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A B S T R A C T

Agent-based modeling and simulation (ABMS) is an approach for simulating the actions and
interactions of autonomous agents. Such interactions occur within a defined environment to
assess their effects on a system as a whole. Depending on the complexity of the model and
the number of simulated agents, an ABMS application may require a significant amount of
computational resources. It makes them good candidates to be parallelized on HPC systems.
However, most developers of ABMS simulators are experts in the specific simulation domain,
but they lack the expertise to develop parallel applications. Consequently, several frameworks
for generating HPC ABMS applications have been developed, and it may now be challenging for
these non-expert users to choose which of these frameworks would provide the best performing
simulator for a particular model. This paper presents a methodology that uses a benchmark to
help non-expert users to select the most suitable framework to generate the best performing
parallel implementation for a given ABMS model. Such a benchmark considers the common
characteristics of parallel ABMS applications and includes parameters for influencing their
relevant performance aspects. The methodology is based on defining a set of problem classes
that represent the majority of known ABMS models and systematically conducting a series of
experiments to determine which framework offers the best performance for each class. Then,
users only need to identify the class that closely aligns with their model to make an informed
decision regarding the appropriate development framework. The methodology is used to assess
well-known ABMS parallel development frameworks (FLAME, RepastHPC, and DMASON) on
real HPC platforms. The obtained results are validated using a real application for infection
and contact tracing modeling.

. Introduction

Agent-based modeling and simulation (ABMS) is an approach for simulating the actions and interactions of autonomous agents
ithin a defined environment to assess their effects on a system as a whole [1]. The agents’ behavior is realized through algorithms,

anging from simple heuristics to advanced learning and adaptive strategies. An essential aspect of this behavior involves interaction
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with other agents, as it enables agents to influence each other’s behavior, thereby generating complex interactions within the system.
ABMS has become a popular modeling approach in fields such as social media [2,3], traffic flow management [4,5], distribution
systems [6,7], economy [8], biology [9] or medicine [10], and it has novel application scenarios in IoT systems [11,12].

The use of ABMS started with models composed of a few agents whose behavior was ruled by simple heuristics or analytical
xpressions. These models could be executed in a single workstation. However, in current models simulating complex systems, the
umber of agents can be very high, the agent behavior can be implemented by time-consuming algorithms, and the communication
mong them may imply a high volume of data. This can lead to a high computational burden, requiring increasingly more computing
esources. Therefore, these simulations can take advantage of parallel techniques and High Performance Computing (HPC) to
fficiently handle the computational demands.

In the last 20 years, several frameworks to implement ABMS on HPC systems have been developed [13]. According to several
tudies, such as [14] or [15], and their use on real cases, such as [16,17], among the most relevant frameworks, we have FLAME [18],
LAME GPU [19], RepastHPC [20], EcoLab [21], DMASON [22], Pandora [23] or Care-HPS [24]. The shared objective of all these
rameworks is to hide the difficulties of developing parallel applications from the typical ABMS developer, which is usually an expert
n the specific simulation domain but lacks the expertise to develop parallel applications. Nevertheless, these frameworks present
ifferences in the way agents and contexts are specified and implemented (e.g., C, C++, Java, XML, Tcl), in how communications
re managed (e.g., explicit messages, agent replication), in the presence or not of a load balancing mechanism, among others. Due
o these differences, the performance of the resulting simulator can vary significantly across different hardware platforms and for
ifferent problems being addressed.

Therefore, choosing a framework for implementing a parallel ABMS is not straightforward for these non-expert users. To simplify
his task, a benchmark for comparing the performance of parallel ABMS development frameworks was defined in [25]. This work
resented the design of a benchmark that could be parameterized to take into consideration the computation load and distribution,
he communication load and pattern, and the problem size. It also introduced an initial benchmark implementation using RepastHPC,
LAME, FLAME GPU, and EcoLab. However, this work did not introduce a systematical methodology for using this benchmark to
hoose the appropriate framework on a given hardware platform.

In this paper, we build upon our previous contribution to define such a methodology and introduce extensions and improvements
o the benchmark. Specifically, the contributions of this paper can be summarized as follows:

• Definition of a systematical methodology for selecting the performance-convenient HPC ABMS development framework for a
given problem and hardware platform. This methodology is based on defining a set of representative problem classes and the
synthetic implementation of these classes using the developed benchmark.

• Presenting the implementation of the benchmark for DMASON.
• Using the methodology for assessing some of the most relevant development frameworks (FLAME, RepastHPC, and DMASON)

on real HPC platforms.
• Applying the methodology results to a real case study.

The remainder of this work is organized as follows. Section 2 summarizes previous work and presents the benchmark’s
mprovements and extensions. Next, Section 3 introduces the defined methodology. Section 4 introduces a comprehensive assessment
f RepastHPC, FLAME, and DMASON in a real HPC system using the proposed methodology. Then, Section 5 applies the obtained
esults to a real case study. Section 6 presents some related works. Section 7 critically discusses the main results of this work and,
inally, conclusions and future work are stated in Section 8.

. Benchmark evolution

We introduced the design and implementation of a benchmark for assessing the performance of parallel ABMS models on
PC platforms in [25]. This study focused on determining the general features of real ABMS models that significantly impact the
erformance of their simulation. Then, a benchmark was designed as a parameterizable synthetic model, which could be tailored
o match the performance characteristics of real models. Finally, it was implemented using a set of well-known frameworks for
eveloping parallel ABMS.

Unsurprisingly, the two main features influencing the performance of a parallel ABMS are (1) the frequency and volume of
nteractions between agents and (2) the amount of computation performed by each agent.

On the one hand, every framework offers some kind of abstraction to express interactions between agents. For example, FLAME
ffers a data structure reachable for all agents where every message is stored. At the same time, RepastHPC manages agents’ lists
epresenting neighbors, and communications are done by calling methods of these proxy agents. These abstractions are implemented
sing a mechanism that allows to communicate and synchronize threads and/or processes on the target hardware system; in the
ase of FLAME and RepastHPC, it is Message Passing Interface (MPI) [26], and in the case of DMASON, it is ActiveMQ. Logically,
his communication and synchronization mechanism introduces an overhead affecting simulation performance.

Usually, agents interact with their neighbors frequently and interchange small amounts of information. However, sometimes
gent interactions can be between any pair of agents, not necessarily neighbors, or can imply interchanging larger amounts of
nformation. Consequently, to assess the communication and synchronization overhead, the benchmark must be able to reproduce
he usual interaction patterns among agents and allow for configuring these interactions (pattern, frequency, size).

On the other hand, the computation done by each agent is coded in functions or methods in the framework. The overall
2
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Fig. 1. AML representation of the base agent model.

communication/synchronization. Usually, the amount of computation performed by an agent between consecutive interactions is
relatively small, but in other cases, the amount of computation can be significant. Therefore, the benchmark must be able to represent
different workloads, agents distribution, and communication/computation ratios.

The benchmark contains the following configurable parameters to represent all of these potential behaviors: communication volume
and communication pattern among agents, computation load of agents, the initial number of agents and its distribution, death and birth
rates, death and birth centers, size of the environment, and the number of computing elements.

