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Abstract. MDD and MDA approaches require capturing the behavior of 

UML models in sufficient detail and precision so that the models can be 

automatically implemented/executed in the production environment. With this 

purpose, Action Semantics were added to the UML specification as the 

fundamental unit of behavior specifications. Actions are the basis for defining 

the fine-grained behavior of operations, activity diagrams, interaction 

diagrams and state machines. Unfortunately, most of the current proposals 

devoted to the verification of behavioral models tend to skip the analysis of 

the actions they may include. The main goal of this PhD is to cover this gap 

by proposing a new verification framework aimed at verifying action-based 

behavioral specifications. In particular, we plan to describe several 

correctness properties of these specifications, develop a set of verification 

techniques based on the static analysis of the actions included in the action-

based behavioral specifications for verifying these properties and integrate 

our techniques with other existing verification approaches.  

1   Context 

One of the most challenging and long-standing goals in software engineering [21] is to 

automate as much as possible the software development process. In fact, the software 

engineering community envisages a future in which, of all the phases of software 

development, software engineers will only be strictly necessary during the 

specification of the information system, while the remaining phases (mainly design, 

implementation and test) would be fully automated. This is also the focus of some of 

the most popular and current development methods as the MDD (Model-Driven 

Development [1]) and MDA (Model-Driven Architecture [18]) approaches.  

Models are a key artifact in development process and, thus, their correctness has a 

direct effect on the quality of the final system implementation. Wrong models can lead 

to incorrect implementations. Here is where the verification methods come into play. 

There are many methods for verifying models. The kind of verification depends on the 

type of the model and on the property we want to verify. Most of the current methods 

are focused on the static part of the models (for example, checking consistency 
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between structural parts of the model) but less work has been done with respect to the 

dynamic part (part of the model that defines the system behavior), which is the topic 

of this thesis proposal.  

2   Motivation 

MDD, MDA and all executable UML methods [17] require capturing the behavior of 

UML models in sufficient detail and precision so that the models can be automatically 

implemented/executed in the production environment. In order to achieve this 

purpose, Action Semantics were added to the UML specification [20] as the 

fundamental unit of behavior specification. Actions are the basis for defining the fine-

grained behavior of behavioral models (operations, activity diagrams, interaction 

diagrams and state machines). Actions enable to modify the system state through basic 

modifications (insert/update/delete) on the system elements (classes, associations and 

so on). Their resolution and expressive power are comparable to the executable 

instructions in traditional programming languages. 

context Person::changeAddress(a:String) { 
    AddStructuralFeature(self,address,a); } 

 
context Person::addPerson(n:String, e:String) { 
   p: Person; 

   p := CreateObject(Person); 
   AddStructuralFeature(p,name,n); 
   AddStructuralFeature(p,email,e); } 

 

Fig. 2.1. A simple example of a class diagram with two operations. 

As a simple example, consider the class diagram (static part of a model) of Fig. 2.1 

that describes the objects within a system (people and departments) and their 

relationships (person works in a department). The system behavior is defined by 

means of two operations specified with Action Semantics (changeAddress and 

addPerson). In this context, both operations are incorrect, since changeAddress tries 

to update an attribute (address) which does not even exist in the class diagram and 

addPerson can never be successfully executed (i.e. every time we try to execute 

addPerson the new system state violates the minimum ‘1’ cardinality constraint of the 

department role in WorksIn, since the created person instance p is not linked to any 

department). Besides, this operation set is not complete, i.e. through these operations 

users cannot modify all elements of the class diagram, e.g. it is not possible to create 

and destroy departments. If these errors are not fixed before continuing with the code-

generation phase, the resulting system implementation will be totally useless.  

Most of the current verification approaches of behavioral models are mainly 

focused on state machines and they ignore the actions included in them, so we will 

focus on this gap. 

 



Proceedings of CAISE-DC 2009 

 

3   Our Proposed Approach 

The main goal of this PhD is to provide a verification framework to help the designers 

to verify the correctness of their behavioral models. The framework is mainly focused 

on the analysis of the modification actions included in the specification of those 

models and on how this analysis can complement other existing verification 

approaches. 

3.1 Sub-Goals 

The framework presented in this thesis proposal can be outline in the following sub-

goals: 

1. Identify and describe several fundamental correctness properties of action-

based behavioral specifications: syntactic correctness, executability, 

completeness and redundancy. 

2. Develop a static model verifier composed by a set of efficient techniques to 

verify the previous properties. Each of our techniques is focused on the 

verification of a particular correctness property. This set of techniques works 

at model level and performs a static analysis (i.e. our techniques do not 

require a simulation of the model) based on the study of the dependencies [3] 

among the actions included in the behavioral specification. These techniques 

must take into account the interactions between actions and the rest of the 

elements of the diagram where they are included (state machines, activity 

diagrams or interaction diagrams). 

