

A Framework for Verifying UML Behavioral Models

Elena Planas*

Estudis d'Informàtica, Multimèdia i Telecomunicació

Universitat Oberta de Catalunya
eplanash@uoc.edu

Abstract. MDD and MDA approaches require capturing the behavior of

UML models in sufficient detail and precision so that the models can be

automatically implemented/executed in the production environment. With this

purpose, Action Semantics were added to the UML specification as the

fundamental unit of behavior specifications. Actions are the basis for defining

the fine-grained behavior of operations, activity diagrams, interaction

diagrams and state machines. Unfortunately, most of the current proposals

devoted to the verification of behavioral models tend to skip the analysis of

the actions they may include. The main goal of this PhD is to cover this gap

by proposing a new verification framework aimed at verifying action-based

behavioral specifications. In particular, we plan to describe several

correctness properties of these specifications, develop a set of verification

techniques based on the static analysis of the actions included in the action-

based behavioral specifications for verifying these properties and integrate

our techniques with other existing verification approaches.

1 Context

One of the most challenging and long-standing goals in software engineering [21] is to

automate as much as possible the software development process. In fact, the software

engineering community envisages a future in which, of all the phases of software

development, software engineers will only be strictly necessary during the

specification of the information system, while the remaining phases (mainly design,

implementation and test) would be fully automated. This is also the focus of some of

the most popular and current development methods as the MDD (Model-Driven

Development [1]) and MDA (Model-Driven Architecture [18]) approaches.

Models are a key artifact in development process and, thus, their correctness has a

direct effect on the quality of the final system implementation. Wrong models can lead

to incorrect implementations. Here is where the verification methods come into play.

There are many methods for verifying models. The kind of verification depends on the

type of the model and on the property we want to verify. Most of the current methods

are focused on the static part of the models (for example, checking consistency

* Under the supervision of Dr. Jordi Cabot and Dra. Cristina Gómez.

Proceedings of CAISE-DC 2009

 Department

 name : String

Person

name : Str ing
emai l : Str ing

WorksIn 1*

between structural parts of the model) but less work has been done with respect to the

dynamic part (part of the model that defines the system behavior), which is the topic

of this thesis proposal.

2 Motivation

MDD, MDA and all executable UML methods [17] require capturing the behavior of

UML models in sufficient detail and precision so that the models can be automatically

implemented/executed in the production environment. In order to achieve this

purpose, Action Semantics were added to the UML specification [20] as the

fundamental unit of behavior specification. Actions are the basis for defining the fine-

grained behavior of behavioral models (operations, activity diagrams, interaction

diagrams and state machines). Actions enable to modify the system state through basic

modifications (insert/update/delete) on the system elements (classes, associations and

so on). Their resolution and expressive power are comparable to the executable

instructions in traditional programming languages.

context Person::changeAddress(a:String) {
 AddStructuralFeature(self,address,a); }

context Person::addPerson(n:String, e:String) {
 p: Person;

 p := CreateObject(Person);
 AddStructuralFeature(p,name,n);
 AddStructuralFeature(p,email,e); }

Fig. 2.1. A simple example of a class diagram with two operations.

As a simple example, consider the class diagram (static part of a model) of Fig. 2.1

that describes the objects within a system (people and departments) and their

relationships (person works in a department). The system behavior is defined by

means of two operations specified with Action Semantics (changeAddress and

addPerson). In this context, both operations are incorrect, since changeAddress tries

to update an attribute (address) which does not even exist in the class diagram and

addPerson can never be successfully executed (i.e. every time we try to execute

addPerson the new system state violates the minimum ‘1’ cardinality constraint of the

department role in WorksIn, since the created person instance p is not linked to any

department). Besides, this operation set is not complete, i.e. through these operations

users cannot modify all elements of the class diagram, e.g. it is not possible to create

and destroy departments. If these errors are not fixed before continuing with the code-

generation phase, the resulting system implementation will be totally useless.

Most of the current verification approaches of behavioral models are mainly

focused on state machines and they ignore the actions included in them, so we will

focus on this gap.

Proceedings of CAISE-DC 2009

3 Our Proposed Approach

The main goal of this PhD is to provide a verification framework to help the designers

to verify the correctness of their behavioral models. The framework is mainly focused

on the analysis of the modification actions included in the specification of those

models and on how this analysis can complement other existing verification

approaches.

3.1 Sub-Goals

The framework presented in this thesis proposal can be outline in the following sub-

goals:

1. Identify and describe several fundamental correctness properties of action-

based behavioral specifications: syntactic correctness, executability,

completeness and redundancy.