The final design of the agent is based on the adaptation done in [14] of the prisoner’s dilemma implementation used in a RepastHPC
demo example. Fig. 1 shows the agent model language (AML) [27] representation of this base agent model.

The agent behavior is divided into the three following states, executed in each simulation step:

1. The walk state allows agents to move randomly on the environment to one of its 8 Moore neighborhood cells in the grid. This
state affects the agent distribution.

2. The interact state allows agents to interact with 𝑛𝑢𝑚_𝑎𝑔𝑒𝑛𝑡𝑠 agents in their perception field (determined by 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒), which
determines the communication pattern among agents. The message comprises the agent id and an integer value plus a 𝑛𝑢𝑚_𝑏𝑦𝑡𝑒𝑠
number of arbitrary bytes, which determine the communication volume.

3. The compute state simulates the computation load generated by the agent’s inner algorithms. This state computes a one-
dimensional Fast Fourier Transform (FFT) [28] on a table of 𝑡𝑎𝑏𝑙𝑒_𝑠𝑧 elements.

An initial implementation of the benchmark for RepastHPC, FLAME, FLAME GPU, and EcoLab was presented in [25], along
with experimental results in a small HPC system. Since then, the following improvements and extensions have been added to the
benchmark1 :

• The benchmark incorporates the use of GNU Autotools to simplify the installation and configuration process. Additionally, it
includes integration with the TAU [29] instrumentation tool.

• A new tool to visualize the spatial agent distribution in any simulation step.
• The implementation of the benchmark for the DMASON framework, which is described in the next section.
• Experimentation conducted in real HPC systems.

We have also considered implementing the benchmark for Pandora [23] and Care-HPS [24], but it was not possible due to
the limitations in porting them to the production environments. Another good option for implementing the benchmark could be
Distributed MASON [30], which attempts to develop a better MASON version for HPC systems using MPI. Distributed MASON can
run over local clusters or cloud computing architectures (such as Amazon Web Services). However, a functional version of Distributed
MASON was not available when the experimental work was being conducted for this research.

2.1. Benchmark implementation in DMASON

DMASON [22] is a distributed ABMS development framework written in Java and derived from the sequential ABMS development
framework called MASON [31]. It is based on the Master-Worker paradigm and uses a space partitioning approach.

DMASON architecture is composed of four components:

• A Master process that partitions the simulated space (field) into regions and assigns each region, along with the agents it
contains, to a slot in a Worker process.

1 The implementation of benchmark for different platforms is available at https://github.com/HPCA4SE-UAB.
3

https://github.com/HPCA4SE-UAB


Simulation Modelling Practice and Theory 128 (2023) 102812A. Moreno et al.
Fig. 2. DMASON partitioning of the simulated field into regions and assignment of these regions to available workers.

• A set of Worker processes, which are responsible for simulating the agents in the assigned regions, handling the migration of
agents moving among regions, and managing the synchronization between neighboring regions (Area of Interest - AoI). Each
Worker can be configured with the maximum number of regions it can simulate (number of slots) according to its computational
capabilities. Fig. 2 illustrates how the simulated field is partitioned into regions sharing an AoI, and how these regions are
assigned to Worker slots.

• An ActiveMQ server that handles communications among Workers.
• A Web User Interface called System Management, which manages the environment and simulation configuration, as well as

visualizes simulation output.

Each DMASON Worker iteratively simulates the evolution of the agents in its assigned regions. Each simulation step consists of
two phases:

1. Communication/Synchronization phase. Workers send their neighbors information regarding agents migrating to their regions
and agents present on their regions’ AoI.

2. Simulation Phase. Each Worker computes the agent step() function for every agent present in their regions.

The default communication protocol in DMASON is JMS, provided by an Apache ActiveMQ2 server running in the same node as
the DMASON Master process. Communication follows a Publish-Subscribe protocol, where agents propagate their state information
using multicast channels assigned to each region that will be shared. Workers subscribe to the communication channels of the
regions that overlap with their AoI. For every simulation step, agents located inside the boundary region determined by the AoI are
sent by the Worker responsible for the region to their corresponding topic on the ActiveMQ server, where the neighbor Workers
download them before the next simulation step.

According to the described architecture, the benchmark [25] has been adapted to DMASON, implementing the following classes:

• DPrisDilemma. Model code for the simulation that represents the distributed environment to be simulated (extends D-MASON
DistributedState class).

• DRemotePrisoner. An abstract class that implements DMASON’s RemotePositionedAgent class and Java’s Serializable class. It
contains the agent’s unique identifier as well as its current position in the field.

• DPrisoner. It extends DRemotePrisoner class with the agent’s logic.

The agent’s logic has been implemented in the following methods:

• Walk, which implements the walk state. The agent changes its position, moving to a new one in its Moore neighborhood.
• Play, which implements the interact state. Agents play with 𝑛𝑢𝑚_𝑎𝑔𝑒𝑛𝑡𝑠 neighbors that are within a maximum radius determined

by 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒, sending messages of 𝑐𝑜𝑚𝑚𝑢𝑛𝑖𝑐𝑎𝑡𝑖𝑜𝑛 𝑣𝑜𝑙𝑢𝑚𝑒 bytes.
• Compute, which implements the compute state. It simulates the agents’ workload by performing an FFT on a table of 𝑡𝑎𝑏𝑙𝑒_𝑠𝑧

elements.

2 ActiveMQ link https://activemq.apache.org/.
4
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• Reproduce, which allows changing the agents’ distribution and total number. An agent may generate a new agent with a
certain non-uniform probability (parameter birth rate). This probability decreases linearly according to the agent’s distance
from a given position in the field (parameter birth center).

• Die, which allows changing the agents’ distribution and total number. An agent may die with a certain non-uniform probability
(parameter death rate). This probability decreases linearly according to the agent’s distance from a given position in the field
(parameter death center).

Additionally, we made the following modifications to the original DMASON 3.2 code to solve some issues detected during the
benchmark development and testing in HPC systems3:

• Changes in the run method of CellExecutor class to use the override finish method to check the simulation results.
• Changes in the detection of network interfaces. In the original code, when an IP address is provided, DMASON looks first

for an ethernet interface. However, in an HPC platform, the main interface (for very low latency communications) is usually
Infiniband. Consequently, the code has been adapted to look for the Infiniband interface first.

3. Methodology for assessing ABMS development frameworks on an HPC platform

The developed benchmark can be used to decide which framework would lead to the best performance for a given ABMS model on
a given HPC platform without actually implementing the model. The user only needs to set the benchmark parameters accordingly
to the model characteristics. These parameters are listed in Section 2 (communication volume, communication pattern, computation
load, the initial number of agents, etc.). Then, the user can run the benchmark as many times as needed using the different available
frameworks (e.g., FLAME, RepastHPC, and DMASON). Finally, the user can compare performance results and choose the framework
leading to the best performance for the given model and HPC platform.

However, this benchmark can also serve as a valuable tool for conducting a comprehensive performance analysis of a set of
development frameworks on a specific HPC platform. The basic underlying idea is that it is possible to predefine a finite set of
synthetic classes that are representative of most ABMS and then systematically assess the performance of these classes to know
which is the best framework for each case. Consequently, users will not even need to characterize and test the benchmark; they
will only need to find which is the class that best matches their ABMS model and use the development framework that is known to
provide the best performance.

