scheduled weekly and the
road map for truck drivers is planned monthly, the objective of this Master Thesis is to
propose a TOP model formulation to plan the weekly collection of pigs to be delivered to
the abattoir. Expected contributions of the Thesis are:

• A conceptual description of the problem of marketing fattened pigs to the abattoir

https://ec.europa.eu/eurostat/web/products-eurostat-news/-/ddn-20220927-1
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Figure 1.2: Overview of the fattening process within the pig production cycle.

from the abattoir perspective.

• Formulate a TOP and solve some instances showing the inefficient approach using
LP solvers for large instances.

• Implement a metaheuristic based on PJS heuristic and solve a problem based on a
realistic data set.

• Improve the previous heuristic introducing a Biased Randomized Heuristic.

• Creation of a data set of instances to perform tests with different heuristics to solve
the same problem.

The rest of the thesis is structure as follows: in Chapter 2 it is presented the state of the
art regarding the TOP based on a literature review of recent papers published in JCR
journals. The real problem under abattoir perspective is described in Chapter 3 while the
LP formulation and the approximate approach are presented in Chapter 4. In Chapter 5
the data available of a real case is presented and also the criterion used to generate the
different instances. Results of computational experiments and the discussion of the more
relevant results are introduced in Chapter 5 while main conclusions and future outline are
presented in Chapter 6.
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2| Literature review

The proposed problem of delivery pigs for slaughtering under the perspective of the abat-
toir is modeled as a TOP. The TOP was introduced by Chao et al. (1996) as an extension
of the Orienteering Problem (OP). The same OP is also called as the Selective Traveling
Salesman Problem (STSP) according to Laporte and Martello (1990). In contrast to the
TOP, the OP has been widely studied and a variety of heuristics have been developed
and tested (Chao et al., 1996; Angélica Salazar-Aguilar et al., 2014). For that reason,
there are not specific reviews on TOP but some in the OP. The last and sole extensive
literature review found on this topic was published by VAN (2011). In the TOP, given a
fixed amount of time for each member of the team, m, the goal is to determine m routes
starting and ending at a specific point through a subset of locations in order to maximize
the total reward while in the OP the team has only one route, i.e. member) to find. This
connection between OP and TOP makes solving strategies for OP serve as inspiration
point for solving TOP besides others already proposed specifically for TOP.

Other models have been proposed within the rich variety of Vehicle Routing Problems
(VRP) in which TOP falls as well since they share many resemblances. However, refer-
ences to these models are sometimes limited to few publications or particular problems
making difficult to establish a clear taxonomy. For example, the constrained VRP with
Profits (Stavropoulou et al., 2019) aimed at maximizing the total collected profit, whereas
minimizing the total traveling distance, while providing consistent customer service share
many characteristics with our approach. For clarity and to avoid misunderstandings, we
will keep tight to TOP formulation models published in literature as such.

2.1. Deterministic Orienteering Problem

The Deterministic Orienteering Problem (DOP) is a variant of the OP aiming at the max-
imization of the total profit collected by visiting a subset of locations within predefined
distance or time constraints. Researchers have explored exact algorithms based on com-
binatorial optimization techniques, particularly in the context of route planning and tour
optimization, and resource allocation (Gedik et al., 2017; Tae and Kim, 2015). However,
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they have also paid attention to heuristic/metaheuristic methods to tackle DOP instances
efficiently due to its NP-hard nature. Many solution approaches have been proposed for
solving OP based on metaheuristics including GRASP (Campos et al., 2014), iterated
local search (Gunawan et al., 2015), particle swarm optimization (Yu et al., 2017), path-
relinking (Souffriau et al., 2010), simulated annealing (Lin and Yu, 2017), tabu search
(Tang and Miller-Hooks, 2005), variable neighborhood search (Palomo-Martínez et al.,
2017), and other sophisticated metaheuristics (Ke et al., 2016).

2.2. Dynamic Probabilistic Orienteering Problem

The Dynamic Probabilistic Orienteering Problem (DPOP) is a dynamic and stochastic
vehicle routing problem (DSVRP) which generalizes the Orienteering Problem (OP) as
stated by Angelelli et al. (2021). Specifically, the stochastic feature refers to the presence
of random requests from a set of potential customers, while the dynamic feature refers to
the fact that random requests reveal over time and need immediate response. Moreover,
a specific feature of the DPOP is that every acceptance/rejection decision is taken before
the vehicle actually starts the tour. As a consequence, the order of visit of the accepted
customers can be modified thoroughly after any acceptance decision. On one hand, this
feature makes the problem very different from most dynamic routing problems, where
requests arise while the vehicle is on the road. On the other hand, the same feature is
shared by routing problems related to attended home delivery (AHD) services, where,
however, the main issue is the management of delivery time windows.

2.3. The Team Orienteering Problem

According to Panadero et al. (2023), most of the existing articles assume deterministic
versions of the problem. Many solution approaches have been proposed based on those
already tested for the OP like constraint programming (Gedik et al., 2017) and branch-
and-price approaches (Tae and Kim, 2015). Tang and Miller-Hooks (2005) have proposed
a tabu search algorithm for the TOP, whereas Archetti et al. (2007) have proposed two
variants of a generalized tabu search algorithm and a variable neighborhood search algo-
rithm for the TOP and have shown that each of these algorithms outperforms previous
heuristics.

