

Universitat Rovira i Virgili (URV)

Universitat Oberta de Catalunya (UOC)

MASTER IN COMPUTATIONAL AND MATHEMATICAL ENGINEERING

FINAL MASTER PROJECT (FMP)

Area: Artificial Intelligence

Using Deep Learning for Sound Classification in Citizen Science: A

Practical Approach with Soundless

Author: David Castelló Tejera

Tutor: Pedro García Lopez

Date of Delivery: September 1st of 2023

Dr./Dra. Pedro García Lopez, certifies that the student David Castelló Tejera has elaborated

the work under his/her direction and he/she authorizes the presentation of this memory

for its evaluation.

Director's signature:

This work is subject to a license of Attribution-NonCommercial-NoDerivs 3.0 Spain (CC

BY-NC-ND 3.0 ES)

 GNU Free Documentation License (GNU FDL)

Copyright © 2023 David Castelló Tejera.

Permission is granted to copy, distribute and/or modify this document under the terms of

the GNU Free Documentation License, Version 1.3 or any later version published by the

Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-

Cover Texts.

i

Final Project Sheet

Title:
Using Deep Learning for Sound Classification in Citizen Science: A

Practical Approach with Soundless

Author: David Castelló Tejera

Tutor/a: Pedro García Lopez

Date: September of 2023

Program: Master in Computational and Mathematical Engineering

Area: Artificial Intelligence

Language: English

Key words: Deep learning, Audio Classification, Citizen Science

ii

Dedicatory

Dedico este trabajo a mi hermana por su amor y su apoyo incondicional.

Agradecimiento especial a mis compañeros del San Javier. Su amistad, su felicidad y su

calidez han sido la inspiración necesaria para trabajar en este proyecto por las tardes.

Gracias a Carmen por creer en mí. Sin su apoyo, su fuerza, sus consejos, y su dedicación,

este trabajo no habría salido adelante.

Gracias a Jesús y a Gonzalo por el soporte técnico y emocional (en proporciones iguales).

iii

Abstract

The field of Deep Learning has experienced tremendous growth in recent years, sparking

interest among users and researchers. However, deploying Deep Learning models in real-

world projects presents significant technical challenges. This Master's Thesis provides a

practical approach to designing and constructing a custom Deep Learning model for audio

classification, intended for use within the Soundless project—a citizen science platform

investigating noise pollution and its impact on human health.

The primary objective is to construct a custom model deployable within the Android

application of the Soundless project. Different model architectures are explored

considering the complexity constraints of deploying Deep Learning models on the edge.

The model is built using the TensorFlow framework. Evaluated against the ESC-50

benchmark, the model demonstrates prediction accuracies of over 86%. The model is then

integrated into an Android app prototype for testing.

A custom dataset is constructed, termed NBAC, comprising 780 audio samples covering 13

distinct classes. NBAC is designed to be aligned with the acoustic context of the Soundless

project. The model's performance on NBAC achieves over 90% accuracy.

Further, this work investigates various implementation alternatives for utilizing and

enhancing the model in a production environment. A centralized improvement approach

is proposed, which entails locally storing labeled feature representations of audio samples

and training a classifier. Alternatively, a decentralized improvement approach is

formulated using Federated Learning. Both strategies, leveraging the custom-designed

models, yield promising outcomes. They not only preserve the anticipated accuracies but

also facilitate the desired enhancements.

Keywords: Deep Learning, Audio Classification, Citizen Science, Deployment on

Android, ESC-50, TensorFlow, Federated Learning.

iv

Index

1. Context and Problem .. 1

1.1. The Soundless Project .. 1

1.2. How Soundless Works .. 2

1.3. Aims of the Work .. 3

1.4. Motivation .. 4

1.5. State of the Art ... 4

1.6. Scope and Limitations .. 5

1.7. Approach and Methodology .. 6

1.8. Planning of the Work ... 6

2. Theory .. 9

2.1. Fundamentals of Audio Signal Processing .. 9

2.2. Deep Learning for Audio Classification ... 10

2.2.1. Convolutional Neural Networks ... 11

2.2.2. Depthwise Separable Convolutions ... 12

3. Development of the Solution ... 14

3.1. Machine Learning Pipeline ... 14

3.1.1. Audio Pre-processing ... 15

3.1.2. Data Augmentation .. 16

3.1.3. Low-Level Features .. 18

3.1.4. Model Selection .. 20

3.1.5. Performance Evaluation .. 21

3.2. Inference ... 22

3.2.1. TensorFlow Lite .. 22

3.2.2. Running Inference on Android ... 22

v

3.2.3. Android application ... 23

3.3. Datasets ... 24

3.3.1. ESC-50 Dataset ... 24

3.3.2 NBAC Dataset ... 24

4. Experimental Setup: Model Development ... 26

4.1. Architectures with Mel Spectrogram as Input ... 26

4.2. Compact Architectures .. 28

4.2.1. Custom Architectures .. 29

4.2.2. MobileNetV1 .. 29

4.3. Transfer Learning with YAMNet ... 31

4.3.1. Understanding YAMNet .. 32

4.3.2. Native Customization of YAMNet .. 33

5. Validation .. 35

5.1. Analysis of the Results and Evaluation ... 35

5.1.1. Analysis of Minimum Class Sample Size for Convergence 38

5.2. Working Prototype .. 40

5.2.1. Prototype Limitations .. 41

6. Feature Space Analysis ... 43

6.1. Encoder ... 44

6.2. Semantic Clustering ... 45

7. Improving the model ...51

7.1. Using Citizen Science to Collect Data ...51

7.2. Centralized improvement: Updating the Classifier .. 53

7.3. Decentralized improvement: Federated Learning .. 54

7. Conclusions .. 60

8. Bibliography .. 62

Annexes .. 66

vi

List of figures

Figure 1: Simulated correlation between heart rhythm and sound intensity 2

Figure 2: Visualization of the proposed dimensional expansion .. 3

Figure 3: Distribution of the workload ... 8

Figure 4: Waveform and spectrogram representation .. 10

Figure 5: Visualization of the inner layers of a CNN ... 12

Figure 6: Standard convolution vs depthwise convolution ... 13

Figure 7: Visualization of the machine learning pipeline ..15

Figure 8: Splitting audio fragments ... 16

Figure 9: Waveform data augmentation techniques ... 17

Figure 10: Spectrogram augmentation block ... 18

Figure 11: Spectrogram data augmentation techniques ... 18

Figure 12: Standard CNN HLF block .. 26

Figure 13: Standard CNN architecture ... 28

Figure 14: Output extracted from the LLF layer .. 29

Figure 15: Compact architecture with MobileNetV1 .. 30

Figure 16: YAMNet outputs. Extracted from... 32

Figure 17: Confusion matrices on test dataset of the DW al5s architecture 36

Figure 18: Confusion matrices on test dataset of the compact DW al5s architecture 36

Figure 19: Confusion matrices on test dataset of the pre-trained MobileNetV1 al5s

architecture ... 37

Figure 20: Confusion matrices on test dataset of the YAMNet al5s architecture 38

Figure 21: Analysis of performance for the standard DW architecture as a function of

number of samples per class .. 39

Figure 22: Analysis of performance for pre-trained MobileNetV1 as a function of number

of samples per class .. 39

Figure 23: Screenshots of the working prototype ... 40

file:///C:/Users/HP/Desktop/DCT%20TFM%20v3.docx%23_Toc144549798

vii

Figure 24: Features analysis diagram ... 43

Figure 25: Closest neighbors within feature space .. 45

Figure 26: Cluster distribution across audio classes .. 46

Figure 27: Class distribution within clusters ... 47

Figure 28: t-SNE cluster visualization ... 48

Figure 29: PCA cluster visualization ... 48

Figure 30: Unknown sound in t-SNE space .. 49

Figure 31: Unknown sound in PCA space ... 49

Figure 32: Cluster distribution with unknown sound ... 50

Figure 33: Updating a central classifier with embeddings from multiple clients 53

Figure 34: Federated Learning diagram ... 55

Figure 35: Loss across 20 Federated Learning rounds ... 56

Figure 36: Development of accuracy during Federated Learning 56

Figure 37: Random distribution of classes across 6 clients ... 58

Figure 38: Loss across 20 Federated Learning rounds with non-IID data 58

Figure 39: Development of accuracy during Federated Learning with non-IID data 58

1

1. Context and Problem

This Master’s Thesis intends to propose a novel solution for the Soundless project in the

area of audio event recognition for Android devices. While this work is fundamentally a

practical approach, profound research needs to be conducted as recent state of the art

solutions offer strict limitations regarding complexity and deployment limitations. This

section of the Thesis outlines the context of the Soundless project and defines the problem

that will be tackled in the upcoming sections.

1.1. The Soundless Project

Soundless is a citizen science platform designed to audit the effects of noise pollution on

human health [1]. The project is based in the city of Tarragona, where all research is

conducted. The primary goal of this project is to identify acoustic disturbances that occur

at night and raise awareness about them. It aims to determine whether these disturbances

surpass existing regulations and if they pose significant health risks to the public. The

Cloud and Distributed Systems Lab developed the Soundless initiative at the Universitat

Rovira i Virgili, with co-financing from the Diputación de Tarragona.

The research project is motivated by recent studies published by the World Health

Organization (WHO), warning about the potential effects of noise on human health.

Sound levels exceeding 45 dB during nighttime are linked to insomnia, stress, low

productivity, obesity, and other irreversible health problems [2].

As a citizen science platform, the project is possible thanks to the participation of citizen

communities such as the FAVT (Federación de Asociaciones de Vecinos de Tarragona),

along with neighborhood associations of Francolí, Tarragona 2 and a community of

neighbors from the Serrallo neighborhood.

A primary concern for the public collaborating with Soundless is the regular, scheduled

noises during nighttime in Tarragona's neighborhoods that exceed the regulatory sound-

level limits. These noises primarily originate from railways and roads. The scientists at

Soundless not only study the impact of these sounds on human health but also use their

findings as evidence of poor public policy decisions that require improvement.

2

1.2. How Soundless Works

Citizens participating in the project (referred to as participants in this document) use the

Soundless app for Android [3], which captures noise levels through the microphone of the

participant's mobile device. Additionally, the app records health data through a bracelet

worn by the participant. This information is stored in data points that collect the

information across 5-second-long windows. The data is voluntarily sent to Google Cloud

servers for daily authentication and storage in the cloud. The collected data is then

analyzed using statistical methods to identify the causal and temporal correlation between

noise levels and health data. The platform also generates heat maps showing nighttime

incidents by zones.

Figure 1: Simulated correlation between heart rhythm and sound intensity

The methodological core of the Soundless app is based on the citizen science platform.

Citizen science platforms provide tools and resources for individuals to participate in

scientific research and address real-world problems [4]. These platforms can include user

interface and experience design to make it easier for people to participate.

Researchers, institutions, and governments are increasingly paying more attention to

citizen science. It fosters active public participation in scientific research, leading to more

ambitious and networked projects, and provides access to extensive data that would

otherwise be challenging to collect. Additionally, it serves as a valuable platform to address

issues of public interest, thereby strengthening the bridge between science and society [5]

[6].

3

Citizen science enables data collection across a wide geographic range and over extended

periods of time without the need for expensive or complex data collection tools. This has

been a fundamental feature of the Soundless project.

1.3. Aims of the Work

The data points collected at Soundless have two dimensions: acoustic data and health data.

This work proposes a new feature to expand the depth of the acoustic data captured by

the Soundless app.

Currently, the research is primarily collecting sound-level data in decibels using

microphones on the mobile phones of the participants. This task presents a challenge with

average-quality smartphones due to the absence of straightforward methods for acquiring

such data [7]. Additionally, sound-level data is shallow in the context of this research, as

many different sound events can have very similar sound-level profiles.

This Master's Thesis proposes integrating an audio event classification model in the

Soundless app to perform on-device audio classification, increasing the depth of the data

collected from the participants and overcoming the limitations of sound-level

measurement. The model will perform real-time predictions to classify audio recorded

within the Soundless app and tag each data point with a sound event label.