The main objective of this paper is to define a systematical methodology for achieving this comprehensive performance
characterization. Therefore, we will first discuss how to define the representative classes and next describe how to use them to
assess the performance of a framework on a given HPC platform.

3.1. Defining representative ABMS classes

To define the set of representative ABMS classes, we have explored different areas where ABMS has been applied. Review
paper [32] shows with examples that ABMS has been used, among others, in the following areas: agriculture, air traffic control,
anthropology, biomedicine, crime analysis, ecology, energy analysis, epidemiology, evacuation, market analysis, organizational
decision making, and social networks.

It can be observed that agents’ behavior is usually modeled with some heuristics or analytical expressions, which leads to a low
computation load. However, complex systems, such as the simulations associated with system biology (e.g., [33]), usually lead to
high computation loads. In addition, it can also be seen that usually, agents interact by communicating a small amount of data only
with surrounding agents. Nevertheless, in some ABMS applications, such as the simulation of the European economy [16], agents
communicate hundreds of bytes of data with other agents independently of the distance between them.

From this exploration, we have derived 9 ABMS generic classes with different computation and communication loads, which
represent most ABMS models. Table 1 shows the nine considered classes. As described in Section 2, the computation load is simulated
by computing the FFT function using inputs of different sizes (8, 16 Ki, and 128 Ki elements for low, medium, and high loads,
respectively). Communication load is simulated by interchanging messages of different sizes among neighboring agents (4 B, 256
B, and 2 KiB for low, medium, and high loads, respectively).

Regarding the computation load, calculating an FFT on a table of 8 elements may correspond to solving a few algebraic
expressions; calculating an FFT on a table of 16 Ki elements can be compared to solving a small system of equations; and doing so
on a table of 128 Ki elements can be compared to the evaluation of a machine learning model.

Regarding the communication load, a message of 4B could represent one interaction for communicating a simple state of the agent
(e.g., infected-not infected or the agent’s position in the space); a message of 256B could represent one interaction for communicating
information involving several elements, such as economic transactions; and a message of 2 KiB may represent one interaction for
communicating a whole set of knowledge, such as the set of beliefs of an individual, a genealogy, or a set of assets.

3 See GitHub repository: https://github.com/HPCA4SE-UAB/ABMS-Benchmark-DMASON.
5
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Table 1
Derived 9 ABMS classes with different computation and communication loads.

Comm.
High 2 KiB H-L H-M H-H
Medium 256B M-L M-M M-H
Low 4B L-L L-M L-H

8 16 Ki 128 Ki
Low Medium High

Computation

3.2. Assessing framework performance

In order to assess a given ABMS development framework performance, we analyze the performance characteristics of the parallel
imulator generated by the framework for each of the nine classes defined previously. We propose to:

1. Perform a strong and weak scalability analysis of the execution of the simulator,
2. Analyze the reliability of the simulator, stressing the simulator using a wide range of agents for a fixed number of cores,
3. Analyze the performance of the simulator under heavy load imbalance conditions.

Although their specific values and ranks will depend on the HPC platform being used, the following parameters must be set
epending on the type of analysis:

1. Strong scalability: total number of agents, minimum and maximum number of cores,
2. Weak scalability: minimum and maximum number of cores, the minimum number of agents that will be scaled in the same

proportion as the number of cores,
3. Reliability analysis: minimum and maximum number of agents and fixed number of cores,
4. Heavy load imbalance: the factors determining the imbalance degree (agents’ birth and death rates and birth and death
centers).

In addition, the specific parameters associated with each framework must be also considered. In this study, we have used
RepastHPC, which does not include any specific parameter; FLAME, which allows for configuring how the agents are distributed
among the simulation processes (geometric or Round-Robin partitioning); and DMASON, which allows the user to set the number
of slots for each Worker.

Each resulting configuration is executed a certain number of times to guarantee statistical validity (up to 5 times in our case, as
the standard deviation is small enough), and the average execution time is used to assess the framework.

At the end of this process, summarized in Fig. 3, the framework that offered the best performance and maximum reliability for
each of the nine classes of the evaluated HPC platform will be known. Now, a user that wants to implement an ABMS and knows
the characteristics of the model can use this information to decide the most adequate framework to implement it on this platform.
This task is challenging because it requires a good knowledge of the framework, but the user is now more confident in the expected
performance of the resulting simulator.

4. Using the methodology on a real HPC system

The initial idea of this work was compare the performance of the simulators generated by the frameworks FLAME, RepastHPC,
and DMASON on the same HPC platform. This was the first step in evaluating these frameworks for implementing an ABMS
simulating epidemic infection spread and contact tracing systems. This evaluation has been done in the context of the Epidemic
Early Warning System (Epi-EWS) project, which was granted 5 million computation hours by the PRACE call Support to mitigate the
impact of the COVID-19 pandemic.

The simulations were to be executed in the Beskow computer [34] of the Swedish PDC Center for High Performance Computing.
t is a CRAY XC40 system based on Intel Haswell and Broadwell processors and Cray Aries interconnect technology (Dragonfly
opology), with 2060 compute nodes, 67,456 cores in total, and a theoretical peak performance of 2.43 petaflops. We have used
odes with 2 Intel CPUs Xeon E5-2698v3 Haswell 2.3 GHz CPUs (16 cores per CPU), and 64 GB of main memory (RAM).

Beskow was adequate to execute simulators generated with FLAME and RepastHPC. However, due to some of the framework’s
pecific characteristics, it was not possible to execute the simulators generated with DMASON on this particular platform.

As mentioned in Section 2.1, DMASON uses a web interface (System Management), which needs a tunneled ssh connection to
he DMASON Master process during the simulation. This kind of connection is not allowed in Beskow.

Nevertheless, the PDC Center offered the possibility of executing DMASON experimentation in the Tegner supercomputing
latform. Tegner is used primarily as a preprocessing and/or postprocessing system for Beskow. However, it can also be used as a
eneral cluster for executing small to medium size parallel programs. Tegner offers the necessary external connectivity capabilities
nd a higher main memory capacity in each node, which is important for scaling DMASON simulations.

Tegner is a heterogeneous system with 67 nodes based on Intel Haswell and Ivy Bridge CPUs and Nvidia GPUs, up to 2 TB of
AM memory/node, and an EDR Infiniband interconnection. Its peak performance is 66 teraflops (only CPUs). We have used Tegner
odes (thin nodes) with 2 CPUs Intel E5-2690v3 Haswell (12 cores per CPU), and 512 GiB of main memory (RAM).
6
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Fig. 3. Agent-based model simulation methodology.

Table 2
Summary of the chosen parameters’ values for the performance analysis of FLAME and RepastHPC on Beskow.
Analysis Cores Agents Birth rate Death rate Classes

Strong scaling 128 .. 4 Ki 16 Ki 0.2 0.2 L-L .. H-H
Weak scaling 128 .. 4 Ki 8 Ki .. 256 Ki 0.2 0.2 L-L .. H-H
Reliability 512 1 Ki .. 256 Ki 0.2 0.2 L-L .. H-H
Birth and death 256 16K 0.0, 0.2, 0.6 0.0, 0.2, 0.6 M-M

The proposed methodology will evaluate a framework for a given problem and a specific hardware platform. Consequently,
ince the experimentation for FLAME and RepastHPC has been performed on a different platform than DMASON, we present the
orresponding results in two subsections.