A variant of the TOP, called the TOPTW because each vertex has an associated time
window, was later introduced by Vansteenwegen et al. (2009a). The authors have proposed
an integer linear programming formulation and an iterated local search heuristic for this
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problem. The same authors (Vansteenwegen et al., 2009b) have also proposed a path
relinking algorithm for the TOP which outperforms the previous heuristics of Tang and
Miller-Hooks (2005) and of Archetti et al. (2007), among others.

Lin and Yu (2017) investigated an extension of the TOPTW considering mandatory visits
(TOPTW-MV). They designed a multi-start simulated annealing heuristic to solve the
problem. Later on, Kirac et al. (2023) proposed a constraint programming (CP) approach
for solving the same TOPTW-MV. The objective was to create a set of vehicle routes that
begin and end at a depot, visit mandatory locations exactly once and optional locations
at most once, while observing other restrictions such as time windows and sequence-
based travel times. Aringhieri et al. (2022) presented two problems arising in the health
care logistics that are modelled as team orienteering problem being the first applications
to health care logistics problems. Panadero et al. (2023) dealt with a more realistic
TOP version, where travel times were modeled as random variables, which introduces
reliability issues in the solutions due to the route-length constraint. In order to deal with
these complexities, the authors proposed a simheuristic algorithm that hybridizes biased-
randomized heuristics with a variable neighborhood search and Monte-Carlo simulation.

2.4. The Team Orienteering Problem in Agriculture

Even TOP is not a novel problem in the operational research field, there are not many
applications in agriculture. Doing a search in ScienDirect with the terms "Team", "Ori-
enteering", "Problem" and "Agriculture" only 45 references appeared and not all of them
applied TOP to solve agricultural problems, and only mention agriculture as a possible
field of application. In fact, only four papers were truly related to the field. Two of them
related with optimal spraying task in crop protection with multi-Unmanned Aerial Vehicle
(UAV) systems (Li et al., 2022, 2023) and the other two devoted to farm monitoring, also
by using UAV (Hafeez et al., 2023; Bottarelli et al., 2019). As these pubications are also
quite recent, from 2019 to 2023, we could coclude about the novelty of the approach we
are proposing in this Master Thesis.

Therefore, inspired by the paper of Panadero et al. (2023) to solve realistic instances, this
study proposed a random biased PJS heuristic for solving a real-based TOP because it
performs very well as demonstrated the same authors.

https://www.sciencedirect.com/search?qs=Team%20Orienteering%20Problem%20Agriculture
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3| Understanding the real

problem for the abattoir

The problem studied in this Thesis arises from a real situation faced by PSC managers
in coordinating the delivery of fattened pigs to the abattoir (Figure 3.1). Periodically,
every week, the abattoir must plan its trips to collect the marketable pigs among different
fattening farms belonging to the integrator. The number of marketable pig in each farm
is estimated by a farm visitor, a person serving to the PSC manager making pig weight
estimations by eye (Rodríguez-Sánchez et al., 2019). These estimations are used to de-
termine the tentative date to start delivering pigs to the abattoir and emptying the farm.
Fattening farms operate under all-in-all-out (AIAO) management, meaning that all pigs
enters at a time on the farm as a batch and a new batch can only enter once all the pigs
of the previous batch have been delivered to the abattoir. As not all the pigs grow at the
same rate, not all of them reach the marketable time at the same time. For this reason,
the delivery of pigs to the abattoir normally last four weeks between the first and the last
load of animals (Rodríguez-Sánchez et al., 2019; Plà-Aragonés, 2015). In addition, since
all the fattening farms serve to the same abattoir and belong the same integrator, the
delivery of pigs over time must be balanced all around the year and farms house batches
of pigs at different growing stages. At any case, all of the farms are available to deliver
fattened pigs. The amount of weekly trips to the abattoir depends on slaughtering ca-
pacity. The number of trips per truck depends on the size of the available fleet owned by
the integrator or abattoir.

Once the total number of pigs available to be collected on each farm is determined, the
scheduling of load trucks is carried out by considering incompatibility constraints between
workload tasks and ensuring that a minimum number of pigs are collected. Incompati-
bilities between farms can be the result of different breeds housed or sanitary status of
herds. The abattoir is served by a team of truck-drivers based at the depot, i.e. the
abattoir, which remains open until the last truck is downloaded. Every week, the team
leaves the depot to perform the schedule for that week and then returns to the depot. The
daily schedule of a week is flexible and serves only to fulfil abattoir demand and balanced
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Figure 3.1: Pig supply chain structure and coordination.

workload of drivers. The time horizon usually considered is of one month equivalent to
four weeks. A team operates for the same integrator and outsourcing is not considered
though it is possible in real life during peak periods justified by the coordination of pig
production on farms. Flexibility due to slaughter third party pigs is interesting, but lim-
ited since there is a minimum number of own slaughtered animals required just to keep
the pig production flow over time balanced. There are sow farms producing piglets all
the time with few stocking capacity related to housing capacity and regular operation of
fattening facilities (see Figure 3.1).