Figure 2: Visualization of the proposed dimensional expansion

4

The anticipated outcome of this project is a model that can be integrated into the

Soundless Android app, performing real-time audio classification during nighttime within

a bedroom setting. The main contribution of this work is the development of a highly

customizable and flexible deploy-ready audio event. The practical approach of this work

is grounded on an exhaustive analysis, defining the best working solution to develop a

model within the specific constraints of the Soundless project.

The objectives established by the Soundless team include attaining an accuracy of over

85% and enabling real-time inference on-device to categorize the 5-second-long data

points.

The classification will be evaluated on the ESC-50 dataset and the beta version of a dataset

manually composed for this project called the Nocturnal Bedroom Audio Classification

dataset (NBAC).

1.4. Motivation

While this project has broad potential applications and offers opportunities for

enhancements to Soundless, its primary aim is to enable the Soundless app on each

participant's device to track specific trains. The Soundless team has agreed to develop a

general-purpose audio event classifier, which will enrich the data collected from

participants. However, the ultimate goal is to create an audio event classifier capable of

distinguishing not just between general sounds like breathing and traffic, or dogs and

snoring, but also differentiating among various train sounds. This work is focused on

developing a general audio event classifier, always keeping this specific goal in mind, as

the solution is designed to be flexible enough to push the boundaries of the audio event

classifier's performance.

1.5. State of the Art

Recent advances in deep learning have greatly improved audio event classification. While

newer models even outperform humans in tests, mobile devices often use simpler, less

capable models. This is due to memory and computational constraints. Speech recognition

on mobile devices is ahead because researchers have put strong efforts on it, especially for

features like voice-assisted typing, and large datasets are available to train and test the

models. However, audio event classification still needs work. Current projects can only

5

identify a limited range of sounds on mobile devices. During the research stage of this

work, there are no signs of similar audio event classification products on the market. State

of the art projects such as Google's YAMNet, an TensorFlow model built for mobile phone

deployment, can identify over 500 sounds quickly but with low accuracy.

1.6. Scope and Limitations

Many efforts are being put on deploying machine learning models on edge devices. This

type of deployment intends to take data storage and processing closer to the end user. The

work of this Master’s Thesis focuses on deployment in mobile devices. This preference is

evident considering the principles of citizen science. All citizens have access to commodity

smartphones and can collaborate with city science problems such as Soundless.

For this project, Soundless requires the model to be deploy-ready for Android applications.

The model will be developed with the TensorFlow libraries. The choice of this library is

influenced by its good compatibility with Android. Google develops both frameworks and

has extensive support and documentation. As of Spetmeber 2023, the Soundless app is only

supported by Android devices.

The project faces two main limitations: i) computational constraints and ii) data

variability.

i) To maintain privacy, the sound classification must occur on-device; recorded

sounds can't be uploaded to the Google Cloud server. This approach also optimizes

memory usage on the cloud server. Given the limited computational resources of

smartphones, the model must be efficient, compact, and energy-conserving to

ensure smooth operation without draining the battery or interfering with other

applications.

ii) The model will be operating in environments where multiple sounds often occur

simultaneously, acoustic conditions greatly fluctuate, and the quality of sound

sensors differ. Therefore, the model must be designed to handle large data variability

and perform effectively under highly unpredictable conditions.

6

1.7. Approach and Methodology

The execution of this project started with the careful selection and preparation of datasets.

An established dataset, the ESC-50, was employed as a benchmark due to its high support

in the literature and its similarity to the Soundless context. A custom dataset, the NBAC,

is created to ensure a broad spectrum of audio instances that fit the requirements of the

project.

Following the data selection, the project progressed into the modeling phase. Various deep

learning models were trained on the Kaggle notebooks platform, leveraging its powerful

computational capabilities. This approach facilitated a comparative analysis of the models'

performance, enabling the identification of the most effective model(s) for audio

classification based on precision and computational complexity.

Once the top-performing models were identified, a machine-learning application to build

the custom model with the desired architecture was developed on a local machine using

the Windows Subsystem for Linux 2 (WSL2).

The final phase involved integrating the custom-trained model into an Android

application prototype. A prototype was modified to integrate the custom model, providing

a practical, user-oriented environment for observing and assessing the model's

performance.

After the completion of the final product, an exploratory analysis is conducted to

investigate possible improvement methodologies to exploit the potential of citizen science

on production. The analysis outlines the capabilities of the model, and proposes two

different approaches to exploit data from participants and improve the model.

Throughout this project, an iterative approach was maintained - each phase was

continually revisited and refined based on the insights and results from the subsequent

stages.

1.8. Planning of the Work

Planning for the hardware resources is an integral step in developing a machine-learning

project of this scope. To ensure an efficient work environment and guarantee the project's

replicability, this section details the allocated hardware resources.

7

The project employs two distinct work environments to facilitate development and

investigation. Kaggle Notebooks serve for testing procedures, while a Windows Personal

Computer operates locally the machine learning application designed for the deployment

model and creates a simulated Federated Learning environment.

Kaggle Notebooks: This platform delivers ready-to-use virtual environments

equipped with hardware acceleration to run Python scripts for machine learning and

data science tasks. Kaggle grants 30 hours of free computing time monthly and is

pre-installed with all the essential libraries. It is possible to install additional

libraries directly onto the virtual machine. Despite these benefits, Kaggle offers

limited customization and does not support certain TensorFlow Lite libraries.

Windows Personal Computer with GPU and WSL2: This environment includes a

standard laptop equipped with a basic Nvidia GPU (GeForce MX330) to run on the

Windows Subsystem for Linux (WSL2). The source code required for the

TensorFlow Lite libraries employed in this work is exclusively buildable on a UNIX-

based system. Additionally, the Federated Learning environment is created on

WSL2.

The project also involves the utilization of three modern smartphones to create the NBAC

dataset. The devices used are the Asus Zenphone 8, iPhone 13 PRO, and Xiaomi 13.

The project's developmental process is planned across five stages: Research, Experiments,

Deployment, Improvements and Documentation. Each stage is composed of multiple

tasks. The diagram in Figure 3 provides a comprehensive overview of the planification

followed for this Master’s Thesis work. The work has been planned across a 9-month

period, from mid-September of 2022 to the end of July of 2023.

8

Figure 3: Distribution of the workload

9

2. Theory

2.1. Fundamentals of Audio Signal Processing

Sound is generated through mechanical vibrations that induce oscillations in the air

particles. These oscillations are referred to as sound waves. Regular microphones work by

converting sound waves into electric signals. This process involves a thin mechanical

sensor called a diaphragm that vibrates when sound waves hit it. This vibration is

translated to an electronic device (a coil or a capacitor), creating an electric signal

representing the sound wave [8].

During the recording of a sound wave, the sequence of stored electric signals over a period

of time is known as a waveform (Figure 4). Each signal is stored as the amplitude of a wave,

and the number of electric signals recorded within a one-second time period is known as

the frequency [8]. Most mobile devices have a sampling frequency for audio of 44.1 kHz,

meaning the number of captured electric signals that represent sound vibrations is 44100

per second.

Most modern mobile devices integrate stereo recording to enhance sound quality, aiming

to create a wider and more immersive sound field. Stereo sampling involves the use of two

microphones that record two separate sound channels. There is no evidence in the

literature that using stereo recording improves the accuracy of audio classification.

The classification of audio signals is a field that has been active for decades. Waveforms

have singular mathematical properties that allow scientists to extract features from sounds

and perform automatic classification [9]. State-of-the-art audio classification models

leverage a combination of feature extraction techniques and advanced machine learning

models to accurately identify and classify audio signals [10].

Recent classification deep learning models integrate feature extraction with spectrograms.

A Spectrogram provides a highly informative two-dimensional representation of an audio

signal, showing how the frequencies contained in the signal are distributed with respect

to time. This time-frequency representation makes them akin to images, making them

well-suited for Convolutional Neural Networks (CNNs), which have demonstrated

exceptional performance in image classification tasks. Experiments show that the capacity

of CNNs to identify features in images is useful for audio classification using spectrograms

[11].

10

The spectrogram of a waveform can be obtained by segmenting the time-domain signal

into equal lengths, applying the Fast Fourier Transform (FFT) to each segment, and

graphically representing the spectrum of each segment [12]. In this work, spectrograms are

obtained using the Mel Scale. The Mel Scale is designed in a way that equal distances on

the scale correspond to what humans perceive as equal differences in pitch [13].

Consequently, Mel spectrograms (Figure 4), which are based on the Mel Scale, are

frequently used as the preferred feature for training deep learning algorithms in audio

processing [11] [14].

Figure 4: Waveform and spectrogram representation

2.2. Deep Learning for Audio Classification

The model is developed through deep learning, a subfield of machine learning that utilizes

neural networks with several layers to progressively extract higher-level features from

input data. This methodology allows the model to learn complex patterns and

relationships within the data, enabling it to perform tasks ranging from image recognition,

natural language processing, or predictive analytics. With the increasing power of

computational resources and the abundance of data, deep learning has been at the

forefront of many technological advancements and breakthroughs in recent years.

The learning process for the proposed audio classification task uses a training dataset

consisting of a large number of labeled audio samples. Each sample is an instance of an

11

audio clip paired with a corresponding category label, reflecting the type of sound it

contains - such as dog barks, music, traffic, etc. The model is trained by iteratively

processing these samples and adjusting its internal parameters to minimize the difference

between predicted and true labels. This process is known as backpropagation. In addition,

a separate validation dataset is used during training to tune hyperparameters and monitor

the model's performance to prevent overfitting. Once the model is adequately trained, its

generalization ability is further tested on a completely unseen test dataset, providing an

unbiased evaluation of its classification accuracy.

2.2.1. Convolutional Neural Networks

Convolutional neural networks (CNNs) are at the core of state-of-the-art approaches to a

variety of computer vision tasks. These types of architectures utilize convolution and

pooling layers (also referred to as subsampling layers) to extract features from input

image-like data. The input is fed into convolutional layers, which conduct feature

extraction by moving filters over the input data. This action results in the creation of a

feature map. This feature map is subsequently passed to a pooling layer, which performs

sub-sampling to reduce the dimensions and size of the feature maps, thereby lessening

the computational power required (Figure 5). These sub-sampled feature maps can then

continue to be inputted into subsequent convolutional layers, repeating the process [15].

12

Figure 5: Visualization of the inner layers of a CNN. Extracted from [15] (top) and [16]

(bottom).

2.2.2. Depthwise Separable Convolutions

Another type of deep neural networks are Depthwise Separable Convolutions, based on a

variation of the standard convolutional layer that reduces the computational cost while

maintaining model performance. Depthwise Separable Convolutions consist of two

separate layers - a depthwise convolutional layer and a pointwise convolutional layer.

In a depthwise convolution, instead of combining all input channels from the previous

layers, each channel is convolved with its own set of filters, hence 'depthwise'. This

significantly reduces the number of parameters and computational resources needed

compared to traditional convolutional layers. Then, in the pointwise convolutional layer,

the output of the depthwise convolution is passed through a 1 x 1 convolutional layer - a

technique used to alter the depth of the channel. These two stages together form the

depthwise separable convolution, which can lead to models that are lighter and faster, but

still effective [17] [18].

13

Figure 6: Standard convolution vs depthwise convolution. Extracted from [17]

This makes Depthwise Separable Convolutions particularly useful for deploying models

on devices with limited computational resources, such as mobile devices. Initially, this

architecture is ideal for building lightweight networks to process RGB images (with 3 input

channels). Audio classification with Depthwise Separable Convolutions takes 1 channel

image-like spectrograms as input. Although this configuration is not fully exploiting the

optimization capacity of these models, using depthwise convolutions in the internal layers,

which are multi-channel feature maps, has proven to be efficient [19] [20]. Some authors

exploit the full potential of Depthwise Separable Convolutions by creating 3 channel

spectrograms with different frequency bands [21].