.1. Assessing FLAME and RepastHPC on Beskow

When applying the methodology introduced in Section 3, the first step consists of setting the parameters associated with each
ype of analysis for the target HPC platform. For Beskow, the following values, summarized in Table 2, have been set:

1. Strong scalability: total number of agents = 16 Ki, minimum and maximum number of cores = 128 and 4 Ki, respectively,
2. Weak scalability: minimum and maximum number of cores = 128 and 4 Ki, respectively, minimum number of agents = 8 Ki,

which scales up to 256 Ki in the same proportion as the number of cores (32X),
3. Reliability analysis: minimum and maximum number of agents 1 Ki and 256 Ki, respectively, and fixed number of cores = 512,
4. Heavy load imbalance: for the agents’ birth and death rates, 0.0, 0.2, and 0.6. For the birth and death centers, in a simulation

area of 1024 × 1024, the birth center has been set at 750, 750 and the death center at 250, 250.

trong scalability analysis
Strong scaling analysis implies the simulation of the 9 ABMS classes summarized in Table 1 with 16K agents on 128, 256, 512,

024, 2048, and 4096 cores. Each simulation consists of 40 simulation steps and has been executed 5 times using FLAME (with
eometric and Round-Robin partitioning) and RepastHPC. Results have shown that the average of 5 simulations is enough because
he standard deviation is below 5% of the average execution time value.
7
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Fig. 4. Strong scaling analysis results: FLAME with geometric partitioning, FLAME with Round-Robin partitioning, and RepastHPC.

Fig. 5. Strong scalability analysis: Efficiency index for each assessed simulator.

Fig. 4 shows the average execution time of each of the 54 simulation cases for each of the 3 simulators (generated by FLAME
Round-Robin, FLAME geometric, and RepastHPC). It can be seen that the simulator generated by RepastHPC outperforms the one
generated by FLAME in all the cases, especially for the ABMS classes with the highest communication volume (H-L, H-M, and H-H).
Given that the performance difference is exacerbated when the communication volume and the number of cores increase, it can be
concluded that the fundamental reason for this difference is the centralized communication mechanism of FLAME.

It can also be observed that, for smaller numbers of cores, Round-Robin partitioning outperforms geometric one, while for higher
numbers of cores, it is the other way around. Geometric partitioning may lead to load imbalances because the assignation of agents
to cores depends on their position in the space. In contrast, Round-Robin partitioning always leads to balanced loads because it
uniformly distributes the agents. When the number of cores is small (e.g., 128), the number of agents assigned to each core is
relatively high (e.g., 128 agents/core in the case of Round-Robin partitioning); thus load imbalances introduced by the geometric
partitioning decrease the performance of the simulation. However, when the number of cores is high (e.g., 4096) the number
of agents assigned is very small (e.g., 4 agents/core in the case of Round-Robin partitioning, while for geometric partitioning,
many cores may have 0 agents assigned). Consequently, in this case, the overhead introduced by the centralized communication
mechanism of FLAME is having a stronger effect on the simulation using Round-Robin because all the cores are participating in the
communication.

To individually assess the performance of each of the 3 simulators, we have calculated the efficiency of each simulation case in
relation to its execution with 128 cores. We have used Eq. (1) to make this calculation, which assumes that the execution using 128
cores has an efficiency of 100%.

Fig. 5 shows the value of this index in the form of a heatmap for each of the simulators. It can be seen that the simulator generated
by RepastHPC shows the expected behavior, i.e., the efficiency decreases when the number of cores is increased, and this decrement
is smaller when the computation load is higher. In this case, we can also see that for 4 Ki cores, this simulator crashed most times;
this issue will be discussed later in the reliability analysis. For the simulators generated with FLAME, this expected behavior can be
seen for up to 1024 cores and the ABMS classes with low and medium communication volumes. For higher numbers of cores and
the highest communication volume, the efficiency sharply drops. Once again, this is caused by the overhead introduced by FLAME’s
centralized communication mechanism.
8
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Fig. 6. Weak scaling analysis results: FLAME with geometric partitioning, FLAME with Round-Robin partitioning, and RepastHPC.

Fig. 7. Weak scalability analysis: Time ratio in weak scaling scenario.

𝐸𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 =
128 × 𝑇128
𝑛 × 𝑇𝑛

(1)

Weak scalability analysis
Weak scaling analysis implies the simulation of the 9 ABMS classes summarized in Table 1 increasing the number of agents in

the same proportion as the number of cores. It led to the following configuration pairs (number of cores, number of agents): (128,
8 Ki), (256, 16 Ki), (512, 32 Ki), (1 Ki, 64 Ki), (2 Ki, 128 Ki) and (4 Ki, 256 Ki). Again, each simulation consists of 40 simulation
steps and has been executed 5 times using FLAME (with geometric and Round-Robin partitioning) and RepastHPC.

Increasing the size of the problem in the same proportion as the number of resources leads to a constant workload per core.
Consequently, in the ideal case, the execution time of the parallel application should be the same for all cases. Fig. 6 shows the
average execution time of each of the 54 simulation cases for each of the 3 simulators (generated by FLAME Round-Robin, FLAME
geometric, and RepastHPC). It can be seen that in the case of FLAME, the results are far from the ideal, especially for executions
with a higher number of agents, while for RepastHPC, the results seem closer to the ideal.

In order to analyze each simulator individually, Fig. 7 shows the evolution of the ratio between the execution time of the 54
simulation cases in relation to the (128, 8 Ki) configuration. In the ideal case, this ratio should always be 1.0. It can be seen that
RepastHPC scales well for most of the cases because this ratio is always smaller than 2, except for the biggest simulations with low
computation (ratio up to 4.4). On the contrary, FLAME generated simulators are not scalable. It is so because, for the executions
using more than 1 Ki cores, the ratio can reach up to 345 (Round-Robin partitioning), and several configurations crash because
there is insufficient memory to satisfy the application requirements.

Reliability analysis
For analyzing the reliability of the simulators generated by FLAME and RepastHPC, we have designed an experiment consisting

of simulating the 9 ABMS classes summarized in Table 1 using a fixed number of cores (512) and varying the number of agents
from 1 Ki to 256 Ki (doubling the number of agents in each configuration). This way, we are testing cases from a very low to a
9
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Fig. 8. Reliability analysis: FLAME geometric, FLAME Round-Robin, and RepastHPC.

Fig. 9. Reliability analysis: Average agent execution time.

high computation load per core. Each simulation consists of 40 simulation steps and has been executed 5 times using FLAME (with
geometric and Round-Robin partitioning) and RepastHPC.