Then, the problem consists of constructing a schedule of collection of pigs among farms
over the planning horizon so that minimal abattoir demand is fulfilled, and the total re-
ward associated with fattened pigs that are collected is maximized. Each weekly schedule
is viewed as a route in the context of vehicle routing since a farm can only visited once a
week. The reward of each farm is calculated according to Rodríguez-Sánchez et al. (2019)
and applied to each pig. There are not taken considerations related to the rest of the
system leaving aside considerations regarding other production stages like sow or rearing
farms. The objective is to maximize the rewards derived from collecting pigs from farms
minus the transportation cost. To the best of our knowledge, this problem has never
been addressed in the scientific literature and it can be viewed as a TOP with additional
constraints. Main constraints are:

• each vehicle route starts and ends at the abattoir;

• the accumulated quantity of pigs carried by each vehicle does not exceed the total
carrying capacity due to animal welfare regulation of the EU;
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• there is a maximum time limit for vehicle routes;

• each farm delivers at most only once by the same vehicle at the same period;

• a truck visiting a farm must collect all available pigs if truck capacity make it
possible;

The expected results of the proposed approach benefits of the context understanding in
which farmers and pig companies make decisions and it is expected they pave the way for
the future deployment of new DSS tools (Rose et al., 2018). Moreover, taking into account
the competitiveness of the sector and the lack of specialised tools to make data-driven
decisions.
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4| Mathematical formulation of
the Team Orienteering
Problem

4.1. The mixed integer linear programming model

4.1.1. The general TOP formulation

The proposed TOP can be defined on a complete directed network. Let G = (V ′, A) be
a complete directed graph with vertex 0 ∈ V ′ representing the abattoir, where the route
starts and ends, while set V = 1 . . . n ⊂ V ′ represents the farms’ locations; set A is the
arc set. Each vertex i ∈ V has an associated profit pi ∈ R+ and each arc (i, j) ∈ A has a
travel time tij ∈ R+ calculated from real distances among farms. We assume that travel
times satisfy the triangle inequality. The length of a path (measured in time) cannot
exceed the predefined time limit Tmax. Every farm (vertex) can be visited at most once
per week.

Variables:

• Binary decision variables xd
ij, where:

xd
ij =

1, if farm j is visited immediately after farm i, with truck d,

0, otherwise.

• Integer decision variables ydi ∈ N, where:

ydi =

z, if farm i is the zth visit of truck d,

0, otherwise.
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The TOP model formulation:

Maximize:
∑
d∈D

∑
(i,j)∈A

uj · xd
ij

s.t.: xd
ij ≤ 1 ∀(i, j) ∈ A, ∀d ∈ D

ydi − ydj + 1 ≤ (1− xd
ij) · |V | ∀i, j ∈ V, ∀d ∈ D∑

i∈V

xd
ij =

∑
h∈V

xd
jh ∀j ∈ V, ∀d ∈ D∑

j∈V

xd
0j =

∑
i∈V

xd
i0 = 1 ∀d ∈ D∑

(i,j)∈A

tij · xd
ij ≤ Tmax ∀d ∈ D

xd
ij ∈ {0, 1} ∀(i, j) ∈ A, ∀d ∈ D

ydi ≥ 0 ∀i ∈ V, ∀d ∈ D

(4.1)

(4.2)

(4.3)

(4.4)

(4.5)

(4.6)

(4.7)

(4.8)

Equation (4.1) denotes the objective function to be maximized. Constraints (4.2) ensure
that each farm should be visited by a truck at most once during the whole time horizon.
Constraints (4.3) prevent the construction of subtours. Constraints (4.4) is a flow balance
constraint, and ensure that any arrival to a farm has to be compensated with a departure.
Constraints (4.5) states that all the vehicles should leave and arrive to the abattoir (vertex
0). Constraints (4.6) state that the total travel time of each vehicle should not be more
than its threshold. Finally, constraints (4.7) and (4.8) refer to the nature of xd

ij and ydi

variables.

4.1.2. The optimal delivery model

The presented model of optimal deliveries to the abattoir is based on the formulation
proposed by Rodríguez et al. Rodríguez-Sánchez et al. (2019). We are considering a
fattening farm, j ∈ V , fattening a batch of Nj-pigs. Pigs are distributed in |P | growth
categories. The aim is to plan the deliveries to the abattoir and maximize the profit.
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Maximize:
∑
e∈E

∑
p∈P

bep · sep

s.t.: n1p = Nj/|P | ∀p ∈ P, j ∈ V

ne+1,p = nep − sep ∀e ∈ E \ {emax},∀p ∈ P

ne,p−1 ≥ nep ∀e ∈ E,∀p ∈ P−

ne+1,p ≤ n1p(1− de,p−1) ∀e ∈ E \ {emax},∀p ∈ P−

sep ≤ nep ∀ep ∈ EP

sep ≤ n1p · dep ∀ep ∈ EP

semaxp ≥ nemaxp ∀p ∈ P∑
p∈P

sep ≤ Kd · te ∀e ∈ E

sep ≥ 0, nep ≥ 0 ∀ep ∈ EP

te ∈ N e ∈ E

dep ∈ {1, 0} ep ∈ EP

(4.9)