14

3. Development of the Solution

This section of the work provides an overall description of the solution process. The main

part of the product is the Deep Learning model for audio event classification. The Machine

Learning Pipeline in section 3.1. defines the steps to prepare the data, create, train, and

evaluate the model. The deployment of the trained model for inference is done on an

Android device, for that purpose, section 3.2. outlines the necessary steps to run inference

on a prototype app using TensorFlow Lite, which provides an easy-to-use framework to

deploy TensorFlow models on edge devices. The solution requires carefully selected data.

Section 3.3. explains the datasets that will be used across this work.

Section 4 offers a thorough look at how the audio event classification models are made

and tested.

3.1. Machine Learning Pipeline

A machine learning pipeline is a term used to describe a series of steps involved in building

a model that learns from data. The pipeline includes different stages that define the flow

of data. This section describes the machine learning pipeline of this project.

First, audio pre-processing is applied to segment, and sample audio files. Adding

normalization is a common technique in data pre-processing, however, as described in

section 3.1.2, normalization is applied downstream in the LLF block. Data augmentation,

such as time stretching, time shifting, and adding noise, is then used to increase the

diversity of the waveforms. Low-level features are extracted by converting the audio into

Mel spectrograms, which highlight perceptually significant frequency bands. Additional

data augmentation techniques can be applied to expand the spectrograms as well. High-

level features or embeddings are obtained using a deep learning model that processes the

Mel spectrograms. These features are then used to make predictions about the classes of

the waveforms using a trained classifier. Lastly, the performance of the classification

model is evaluated using metrics like accuracy, the number of total parameters, or the

number of multiply-accumulate (MAC) operations, and adjustments are made to optimize

the model based on these results.

15

Figure 7: Visualization of the machine learning pipeline

This structure is typical in state-of-the-art models, which feed the spectral features to a

neural network to extract the embeddings [22] – [25]. Other innovative approaches

incorporate raw waveform classification by constructing trainable Low-Level Feature CNN

blocks within the model that emulate spectral feature extractors [26] – [28].

3.1.1. Audio Pre-processing

Handling media files requires a careful procedure, factoring in aspects such as file format,

characteristics, and size. The datasets used in this project (refer to section 3.3) include

audio files that are 5 seconds long with a sampling frequency of 44.1 kHz in mono channel.

To introduce the data into the machine-learning pipeline, the audio files are reconfigured

to a frequency of 16Hz. This frequency reduction is commonly employed in the field,

consistently demonstrating good classification results. Importantly, it also reduces the

computational memory requirement, making the process more efficient.

Normalization is a common preprocessing step for neural networks, ensuring that the

input values are within a scale that the model can efficiently process. Thus, to guarantee

consistency data must be normalized before the training process. The low-level feature

extractor will work with waveforms in the range of -1 to 1. Normalization has been

integrated using the util from Librosa [29] or manually based on the maximum and

minimum values of the waveforms.

Regarding audio length, the solutions developed in this work explore two different

configurations:

al5s: Classifying audios with 5-second audio length

al2s: Classifying audios with 2-second audio length

16

The aim of these alternate configurations is to understand the optimal method for high-

level feature extraction - whether it is through shorter time frames that exhibit high

variability or longer ones that pull out more generalized features.

The datasets comprise 5-second audio snippets. To obtain the 2-second time frame set up,

2-second windows are slid across the original snippets with a hop size of 0.5 seconds. This

setup essentially acts as a form of data augmentation. As a result, from a 5-second snippet,

7 files are generated, totaling a duration of 14 seconds.

Figure 8: Splitting audio fragments

3.1.2. Data Augmentation

Using appropriate data augmentation techniques is crucial in machine learning as it helps

address data scarcity and improve model performance by enhancing the size and quality

of training datasets. In the context of acoustic machine learning, data augmentation

techniques can cover environmental variability, thereby improving the model's

performance in different acoustic settings. By providing more diverse training data, the

model is forced to learn more general features rather than memorizing the training data

[30]. Furthermore, data augmentation helps mitigate overfitting, a common problem

where a model performs well on training data but poorly on unseen data. Data

augmentation is only applied to the training partition, as applying it to the whole dataset

could imply having highly similar data in the training, validation, and testing partitions.

17

Data augmentation of the waveforms has been applied in all the experiments. Proven

effective techniques include noise injection, time shifting, and time stretching [30].

Noise Injection: Add random noises into the original

audio.

Time shifting: Shift audio to left or right. Silence is added

to the shifted space.

Time stretching: Stretching the audio within a time frame.

Figure 9: Waveform data augmentation techniques

Additionally, a second data augmentation step can be applied to the spectrograms (Figure

10). This data augmentation procedure is only applied in models that use the Low-Level

Feature extractor outside the deep learning model (view section 4 for further details). To

achieve this, time and frequency masks are applied to the spectrograms. The chosen

augmentations are designed to enhance the network's resilience against time-direction

deformations, partial frequency information loss, and partial loss of small segments in the

input [31]. An illustration of this augmentation strategy can be seen in Figure 11.

18

Figure 10: Spectrogram augmentation block

Figure 11: Spectrogram data augmentation techniques

Other advanced data augmentation techniques are used by mixing sounds [30]. The

examination of more sophisticated data augmentation methods is planned for future

research.

3.1.3. Low-Level Features

As discussed in section 2.1, Mel Spectrograms provide excellent acoustic features for Deep

Learning purposes. Thus, the Low-Level Feature extractor employed in this work is a Mel

Spectrogram generator. Librosa, an audio processing library for Python, and TensorFlow,

the deep learning framework, provide functions to extract the Mel Spectrogram of a

waveform [32] [33].

Both options are explored to compute the Mel Spectrograms (view Annex 1). Librosa

provides a simple and effective framework to compute the Mel Spectrograms. However, it

19

is not possible to integrate Librosa’s framework into the Deep Learning models (view

section 4.2), therefore a custom spectrogram generator based on TensorFlow is developed.

The custom Mel Spectrogram generator is built with the parameters employed in the

YAMNet model [25]. The generator process follows the steps indicated below.

Loading and Normalization: The audio input is first loaded and cast to a float32

data type. The data is then normalized to be in the range (-1, 1). The original

waveform signal is scaled so that its minimum value is mapped to -1, and its

maximum value is mapped to 1. This normalization step will allow the custom Mel

spectrogram generator to accept the raw waveform, without the need of using

Librosa’s normalization util in the pre-processing stage.

Short-Time Fourier Transform (STFT): Next, the Short-Time Fourier Transform

(STFT) is applied to the audio signal. The STFT is a method used to analyse the

frequency content of a signal over time. It divides the signal into short frames, each

of size 25 milliseconds. These frames overlap by 10 milliseconds. The size of 25

milliseconds is a common choice as it is long enough to capture relevant information

but short enough to assume that the audio signal is stationary. The overlap of 15

milliseconds ensures that no information is missed between frames. The Fourier

transform of each frame is computed and the Hann window function is used to

reduce the side lobes of the spectrum.

Spectrogram: A spectrogram is a visual representation of the spectrum of

frequencies in a signal as it varies with time. Here, the spectrogram is obtained by

taking the magnitude (absolute value) of the STFT. This results in a 2D

representation, where the x-axis represents time, the y-axis represents frequency,

and the color represents the magnitude of frequencies at each point in time.

Mel Spectrogram: The Mel spectrogram is a version of the spectrogram where the

frequencies are converted to the Mel scale. The Mel scale approximates the human

ear's response to different frequencies. To do this, a Mel filter bank is calculated (a

set of triangular filters) with the ̀ linear_to_mel_weight_matrix` function. This filter

bank uses 64 Mel bins, with a lower frequency of 125 Hz and an upper frequency of

7500 Hz. The filter bank is then applied to the spectrogram using a tensor dot

product, which effectively maps the spectrogram to the Mel scale.

20

Log Mel Spectrogram: Finally, a log Mel spectrogram is computed by taking the

logarithm of the Mel spectrogram. This is done to approximate the human ear's

response to loudness (which is logarithmic, not linear). An offset (0.001) is added

before taking the logarithm to avoid taking the logarithm of zero. This small value

ensures that the logarithm is defined for all values.

3.1.4. Model Selection

The core of an audio classification problem is using an effective deep learning architecture.

This section of the document explains the rationale behind the model selection.

The architecture of a deep learning model refers to the structure of interconnected layers,

which include input and output layers, and nodes (also referred to as neurons). The

connections between nodes are weighted and adjusted during training according to an

objective function, which in this case is minimizing the difference between predicted

scores and true scores. The mathematical parameters that define the nature of these

connections are called ‘weights’, which are randomly initialized at the beginning of the

training process.

Two custom architectures are trained from scratch. These architectures have been

designed to achieve acceptable performance with the simplest possible solution. This is a

good practice in machine learning workflows to understand the necessities of the problem

and avoid over engineering. These custom architectures employ standard convolutional

layers and depthwise separable convolutional layers.

Using existing working solutions is a common practice in machine learning. For this

purpose, the MobileNetV1 architecture has been tested, an efficient deep learning

architecture developed at Google primarily for edge and mobile vision applications. It uses

depthwise separable convolutions to significantly reduce the model's parameters and

computational cost while maintaining accuracy. Due to its smaller size and lower

computational demands, MobileNetV1 is ideal for deployment on devices with limited

resources or applications requiring low latency [34].

Transfer learning can enhance the training process. Instead of randomly initializing the

weights of the model at the beginning of the training process, a pre-trained model with

pre-defined weights can be used. These pre-trained models have been trained on

extensive, high-quality datasets and are able to extract sophisticated high-level features.

21

Authors prove that even using transfer learning for audio classification with models pre-

trained on image datasets is effective [11]. Nonetheless, the best-performing models on

audio classification tasks using the ESC-50 benchmark, among others, are models pre-

trained on large audio datasets. State-of-the-art models are pre-trained on the AudioSet

dataset [11] [25] [26]. This dataset comprises 2,084,320 human-labeled 10-second audio

snippets extracted from YouTube videos [35].

Access to large datasets such as AudioSet for model training remains a challenge, as high

computational memory is required. For this purpose, transfer learning is tested using

YAMNET, which uses the MobileNetV1 architecture trained on the AudioSet dataset. The

YAMNET model has the capacity to predict 521 unique audio events [25].

3.1.5. Performance Evaluation

Performance is assessed according to prediction accuracy and computational complexity.

Prediction accuracy, measured as the ratio of correct predictions to the total number of

predictions, is a simple and effective method to measure accuracy in balanced datasets.

During the training phase, this accuracy is assessed on both the training and validation

datasets. After training, the model's performance is evaluated on a separate test dataset

with unseen audio fragments to measure its predictive accuracy.

To study the computational complexity reference is drawn from the annual DCASE

competition. The objective of the competition is to create simple scene classification

models that operate on various portable devices. Among the several rules set by the

competition, the principal limitation pertains to the complexity of the model, capped at

128k parameters and a maximum of 30 MMACs (million multiply-accumulate operations)

per inference [36]. While these constraints serve as a benchmark, the ultimate aim of this

project is to develop a model that predicts accurately and performs efficiently on a mobile

phone.

22

3.2. Inference

3.2.1. TensorFlow Lite

TensorFlow Lite is a lightweight machine learning solution designed by Google for mobile

and edge devices [37]. It enables developers to run TensorFlow models on-device,

providing a low-latency, privacy-preserving, and efficient solution for embedding machine

learning capabilities into applications.

The workflow for TensorFlow Lite involves three main steps: creating a model in

TensorFlow, converting the TensorFlow model into a TensorFlow Lite format using the

TensorFlow Lite converter, and then deploying that model on a mobile or edge device.

The TensorFlow Lite converter reduces the size of the model and optimizes it for mobile

and embedded devices by removing unnecessary information from the TensorFlow graph,

slightly reducing precision, and using a more compact file format. The converter supports

a variety of optimizations, including quantization, a technique that reduces the numerical

precision of the model's weights and, optionally, activations. This process shrinks the

model size and speeds up computation, typically without a significant impact on accuracy.