Fig. 8 shows the average execution time of each of the 81 simulation cases for each of the 3 simulators (generated by FLAME
Round-Robin, FLAME geometric, and RepastHPC). RepastHPC fails for the two smallest numbers of agents (1 Ki and 2 Ki) because
there are no agents in some of the cores. It happens because the generated simulator executes the simulation loop regardless of the
number of agents; thus developers must control the presence of agents explicitly. This behavior has already been observed in the
strong scalability analysis (Fig. 5) when executing 16 Ki agents using 4 Ki cores. FLAME fails for a bigger number of agents and the
highest communication volume. As discussed in the weak scalability analysis (Fig. 7), in these cases, the simulator is depleting the
main memory available, and, consequently, the program crashes because there are no memory checks.

To analyze each simulator independently, we have calculated, for each configuration, the average simulation time per agent
using Eq. (2). Fig. 9 shows the value of this index in the form of a heatmap for each simulator. In this figure, it is evident which
configurations have failed as they lack corresponding results. In addition, given that FLAME does not scale well when growing the
problem size beyond 16 Ki agents, the average time per agent increases sharply because the available resources become increasingly
saturated. On the contrary, RepastHPC, which has significantly better scalability, shows the expected behavior. The average agent
time decreases when growing the problem size because the relative weight of the inherently serial component of the simulation also
decreases.

𝐴𝑣𝑒𝑟𝑎𝑔𝑒_𝑎𝑔𝑒𝑛𝑡_𝑡𝑖𝑚𝑒 =
𝑇𝑒𝑥𝑒𝑐

𝑛𝑢𝑚𝑏𝑒𝑟_𝑜𝑓 _𝑎𝑔𝑒𝑛𝑡𝑠 (2)

Heavy load imbalance
Finally, for analyzing the effects of heavy load imbalances on the simulation performance, we have executed the medium

computation load/medium communication volume (M-M) ABMS class using 256 cores, 16 Ki agents, and three different rates of
agents’ birth and death. The 0.0 birth and death rate indicates no imbalance, the 0.2 rate indicates a low imbalance, and the 0.6
rate indicates a significant load imbalance. Fig. 10 shows the results for each of the tested cases. Even though it does not include an
10
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Fig. 10. Load imbalance analysis: FLAME geometric, FLAME Round-Robin, and RepastHPC.

automatic load balancing mechanism, RepastHPC is not strongly affected by the introduced imbalances. At the same time, FLAME
presents wide variations in the execution time, especially in the case of using geometric partitioning. It is because, for geometric
partitioning, the agents with the highest probability of reproducing are concentrated in a few nodes. Consequently, the demand for
resources in those nodes is sharply increasing because, as we have seen before, FLAME does not scale well.

4.2. Assessing DMASON on tegner

When applying the methodology introduced in Section 3, the first step consists of setting the parameters associated with each
type of analysis for the target HPC platform. For Tegner, the following values have been set:

1. Strong scalability: analyzing for a total number of agents of 1 Ki, 2 Ki, 4 Ki, and 8 Ki, using minimum and maximum number
of cores of 24 and 192 (1 to 8 worker nodes), respectively,

2. Weak scalability: minimum and maximum number of cores = 24 and 192, respectively, minimum number of agents = 1 Ki, which
scales up to 8 Ki,

3. Reliability analysis: minimum and maximum number of agents 1 Ki and 1024 Ki, respectively, and analyzing for a fixed number
of cores of 24, 48, 96 and 192,

4. Heavy computation load: for a fixed high number of agents of 512 Ki, change the computation load of each agent, calculating
the FFT on a table size of 8B, 16 Ki, 32 Ki, 64 Ki, and 128 Ki elements.

In the case of DMASON, there are several framework-specific issues to consider in the performance assessment. First, DMASON
requires setting the number of slots for each Worker. This parameter significantly influences the performance of the simulator, and
hence it should be analyzed and tuned for the given HPC system before applying the methodology. In addition, DMASON has specific
characteristics that are better suited for distributed systems but make the configuration of the simulator execution in HPC platforms
more difficult:

• The Web User Interface (System Management) is used to configure simulation executions interactively. Consequently, resources
must be first obtained interactively (e.g., via SLURM interactive jobs) and then explicitly linked to the Web User Interface.

• The Web User Interface forces to manually set the parametric configuration of each experiment, i.e., this configuration cannot
be automatically done (e.g., via a SLURM script).

These characteristics explain why we limit each computational experiment to a small number of nodes (from 1 to 8, i.e., from
24 to 192 cores). Moreover, they also restricted the possibility of executing all the experiments for the 9 ABMS classes defined in
Table 1. Consequently, we have used the M-M class (256B message size and 16 Ki FFT computation size) in all analyses. As this
decision eliminates the ABMS class dimension shown in the study made on Beskow, we have added an extra experiment, previously
defined as Heavy computation load, to visualize this dimension in a particular case by fixing the number of agents and using different
computation loads per agent (changing FFT Size).

Summarizing, for the performance analysis of DMASON on Tegner, we will follow these steps:

• Describe the deployment of a distributed ABMS Java-based system (DMASON) in an HPC supercomputer (Tegner).
• Determine the best number of slots per Worker for conducting all the methodology experiments.
• Apply the proposed methodology (analysis of strong and weak scalability and reliability) using only the M-M ABMS class.
11
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Fig. 11. Impact of the number of slots available in a Worker node in the execution time of the simulation for different numbers of agents.

• Analyze the effect of changing the agents’ computation load in the simulation performance in order to visualize the class
dimension (M-L, M-M, and M-H classes) for a fixed number of agents.

Deploying DMASON
For deploying a simulator generated with DMASON in an HPC environment, it is necessary to allocate compute nodes for the

Master and Worker processes. Given that the Master interacts with the user through the System Manager (DMASON Web User
Interface), it must be executed in one compute node with external communication via ssh tunneling. Therefore, in all experiments,
we allocate one compute node for the Master process and one additional node for each Worker process. It is worth mentioning that
achieving this configuration is technically complex and requires specific settings from the HPC platform administrators. So, some
works, such as [14], have had to give up the experimentation using this framework.

DMASON is a Java-based development framework, so a Java Virtual Machine (JVM) must be deployed in each compute nodes
executing a simulator Worker process. We have taken advantage of the high memory capacity of Tegner’s nodes (Tegner thin nodes
with 512 GB) to assign up to 384 GB of memory for the heap of each JVM. It will improve the overall performance of the simulator
and allows the execution of experiments with significant higher number of agents than in Beskow.

It is worth noticing that executing each process in a JVM may produce a significant variability in the experiment results because
the JVM will decide how to manage the available 24 CPU cores to run the process Java threads (one for each Worker’s slot),
communication threads (one for each ActiveMQ’s communication channel), and mechanisms such as the garbage collection. In this
case, we use the mode of the execution time instead of its average to assess the simulator behavior.

Finally, Master and Worker processes will communicate using ActiveMQ, based on Java Message Service (JMS), through the
platform’s low-latency Infiniband EDR interconnection (up to 12 GB/s).

Tuning the number of slots per worker
As explained in Section 2.1, in a simulator generated with DMASON, the Master process sends regions of the simulated space

(field) to the Worker processes, which can simulate more than one region at a time. The maximum number of regions that can be
assigned to the same Worker node is limited by its configurable number of slots.