(4.10)

(4.11)

(4.12)

(4.13)

(4.14)

(4.15)

(4.16)

(4.17)

(4.18)

(4.19)

(4.20)

Equation (4.9) denotes the objective function to be maximized by delivering a batch of
pigs from farm i to the abattoir. Constraints (4.10) represents the categories considered
in a batch of fattening pigs. Constraints (4.11) keep the inventory of animals on farm.
Constraints (4.12) force to keep on farm lighter pigs. Constraints (4.13), (4.14) and (4.15)
control only adjacent categories of pigs can be delivered to the abattoir. Constraints (4.16)
ensure that all pigs have been delivered at the end of the fattening period. Constraints
(4.17) serve to define the number of trucks needed for deliveries. Finally, constraints
(4.18), (4.19) and (4.20) refer to the nature of sep, nep, te and dep variables.

4.1.3. The TOP for deliveries to the abattoir

In this section, the TOP model of section 4.1 is updated considering the deliveries to the
abattoir. In particular, the rewards uj of equation (4.1) are calculated by the benefit
of sales, i.e.

∑
p∈P bep · sep. Pigs of a fattening farm are in a growth stage e ∈ E with

a distribution of p ∈ P groups of weights. Then, considering the growth state in each
farm determines the reward and the number of pigs delivered to the abattoir, we can
re-formulate the new TOP model:
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Maximize:
∑
d∈D

∑
(i,j)∈A

(
∑
p∈P

bejp · sdejp) · x
d
ij

s.t.: xd
ij ≤ 1 ∀(i, j) ∈ A,∀d ∈ D

ydi − ydj + 1 ≤ (1− xd
ij) · |V | ∀i, j ∈ V, ∀d ∈ D∑

i∈V

xd
ij =

∑
h∈V

xd
jh ∀j ∈ V, ∀d ∈ D∑

j∈V

xd
0j =

∑
i∈V

xd
i0 = 1 ∀d ∈ D∑

(i,j)∈A

tij · xd
ij ≤ Tmax ∀d ∈ D

∑
d∈D

sdejp ≤ Npj ∀j ∈ V, ∀p ∈ P∑
j∈V

∑
p∈P

sdejp ≤ Nd
max ∀d ∈ D

sdejp ≥ 0 ∀j ∈ V, ∀p ∈ P

xd
ij ∈ {0, 1} ∀(i, j) ∈ A,∀d ∈ D

ydi ≥ 0 ∀i ∈ V, ∀d ∈ D

(4.21)

(4.22)

(4.23)

(4.24)

(4.25)

(4.26)

(4.27)

(4.28)

(4.29)

(4.30)

(4.31)

Equation (4.21) denotes the objective function to be maximized by delivering sdejp pigs
from farm j ∈ V at growth stage ej ∈ E, group p ∈ P by trip d ∈ D to the abattoir
generating a profit of bejp euros per each of those pigs. We have added constraints (4.27-
4.29) to represent the allowable number of pigs delivered in each trip to the abattoir.

If we consider just one period, therefore the model represented by Equations (4.21-4.31)
is equivalent to the TOP model formulated by Equations (4.1-4.8) because the terms
bejp · sdejp become constant since for a specific week we know beforehand the number of
animals we have susceptible of being collected (i.e. sdejp).

In a multiperiod model this is not so. In this case, the resulting model (4.21-4.31) clearly
would not be lineal, but since the objective function (4.21) in the case of multiperiod time
horizon would be the result of multiply a linear function by a binary variable, and hence
the reformulation of the model into a MILP by standard methods is easy:
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Maximize:
∑
d∈D

∑
(i,j)∈A

wd
ij

s.t.: xd
ij ≤ 1 ∀(i, j) ∈ A, ∀d ∈ D

ydi − ydj + 1 ≤ (1− xd
ij) · |V | ∀i, j ∈ V, ∀d ∈ D∑

i∈V

xd
ij =

∑
h∈V

xd
jh ∀j ∈ V, ∀d ∈ D∑

j∈V

xd
0j =

∑
i∈V

xd
i0 = 1 ∀d ∈ D∑

(i,j)∈A

tij · xd
ij ≤ Tmax ∀d ∈ D

∑
d∈D

sdejp ≤ Npj ∀j ∈ V, ∀p ∈ P∑
j∈V

∑
p∈P

sdejp ≤ Nd
max ∀d ∈ D∑

p∈P

bejp · sdejp ≤M · xd
ij ∀(i, j) ∈ A, ∀d ∈ D∑

p∈P

bejp · sdejp ≥ −M · x
d
ij ∀(i, j) ∈ A, ∀d ∈ D

wd
ij ≤

∑
p∈P

bejp · sdejp ∀(i, j) ∈ A, ∀d ∈ D

wd
ij ≤M · xd

ij ∀(i, j) ∈ A, ∀d ∈ D

sdejp ≥ 0 ∀j ∈ V, ∀p ∈ P

xd
ij ∈ {0, 1} ∀(i, j) ∈ A, ∀d ∈ D

ydi ≥ 0 ∀i ∈ V, ∀d ∈ D

(4.32)