There are various types of quantization available in TensorFlow Lite, including dynamic

range quantization, full integer quantization, and float16 quantization.

3.2.2. Running Inference on Android

Running on-device inference follows four important stages. TensorFlow [38] provides a

good description of the process in the documentation.

Loading the Model: First, the TensorFlow Lite model, which has been converted

and optimized from its original TensorFlow version, is loaded into memory on the

Android device. The model typically resides in the assets folder of the Android app

and is loaded using the `MappedByteBuffer` utility in Android. This loading step

consumes RAM, with the amount depending on the size of the model. A smaller

model will require less RAM and load faster, providing a better user experience,

particularly on lower-end devices.

23

Processing Audio Input: The Android device captures real-time audio from the

microphone, which is then converted into a format suitable for the model. This step

requires CPU resources and potentially additional RAM to temporarily store the

audio data and its processed form.

Running Inference: The processed audio data is then fed into the TensorFlow Lite

model for inference. This step also uses CPU resources and may use additional RAM

to store the intermediate outputs of the layers of the model as the data propagates

through the network.

Interpreting the Output: The output of the model, which is a vector with

prediction scores over the possible classes, is then interpreted to yield the final

classification result. This involves picking the class with the highest score or

applying some other decision rule.

3.2.3. Android application

The Android application employed in this work is a prototype based on the following

repository:

https://github.com/tensorflow/examples/tree/master/lite/examp

les/audio_classification/android

This Android project is a plug-and-play application that will load the TensorFlow Lite

model in the assets folder and perform on-device inference. To run the application with a

custom model view Annex VI.

https://github.com/tensorflow/examples/tree/master/lite/examples/audio_classification/android
https://github.com/tensorflow/examples/tree/master/lite/examples/audio_classification/android

24

3.3. Datasets

3.3.1. ESC-50 Dataset

The ESC-50 dataset is the primary benchmarking reference for this project. Using a

benchmark supported by the literature is important to effectively evaluate and compare

the models.

ESC-50 is an organized compilation of 2000 labeled environmental audio clips that serve

as a suitable benchmark for environmental sound classification methods. This dataset

comprises 50 semantic categories, each containing 40 examples, with every recording

duration of 5 seconds. The domain of this dataset is comparable to the Soundless project.

The four main categories of ESC-50 include natural soundscapes and water sounds, human

non-speech sounds, interior and domestic sounds, and exterior and urban noises [10].

3.3.2 NBAC Dataset

The Nocturnal Bedroom Audio Classification (NBAC) dataset is currently in a beta phase,

as it allows for potential expansions with the addition of more classes, as well as

improvements in the variability of recording contexts.

Primarily developed for Soundless, the dataset represents a significant element in the

proposed machine learning pipeline and demonstrates the project's potential.

The NBAC dataset currently comprises 13 distinct audio event classes that are typically

experienced in a bedroom during night hours. The samples in class `trains` are recordings

of trains that pass during nighttime in Tarragona directly collected by the Soundless team

with their smartphones.

Data samples for each class have been acquired using a variety of mobile devices, including

the Asus Zenphone 8, iPhone 13 PRO, and Xiaomi 13. All audio files are converted into wav

format, with Pulse Code Modulation (PCM) format, featuring a mono channel with a 44100

Hz sample rate and a 16-bit sample size. The conversion was performed using AVS Audio

Converter 10.3.

For ease of identification and classification, the recorded audio files are segmented into 5-

second intervals and stored in subfolders corresponding to their labels. While the optimal

25

recording environment is within a bedroom, some traffic-related recordings have been

captured outside this setting for diversity.

To enhance the dataset's comprehensiveness, specific audio samples have been borrowed

from the esc-50 dataset, as denoted by the -esc50 extension in the file names. Similarly,

files with the -synthetic extension represent audio fragments generated from recordings

of digitally produced sounds.

26

4. Experimental Setup: Model Development

This chapter of the document explains how the controlled experiments were set up. The

experiments focus on developing and testing the models for the task, performing audio

classification on both datasets, ESC-50 and NBAC. The experiments are classified in three

main categories:

• Architectures with Mel Spectrogram as input (4.1)

• Compact architectures (4.2)

• Transfer learning with YAMNET (4.3)

Each experiment is conducted using two audio configurations: 5-second-long audios (al5s)

and 2-second-long audios (al2s).

4.1. Architectures with Mel Spectrogram as Input

Refer to Annex II for the notebook with the code of this experiment. This part of the

experiment explores simple deep-learning architectures built from scratch. The aim is to

understand the complexity of the problem. The simplicity of this solution is defined by

two factors:

i) The LLF block is separated from the HLF block: This deep learning model will

only accept the Mel Spectrogram as input, with mono channel images of size (498,

64, 1) for al5s configuration, and (198, 64, 1) for al2s configuration. This shape is

determined by the sampling configuration of the Short-Time Fourier Transform,

where each frame covers 10ms of the audio (refer to section 3.1.3). The input shape

of both audio configurations is consistent across all experiments in this project.

ii) Its structure only uses three convolutional layers: The Mel spectrograms are

generated in a previous step, using the custom generator explained in section 3.1.3.

Writing the python script to generate the spectrograms is relatively simple and

different libraries can be employed. A function to generate the Mel spectrogram is

applied to the waveform data before entering the model. Using this previous step

also allows the integration of two data augmentations processes. Waveforms are

augmented before generating the Mel spectrogram, and spectrograms are

augmented before entering the HLF (refer to Figure 10).

27

The spectrograms are then fed to the HLF to begin the training process. The HLF structure

of this chapter (displayed in Figure 13) is evaluated using normal convolutions and

depthwise separable convolutions.

After the input layer, there are three convolutional layers that will map the high-level

features of the spectrogram. These convolutional layers are responsible for mapping and

detecting the high-level features present in the spectrogram. Each node in these layers

utilizes a rectified linear unit (ReLU) as its activation function, which determines the

output of the node based on its input.

After these convolutional layers, a process called batch normalization is implemented.

This step aims to accelerate the training process and enhance its stability. It does so by

normalizing the output of each layer, adjusting it to have a mean of zero and a standard

deviation of one, thereby standardizing the outputs across the layers.

Following batch normalization, the network employs a 2D max pooling layer. This layer

serves to downsample or reduce the dimensionality of the feature maps produced by the

convolutional layers. This layer saves valuable computer memory without losing

significant feature information.

After the HLF, an additional sequential layer will generate the embeddings. This layer uses

one convolution to map the features with 256 filters. After this convolution, a Dropout

layer will randomly turn off 20% of the neurons during training to prevent overfitting. In

the end, a Global Average Pooling layer reduces each feature map to a single average value,

thereby minimizing computational cost and further avoiding overfitting. This block

outputs a vector representation of the features of shape 256.

After the Embeddings block, the classifier is connected. The classifier is composed of a

Dense layer and an Activation layer. The Dense layer, with a size equal to the number of

classes to predict, is a fully connected layer where each output node represents a potential

class for classification. The Activation layer applies the `softmax` function to the Dense

layer's output, converting raw scores into probabilities that sum to 1, thus facilitating the

interpretation of the output as the probability distribution over the classes. This setup is

particularly useful in multi-class classification tasks, as it allows the model to predict the

most probable class for a given input.

28

HLF architecture Embeddings architecture Overview

Figure 13: Standard CNN architecture

4.2. Compact Architectures

One of the main constraints in developing machine learning solutions for mobile devices

is the difficulty of on-device data pre-processing. Generating the Mel Spectrograms on-

device is a challenging task, considering the high number of dependencies and complex

mathematical operations. It was quickly found that building an Android app that leverages

the solution proposed in section 4.1 is not possible.

To tackle this issue, compact architectures are designed (the notebook with the code of

this experiment is found in Annex III). These architectures integrate the LLF block within

the deep learning model. A layer is built to process the input waveform inside the network

and generate the Mel Spectrogram (view Figure 13). Then the spectrogram is fed to the

HLF block to extract the embeddings and make the predictions.

29

Output extracted from the LLF layer.

Figure 14: Output extracted from the LLF layer

The main drawback of this solution is that data augmentation cannot be applied to the

spectrograms, therefore data augmentation is only applied directly to the waveforms.

4.2.1. Custom Architectures

This experiment involves using the same architectures as the ones explored in section 4.1.

The LLF block is integrated into the model, allowing it to accept raw waveforms as input.

As discussed in section 5, this modification does not seem to affect performance.

Although the number of trainable parameters in the model will remain the same, this

model might increase latency, as an increased number of operations occur inside the

network.

4.2.2. MobileNetV1

MobileNetV1 [34] is a type of efficient model specifically designed for mobile and

embedded vision applications. It's built on a streamlined architecture that employs depth-

wise separable convolutions.

Two key elements of this architecture are the model shrinking hyperparameters: the width

multiplier and the resolution multiplier. The width multiplier uniformly reduces the

30

thickness of the network at each layer, while the resolution multiplier downsizes both the

input image and the internal representation at every layer.

Originally, MobileNetV1 was designed for computer vision tasks, processing RGB images

with an input shape of (224, 224, 3). The model can be configured to accept different input

shapes as long as three input channels are maintained. In this experiment, MobileNetV1

has been adapted to process spectrograms of audio fragments. These spectrograms have

shapes of either (498, 64, 3) for 5-second audio fragments or (198, 64, 3) for 2-second audio

fragments. This was accomplished by replicating the single channel of the spectrogram

three times.

The MobileNetV1 architecture replaces both the HLF and the Embeddings block. The LLF

layer is modified to generate a 3-channel spectrogram that is fed to the MobileNetV1 block.

Figure 15: Compact architecture with MobileNetV1

MobileNetV1, compared to the previously discussed models, is a significantly more

complex model. Training such large models from scratch can be challenging, often

requiring extensive datasets and prolonged training periods. In this case, the model was

trained in two ways: from scratch with random weight initialization, and through transfer

learning using weights pre-trained on ImageNet.

ImageNet is a vast visual database, specifically designed for computer vision research [39].

It contains over 14 million images, each hand-annotated to denote the objects they depict.

31

Research indicates that transfer learning from images to spectrograms is effective, as the

feature maps generated for successful image recognition can also be beneficial for spectral

images [11].

To optimize performance during the transfer learning process, certain adjustments were

made. Specifically, the first 20 layers of the MobileNetV1 architecture were frozen,

retaining the ImageNet weights. This allowed the final layers to be tuned during training

on the custom dataset.

4.3. Transfer Learning with YAMNet

YAMNet [20] is a model developed by Google that trains a model based on the

MobileNetV1 architecture on AudioSet. This dataset has over 2 million 10 second audio

fragments and covers 632 classes. The classes differ in number of samples and label quality;

therefore, it is a highly unbalanced dataset. YAMNet trains on 521 hand-picked classes,

demonstrating a good ability to distinguish between different audio classes, as indicated

by a balanced average d-prime of 2.318. Testing the model out of the box will provide

impressive results.

However, its precision in detecting audio events (balanced mean average precision `mAP`

of 0.306) and its ability to correctly rank labels (balanced average label weighted label

ranking average `lwlrap` of 0.393) was moderate. This suggests that while the model is

fairly effective at classifying audio, it is far from perfect, particularly in its precision and

label ranking abilities.

The key distinctions between AudioSet and ESC-50 involve the number of classes and the

total duration of audio per class. AudioSet contains a wide range of classes and a longer

duration of audio per class. In contrast, ESC-50 consists of 50 classes, each with a total of

200 seconds of audio. Models developed using the AudioSet dataset can effectively learn

and extrapolate general features from the comprehensive dataset, which can be utilized to

resolve simpler tasks. This approach was successfully employed by Lopez-Meyer et. al [26],

whose AemNet model, initially trained on AudioSet, achieved a 92.32% performance rate

on the ESC-50 dataset through the application of transfer learning. With fewer

convolutional layers than YAMNet and a trainable LLF block, AemNet's architecture is

quite similar.