2. Develop a static model verifier composed by a set of efficient techniques to

verify the previous properties. Each of our techniques is focused on the

verification of a particular correctness property. This set of techniques works

at model level and performs a static analysis (i.e. our techniques do not

require a simulation of the model) based on the study of the dependencies [3]

among the actions included in the behavioral specification. These techniques

must take into account the interactions between actions and the rest of the

elements of the diagram where they are included (state machines, activity

diagrams or interaction diagrams).

3. Integrate our static techniques with other existing verification approaches.

Our static techniques may be complemented with existing verification

approaches, for instance, those based on model checking. In particular, model

checking techniques could be useful to get a more fine-grained analysis of the

executability property once our first static analysis has determined that the

specification is at least weak executable (i.e. there is at least a chance that it

can be successfully executed). Depending on the verification technique that

we apply, we have a different trade-off between the properties of the

verification (efficiency, simplicity, result provided and so on). As part of our

work, the framework has to be able to recommend the most suited

technique/s depending on the given behavior specification, the property to

verify and the constraints (time, precision,…) for that verification.

4. Provide useful feedback to the designer. The success of the application of

formal techniques lies in providing the user with an understandable feedback

(e.g. the feedback must be expressed in the same language used to model the

behavior).

Proceedings of CAISE-DC 2009

3.2 Overall framework architecture

Fig. 3.2.1 shows the overview of the framework architecture that we propose. First,

several correctness properties can be checked by our static model verifier on the input

behavior specification provided by the designer. In case of an error, the verifier

returns a meaningful feedback that helps repairing the possible inconsistencies. After

this first analysis, some of these properties may be also deal with current verifying

techniques as model checking. Particularly, our static techniques could be used to

perform a first correctness analysis, basic to ensure a fundamental quality level in

action specifications. Then, designers could proceed with a more detailed analysis

adapting current approaches as model checking. For instance, example execution

traces that lead to an error state provided by model checking techniques would help

designers to detect particular scenarios not yet appropriately considered.

5.

Action-based
behavior

specification

Syntactic
Consistency

Completeness Redundancyinput

STATIC MODEL VERIFIER

 feedback

translation
Weak

Executability

MODEL

CHECKING

ACTION SEMANTICS VERIFICATION FRAMEW ORK

Executability

Class Diagram

Fig. 3.2.1. Action Semantics verification framework overview.

Next, we describe on more detail each of the components of the framework.

Input

The input of our verification techniques is an action-based behavioral specification

that may include several UML actions and the corresponding Class Diagram. The

main modification actions that may appear in the action specification are:

1. CreateObject: Creates a new object that conforms to the specified classifier. The

object is returned as an output parameter.

2. DestroyObject: Destroys an object.

3. AddStructuralFeature: Sets a value for an attribute of an object.

4. CreateLink: Creates a new link in a binary association.

5. DestroyLink: Destroys the link between two objects from an association.

6. ReclassifyObject: Adds an object as a new instance of a set of new classes and

removes it from old classes.

7. CallOperation: Invokes an operation on an object with arguments and returns the

results of the invocation.

These actions can be accompanied with several read actions (e.g. to access the

values of attributes and links of the objects) and can be structured to coordinate basic

actions in action sequences, conditional blocks or loops (do-while or while-do loops)

to completely define the effect of behavioral specifications.

Proceedings of CAISE-DC 2009

Correctness properties

The correctness properties that we deal with can be summarized in:

- Syntactic correctness: Concerning UML models, syntactical correctness ensures

that a specification conforms to the abstract syntax specified by the UML

metamodel [20] (similar to the grammar of programming languages). For instance,

suppose an abstract class A and the action obj:=CreateObject(A). This action is

not syntactically correct due to we cannot create an instance of an abstract class.

Syntactical consistency conditions are expressed in UML metamodel using a set of

(OCL) constraints (i.e. Well-Formedness Rules, WFR) that restrict the possible set

of valid (i.e. Well-Formed) UML models. These WFRs help to prevent syntactic

errors in action specifications. We say that an action-based behavior specification

is syntactically correct when all actions included in it conform to these WFR.

- Executability: We consider that an action-based behavior specification is weakly

executable when there is a chance that a user may successfully execute the

behavior, that is, when there is at least an initial system state for which the

execution of the actions included in the behavior evolves this state to a new system

state that satisfies all integrity constraints of the model. Otherwise, the behavior is

completely useless. We define our executability property as weak executability

since we do not require all executions of the behavior to be successful, which

could be defined as strong executability. For instance, in the operations context,

the operation addPerson of Fig. 2.1 is not-weakly-executable since, every time we

try to execute it, the new system state violates the minimum ‘1’ cardinality

constraint of the department role in WorksIn, because the created person instance p

is not linked to any department.