(4.33)

(4.34)

(4.35)

(4.36)

(4.37)

(4.38)

(4.39)

(4.40)

(4.41)

(4.42)

(4.43)

(4.44)

(4.45)

(4.46)

4.2. The PJS algorithm

Given the complexity of solving the previous model getting an exact solution with a
reasonable computational time, a heuristic based on the PJS algorithm was proposed.
The general algorithm is implemented in Phyton 3.11 and detailed in Algorithm 4.1. The
basic idea is to explore the space solutions in an iterative way and keeping the best solution
found. The main process of the algorithm is the merge() function. It is this function that
embed the PJH savings algorithm to build new solutions.
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Algorithm 4.1 Algorithm adapted to the delivery of pigs to the abattoir
1: Data :BR,maxSave, nodes, dMat, elapsed

2: sol← genInitSol(maxSave, nodes, dMat)

3: eff_list← create_eff_list(sol)

4: eff_list← sort(eff_list)

5: while elapsed < Tmax do
6: new_sol← merge(BR,maxSave, nodes, dMat, eff_list)

7: if new_sol > sol then
8: sol← new_sol

9: end if
10: end while
11: Print the best solution sol

The algorithm implement the PJH saving heuristic that is an improvement over the classic
Clark and Writght savings algorithm. Algorithm 4.2 describe how the merge() function
operates iterating over an efficient_list. All the elements of this list are checked one by
one as possible candidates of improving current solution with a new solution.

Algorithm 4.2 Exploring new feasible Routes by merging existing ones
1: Data :BR,maxCost, nodes, dMat, eff_list

2: sol← genDummySol(maxCost, nodes, dMat)

3: copy − eff_list← eff_list

4: while there are elegible edges in copy − eff_list do
5: e← selectEdge(copy − eff_list)

6: if nodes on e are merge-able then
7: iNode← getOrigin(e)

8: jNode← getEnd(e)

9: iRoute← getRoute(iNode)

10: jRoute← getRoute(jNode)

11: new_sol← joinRoutes(e, iRoute, jRoute, sol)

12: end if
13: end while

Important in our approach is the role played in the elaboration of the efficient_list

as it is shown in 4.3. When an edge is created, the cost and efficiency is calculated.
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In particular, efficiency is calculated as a linear combination between cost and reward
depending on α ∈ [0, 1]. Once all the edges are created with cost and efficiency calculated,
they are ordered according their efficiency in the efficiency_list. This list will be used
to build new solutions, trying to combine the more promising edges. In addition, the
selection of the elements of the list are selected at each iteration randomly (i.e. Bias
Randomized) in order to better explore all the solution space and avoid the deterministic
result we would obtain selecting always in the same order the elements of the list.

Algorithm 4.3 Building the efficient list
1: Data :nodes, dMat, alpha

2: for each node in the list of nodes do
3: af ← createEdge(abattoir, farm)

4: fa← createEdge(farm, abattoir)

5: end for
6: for each i_node in the list of nodes do
7: for each j_node > i_node in the list of nodes do
8: ij ← createEdge(i_node, j_node)

9: ji← createEdge(j_node, i_node)

10: Efficent_list← append(ij, ji)

11: end for
12: end for
13: Efficent_list← sort(Efficent_list)

4.3. Computational experiments design

First experiment was intended to check the difficulties associated to get the exact solution
of the problem using the formulation presented in section 4.1. The use of the model 4.1.1
would be enough without need to implement and solve the other models presented in the
same section much more complexes.

The second experiment solved the same problem approximately by using the algorithm
4.1 presented in section 4.2. This solution is considered the base case for the comparisons
performed with additional computational experiments detailed in what follows.

Further computational experiments were planned according the nature of available data
to explore the goodness of the proposed method and the system performance as well.
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In particular, we accounted for a network of 187 nodes, one of them acting as depot
(abattoir). Descriptive statistics were used to explore the characteristics of the real sample
using JMP Pro version 17. Results are shown in Figure 4.1. We can observe that the
mean of the sample is 94 pigs, with a large standard deviation of 63.4. On the same figure
we show the distribution fit by a three mixture normal distribution (best fit).

Figure 4.1: Descriptive statistics of the number of pigs per farm.

Since it is not the same a network with many farms offering pigs near to truck capacity
than the case of many farms offering small number of pigs allowing transportation drivers
to visit more than a farm to complete the load, we focused on the average number of pigs
per farm to be delivered to the abattoir. However, another parameter that may impact
to the TOP is the variability of the average number of pigs. It is not the same an average
with all the farms having a similar number of pigs to slaughter than the same average with
a broad dispersion. For this reason, the standard deviation of the average number of pigs
was also considered. Another parameter to analyse was the truck capacity. A capacity
of 200 pigs is predominant, but we can think in trailers with higher capacity of 300 or
400 pigs. Finally, since we are using approximate methods, the time devoted in searching
improvements is relevant. Therefore, the same time amount was fixed to improve initial
solutions.