32

4.3.1. Understanding YAMNet

The experiment described in this section aims to utilize the high-level feature extraction

capabilities of YAMNet to categorize the audio events in the ESC-50 and NBAC datasets.

More specifically, the model in this experiment will extract 1024-D embeddings from the

raw waveforms, that are later fed to a classifier layer. Find the details of the experiment in

Annex IV.

As outlined in Section 3.1.1, the primary goal of this project is to determine the ideal audio

duration setup using classifiers for two separate audio durations: 2 seconds and 5 seconds.

Both short-term and long-term features present unique pros and cons. To balance these,

YAMNet employs a hybrid approach, where the model is trained on audio segments of

0.96 seconds. These windows are then slid across the audio chunks with 50% overlap,

equivalent to a 0.48-second hop. Every window generates a vector with prediction scores.

As indicated in the documentation [40], these scores are aggregated using the mean

average to enable ranking.

YAMNet uses a 16000 Hz sampling frequency. The expected waveform length is 15600, or

0.975 seconds. The model will not accept shorter audio fragments.

Figure 16: YAMNet outputs. Extracted from [41]

As YAMNET is a model built for deployment, it poses challenges when attempting to

modify its internal structure. For the purpose of testing, YAMNet has been employed in a

previous step outside the deep learning model to extract 10-dimensional embeddings of

33

size 1024 from the 5-second-long audios. These embeddings are then used as independent

segments, with the classifier being trained to categorize audios that are 0.96 seconds long.

After just one epoch, the classifier already exhibits over 60% accuracy on the validation

dataset. The model achieves an accuracy of 63% on the test dataset as a 0.96-seconds audio

length classifier.

In order to emulate the prediction capabilities of YAMNET, the model is utilized to predict

the label scores for the 0.96-second fragments of the test dataset. These are subsequently

aggregated for each 5-second audio fragment using the mean average. The label achieving

the highest score is selected to calculate accuracy. This prediction processing technique

has not been applied to the al2s configuration, as the comparison between predictions on

0.96 second windows and 5 second windows will serve as a reliable reference.

4.3.2. Native Customization of YAMNet

The experiment proposed in section 4.3.1 uses a workaround to understand how the

YAMNet model can be used to build a custom audio classification model. Because YAMNet

is designed for deployment purposes, TensorFlow Lite offers a native solution to customize

YAMNet with TensorFlow Lite Model Maker [42].

It was found that using this library requires a UNIX server, and it might generate some

errors when running on online platforms such as Kaggle or Google Colab. For this matter,

a machine-learning application has been developed to run TensorFlow Lite Model Maker

locally and easily train the model with the preferred dataset (view Annex IV). This

machine-learning application has been developed and tested in WSL2.

The advantages of using TensorFlow Lite Model Maker are:

i) It directly customizes a deployment-ready model: Previous experiments

require converting the model to TensorFlow Lite, and require architecture

adjustments to be deployed on an Android app. The model produced with this ML

application can be run directly into the Android app described in 4.3.

ii) It allows the model to train on the entire sample: The workaround proposed

in 6.3.1 forces the training to frame audios in 0.96 seconds fragments separately,

making the model blind to the true predictions of the audio label for each 5-second

long audio sample. TensorFlow Lite Model Maker allows the configuration of the

34

frame length1 for training, handling the entire 5-second audios. As suggested in the

documentation, it is best to frame each audio by a multiple of the expected

waveform length, so the true frame length is 4.875 seconds.

1 The term frame length can be ambiguous. While the model internally frames the audio into 0.96

seconds, it can create a longer input frame that will handle the predictions internally in a similar

way as described in 6.3.1

35

5. Validation

This section of the work performs the necessary validation steps to check the success of

the solution. Section 5.1 outlines the performance results, considering accuracy and

computational complexity. Section 5.2 provides an overview of the final product, including

a review of the working prototype and its limitations.

5.1. Analysis of the Results and Evaluation

This section outlines the results of the experiments and provides a general evaluation. It

is important to note that these results are not statistically proven, meaning that executing

the experiments in a different run could yield slightly different results. These results are

computed with the average accuracy of 3 runs. The results provide a general reference to

understand and compare the models in the context of this project.

The results collect the prediction accuracy on the unseen test dataset of every model after

training for 50 epochs with a batch size of 32 for al5s configurations, and 128 for al2s

configurations.

It is demonstrated that prediction accuracy is better for longer frames, as training on 5-

second-long fragments results in considerably better accuracy in most of the experiments.

As expected, using depthwise separable convolutions is the preferred option. Depthwise

separable convolutions generally offer the best results with a decrease of number of

parameters of over 50%.

Table 1: Results for standard CNN and DW architectures - 4.1.

 ESC-50 NBAC

 al5s al2s al5s al2s

 CNN DW CNN DW CNN DW CNN DW

Accuracy 0.635 0.695 0.610 0.570 0.755 0.866 0.769 0.814

Parameters 139442 58139 139826 58523 129676 48373 129676 48373

36

Figure 17: Confusion matrices on test dataset of the DW al5s architecture

Table 2: Results for standard and compact CNN and DW architectures - 4.2.1.

 ESC-50 NBAC

 al5s al2s al5s al2s

 CNN DW CNN DW CNN DW CNN DW

Accuracy 0.670 0.655 0.569 0.581 0.866 0.824 0.763 0.794

Parameters 139442 58139 139442 58139 129676 48373 129676 48373

Figure 18: Confusion matrices on test dataset of the compact DW al5s architecture

37

Using the MobileNetV1 architecture pre-trained on ImageNet resulted in a prediction

accuracy of 84.7% on the ESC-50 dataset, near to state-of-the art results.

Table 2: Results for compact architectures with MobileNetV1 - 4.2.2.

 ESC-50 NBAC

 al5s al2s al5s al2s

 Random ImageNet Random ImageNet Random ImageNet Random ImageNet

Accuracy 0.511 0.847 0.544 0.637 0.653 0.912 0.796 0.840

Parameters 3280114 3280114 3280114 3280114 3241164 3241164 3241164 3241164

Figure 19: Confusion matrices on test dataset of the pre-trained MobileNetV1 al5s

architecture

With native training on the YAMNet model, prediction accuracy increases to 86.5% on the

ESC-50 dataset. The accuracy on the NBAC dataset increases up to 95%. Note that these

results are only for the al5s configuration.

Table 3: Results for transfer learning with YAMNet - 4.3.

 ESC-50 NBAC

 Embeddings Native Embeddings Native

Accuracy 0.825 0.865 0.949 0.925

Parameters 51250* 51250* 10250* 10250*

38

Note that the parameter evaluation for YAMNet only takes into account the parameters

within the classifier. The YAMNet architecture has a number of non-trainable parameters

similar to the MobileNetV1 architecture (4.2.2).

Training on the NBAC dataset resulted in high prediction accuracies in most of the models.

Pre-trained models achieve an accuracy of over 90%. These results show the predictive

capabilities of deep learning models on custom datasets, highlighting the viability of the

proposed feature in the Soundless project.

5.1.1. Analysis of Minimum Class Sample Size for Convergence

The datasets utilized in these experiments come with a predetermined number of samples

per class. To understand if the limitations observed in the derived model arise from the

intrinsic nature of the problem or from insufficient data, an analysis of class sample size is

undertaken to explore the convergence of performance (View Annex V). This form of

analysis is unique to each model architecture. The performance is evaluated on the original

test dataset, which comprises 20% of the original datasets: 8 unseen samples per class for

ESC-50 and 12 unseen samples per class for NBAC. The results highlight that complex

architectures necessitate large volumes of data for successful training, while lighter

architectures yield satisfactory outcomes with training only on the available dataset.

Figure 20: Confusion matrices on test dataset of the YAMNet al5s architecture

39

This divides effective architectures into two categories: light weight architectures trained

from scratch, and encoder-classifier architectures, which use of a pre-trained model with

a more complex architecture.

Light weight architectures (refer to section 4.2.1) are more sensitive to class sample size,

as the model is learning internal features of the data from scratch.

Figure 21: Analysis of performance for the standard DW architecture as a function of

number of samples per class

Encoder-classifier architectures, the pre-trained MobileNetV1 architecture in this case,

provide effective accuracies with just a few training samples per class, as only the last layers

in the classifier need to adapt to the current dataset.

Figure 22: Analysis of performance for pre-trained MobileNetV1 as a function of number

of samples per class

40

The analysis proves the advantages of using pre-trained architectures. The internal

representations can be utilized out-of-the box, with accuracies between 60 and 75% on the

test dataset with just 6 samples per class. For both datasets, performance converges at 20

samples per class.

5.2. Working Prototype

After the model is constructed, it is ready to be deployed for testing in the Android App.

Note that the model needs to be converted to TensorFlow Lite for deployment as detailed

in section 3.2. This prototype uses the YAMNet model natively trained on TensorFlow Lite

(6.3.2). Find the instructions to run this prototype in Annex VI.

Figure 23: Screenshots of the working prototype

The models developed in section 4 are designed to return a scores distribution for all

classes during inference. After on-device inference, the UI handles the scores distribution

and outputs the results.

The application is designed to execute inference on audio fragments spanning 5 seconds,

with an overlap of 50%. This indicates that every 2.5 seconds, the application produces a

prediction based on the last 5 seconds of audio. The screenshot illustrates that the

41

inference time typically hovers around 20 milliseconds, suggesting that it would be

possible to raise the overlapping parameter to achieve denser prediction results.

Moreover, this prototype offers some customization options pertaining to the user

interface and the thread count. A crucial aspect of these settings is the threshold

parameter. It's common for the model to yield predictions with relatively low scores.

However, by setting a threshold value, it is possible to eliminate these lower scoring

predictions, allowing the user to only see predictions that score highly. A bar

accompanying each prediction visually represents its score. It is challenging to pinpoint a

minimum score that guarantees high-quality results, but generally, scores below 0.7 tend

not to be highly reliable.

The prototype proves to meet the requirements specified by the Soundless team. As outline

in section 5.1 the performance accuracies prove successful results, while the prototype

works as expected and is ready to be integrated in the Soundless app.

5.2.1. Prototype Limitations

This study has so far discussed the use of a centralized multiclass prediction model.

Centralized meaning that the model is locally trained on a server and later deployed onto

edge devices. There are certain limitations in this design that demand careful examination.

These limitations refer to i) how the multiclass prediction model handles unknown sounds

and ii) how the centralized design of the model adapts to the expected acoustic context

variability of participants.

i) During the inference process, the model assigns a score distribution for each class.

For unknown sounds, the model generates a distribution with low scores, signifying

that the model is not confident that the sound event belongs to any of the known

labels. Hence, in the event of an unfamiliar yet significant sound, the model is unable

to provide valuable insights.

ii) The use of a centralized model carries a significant restriction. This model

undergoes local training on a server using a specific dataset. After deployment, the

acoustic context is likely to shift and diverge from that of the training dataset.

42

Section 7 delves into these issues and suggests potential solutions. For instance, leveraging

the learned feature representations from a centralized model proves beneficial in

managing unfamiliar sound events. Moreover, deploying the model and conducting

distributed learning across clients through Federated Learning offers a novel approach to

avoid the limitations of centralized Deep Learning.

43

6. Feature Space Analysis

The crafted NBAC dataset aims to cover all the possible relevant sounds that could occur

during nighttime within a bedroom setting. It is certain that prior to deployment, the

NBAC dataset will have to be refined with additional data, adding more classes and more

audio recordings in different acoustic contexts. Nonetheless, there will always exist the

possibility of encountering new sounds that the model is not able to predict.

The simplest implementation solution is using the model to generate a class scores

distribution. To manage unknown sounds, the score threshold can be adjusted to ignore

labels with low scores. This solution will only tag audio segments that the model knows

with confidence, leaving unknown or unclear sounds without a label tag.