3. Integrate our static techniques with other existing verification approaches. 

Our static techniques may be complemented with existing verification 

approaches, for instance, those based on model checking. In particular, model 

checking techniques could be useful to get a more fine-grained analysis of the 

executability property once our first static analysis has determined that the 

specification is at least weak executable (i.e. there is at least a chance that it 

can be successfully executed). Depending on the verification technique that 

we apply, we have a different trade-off between the properties of the 

verification (efficiency, simplicity, result provided and so on). As part of our 

work, the framework has to be able to recommend the most suited 

technique/s depending on the given behavior specification, the property to 

verify and the constraints (time, precision,…) for that verification. 

4. Provide useful feedback to the designer. The success of the application of 

formal techniques lies in providing the user with an understandable feedback 

(e.g. the feedback must be expressed in the same language used to model the 

behavior). 
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3.2 Overall framework architecture 

Fig. 3.2.1 shows the overview of the framework architecture that we propose. First, 

several correctness properties can be checked by our static model verifier on the input 

behavior specification provided by the designer. In case of an error, the verifier 

returns a meaningful feedback that helps repairing the possible inconsistencies. After 

this first analysis, some of these properties may be also deal with current verifying 

techniques as model checking. Particularly, our static techniques could be used to 

perform a first correctness analysis, basic to ensure a fundamental quality level in 

action specifications. Then, designers could proceed with a more detailed analysis 

adapting current approaches as model checking. For instance, example execution 

traces that lead to an error state provided by model checking techniques would help 

designers to detect particular scenarios not yet appropriately considered.  

 
5.  

Action-based
behavior

specification

Syntactic
Consistency

Completeness Redundancyinput

STATIC MODEL VERIFIER

                 feedback

translation
Weak

Executability

MODEL 

CHECKING

ACTION SEMANTICS VERIFICATION FRAMEW ORK

Executability

Class Diagram

 

Fig. 3.2.1. Action Semantics verification framework overview. 

Next, we describe on more detail each of the components of the framework. 

Input 

The input of our verification techniques is an action-based behavioral specification 

that may include several UML actions and the corresponding Class Diagram. The 

main modification actions that may appear in the action specification are: 

1.  CreateObject: Creates a new object that conforms to the specified classifier. The 

object is returned as an output parameter.  

2.  DestroyObject: Destroys an object.  

3.  AddStructuralFeature: Sets a value for an attribute of an object.  

4.  CreateLink: Creates a new link in a binary association. 

5.  DestroyLink: Destroys the link between two objects from an association. 

6.  ReclassifyObject: Adds an object as a new instance of a set of new classes and 

removes it from old classes.  

7.  CallOperation: Invokes an operation on an object with arguments and returns the 

results of the invocation. 

These actions can be accompanied with several read actions (e.g. to access the 

values of attributes and links of the objects) and can be structured to coordinate basic 

actions in action sequences, conditional blocks or loops (do-while or while-do loops) 

to completely define the effect of behavioral specifications.  
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Correctness properties 

The correctness properties that we deal with can be summarized in: 

- Syntactic correctness: Concerning UML models, syntactical correctness ensures 

that a specification conforms to the abstract syntax specified by the UML 

metamodel [20] (similar to the grammar of programming languages). For instance, 

suppose an abstract class A and the action obj:=CreateObject(A). This action is 

not syntactically correct due to we cannot create an instance of an abstract class. 

Syntactical consistency conditions are expressed in UML metamodel using a set of 

(OCL) constraints (i.e. Well-Formedness Rules, WFR) that restrict the possible set 

of valid (i.e. Well-Formed) UML models. These WFRs help to prevent syntactic 

errors in action specifications. We say that an action-based behavior specification 

is syntactically correct when all actions included in it conform to these WFR. 

- Executability: We consider that an action-based behavior specification is weakly 

executable when there is a chance that a user may successfully execute the 

behavior, that is, when there is at least an initial system state for which the 

execution of the actions included in the behavior evolves this state to a new system 

state that satisfies all integrity constraints of the model. Otherwise, the behavior is 

completely useless. We define our executability property as weak executability 

since we do not require all executions of the behavior to be successful, which 

could be defined as strong executability. For instance, in the operations context, 

the operation addPerson of Fig. 2.1 is not-weakly-executable since, every time we 

try to execute it, the new system state violates the minimum ‘1’ cardinality 

constraint of the department role in WorksIn, because the created person instance p 

is not linked to any department. 