- Completeness: We consider that a set of action-based behavior specifications is

complete when all possible changes on the system state can be performed through

the execution of this set of behaviors. Otherwise, there will be parts of the system

that users will not be able to modify since no available behavior address their

modification. For instance, in the operations context, the operation set of Fig. 2.1

is not complete, i.e. through these operations users cannot modify all elements of

the class diagram, e.g. it is not possible to create/destroy departments.

- Redundancy: An action (or set of actions) in an action-based behavior

specification is redundant if its effect on the system state is subsumed by the effect

of later actions in the same action-based behavior specification, that is, the final

system state when executing the behavior would be exactly the same with or

without the redundant action.

Feedback

Our static verification techniques should provide a valuable feedback since, for each

detected error, they suggest to the designer how to change the specification in order to

repair the detected inconsistency. For instance, if check the executability of the

operation addPerson (Fig. 2.1), our techniques should report to the designer that

adding a new link to the dangling object (with CreateLink(WorksIn,…)) or destroying

it (with DestroyObject(self)) would make the operation executable.

Proceedings of CAISE-DC 2009

Model Checking

As we have seen, after a first static analysis, some correctness properties may be also

deal with current verifying techniques as model checking, which performs a more

detailed (but less useful in terms of corrective feedback provided) analysis of each

executable trace.

A model checking analysis of an action-based behavioral specification requires

translating this specification into an input language that can be understood by current

model checking techniques (for instance, Maude [5] or SPIN [13]).

4 Research Plan

In order to achieve our objectives, we plan structuring our research in the following

main stages:

1. Correctness properties definition: In this stage, we plan to define the

correctness properties that we plan to verify.

2. Definition of techniques for static verification of previous properties: This

stage comprises the elaboration of static techniques for verifying each

property. Firstly, our techniques will be centered on action sequences part of

individual operations and, next, we plan to extrapolate and integrate the

techniques for verifying more complex action sequences that are part of

complex diagrams (activity diagrams, interaction diagrams and state

machines).

3. Development of a verification tool: The next stage is to implement a tool that

supports completely our static techniques.

4. Integration of our techniques with current verification methods: We plan to

integrate our techniques with other existing verification methods for behavior

specifications. Note that this stage includes performing the transformation from

a UML action-based sequence to the input languages of other methods.

5. Techniques analysis: Once we have our static techniques and current model

checking techniques, we plan to compare both technique types, analyze its

trade offs (precision, efficiency, and so on) and recommend when to use the

model checking techniques (or other verification techniques) depending on the

model complexity and the result of the first analysis.

6. Framework validation: Finally, we plan to validate our framework in real case

scenarios. In particular, we plan to test the usefulness of each technique, the

feedback comprehension and the results obtained using our techniques.

So far, we have addressed step 1, and part of step 2 considering just action

sequences as input [22].

Proceedings of CAISE-DC 2009

5 Related work

There is a wide set of research proposals devoted to the verification of behavior

specifications in UML, mainly focusing on state machines [15], [16], [19], interaction

diagrams [2], sequence diagrams [12], activity diagrams [10] or on the consistent

interrelationship [14], [7], [11], [26], [25], [23], [8] and no-redundancies [6] between

them and/or the class diagram, among others. Nevertheless, many of these methods

target very basic correctness properties (basically some kind of well-formedness rules

between the different diagrams) and/or restrict the expressivity of the supported UML

models. Moreover, most of the methods above ignore the semantics of the actions

included in the specifications (a relevant exception is [24]), which is exactly the focus

of our approach.

Besides, to check the executability of a behavior specification (or, in general, any

property that can be expressed as a Linear Temporal Logic formula - LTL [9])

previous approaches rely on the use of model checking techniques [13]. Roughly,

model checkers work by generating and analyzing all the potential executions at run-

time and evaluating if, for each (or some) execution, the given property is satisfied.

Model checking techniques, unlike the static techniques, suffer from the state-

explosion problem [4] (i.e. the number of potential executions to analyze grows

exponentially in terms of the size of the model, the domains of the parameters,…)

even though a number of optimizations are available (as partial order reduction or

state compression).

A significant difference between model checking techniques and the static

techniques that we propose is its output. model checking based proposals provide

example execution traces that do (not) satisfy the checked property. On the other side,

our static techniques suggest how to change the operation specification in order to

repair the detected inconsistency. The static techniques that we propose provide a

more valuable feedback for a first correctness analysis, but model checking techniques

could also be used to get more information (e.g. incorrect execution traces). For this

reason, both technique types (model checking and static techniques) may be integrated

in a framework for performing a complete verification.