However, the internal feature representations that the model has learnt, which can be

extracted from the Embeddings block, provide useful information even for audio events of

unknown class. Instead of using the model to predict the label scores, it can be used to

output the embeddings and carry a feature analysis further. This can be useful to

understand audio classification within a feature space instead of with label scores.

Figure 24: Features analysis diagram

Audio embeddings extracted from pre-trained networks hold significant utility in audio-

related tasks due to their ability to encapsulate simple feature representations from

complex data [44]. A comparative evaluation against models trained from scratch provides

further evidence of the efficacy of pre-trained embeddings, which demonstrate superior

performance, particularly when training data is limited.

44

6.1. Encoder

The features of a sound event are abstract representations of it, encoding the information

of the entire clip on a low dimensional variable. The feature extractor is typically referred

to as the encoder. For the models developed in section 4, the encoder is the concatenation

of the LLF block, the HLF block and the Embeddings block. Depending on the

architecture, this feature representation has sizes of 256 or 1024. The only requirement to

construct a fully functional multiclass prediction model is to build a classifier on top of

the encoder with a single dense layer. All the analysis performed in this section can be

found in Annex VII.

Creating a good encoder is the principal task in feature space analysis. The encoder will

learn to extract meaningful representations of the data for a specified objective. In the

experiments proposed in this project, the objective is to correctly classify each audio

fragment according to its label. The embeddings that are fed to the classifier in the last

layers are the learned representations. When using pre-trained networks, with ImageNet

or AudioSet, the encoder is already built out of the box, as only the classifier is trained on

top of it to make the predictions.

Other options exist to create encoders in different contexts. For example, for unsupervised

learning, the encoder can be trained to identify audios with the same label by minimizing

the difference between learned representations [45]. Similar approaches can be used for

few-shot learning as well, where the encoder can be trained to minimize the intra-class

differences and maximize the inter-class differences in the learned representations. This

means that the encoder tries to make the representations of samples from the same class

as similar as possible, while making the representations of samples from different classes

as different as possible. By focusing on the differences between classes, the encoder can

learn a representation that captures the essential characteristics of each class, even when

only a few examples are available [46].

The feature representations produced by the encoder should be useful to find similar audio

fragments. By comparing the distance between feature representations, neighboring audio

fragments are found.

The encoder is pre-trained on an initial dataset with the aim of maximizing the internal

representation identification capacities of the model. Using the encoder with the

MobileNetV1 architecture trained on ImageNet the features have been extracted from all

audio fragments of the NBAC dataset. In this case, cosine similarity has been used to

45

compute distance. Figure 25 shows a random sample of 4 audio fragments and their 5

closest neighbors.

Figure 25: Closest neighbors within feature space

6.2. Semantic Clustering

The objective of this section is to perform unsupervised classification on the NBAC

Dataset. While the models trained in section 4 use the labels to learn the internal

representations and predict the label (supervised learning), this section classifies the audio

samples strictly based on their feature similarity.

The aim is to prove the utility of the feature representations of the audio fragments

without a standard classifier. A clustering model has been developed using neural

networks in TensorFlow based on the documentation provided by Keras [45]. It utilizes

the encoder to produce vector representations of input data, which are then clustered

based on their similarities. Two custom loss functions are used: ClustersConsistencyLoss

ensures that similar inputs yield similar outputs, while ClustersEntropyLoss balances the

distribution of data across clusters. The script creates two models: one for clustering data,

and another for calculating similarity between each data point and its k-nearest neighbors

based on the clustering model. If specified, the encoder weights can be frozen during

training to preserve its feature extraction capability. Finally, the models are compiled with

the custom loss functions and an AdamW optimizer, then trained over several epochs. The

46

goal is to create a model that effectively groups similar data and evenly distributes data

across clusters.

In this experiment, 13 clusters are defined with the aim of obtaining one clearly defined

cluster for each class. Figure 26 visualizes the clusters assigned to each sample per class.

The visualizations highlight high confidence predictions with a confidence threshold >

0.8.

Figure 26: Cluster distribution across audio classes

47

The results show a classification accuracy of 89%. The model had problems classifying

traffic sounds, separated across clusters 3 and 4, mixed with wind and dog bark sounds.

Figure 27 visualizes the class distribution within clusters.

Figure 27: Class distribution within clusters

Clusters with expansive class distributions show clear feature groups. Cluster 3, for

instance, contains wind and traffic sounds, which can be understood as a cluster

containing grainy, disperse sounds with low frequencies. Cluster 11, which shows the

highest dispersion, includes train, rain, wind, snoring and loud breathing sounds. The

accuracy of the model can be improved, but the results prove the potential of this type of

analysis.

48

The clusters defined by the feature representations can be visualized with different

methods. Figure 28 shows a simple visualization using T-distributed Stochastic Neighbor

Embedding, a visualization technique used for high-dimensional data. It works by

transforming data similarities into joint probabilities and aims to reduce the Kullback-

Leibler divergence between the low-dimensional embedding (the components) and the

high-dimensional data (the feature representations) [47]. Other techniques, such as PCA

(Figure 29), can also be useful to create similar representations.

Figure 28: t-SNE cluster visualization

Figure 29: PCA cluster visualization

When dealing with unknown sounds, the feature representation of the new event will fall

somewhere in this feature space. This analysis can yield useful information other than a

single label. This experiment uses recordings from a garbage truck operating on the streets

during nighttime. The data expansion comprises 23 audio fragments of 5 second duration.

Once the features of each audio fragments are obtained with the encoder, the new class

can be understood in comparison to the other classes.

49

Figure 30: Unknown sound in t-SNE space

Figure 31: Unknown sound in PCA space

50

Retraining the cluster learner with the new class, an accuracy of 86% is attained. The
results can be visualized in Figure 32.

Figure 32: Cluster distribution with unknown sound

Throughout this analysis, no labels have been shown to the model. This unsupervised

learning scenario proves the robustness of the feature space created by the encoder.

Dogan et al. [48] take this approach further proposing a zero-shot audio classification

model from image embeddings. The feature representation of the audio samples is

projected onto the semantic embeddings of a large image dataset.

51

7. Improving the model

As previously exposed, the different solutions this Master’s Thesis explores involve two

main architectures: light weight architectures trained from scratch, and encoder-classifier

architectures.

The first kind involves using architectures trained from scratch, usually lighter models

that do not require vast amounts of data to obtain good performance. The second kind,

the encoder-classifier architectures, implies the use of a pre-trained model with a complex

architecture that learned feature representations from expansive datasets as an encoder,

and train a classifier on top of it to make the predictions.

Depending on the type of architecture, improving the model will require different

strategies. Encoder-classifier architectures have undergone solid training and will require

simple customizations of the classifier to attain some improvement. Architectures trained

from scratch will require a deeper improvement process, as these have been exposed to

small amounts of data and can benefit from learning new and more generalized feature

representations.

Nonetheless, either approach will require collecting new data. Section 7.1 proposes a

simple solution to collect data from participants.

7.1. Using Citizen Science to Collect Data

To improve the models and extend its generalization capabilities across the participant’s

contexts, data will have to be collected from the participants. Due to privacy and memory

constraint reasons, audio files cannot be directly collected from the users and stored in

the server. The methods explored in 7.2 and 7.3 will access this data with privacy preserving

and memory efficient approaches.

Participants will need to label new data to make effect of any possible improvements. Data

will be stored at their devices to be used by the improvement processes. The labeling

approach tackles two challenges:

- Storing a large number of audio recordings on the device implies high memory

consumption.

- Labeling audio recordings can be time consuming and difficult for participants.

52

To overcome these challenges, a labeling process is proposed, taking advantage of the

Feature Space Analysis discussed in section 6 and applying certain restrictions. The

process will store audio recordings with sound levels above a threshold of 30dB and ask

the user to label samples within a simple UI that can be integrated in the Soundless app.

The objective is to design an easy-to-use process that is memory efficient. Find an overview

of the labeling process in the pseudocode below:

Labeling process: For each participant, across N=3 nights, assisted labeling with K=5 neighbors, and a sound
level threshold of τ = 30 dB, involved in L = 10 labeling rounds

Initialize labeling process in each participant
for 𝑖 = 1, . . . 𝑁 do
 Participant starts the nighttime recording 𝑋𝑖
 for each 5-second fragment 𝑥 𝜖 𝑋𝑖
 if sound level is > τ
 store in memory 𝑋
 else
 skip
 end for

 Participant stops the nighttime recording
end for
for 𝑙 = 1, . . . 𝐿 do
 Take random audio sample 𝑥𝑙 𝜖 𝑋
 𝑙𝑎𝑏𝑒𝑙 = 𝑀𝑎𝑛𝑢𝑎𝑙𝐿𝑎𝑏𝑒𝑙𝑙𝑖𝑛𝑔(𝑥𝑙)
 𝐿𝑎𝑏𝑒𝑙𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠(𝑥𝑙, 𝐾, 𝑙𝑎𝑏𝑒𝑙)
end for
procedure 𝑀𝑎𝑛𝑢𝑎𝑙𝐿𝑎𝑏𝑒𝑙𝑙𝑖𝑛𝑔(𝑥)
 Play audio sample in participant's device
 Ask the participant to label the sample
 Store label
end procedure
procedure 𝐿𝑎𝑏𝑒𝑙𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠(𝑥, 𝐾, 𝑙𝑎𝑏𝑒𝑙)
 Use the encoder to compute the feature representations of all audio samples
 Find the 5 audio samples with shorter distance
 Tag each neighbor with 𝑙𝑎𝑏𝑒𝑙
end procedure

The proposed labeling process uses the feature space analysis to find the 5 closest

neighbors. With this mechanism, each label provided by the user translates into 6 labels.

With only 10 manual inputs from the user, 60 samples can be labeled.

Other manners of exploiting unlabeled data can be explored. Gururani and Lerch [49]

show the effectiveness of data labeling methods to exploit unlabeled data with student-

teacher architectures. The labeling method proposed in this Master’s Thesis only takes

input from the participants. It would be highly convenient to explore more advanced

methods to integrate novel techniques and exploit participant’s data to its full potential.

While the proposed labeling process can result in highly heterogeneous and unbalanced

datasets, a procedure is presented in 7.3 to balance this data.

53

7.2. Centralized improvement: Updating the Classifier

Architectures with pre-trained encoders only train the classifier on top of the embeddings.

The YAMNet model employed in the working prototype only trains the last layer of the

model with a few thousand parameters. As seen in section 6, the features extracted from

these types of pre-trained encoders are already good representations of the data.

The approach proposed in this section is to train only the last layer of the model, the

classifier, by using feature representations tagged by the participant. The main advantage

of this approach is that feature representations can be sent directly to the server with no

privacy issues, as the data is encoded in a low dimensional space where it would not be

possible to decode the audio sample.

This means that participants can send the feature representation of the recorded audio

samples to the central server along with their corresponding labels, without the need of

allocating any memory to store audio recordings. The central server will locally store

feature representations and labels in a dataset that will be incrementally expanded as more

participants are involved.

This approach has been proven effective as models developed in 4.2.2 and 4.3 use this

technique. As shown in section 6, this approach is effective even with unlabeled data. One

important advantage of this approach is that it can easily integrate new classes into the

model from the local server and update the classifier of the participants. The new class

with its corresponding feature representations can be added to the dataset stored at the

server. Assuring proper class balance, the classifier can be retrained and if successful, it

can be sent back to the participants.

Figure 33: Updating a central classifier with embeddings from multiple clients

54

7.3. Decentralized improvement: Federated Learning

To train the model on the original audio data, and to avoid storing client data at the server,

there is a novel approach using Federated Learning, where all the participants can

contribute to the learning process and the model can learn by accessing audio samples in

a decentralized manner.

Federated Learning is a machine learning approach that allows for the training of an

algorithm across multiple decentralized devices holding local data samples, without

exchanging them. This approach is particularly useful in situations where privacy, legal,

or commercial constraints prevent data from being centrally stored and processed.