To tune the number of slots that will be offered by each Worker in a Tegner (thin) node, we have executed our base case (M-M
ABMS class, 1024 × 1024 2D world, and an AoI of 10) for 1 Ki to 8 Ki agents, using one Worker process on one compute node. For
each execution, the Worker process has been configured with a variable number of slots in the range [4:100].

Fig. 11 shows that the configuration with 16 slots gives the best results in all cases, especially when the number of agents
increases. This is an excellent result because it means that we can set this parameter to 16 for all the experiments in the performance
analysis.

This parameter depends on the threading capabilities of the JVM deployed at a compute node and the number of cores available
in the node. Therefore, this analysis should be done for each computation platform used to tune this parameter.

Performance analysis
Fig. 12 shows the execution time of the M-M ABMS class for 1, 2, 4, and 8 Worker nodes, each offering 16 slots, and 1 Ki, 2 Ki,

4 Ki, and 8 Ki agents.
When examining the strong scalability analysis, it can be seen that the execution time scales well from 1 to 2 and 2 to 4 Worker

nodes (from 24 to 96 cores), but the improvement is much smaller from 4 to 8 Worker nodes (96 to 192 cores). Scalability is worse
for the smallest cases (1 Ki and 2 Ki) because of the higher ratio between communication and computation load.

In order to give a deeper insight into the strong scalability analysis, Table 3 shows the efficiency of each execution regarding
the 1 Worker node case (time for 24 cores) using Eq. (1). The expected reduction in efficiency can be observed when increasing
12
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Fig. 12. Strong scalability analysis results for DMASON.

Fig. 13. Weak scalability analysis results for DMASON with (worker nodes, agents) pairs: (1, 1 Ki), (2, 2 Ki), (4, 4 Ki), (8, 8 Ki).

Table 3
Strong scalability analysis: Efficiency index.
Agents/workers 1 2 4 8

1 Ki 100 61.40 57.55 48.06
2 Ki 100 60.70 47.07 38.87
4 Ki 100 80.65 61.13 41.47
8 Ki 100 72.70 54.84 31.68

Table 4
Weak scalability analysis: Time ratio.
Agents/Workers 1 2 4 8

1 Ki,2 Ki,4 Ki,8 Ki 1 1.10 1,12 1,65

the number of resources. In fact, for the biggest cases (4 Ki and 8 Ki agents), the efficiency loss worsens for each increment in the
number of resources as expected (by Amdahl’s Law).

To carry out the weak scalability analysis, we must increase the number of resources and the number of agents in the same
proportion. Therefore, for this analysis, we can use Fig. 13, which shows the execution time for the following configuration pairs
(worker nodes -24 cores-, number of agents): (1, 1 Ki), (2, 2 Ki), (4, 4 Ki), and (8, 8 Ki). In the ideal case, the execution time should
be the same for each combination of the number of agents and resources. It can be seen that the execution time from 1 Worker
node to 4 Worker nodes is almost the same, but there is a significant increase in the execution time from 4 to 8 Worker nodes.

In order to give a deeper insight into the weak scalability analysis, Table 4 shows the evolution of the ratio between the execution
time of each simulation in relation to the 1 Worker node case (time for 24 cores). It is easy to see that for 8 Worker nodes, this
ratio sharply increases a 65%. Although these values can be considered good enough, the last case significant increment signals a
negative trend.

Finally, regarding the reliability analysis, we study the simulation results fixing the number of resources and increasing the
number of agents. Fig. 14 shows the results for varying the number of agents from 1 Ki to 1024 Ki, using a fixed number of cores,
13
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Fig. 14. Reliability analysis: DMASON using 16 slots for each worker.

Table 5
Reliability analysis: Execution time per agent (ms).
Agents/Workers 1 2 4 8

1 Ki 5,07 4,13 2,00 1,32
2 Ki 3,38 2,79 1,80 1,09
4 Ki 3,48 2,16 1,42 1,05
8 Ki 2,64 1,82 1,20 1,04
16 Ki 2,56 1,68 1,08 0,85
32 Ki 2,49 1,68 0,81 0,73
64 Ki 2,83 1,56 0,85 0,68
128 Ki 2,64 1,54 0,86 0,59
256 Ki 2,30 1,42 0,76 0,58
512 Ki 2,22 1,20 0,70 0,56
1024 Ki 2,27 1,22 0,78 0,59

and for 1, 2, 4, and 8 Worker nodes. Given that the amount of available main memory in a Tegner node is very high (512 GiB), we
have been able to assign 384 GiB of main memory to each JVM and, consequently, for the executed cases, the available resources
for the simulation are more than enough. Table 5 shows the average agent execution time, which decreases with the number of
agents up to 1024 Ki, where this time starts to increase. These results corroborate the conclusion that the simulator is still far from
suffering resource contention.

Changing the agents’ computation workload
This final experiment has been designed to visualize the ABMS class dimension, which has been discarded in the previous analysis

because of the complexity in configuring the execution cases in DMASON.
We have fixed the number of agents to 512 Ki and changed the computation load of each agent in order to generate results

for the M-L, M-M, and M-H ABMS classes. According to the specification shown in Table 1 computation load for the M-L class is
modeled by calculating an FFT on an 8B table, for the M-M class by calculating an FFT on a table of 16 KiB, and for the M-H class
by calculating an FFT on a table of 128 KiB. However, the simulation using DMASON of the load corresponding to a table of 128
KiB took too much time, and consequently, we have reduced the table size to 32 KiB and 64 KiB.

Fig. 15 shows the results obtained for these computation loads using 1 to 8 Worker nodes. Considering the 8 B, 16 KiB, and 64
KiB loads, the results are expected because the execution time is increasing in the same proportion as the load. However, DMASON
is producing a surprising result for the 32 KiB case because the execution time is less than 2 times the one for 16 KiB. As mentioned
before, running each process on a JVM produces significant variability in the experiment’s execution time, which, combined with
the low number of iterations that could be run, could explain this unexpected outcome.

Considering that we are obtaining the expected outcomes along the ABMS class dimension for one case, it points out that the
results obtained for analyzing the performance of DMASON on Tegner using only one class could be used to estimate the results for
the rest of the classes.

5. Case study: Infection & contact tracing model

Except for a few cases (small number of cores and problem sizes with low communication volume), the simulators generated by
RepastHPC have clearly overcome the ones generated by FLAME on Beskow. Considering that this evaluation has been conducted in
the context of the Epi-EWS project, it seems that implementing an ABMS simulating epidemic infection spread and contact tracing on
Beskow should be done using RepastHPC. To validate this conclusion, we must show that the behavior of this simulator corresponds
14
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Fig. 15. Class dimension analysis: 512 Ki agents case, Worker nodes used vs. time (s) for different agents FFT computation load.

The Coronavirus disease 2019 (COVID-19) has become one of the biggest threats to humanity [35]. Epidemiological forecasting
models are a good tool to design, evaluate and implement public health policies. The classical approach of equation-based models
to model the spread of an infectious disease in a population has severe limitations because they assume that the population being
modeled is homogeneous. The alternative is ABMS. In this case, each agent can be given different attributes and make different
decisions, allowing the model to capture interactions and behavior at the individual level [36].