The total number of experiments planned were: 10 (average values) × 5 (standard de-
viations) × 3 (maximum workload) × 2 (fixed elapsed times) = 300 experiments. For
this purpose the results issued in each experiment was recorded in a coded file named:
mXsdY ZZZ − e where X refers to the average number of pigs per farm, Y the stan-
dard deviation, ZZZ the maximum workload of trucks and e the fixed time to improve
solutions. The average values and standard deviation values were used to random gener-
ate normal observations for the number of pigs in each fattening farm. The same values
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were kept for the rest of parameters: ZZZ and e. Values out of the interval [0,200] were
substituted by corresponding extreme value i.e. 0 or 200.

The outputs recorded in each experiment were: the solution number with best outcome,
the cost, the reward and the number of routes. For further inspection, a more detailed
file was recorded detailing the specific routes in the solution. Auxiliary calculations were
performed to calculate auxiliary variables to get more insight in the analysis of results.
These calculations are shown in Table 4.1.

Calculation Explanation Units

Unitary cost/reward Transport time per pig hours/pig

Intensity rewards/routes Pigs per route #pigs/route
Duration cost/routes Transport time per route hours/route

Table 4.1: Auxiliary outcomes calculated from instance results.
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Our algorithms were coded and run in Python 3.0 on a 2.10 GHz Intel(R) Core(TM) i7-
1260P and 16 Gb of RAM under the Windows 11 Pro operating system. The experimental
work was carried out over a large set of artificial instances based on a real case of a medium-
big Spanish pig integrator company. We have analyzed the performance of our algorithms
by considering different numbers of pigs available on fattening farms. A base case was
established and additional analysis performed taking into account the four different cases:
(i) changes in the number of marketable pigs; (ii) changes in the number of available
trucks; (iii) changes in the dispersion of available pigs and (iv) considerations of maximum
computational time for improving current solutions. We integrate a tuning of the alpha
value involved in the PJS heuristic in view of balancing costs, i.e. travelling trip times,
and rewards, i.e. collected pigs.

5.1. A realistic instance example: base case

In order to test our proposed model and proceed with computational experiments about
the performance of our algorithmic approach, we had the permission of a real pig com-
pany (kept confidential) to use the location of their different farms and own abattoir.
The abattoir have a capacity of slaughtering 5000 pigs a day and 186 fattening farms
producing almost a million of pigs per year. The abattoir accepts third party pigs to
slaughter but giving priority to those produced by the same company. This fact give
flexibility in slaughtering their own production. The abattoir is in charge of organising
the collection and transportation of fattened pigs from farms and this is done weekly. The
truck capacity is normally between 200 and 220 heads depending on animal weight. Since
the slaughtering weight has being increased in the last years, 200 pigs is the most usual
capacity.

The company provided the latitude and longitude for all the farms and the abattoir.
Figure 5.1 shows the geographical location of the facilities considered in this study on a
map.
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Figure 5.1: Distribution of farms around a geographical area.

A travel time matrix was build using the coordinates of all the farms and abattoir. For
such purpose the URL http://router.project-osrm.org/table/v1/driving/ was re-
quested. This URL is an endpoint for the Open Source Routing Machine (OSRM) service,
specifically for generating travel time and distance matrices for driving routes. Correct
requests to this endpoint get a JSON response containing a matrix of travel times and
distances between multiple pairs of locations based on driving routes. Only travel times
were used in this Thesis.

Regarding fattening farm capacity, to simplify the operation of fattening farms several
practical considerations are assumed:

• All the farms are supposed to be operating;

• The full capacity of farms is considered, however, we are only concerned with head
or tails in batch production. This is sow because farms filling themselves a truck
are not problematic;

• There are not considered constraints in fleet size, since all farms with commercial
weight pigs must be collected and if needed third party transportation hired.

The results of the base case produce a reward of 17,119 pigs slaughtered with a trans-
portation cost (time) of 1,541.4 hours, using for this 92 routes. Solving the problem with
different load capacity of trucks produce the result shown in the Table 5.1. We observe
how the cost does not change representing the travel time and the total number of routes
involved are similar in all the cases. However, the reward changes as expected. Since the
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load capacity increases, the number of pigs a truck can collect is greater. The number of
pigs delivered to the abattoir almost doubled when doubling the truck load capacity.

Truck load Cost Reward Routes

200 1,541.4 17,119 92

300 1,515.4 25,519 89
400 1,549.0 33,919 87

Table 5.1: Main results of the base case.

5.2. Computational experiments

5.2.1. Exploratory analysis

According to the instance generation presented in section ?? and Appendix A were ob-
tained the results of this experimentation are shown more in detail in Figure A.3 of
Appendix A. A summary of the Reward and Cost is presented on Tables 5.2 and 5.3.
This results correspond to the average calculated for the three different solutions obtained
with different trucks (i.e. different load capacity).