- Completeness: We consider that a set of action-based behavior specifications is 

complete when all possible changes on the system state can be performed through 

the execution of this set of behaviors. Otherwise, there will be parts of the system 

that users will not be able to modify since no available behavior address their 

modification. For instance, in the operations context, the operation set of Fig. 2.1 

is not complete, i.e. through these operations users cannot modify all elements of 

the class diagram, e.g. it is not possible to create/destroy departments.   

- Redundancy: An action (or set of actions) in an action-based behavior 

specification is redundant if its effect on the system state is subsumed by the effect 

of later actions in the same action-based behavior specification, that is, the final 

system state when executing the behavior would be exactly the same with or 

without the redundant action.  

Feedback  

Our static verification techniques should provide a valuable feedback since, for each 

detected error, they suggest to the designer how to change the specification in order to 

repair the detected inconsistency. For instance, if check the executability of the 

operation addPerson (Fig. 2.1), our techniques should report to the designer that 

adding a new link to the dangling object (with CreateLink(WorksIn,…)) or destroying 

it (with DestroyObject(self)) would make the operation executable. 
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Model Checking 

As we have seen, after a first static analysis, some correctness properties may be also 

deal with current verifying techniques as model checking, which performs a more 

detailed (but less useful in terms of corrective feedback provided) analysis of each 

executable trace. 

A model checking analysis of an action-based behavioral specification requires 

translating this specification into an input language that can be understood by current 

model checking techniques (for instance, Maude [5] or SPIN [13]). 

4 Research Plan 

In order to achieve our objectives, we plan structuring our research in the following 

main stages: 

1. Correctness properties definition: In this stage, we plan to define the 

correctness properties that we plan to verify. 

2. Definition of techniques for static verification of previous properties: This 

stage comprises the elaboration of static techniques for verifying each 

property. Firstly, our techniques will be centered on action sequences part of 

individual operations and, next, we plan to extrapolate and integrate the 

techniques for verifying more complex action sequences that are part of 

complex diagrams (activity diagrams, interaction diagrams and state 

machines). 

3. Development of a verification tool: The next stage is to implement a tool that 

supports completely our static techniques. 

4. Integration of our techniques with current verification methods: We plan to 

integrate our techniques with other existing verification methods for behavior 

specifications. Note that this stage includes performing the transformation from 

a UML action-based sequence to the input languages of other methods. 

5. Techniques analysis: Once we have our static techniques and current model 

checking techniques, we plan to compare both technique types, analyze its 

trade offs (precision, efficiency, and so on) and recommend when to use the 

model checking techniques (or other verification techniques) depending on the 

model complexity and the result of the first analysis. 

6. Framework validation: Finally, we plan to validate our framework in real case 

scenarios. In particular, we plan to test the usefulness of each technique, the 

feedback comprehension and the results obtained using our techniques. 

So far, we have addressed step 1, and part of step 2 considering just action 

sequences as input [22]. 
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5 Related work 

There is a wide set of research proposals devoted to the verification of behavior 

specifications in UML, mainly focusing on state machines [15], [16], [19], interaction 

diagrams [2], sequence diagrams [12], activity diagrams [10] or on the consistent 

interrelationship  [14], [7], [11], [26], [25], [23], [8] and no-redundancies [6] between 

them and/or the class diagram, among others. Nevertheless, many of these methods 

target very basic correctness properties (basically some kind of well-formedness rules 

between the different diagrams) and/or restrict the expressivity of the supported UML 

models. Moreover, most of the methods above ignore the semantics of the actions 

included in the specifications (a relevant exception is [24]), which is exactly the focus 

of our approach.  

Besides, to check the executability of a behavior specification (or, in general, any 

property that can be expressed as a Linear Temporal Logic formula - LTL [9]) 

previous approaches rely on the use of model checking techniques [13]. Roughly, 

model checkers work by generating and analyzing all the potential executions at run-

time and evaluating if, for each (or some) execution, the given property is satisfied. 

Model checking techniques, unlike the static techniques, suffer from the state-

explosion problem [4] (i.e. the number of potential executions to analyze grows 

exponentially in terms of the size of the model, the domains of the parameters,…) 

even though a number of optimizations are available (as partial order reduction or 

state compression).  

A significant difference between model checking techniques and the static 

techniques that we propose is its output. model checking based proposals provide 

example execution traces that do (not) satisfy the checked property. On the other side, 

our static techniques suggest how to change the operation specification in order to 

repair the detected inconsistency. The static techniques that we propose provide a 

more valuable feedback for a first correctness analysis, but model checking techniques 

could also be used to get more information (e.g. incorrect execution traces). For this 

reason, both technique types (model checking and static techniques) may be integrated 

in a framework for performing a complete verification. 

We would like to remark that, to the best of our knowledge, our approach is the 

first one considering the completeness, redundancy and syntactic analysis of action 

specifications.  
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