The standard process of federated learning involves five main steps [48]:

Initialize Global Model: The process begins by initializing the model on a central

server (𝑓𝐺). This model could be initialized randomly or from a previously saved

checkpoint.

Send Model to Client Nodes: The parameters of the global model are then sent to

the connected client nodes (participants). This ensures that each participating node

starts their local training using the same model parameters.

Local Training: Each client node uses its own local dataset (𝐷𝑚) to train its own

local model. This training doesn't aim for full convergence but is rather a brief period

of training.

Return Model Updates to Server: After local training, each client node sends its

updated model back to the server.

Aggregate Model Updates: The server receives model updates from the selected

client nodes and combines all the model updates it received from the client nodes.

This process is called aggregation, and there are many different ways to do it. The

most basic way is called Federated Averaging, which takes the weighted average of

the model updates, weighted by the number of examples each client used for

training.

Communication between clients and model updates are repeated rounds until the

performance converges.

55

Standard Federated Learning Algorithm: For M=6 clients, number of rounds N = 20, each client holding a

private dataset 𝐷𝑚
𝑖

for 𝑛 = 1, . . . 𝑁 do
 for each client 𝑚 𝜖 𝑀 in parallel do:

 𝛳𝑖
𝑚 ← 𝛳𝑖

𝐺
 Client update:
 𝛳𝑖+1

𝑚 ← 𝑓𝐷𝑚
𝑖 (𝛳𝑖

𝑚)

 Send model weights 𝛳𝑖+1
𝑚 back to the server

 end for
 Server update:

 𝛳𝑖+1
𝐺 = ∑

𝑁𝑚

𝑁
 𝑀

𝑚=1 𝑓𝑚
𝑖 (𝛳𝑖+1

𝑚)

end for

Federated learning is particularly useful for citizen science as it allows for the collaboration

of multiple entities, each contributing their local data without having to share it directly.

This is especially beneficial for improving audio classification models, as audio data is

often sensitive and private. By using federated learning, the privacy of this data can be

preserved while still allowing for the improvement of the model. This approach opens new

possibilities for the application of machine learning in areas where privacy concerns

previously made it challenging.

Figure 34: Federated Learning diagram

The Federated Learning setup has been built using Flower, a specialized Python

framework that easily enables communication between server and clients to exchange

data during the training process and is prepared for full integration with TensorFlow [48].

This project has been built from scratch (view Annex VIII with the GitHub repository) to

fully understand how the models developed in section 4 can be configured within a

Federated Learning environment.

56

This set up uses the NBAC dataset, comprised of 780 samples, with 60 samples per class.

6 clients owning 10 samples per class have been prepared to train during 20 rounds.

The setup uses a Depthwise Separable Convolutional Neural Network (DW) with random

weight initialization, as built in 4.2.1.

The results in figure 36 show performance evaluation across the 20 rounds, averaging the

test accuracy of each client, and showing the theoretical limit with the performances

registered in section 5.

Figure 35: Loss across 20 Federated Learning rounds

Figure 36: Development of accuracy during Federated Learning

The heterogeneity of the data across different devices in a federated learning setting often

results in a non-IID data scenario, potentially leading to unbalanced or skewed learning

outcomes. Each device trains on a unique and unpredictable set of data; for instance, in

the context of sound recognition, it is not possible to foresee the diversity of sounds a

mobile device might record. One participant might be predominantly recording dog barks

with an absence of traffic sounds. If this unique dataset is used to update the model, it can

57

contribute to a skewed learning curve, since it may not accurately represent the broader

distribution of sounds in the real world.

This non-IID nature of federated learning poses a significant challenge, particularly in

high-dimensionality machine learning problems like the problem approached in this

Master’s Thesis. In low-dimensionality problems, the challenge may be less severe, but

it's still present. To address this, it's essential to employ strategies and algorithms that

consider and tackle the non-IID data distribution in Federated Learning environments.

Techniques such as weighted aggregation, adaptive learning rates, and advanced

optimization algorithms can help achieve a more balanced and representative learning

model.

To face this challenge, a modification of the standard Federated Learning algorithm is

performed. A public dataset 𝐷0 is created with perfect class balance, with all clients having

access to it. For example, this public dataset could be a version of NBAC. Then, before

locally updating the model, clients combine their local dataset 𝐷𝑚 with 𝐷0 to generate a

balanced dataset 𝐷𝐵.

Modified Federated Learning Algorithm: For M=6 clients, number of rounds N = 20, each client holding a

private dataset 𝐷𝑚
𝑖 , public dataset 𝐷0, and minimum adjustment ratio 𝛽 = 0.5

for 𝑛 = 1, . . . 𝑁 do
 for each client 𝑚 𝜖 𝑀 in parallel do:
 𝛳𝑖

𝑚 ← 𝛳𝑖
𝐺

 𝐷𝐵 = 𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝐵𝑎𝑙𝑎𝑛𝑐𝑒𝑑𝐷𝑎𝑡𝑎𝑠𝑒𝑡(𝐷𝑚, 𝐷0)
 Client update:
 𝛳𝑖+1

𝑚 ← 𝑓𝐷𝐵
(𝛳𝑖

𝑚)

 Send model weights 𝛳𝑖+1
𝑚 back to the server

 end for
 Server update:

 𝛳𝑖+1
𝐺 = ∑

𝑁𝑚

𝑁
 𝑀

𝑚=1 𝑓𝑚
𝑖 (𝛳𝑖+1

𝑚)

end for
procedure 𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝐵𝑎𝑙𝑎𝑛𝑐𝑒𝑑𝐷𝑎𝑡𝑎𝑠𝑒𝑡(𝐷𝑝𝑟𝑖𝑣𝑎𝑡𝑒, 𝐷𝑝𝑢𝑏𝑙𝑖𝑐)

 for each label in 𝐷𝑝𝑢𝑏𝑙𝑖𝑐 do:

 𝑚𝑎𝑥 = find maximum class sample size in 𝐷𝑝𝑟𝑖𝑣𝑎𝑡𝑒

 end for
 for each label in 𝐷𝑝𝑢𝑏𝑙𝑖𝑐 do:

 𝑥𝑚
𝑙 = take all samples from label in 𝐷𝑝𝑟𝑖𝑣𝑎𝑡𝑒

 𝑥𝑜
𝑙 = take samples from label in 𝐷𝑝𝑢𝑏𝑙𝑖𝑐 to satisfy the equation

 𝑥𝑚
𝑙 + 𝑥𝑜

𝑙 = 𝑚𝑎𝑥 + 𝛽 𝑚𝑎𝑥
 𝑥𝑏 = 𝑥𝑚

𝑙 + 𝑥𝑜
𝑙

 Add 𝑥𝑏 with its corresponding labels to 𝐷𝐵
 end for
end procedure

58

This algorithm is tested in Annex VIII by using 10 samples of each class of the NBAC

dataset as a public dataset and distributing the rest of the dataset randomly and unevenly

across 6 clients.

Figure 37: Random distribution of classes across 6 clients

Figure 38: Loss across 20 Federated Learning rounds with non-IID data

Figure 39: Development of accuracy during Federated Learning with non-IID data

59

These experiments show that the problem proposed by Soundless is suitable for a

Federated Learning scenario. The results show that the distributed model can achieve the

same accuracies as the centralized model on the NBAC dataset. Even simulating a real case

scenario with non-IID data yields satisfactory results. The success of this approach would

rely on the effectiveness of the labeling process proposed in 7.1.

One of the main drawbacks of this solution is that it makes it very challenging for users to

add new classes. Recent studies manage to tackle this challenge by implementing an

advanced algorithm that employs anonymized data impressions to update the public

dataset and force the new classes to appear during training of all clients [50]. Leveraging

new classes reported by participants is rather simple with a centralized improvement

process as proposed in 7.2.

60

7. Conclusions

In this work, Deep Learning techniques for audio event classification in mobile

applications have been successfully applied and refined. The whole process is documented

to achieve a highly customizable and flexible product. While the context, with high device

and acoustic context variability, holds important challenges, it also offers interesting

opportunities to exploit the potential of citizen science to collect data and improve the

models.

This Master's Thesis has demonstrated the potential of utilizing standard Deep Learning

approaches to enhance the Soundless project. The exploratory approach has provided key

insights into how audio classification works through Deep Learning, making it crucial for

leveraging a simple yet effective solution.

Lightweight Depthwise Separable Convolutions, consisting of only three internal

convolutional layers, achieve effective results when employing the proposed data

augmentation techniques. These models achieve classification accuracies of over 65% on

the ESC-50 benchmark and above 86% on the custom NBAC dataset, utilizing only 58

thousand and 48 thousand parameters respectively. Furthermore, these models are

trained from scratch. Strengthening the quality, quantity, and variability of the datasets

can further enhance the performance of these lightweight models.

The utilization of pre-trained models has proven to be the most advantageous solution for

addressing the audio classification problem, particularly when working with limited data.

By employing the MobileNetV1 architecture pre-trained on ImageNet, accuracy rates of

85% and 91% have been achieved for the ESC-50 benchmark and NBAC respectively.

Furthermore, utilizing YAMNet, which is internally built with MobileNetV1 and pre-

trained on AudioSet, has resulted in a slight improvement in accuracy. Specifically,

prediction accuracy of 86.5% has been attained for the ESC-50 benchmark, while an

accuracy of 95% has been achieved for NBAC.

With the understanding gained from the exploratory analysis of Deep Learning models,

potential implementation solutions are utilized to maximize the model's capabilities. The

models can serve as encoders for conducting feature space analysis on audio samples. This

analysis is valuable for evaluating and comparing audio samples based on their feature

representation. The effectiveness of this approach is demonstrated by employing

unsupervised semantic clustering methods, which achieve accuracies exceeding 89% on

61

NBAC. This possibility proves useful in leveraging participant data to integrate assisted

labeling methods or store privacy-compliant data on the server.

The deployment of these models within the citizen science context presents numerous

opportunities. This Master's Thesis explores two viable methods for deploying and

improving the models. One approach involves locally updating a classifier with feature

representations derived from the data collected by participants. The other approach

entails training the model in a decentralized manner using Federated Learning. The

experiments conducted validate the feasibility of both approaches, as they offer

deployment methods with the potential to enhance the model progressively without

compromising performance initially.

The aim discussed with Soundless at the beginning of the project has been attained. A

model with performance accuracies of over 85% in both datasets has been deployed on the

prototype of an Android app with successful results: low latency and accurate predictions.

Despite plans to further advance model deployment, significant efforts were required to

develop Deep Learning models compatible with Android applications. This stage

demanded a meticulous development approach and testing of various methods to create

deployment-ready models. The primary issue was constructing a compact model capable

of directly accepting raw wav files as input. While YAMNet offers this functionality out of

the box, it was necessary to develop such models from scratch for deployment readiness.

Although this Master's Thesis presents a practical approach, it also proposes novel Deep

Learning methods that pave the way for future research. The foremost next step is fully

implementing the predictive model in Soundless. This includes experimenting with

deploying a labeling mechanism for clients, an updatable classifier, or a Federated

Learning architecture, all of which are pathways opened by this Master's Thesis.

Furthermore, a more in-depth exploration of deploying TensorFlow Lite models remains

an area of interest. Considerable efforts were invested in developing deployment-ready

models, making it intriguing to conduct a careful analysis of how different models behave

in Android applications.

62

8. Bibliography

[1] Coll, D., Domingo, S., García, P., "Soundless: Plataforma de ciència ciutadana per a auditar els efectes de la

contaminació acústica a la ciutat de Tarragona", Universitat Rovira I Virgili, https://soundless.app/, 2022.

[2] https://apps.who.int/iris/handle/10665/326486, Date Visited: March 6, 2023.

[3] https://play.google.com/store/apps/details?id=cat.urv.cloudlab.soundless, Date Visited: March 6, 2023.