σ=5 σ=25 σ=45 σ=65 σ=85

µ=9 1823 2641 3856 6074 7588

µ=29 5407 6160 7030 7357 9321

µ=49 9324 9524 10001 9544 11572

µ=69 12892 13240 13244 13869 12439

µ=89 16577 16551 17708 17457 15390

µ=109 20403 20538 19780 19703 17949

µ=129 24126 23939 23693 21576 19555

µ=149 27755 27586 25961 23744 21034

µ=169 31486 30352 27056 25692 23136
µ=189 34790 30110 27624 26136 24843

Table 5.2: Reward expressed in number of pigs transported

Table 5.2 indicates that the more pigs are available on farms the more pigs are delivered
to the abattoir. However, the variability observed in the number of pigs available (σ) does
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not always correspond to more pigs delivered to the abattoir. The reason is that random
numbers are generated within the interval [0,200]. This observation corresponds to the
associated cost (Table 5.3) since more pigs delivered implies a higher cost and vice versa.

σ=5 σ=25 σ=45 σ=65 σ=85

µ=9 1233 1249 1292 1334 1340

µ=29 1287 1296 1341 1343 1380

µ=49 1366 1354 1371 1385 1367

µ=69 1379 1440 1448 1438 1398

µ=89 1482 1485 1453 1453 1430

µ=109 1633 1527 1510 1522 1477

µ=129 1639 1599 1587 1521 1490

µ=149 1657 1652 1602 1561 1514

µ=169 1790 1702 1627 1589 1568
µ=189 1774 1709 1647 1606 1559

Table 5.3: Cost expressed in hours

A summary of the correlation observed among is shown on Figure 5.2. On Figure 5.2 it
is easy to decipher positive and negative correlations. We observe positive correlations
between Trucks and Intensity (i.e. pigs per route) what is normal as more truck capacity,
more pigs are transported.

Figure 5.2: Correlation among output variables of computational experiments.

The variable Sol# approximates the iteration of the best solution, and it is positively
correlated with Routes, Cost and Reward. This can be interpreted as more computa-
tional time improve Reward, Cost and Routes. Another higt correlation is observed
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between Routes and Cost what is reasonable, since more routes implies more time to
cover them. Among auxiliary variables, Duration (hours/route) is highly correlated with
Unitary (hours/pig). Negative correlations are of less intensity than positive ones. The
lowest value corresponds to Unitary (hours/pig) vs Reward (pigs) representing that more
transportation time per pig delivered to the abattoir less pigs are delivered.

Before considering a deeper analysis on results, a clustering of all variables was performed
to identify the relevant variables performing data classification. As there where three
different load truck capacity it was considered this number of three good for clustering.
Results are presented in Figure 5.3. We observe a very neat classification depending on
Cost and Reward (Figure 5.3a). A further analysis of the rest of variables defining each
cluster we observe that most of the experiments with lowest truck capacity are in cluster
1 while variability seems lower in cluster 1 than in the others. Mean values of variables
for clusters 2 and 3 are similar in general showing more differences in the mean number
of Routes and mean Duration (Figure 5.3b).

(a) Cluster scatter plot.

(b) Cluster data classification k=3.

Figure 5.3: Results of the cluster analysis performed with k-means method and k=3.
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5.2.2. Exploring the results on Routes

After the first results we observe the main outputs revolve around the number of routes,
the cost and the reward. If we observe the distribution of Routes in Figure 5.4. It is clear
how the number of Routes increase as the number of pigs per farm increase. At the same
time, this increment makes the variability observed in the boxplot higher when the mean
number of pigs on farms increases. The boxplot with mean 94 corresponds to the base
case, i.e. real instance, while the rest corresponds to randomly generated instances.

Figure 5.4: Boxplot of routes by mean number of pigs per farm.

We could think that variability observed in Figure 5.4 may be due to the variance in
the random generation of pigs on fattening farms. However for each mean, five different
standard deviations are considered. So that, Figure 5.5a represented the boxplot of the
mean number of Routes by different standard deviation (sd). The variability represented
by the boxplots indicates higher variability leads to less dispersion in the number of
Routes. Investigating the reason, we concluded that bigger standard deviation around
the mean number of pigs on farms provokes a variety of random values that makes truck
load easier to complete. The different number of pigs available among different farms
complement better each other to fill a truck. Figure 5.5b confirms the positive correlation
between Routes and Cost since lesser variability in the number of Routes redounds in a
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lesser variability in associated Cost.

(a) Number of Routes by sd. (b) Cost by sd.

Figure 5.5: Results of Routes and Cost by standard deviation (sd).

5.2.3. Exploring the results on Truck capacity

As we are considering different load capacities for trucks, we can see the number of
Routes we have to implement depending on truck capacity. This information is presented
in Figure 5.6.

Figure 5.6: Boxplot of routes by truck load capacity.
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As expected, load capacity implies less Routes to cover. Figure 5.6 shows clearly a
decrement in the number of Routes when increasing truck capacity. Other variables
are also affected by the load capacity of trucks (see Figure 5.7). For instance, Cost,
representing travel time, is reduced when capacity is higher (Figure 5.7a). However, the
impact on Reward is more limited (Figure 5.7b) likely because the total capacity of the
fleet overpass the available number of pigs on farms. In accordance to that, the Intensity

of completing truck capacity increases with Truck capacity (Figure 5.7d) while trip times
represented by Duration increase slightly because more truck capacity allow the company
to plan longer Routes (Figure 5.7c) implying less cost per truck and more reward capacity.