As presented in [37], an epidemiological agent-based model has four main components: disease, society, transportation, and
environment. To model the disease, we must define how the infection is transmitted between agents and how it progresses in an
infected agent. Modeling society means simulating the population, while modeling transportation determines how the agents move
in the environment. Finally, modeling the environment involves creating the space in which the agents interact.

For this study, we have adapted an infection model [38] already developed using the Pandora framework [23], which simulates
the infection spreading and contact tracing in the street. It should be noted that Pandora has not been contemplated in this study
because it cannot be considered, in its current development stage, a stable and portable HPC ABMS development framework.

The main features of the adapted model are the following:

• Space. Agents move in a rectangular area representing a street. This area is modeled with a grid, and at most, one agent can
be placed in each grid position.

• Movement. Agents travel up or down the street and, in every simulation step, an agent tries to move to the next grid position
in its traveling direction. The agent can also try to move one position left or right with a certain probability. This movement
will only occur if the target position is free. Otherwise, the agent rests at the original position.

• Initial agents distribution. The simulation begins with a given number of agents uniformly distributed over the space.
• Birth of agents. New agents are added randomly at both ends of the street, and always move towards the other end.
• Death of agents. Agents disappear when they go beyond one of the ends of the street.
• Infection spreading. Only sick agents can infect other agents, and infected agents do not have this capacity. At the beginning

of the simulation, a given portion of agents are sick. In every simulation step, every sick agent might randomly infect agents
in its area of influence.

• Contact tracing. Agents have a mobile application that records all agents in its area of influence and whether they were
infected or not.

Upon analyzing the model, it becomes evident that, from the perspective of an individual agent, the computation and
communication volume is relatively low. This is due to the fact that each agent is only required to interact with a small number
of neighboring agents for tasks such as spreading and contact tracing. However, contact tracing requires a significant amount of
memory (every contact is registered), and agents are constantly moving. Thus when many agents move from one computation node
to another, it implies a high volume of communication. Consequently, according to Table 1, this model can be classified as an M-L
or even an H-L ABMS class.

Table 6 shows the main parameters of the model developed in RepastHPC. The street is a rectangle of 200 × 1200 grid positions
(Space dimension). Agents try to move left or right in 9% of the simulation steps (Movement drifting), the simulation begins with
3% of infected agents (Sick rate) and the probability of a sick agent infecting agents inside the area of influence (Infection radius)
is 0.4% (Infectiousness). Agent initial density means the percentage of grid positions (200 × 1200 = 240 000) occupied by an agent
at the beginning of the simulation.

We have conducted two experiments to validate the hypothesis that this model corresponds to either the M-L or H-L classes in
our classification. First, a strong scalability analysis has been done for the case of a 10% of agents’ initial density, starting with 32
cores and doubling the number of cores up to 512. Second, a weak scalability analysis has been done, starting with a 10% of agents’
initial density and 32 cores doubling the initial density and number of cores up to 80% of agents’ initial density and 256 cores.
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Table 6
Model parameters.
Parameter Value

Space dimension 1200 × 200
Infection radius 2
Movement drifting 9%
Agent initial density 10% 20% 40% 80%
Sick rate 3%
Infectiousness 0.4%

Fig. 16. Results of the infection and contact tracing model implemented in RepastHPC.

Fig. 16 shows the average execution time for 5 executions of both experiments, and Fig. 17 shows the values of Efficiency and
Time ratio indexes, which are the indexes used for assessing the strong and weak scalability results, respectively.

In the strong scalability case, it can be seen that the efficiency is reducing quickly, which is following the results shown for the
efficiency index in Fig. 5(c) in all the low computation load cases. The obtained results closely match those of the M-L and H-L
classes. In the case of the weak scalability analysis, it can be observed that the simulation scales very well for the 64 ∶ 20% and
128 ∶ 40% executions (time ratio below 1.0) while worsening a 40% for the 256 ∶ 80% execution. These results are also following
the ones shown for the time ratio in Fig. 7(c), which shows that in the low computation classes, this index starts growing earlier.
In other words, the simulators generated by RepastHPC scale well but not perfectly.

Summarizing, the obtained results validate our hypothesis about the classification of this model and the decision to implement
it using RepastHPC. Moreover, they also indicate that the proposed methodology can be helpful for deciding the adequate ABMS
development framework for real problems.

6. Related work

Several comparative studies, such as [15,39], and [14], have been presented. In [39], five software platforms for scientific
agent-based models (NetLogo, MASON, Repast, Java, and Objective-C versions of Swarm) were reviewed using test models. This
study compares the execution time of the platforms in a single server and does not claim to define a formal benchmark. It also
raises other issues regarding the difficulty of using each framework (e.g., programming language) or the lack of scientific tools for
modeling, and establishes priorities for the continued development and improvement of ABMS platforms.

More recently, [14] presented a survey on parallel distributed multi-agent simulation frameworks. The analyzed frameworks
were: DMASON, FLAME, Jade, Pandora, RepastHPC, PDES-Mas, SWAGES, Ecolab, MACE3J, and ABM++. This study qualitatively
assesses these frameworks considering their main features (e.g., agent distribution and communication scheme). In addition, it
presents a performance evaluation of FLAME and RepastHPC using a test example. We used the example introduced in this study as
a base for developing the benchmark presented in our previous work [25] and the comprehensive evaluation methodology described
in this work.

Probably the most complete review of the state-of-art frameworks for using agent-based computing technology was presented
in [15]. This study covers a wide spectrum of agent-based modeling and simulation tools (85). It aimed to provide an ontological
reference for classifying agent-based modeling and simulation development frameworks. It does not introduce examples or
experimental results for any of the considered frameworks.
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Fig. 17. Efficiency and time ratio of the infection and contact tracing model implemented in RepastHPC.

Apart from our previous contribution [25], we have found that the primary attempt to create a benchmark for assessing
parallel ABMS applications performance came from the OpenAB group [40] and was published in [41,42]. The first proposal [41]
implements one FLAME demo for FLAME GPU [19], MASON [22], and REPAST Simphony [43]. However, although this is a nicely
formalized proposal, it is limited to a fixed radius near neighboring ABMS. The second one [42] models a set of molecules following
Brownian Dynamics methods in FLAME GPU. Similarly to our benchmark proposal, this benchmark introduces the variation of the
system workload during the execution. However, the model does not consider parameters such as the message size, the amount of
computation, or the number of agents interacting within a certain distance.

Finally, a first approach of a validation methodology for agent-based models was presented in [44] for macroeconomic models.
The validity of models is still a challenge in agent-based modeling. This paper shows a methodology based on three levels: micro,
meso, and macro. At the micro level, the agent behavior should be similar to the observed agent behavior. At the meso level,
model output is compared with the distributions of aggregate variables. Finally, at the macro level, correlations between aggregate
variables are validated.

In summary, to the best of our knowledge, there is no existing approach that combines the characterization of different classes
of ABMS with a systematical evaluation of an abstract implementation of these classes using a benchmark, and further validating
the results through real executions on a specific hardware platform.