We would like to remark that, to the best of our knowledge, our approach is the

first one considering the completeness, redundancy and syntactic analysis of action

specifications.

Acknowledgements. Thanks to the anonymous referees for their useful comments to

previous drafts of this paper. This work has been partly supported by the Ministerio de

Ciencia y Tecnologia under TIN2008-00444 project, Grupo Consolidado.

References

1. Atkinson, C., Kühne, T.: Model-Driven Development: A Metamodeling Foundation. IEEE

Software. (2003)

Proceedings of CAISE-DC 2009

2. Baker, P., Bristow, P., Jervis, C., King, D., Thomson, R., Mitchell, B., Burton, S.:

Detecting and Resolving Semantic Pathologies in UML Sequence Diagrams.

ESEC/SIGSOFT FSE, 50-59 (2005)

3. Cabot, J., Gómez, C.: Deriving Operation Contracts from UML Class Diagrams. MoDELS,

LNCS, 4735, 196-210, (2007)

4. Clarke, E., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Progress on the State Explosion

Problem in Model Checking. Informatics-10 Years Back, 10, 176-194 (2001)

5. Clavel, M., Durán, F., Eker, S., Lincoln, P., Martí-Oliet, N., Messeguer, J., Talcott, C.:

Maude Manual (Version 2.4) (2009)

6. Costal, D., Sancho, M. R., Teniente, E.: Understanding Redundancy in UML Models for

Object-Oriented Analysis. CAiSE, 659-674 (2002)

7. Gallardo, M.M., Merino, P., Pimentel, E.: Debugging UML Designs with Model Checking.

Journal of Object Technology, 1(2), 101-117 (2002)
8. Egyed, A.: Instant Consistency Checking for the UML. ICSE, 381-390 (2006)

9. Emerson, E. A.: Temporal and Modal Logic. Handbook of Theoretical Computer Science,

8, 995-1072 (1990)

10. Eshuis, R.: Symbolic Model Checking of UML Activity Diagrams. ACM Transactions on

Soft. Eng. and Methodology, 15, 1-38 (2006)

11. Graw, G., Herrmann, P.: Transformation and Verification of Executable UML Models.

Electronic Notes in Theoretical Computer Science, 101, 3-24 (2004)

12. Grosu, R., Smolka, S. A.: Safety-Liveness Semantics for UML 2.0 Sequence Diagrams.

ACSD, 6-14 (2005)

13. Holzmann, G. J.: The spin model checker: Primer and reference manual. Addison-Wesley

Professional (2004)

14. Knapp, A., Wuttke, J.: Model Checking of UML 2.0 Interactions. MoDELS Workshops,

LNCS, 4364, 42-51 (2006)

15. Latella, D., Majzik, I., Massink, M.: Automatic Verification of a Behavioural Subset of

UML Statechart Diagrams using the SPIN Model-Checker. Formal Aspects of Computing,

11(6), 637-664 (1999)

16. Lilius, J., Paltor, I. P.: Formalising UML State Machines for Model Checking.UML, LNCS,

1723, 430–445 (1999)

17. Mellor Stephen J., Balcer Marc J.: Executable UML: A foundation for model-driven

architecture. Addison-Wesley (2002)

18. Mellor, S. J., Scott, K., Uhl, A., Weise, D.: Model-Driven Architecture. Computing

Reviews, 45, 631 (2004)

19. Ober, I., Graf, S., Ober, I.: Validating Timed UML Models by Simulation and Verification.

Int. Journal on Software Tools for Technology Transfer, 8(2), 128-145 (2006)

20. Object Management Group (OMG): UML 2.0 Superstructure Specification. OMG Adopted

Specification (ptc/07-11-02) (2007)

21. Olivé, A.: Conceptual Schema-Centric Development: A Grand Challenge for Information

Systems Research.CAiSE, 3520 (2005)

22. Planas, E., Cabot, J., Gómez, C.: Verifying Action Semantics Specifications in UML

Behavioral Models. CAiSE (2009). To appear.

23. Rasch, H., Wehrheim, H.: Checking Consistency in UML Diagrams: Classes and State

Machines. FMOODS, LNCS, 2884, 229-243 (2003)

24. Turner E., Treharne H., Schneider S., Evans N.: Automatic Generation of CSP || B

Skeletons from xUML Models. ICTAC, LNCS, 364-379 (2008)

25. Van Der Straeten, R., Mens, T., Simmonds, J., Jonckers, V.: Using Description Logic to

Maintain Consistency between UML Models. UML, LNCS, 2863, 326–340 (2003)

26. Xie, F., Levin, V., Browne, J. C.: Model Checking for an Executable Subset of UML. ASE,

333-336 (2001)