[4] Haklay, M., Dörler, D., Heigl, F., Manzoni, M., Hecker, S., & Vohland, K., "What Is Citizen Science? The

Challenges of Definition", The Science of Citizen Science, 2021.

[5] https://eu-citizen.science/, Date Visited: March 6, 2023.

[6] Irwin, A., "Citizen science comes of age", Nature, https://media.nature.com/original/magazine-

assets/d41586-018-07106-5/d41586-018-07106-5.pdf, 2018.

[7] Hong, D., Heacock, H., & Shaw, F., "The practicality of using a smartphone as a sound level meter", BCIT

Environmental Public Health Journal, 2017.

[8] Wei, Y., Zhang, Q., “Common Waveform Analysis: A New And Practical Generalization of Fourier Analysis”,

Springer US, 2000

[9] Breebaart, J., McKinney, M., "Features for Audio Classification", Algorithms in Ambient Intelligence, 2004.

[10] Piczak, K. J., "ESC: Dataset for Environmental Sound Classification", Proceedings of the 23rd Annual ACM

Conference on Multimedia, 2015.

[11] Tsalera, E., Papadakis, A., & Samarakou, M., "Comparison of Pre-Trained CNNs for Audio Classification

Using Transfer Learning", Journal of Sensor and Actuator Networks, 2021.

[12] https://www.mathworks.com/help/signal/ref/spectrogram.html, Date Visited: March 6, 2023.

[13] https://www.mathworks.com/help/audio/ref/melspectrogram.html, Date Visited: March 6, 2023.

[14] Kaneko, T., Tanaka, K., Kameoka, H., & Seki, S., "iSTFTNet: Fast and Lightweight Mel-Spectrogram

Vocoder Incorporating Inverse Short-Time Fourier Transform", arXiv.org, 2022.

[15] Harley, A. W., "An Interactive Node-Link Visualization of Convolutional Neural Networks," in ISVC, pages

867-877, 2015

[16] https://adamharley.com/nn_vis/cnn/2d.html, Date Visited: June 13, 2023.

63

[17] Guo, Y., Li, Y., Feris, R., Wang, L., & Rosing, T., "Depthwise Convolution is All You Need for Learning

Multiple Visual Domains", arXiv.org, 2019.

[18] Chollet, F., "Xception: Deep Learning with Depthwise Separable Convolutions", IEEE Conference on

Computer Vision and Pattern Recognition (CVPR), 2017.

[19] Prince, P., Hill, A., Piña Covarrubias, E., Doncaster, P., Snaddon, J., & Rogers, A., "Deploying Acoustic

Detection Algorithms on Low-Cost, Open-Source Acoustic Sensors for Environmental Monitoring", Sensors,

2019.

[20] https://www.tensorflow.org/hub/tutorials/yamnet, Date Visited: June 13, 2023.

[21] Choi, Y., Choi, H., Lee, H., Lee, S., & Lee, H., "Lightweight Skip Connections With Efficient Feature

Stacking for Respiratory Sound Classification", IEEE Access, 2022.

[22] Palanisamy, K., Singhania, D., & Yao, A., "Rethinking CNN Models for Audio Classification", arXiv.org,

2020.

[23] Cai, Y., Tang, H., Zhu, C., Li, S., & Shao, X., "DCASE 2022 Submission: Low-Complexity Model Based on

Depthwise Separable CNN for Acoustic Scene Classification", DCASE Challenge, Detection and Classification

of Acoustic Scenes and Events 2022, 2022.

[24] Hou, Y., "Low-Complexity for DCASE 2022 Task 1A Challenge. Technical Report. DCASE Challenge",

Detection and Classification of Acoustic Scenes and Events 2022, 2022.

[25] https://github.com/tensorflow/models/tree/master/research/audioset/yamnet, Date Visited: May 13,

2023.

[26] Lopez-Meyer, P., del Hoyo Ontiveros, J. A., Lu, H., & Stemmer, G., "Efficient End-to-End Audio

Embeddings Generation for Audio Classification on Target Applications", IEEE International Conference on

Acoustics, Speech and Signal Processing (ICASSP), pp. 601-605, 2021.

[27] Huang, J. J., & Alvarado Leanos, J. J., "ACLNet: Efficient end-to-end Audio Classification CNN", arXiv.org,

2018.

[28] Mohaimenuzzaman, M., Bergmeir, C., West, I., & Meyer, B., "Environmental Sound Classification on the

Edge: A Pipeline for Deep Acoustic Networks on Extremely Resource-Constrained Devices", Pattern

Recognition, 2023.

[29] https://librosa.org/doc/main/generated/librosa.util.normalize.html, Date Visited: May 13, 2023.

[30] Jiang, C., Ahn, J., & Desai, N., "Acoustic Environment Transfer for Distributed Systems", arXiv.org, 2021.

64

[31] Park, D. S., & Chan, W., "SpecAugment: A New Data Augmentation Method for Automatic Speech

Recognition", Google AI Blog, 2019.

[32] https://librosa.org/doc/main/generated/librosa.feature.melspectrogram.html, Date Visited: June 2, 2023.

[33] https://www.tensorflow.org/io/api_docs/python/tfio/audio/melscale, Date Visited: June 2, 2023.

[34] Howard, A. G., Zhu, M., Chen, B., Kalenichenko, D., Wang, W., Weyand, T., Andreetto, M., & Adam, H.,

"MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications", arXiv.org, 2017.

[35] http://research.google.com/audioset/, Date Visited: June 5, 2023.

[36] https://dcase.community/challenge2022/task-low-complexity-acoustic-scene-classification, Date Visited:

June 4, 2023.

[37] https://www.tensorflow.org/lite, Date Visited: May 17, 2023.

[38] https://www.tensorflow.org/lite/guide/inference, Date Visited: May 17, 2023.

[39] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., & Fei-Fei, L., "Imagenet: A large-scale hierarchical image

database", IEEE conference on computer vision and pattern recognition, pp. 248–255, 2009

[40] https://www.tensorflow.org/tutorials/audio/transfer_learning_audio, Date Visited: June 12, 2023.

[41] https://blog.tensorflow.org/2021/03/transfer-learning-for-audio-data-with-yamnet.html, Date Visited:

June 14, 2023.

[42] https://www.tensorflow.org/lite/models/modify/model_maker, Retrieved June 1, 2023.

[43] https://www.tensorflow.org/lite/api_docs/python/tflite_model_maker/audio_classifier/YamNetSpec,

Date Visited: June 1, 2023.

[44] S. Grollmisch, E. Cano, C.Kehling & M. Taenzer, "Analyzing the Potential of Pre-Trained Embeddings for

Audio Classification Tasks", eurasip.org, 2020.

[45] https://keras.io/examples/vision/semantic_image_clustering/, Date Visited: June 20, 2023.

[46] P. Wolters, C. Careaga, B. Hutchinson, & L. Phillips, "A study of Few-Shot Audio Classification", arXiv.org,

2020.

https://www.tensorflow.org/lite/api_docs/python/tflite_model_maker/audio_classifier/YamNetSpec

65

[47] https://scikit-learn.org/stable/modules/generated/sklearn.manifold.TSNE.html, Date Visited: June 20,

2023.

[48] D. Dogan, H. Xie, T. Heittola, & T. Virtanen, "Zero-Shot Audio Classification using Image Embeddings",

arXiv.org, 2022.

[49] S. Gururani, & A. Lerch, "Semi-Supervised Audio Classification with Partially Labeled Data", arXiv.org,

2021.

[50] G. Krishna, & S. Kumar, “Zero-Shot Federated Learning with New Classes for Audio Classification”,

arXiv.org, 2021.

66

Annexes

The code built to elaborate all experiments and products of this Master’s Thesis is stored

in different GitHub repositories. The repository `audio-classification-notebooks` collects

and organizes all Jupiter notebooks running data preprocessing experiments, models

construction and training, and further model analysis. The repository `yamnet-native-

training` contains a machine learning application to train and export the YAMNet model

in TensorFlow Lite format. The repository `federated-learning-environment` contains a

simple Federated Learning application built from scratch to train a custom audio

classification model in a Federated Learning environment.

audio-classification-notebooks:

https://github.com/DavidCastello/audio-classification-notebooks.git

yamnet-native-training:

https://github.com/DavidCastello/yamnet-native-training.git

federated-learning-environment:

https://github.com/DavidCastello/federated-learning-environment.git

https://github.com/DavidCastello/audio-classification-notebooks.git
https://github.com/DavidCastello/yamnet-native-training.git
https://github.com/DavidCastello/federated-learning-environment.git

67

Annex I: Data Pre-processing Lab

Refer to the file final notebooks/audio-processing-lab.ipynb in the audio-

classification-notebooks repository.

This file contains the starting scripts to load the wav files. Data augmentation techniques

for wav files and spectrograms are presented. Two different functions to construct the Mel

Spectrogram are built. One using the Librosa framework, and the other one using the

TensorFlow framework.

Code snippet 1: Mel Spectrogram using Librosa

Code snippet 2: Mel spectrogram using TensorFlow

68

The script also contains the function to split the wav files into 2 second long fragments

with 0.5 overlap to create the al2s configuration.

Annex II: Architectures with Mel Spectrograms as Input

Refer to the scripts located in the folder final notebooks/4.1 in the audio-

classification-notebooks repository.

These scripts build custom models that accept Mel Spectrograms as input with three

convolutional layers. This architecture is built using regular CNNs and Depthwise

Separable Convolutional Layers.

Code snippet 3: Standard CNN model accepting Mel Spectrograms as input

Annex III: Compact Architectures

Refer to the scripts located in the folder final notebooks/4.2 in the audio-

classification-notebooks repository.

These scripts integrate the Mel Spectrogram generator within the custom model

architecture. This allows the models to accept wav files directly as input.

69

Code snippet 4: LLF layer to generate Mel Spectrograms within the neural network

These scripts also use the MobileNetV1 architecture to substitute the HLF block and the

Embeddings block. The MobileNetV1 architecture is tested with random weight

initialization and weights pre-trained on the ImageNet dataset.

Annex IV: YAMNet Model

The experiments are found in the folder final notebooks/4.2, in the audio-

classification-notebooks repository.

 These experiments provide a workaround to use the YAMNet model and train a classifier

on top of it. The embeddings of the wav files are generated with the YAMNet model and

later used as input to train the classifier. Custom logic is then programmed to output the

final result.

70

Code snippet 5: Custom prediction logic with YAMNet embeddings

The repository yamnet-native-training contains the entire machine learning application

to train the custom YAMNet model natively in TensorFlow Lite. Refer to the README.md

file for instructions on how to use the application.

Code snippet 6: Function to train the custom YAMNet model natively

71

Annex V: Minimum Class Sample Size Analysis

Refer to the scripts located in the folder final notebooks/5.1.1 in the audio-

classification-notebooks repository.

These scripts evaluate the model performance for different architectures using a different

number of samples per class, always guaranteeing class balance.

Annex VI: Android Application Prototype

The README.md file in the repository yamnet-native-training contains all necessary

instructions to set up the TensorFlow Android application with the custom model.

Annex VII: Feature Space Analysis

Refer to the scripts located in the folder final notebooks/6 in the audio-

classification-notebooks repository.

These scripts use the embeddings extracted with the pre-trained model with the

MobileNetV1 architecture and perform feature analysis and semantic clustering with

unsupervised learning.

Annex VIII: Federated Learning

Refer to the repository federated-learning-environment. This repository contains the

code to train a custom audio classification model in a Federated Learning environment.

Find the instructions to run the Federated Learning application in the README.md file.

Execute main.py to simulate a Federated Learning environment with 6 clients and

perfectly balanced data. Alternatively, execute main-noniid.py to run a Federated Learning

environment with 6 clients and non-IID data. This method proposes a balancing algorithm

that uses a public dataset to balance class sample sizes. The standard Federated Averaging

method then weighs the impact of each client based on the total number of owned

samples.

72

Code snippet 7: Balancing client owned datasets with public dataset