(a) Cost per Truck capacity. (b) Reward per Truck capacity.

(c) Duration per Truck capacity. (d) Intensity per Truck capacity.

Figure 5.7: Results of Cost (5.7a), Reward (5.7b), Duration (5.7c) and Intensity (5.7d)
per Truck capacity.
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5.2.4. The impact of the number of pigs to collect

The number of pigs to be delivered to the abattoir is a crucial element to solve the TOP.
Less pigs available may imply longer routes to fulfil truck capacity while more pigs may
limit the flexibility to complete truck load. Figure 5.8 tries to summarize the impact of
different averaged number of pigs available to be sent to the abattoir. The first observation
is that the Intensisty is not affected by the number of pigs to be collected (Figure 5.8a)
because we only have three different load capacities. However, the trip time per pig
(Intensity) it is reduced as the mean number of pigs per farm increases (Figure 5.8b).
This result suggest a better efficiency in transportation when more animals are available.

(a) Number of pigs per truck. (b) Trip time per pig.

(c) Cost or averaged trip time. (d) Reward or number of pigs collected.

Figure 5.8: Results of Cost (5.8a), Reward (5.8b), Duration (5.8c) and Intensity (5.8d)
per Truck capacity.

Figure 5.8c represents the increasing cost when the average number of animals increase.
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It is reasonable if there are more pigs in the system that more trips are required to the
abattoir. This is confirmed with Figure 5.8d showing that the number of pigs generating
rewards, increments according the mean value considered.
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6| Conclusions and future

developments

6.1. Conclusions

According to the objective of this Master Thesis, we can conclude that we succed to
describe the problem of marketing fattened pigs to the abattoir as a TOP model. We
have formulated the TOP model as a MILP model what is inefficient for large instances.
Therefore, we have solver the problem by a metaheuristic based on the combination of
PJH savings and Biased randomized heuristics. We have created a data set based on a
real case and demonstrated the utility to solve large problems.

Given the nature of the problem the most prominent alpha value used by the algorithm was
0 since the reward from pigs were more attractive than a mere reduction in transportation
cost. Another important aspect was the truck capacity that limited the number of farms
to visit and made easier the resolution of the problem.

6.2. Future work

However, even the computational experiments performed were successful, there are tech-
nical aspects to consider when analyszing other cases related to the algorithm like:

• The alpha parameter of the PJS algorithm;

• The biased random selection of elements from the candidate list;

• The uncertainty in rewards.

While other aspects relying on the problem also to consider are:

• The number of farms delivering pigs at a time;

• The capacity of trucks collecting pigs;

• The outsourcing of the transportation.
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For that reason, in the near future, the extension of this work is foreseen. The first task will
be to solve a multiperiod problem. This task is difficult since involve the implementation
of model represented by equations 4.32-4.46 in case of require exact solutions. Easier
would be the exension of the present algorithm to deal with this complexity.

The last extension of the model we would like to do is to include uncertainty in the process
since either pig growth and sales’ prices varies over time and are uncertain. The use of
more advanced metaheuristics like simheuristics or learnheuristics seem interesting.
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A| Appendix A

The specific random numbers generated to represent the number of pigs available or the
abattoir for each instance are available in the Excel file InstancesEng.xlsx. Figure A.1
show the file with some of the values generated randomly. In particular we observe the
values generated for each node with the mean represented in the head of the column
(m9,...,m189) and each sheet with a different standard deviation (sd5,...,sd85). The first
column correspond to the base case. Then, we can deduce that there are 50 × 186 random
values generated according to 50 different normal distributions.

Figure A.1: Farm capacity generated randomly for each farm.

This way we have the observation of different distributions of pigs among the farms present
in the system. Then, we can calculate the number of pigs available to collect one week as
it is shown in Figure A.2.
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Figure A.2: Total number of pigs available in the system by instance.

The output of each instance was recorded in an Excel file. Figure A.3a displays an example
with the main outputs recorded. An additional file had the extended information of each
solution. In particular, the information regarding each route in the solution as shown in
Figure A.3b.

(a) Results summary for each solution. (b) Routes recorded for each solution.

Figure A.3: Results of the computational experiments with (A.3a) more or (A.3b) less
detail.

Correlations among variables in a multivariate plot is presented in Figure A.4. This
figure allow us to get a general information about the different correlations among output
variables and the positive or negative sense. For instance, it is clear the strong correlation
between Cost and Routes.
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Figure A.4: Multivariate correlations between variables.
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B| Appendix B: files and

resources

All the files used in this Thesis are available on the cloud of Google Drive. The link to get
temporary access is: https : //drive.google.com/drive/folders/1−Bf6GQRGY kjjC5LuLHyHjdrW9JSSyuhR?usp =

sharing

Files include the Python code, the Excel files with the parameters and instances, text
and json files containing the results and other auxiliary material. In addition, some
bibliography used to compose the Thesis is also available at the same link. The link will
be active till mid-September. After that, the material will be available upon request to
the author.
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