7. Discussion

The main achievement of this work is the definition of a systematical methodology for selecting the HPC ABMS development
framework that could deliver the best performance for a given problem and hardware platform. This methodology is based on the
definition of a set of representative problem classes, the synthetic implementation of these classes using a previously developed
benchmark, and the analysis of the performance obtained for a well-defined set of configurations.

The approach proposed in the literature to assess HPC ABMS development frameworks has been focused on comparative studies
considering several characteristics of these frameworks. Although most of these studies adequately address the comparison based
on aspects such as the difficulty of using each framework, programming language, agent distribution, or communication scheme,
they lack a comprehensive assessment of the performance of the generated simulators. Consequently, we consider that this work
fills this gap and could be a valuable complement to the traditional approach because, to the best of our knowledge, it is the first
time a systematical performance evaluation methodology for HPC ABMS development frameworks has been proposed.

We initially intended to test the proposed methodology for three of the most used ABMS development frameworks on HPC
platforms: FLAME, RespastHPC, and DMASON. However, we found here the first barrier, services offered by an HPC platform can
limit the ABMS development framework that can be used, especially those not adequately designed for HPC. For example, DMASON
cannot be executed on the Beskow platform because it uses a web interface with a tunneled ssh connection to the DMASON Master
process during the simulation, and this forces to manually set the parametric configuration of each experiment. Consequently, we
had to test DMASON on a different platform (Tegner), which could be appropriately configured.

In the strong scalability analysis, RepastHPC outperforms FLAME in all cases, especially for the ABMS classes with the highest
communication volume. The fundamental reason for this difference is the centralized communication mechanism of FLAME.
Focusing on FLAME, it can also be observed that for smaller numbers of cores, Round-Robin partitioning outperforms geometric
one. In contrast, for higher numbers of cores, it is the other way around. In the first case, balancing the computation load has a
more significant impact on performance than the communication overhead, while in the second case, communication overhead is
more important than load balancing.
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The weak scalability analysis shows that FLAME scalability is far from ideal, especially for executions with a higher number of
gents, because its centralized communication mechanism leads to increasing demand for memory. RepastHPC results seem closer
o the ideal because it uses a distributed communication mechanism that minimizes the impact on memory usage.

The reliability analysis shows that RepastHPC may fail for a small number of agents because agents are not assigned to some
ores. It happens because the generated simulator executes the simulation loop regardless of the number of assigned agents; thus
evelopers must control this condition explicitly. FLAME may fail for a higher number of agents and the highest communication
olume. In these cases, the simulator could deplete the main memory available, and consequently, the program crashes because
here are no memory checks.

Finally, when introducing heavy load imbalances, even though it does not include any load balancing mechanism, RepastHPC
erformance is not strongly affected. At the same time, FLAME presents wide variations in the execution time, especially for
eometric partitioning. It is because for geometric partitioning, the agents that have the highest probability of reproducing are
oncentrated in a few nodes.

Summarizing, during the simulations conducted on the Beskow platform, RepastHPC consistently outperformed FLAME across
ll simulation classes. However, there were instances where both frameworks exhibited similar performance. Regarding DMASON,
ur work has shown strong evidence supporting previous claims [14,15] about this development framework being more suited for
istributed systems than HPC platforms.

We have defined a systematical methodology for achieving a comprehensive performance characterization of an ABMS HPC
evelopment framework on a given platform. This methodology is, on the one hand, based on the definition of a set of representative
BMS classes and, on the other hand, relies on a previously developed benchmark. These two aspects lead to the main limitations
f our approach:

• The definition of the representative ABMS classes results from a detailed analysis of real simulation cases. However, fixing the
number of classes (9) and the values of the message sizes and FFT input for each case could be a limitation. The methodology
could be extended to be more flexible and accept configurable values for these parameters.

• The agents implemented in the benchmark used in the methodology can only interact with their neighbors up to a certain
configurable distance. Consequently, the methodology only considers models based on geographical relationships between
agents, which are not the only possible ABMS models. For example, [2] proposes an ABMS model for simulating the effect
of curation algorithms in Twitter, where relationships between agents do not depend on geographical distance. Implementing
these non-spatial models could be significantly different from the spatial ones for some frameworks, which could lead to
significant performance variations. In this case, the benchmark could be extended to include non-spatial ABMS models, so,
they can be considered in the proposed methodology.

This work has been focused on the assessment of the performance of the simulators generated by the studied frameworks.
evertheless, other aspects can also be considered when selecting an ABMS development framework, for example, how much easy
r difficult it is to deploy the platform or implement the model. However, these aspects have been appropriately addressed in other
tudies, while, to the best of our knowledge, it is the first time a systematical performance evaluation methodology for HPC ABMS
evelopment frameworks has been proposed.

. Conclusions and future work

Selecting a framework, among the multiple available possibilities, for implementing a parallel ABMS depends on multiple factors.
ome are qualitative, such as developers’ familiarity with the implementation language or the simplicity of defining agents’ behavior
nd interactions. However, in the end, the most relevant decision factors are the reliability and the performance gain obtained from
he generated parallel simulator.

In this work, we have introduced a methodology that allows developers to determine the most promising framework for
eveloping a specific ABMS on a given HPC hardware platform without an actual implementation of the model. This methodology
everages a benchmark developed in previous work for implementing nine predefined simulation classes based on the simulation
omputation load and communication volume. These classes span from low to high computation load and communication volume.

Then, a set of performance and reliability analyses, including strong and weak scalability tests, are executed on the target platform
or each of the defined classes and considered frameworks, which produces, as a result, a development framework ranking for each
lass.

Finally, a developer of a particular ABMS only has to be able to determine to which class belongs its model to know which
evelopment framework could lead to the best performance.

We have used this methodology to rank two of the best-known ABMS development frameworks (FLAME and RepastHPC) on
eskow (position 485 in the November 2022 TOP500 list). In addition, we also applied the methodology for analyzing the capabilities
f DMASON, another very well-known ABMS development framework, on a different machine (Tegner).

Finally, to validate the proposed methodology, we implemented a real use case on this system using RepastHPC. The use case
onsisted of an epidemiological and contact tracing simulation of people strolling in the street. By its characteristics, this model
as classified in the low computation load - medium or high communication volume class. Experimentation showed that the results
btained from the execution of this model for different cases agreed with those obtained for the corresponding class during the
ramework evaluation.
18
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In future work, we expect to use our methodology with other well-known frameworks such as Jade [45] and, especially,
istributed MASON, which is a redesign of DMASON for HPC platforms [46]. In addition, we plan to extend the benchmark

o generate synthetic models with non-spatial communication patterns and enrich the set of representative ABMS classes for the
rameworks, such as RepastHPC, that implement spatial and non-spatial communications differently. Also related to the set of
epresentative ABMS classes, we want to extend the methodology to be more flexible and accept configurable values in the number
f classes and the parameters that define the communication and computation loads. We will also analyze the performance of
BMS models that use Geographic Information Systems (GIS) supported by some HPC ABMS frameworks. Finally, we will explore

he application of HPC ABMS simulation of IoT systems, such as Smart Cities [47] and Connected Car (with V2X communication
rotocols) [48], to determine their characteristics and, if necessary, adapt the benchmark and the considered representative ABMS
lasses.
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