

Universitat Oberta de Catalunya

Citation for published version

Rius-Gavidia, À. [Àngels], Conesa, J. [Jordi], García Barriocanal, E.[Elena]
& Sicilia Urbán, M.[Miguel Ángel] (2014). Automating educational processes
implementation by means of an ontological framework. Computer Standards
& Interfaces, 36(2), 335-348. doi: 10.1016/j.csi.2013.08.003

DOI
http://doi.org/10.1016/j.csi.2013.08.003

Handle
http://hdl.handle.net/10609/149619

Document Version
This is the Accepted Manuscript version.
The version published on the UOC’s O2 Repository may differ from the final
published version.

Copyright and Reuse
This manuscript version is made available under the terms of the Creative
Commons Attribution Non Commercial No Derivatives license (CC-BY-NC-
ND) http://creativecommons.org/licenses/by-nc-nd/4.0/, which allows others
to download it and share it with others as long as they credit you, but they
can’t change it in any way or use them commercially.

Enquiries
If you believe this document infringes copyright, please contact the UOC’s
O2 Repository administrators: repositori@uoc.edu

http://doi.org/10.1016/j.csi.2013.08.003
http://hdl.handle.net/10609/149619
http://hdl.handle.net/10609/149619
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:repositori@uoc.edu

Automating educational processes implementation by means of an
ontological framework

Angels Rius1, Jordi Conesa1, Elena García-Barriocanal2, Miguel Angel Sicilia2

1 Estudis d’Informatica i Multimedia, Universitat Oberta de Catalunya,
Rambla del Poblenou, 156, E-08018, Barcelona, Spain

mriusg@uoc.edu, jconesac@uoc.edu
2 Computer Science Department, University of Alcalá

Ctra. Barcelona km. 33,600.28871.Alcalá de Henares (Madrid), Spain
elena.garciab@uah.es, msicilia@uah.es

Abstract. In the area of eBusiness, automation from the process specifications is a reality that has provided
relevant advantages and benefits. Even though the similarities between the areas of eBusiness and eLearning,
the automation of processes based on their specifications is not yet possible in eLearning. The lack of
standards and specifications to specify learning processes unambiguosly may be one possible explanation for
that limitation. This paper proposes a method that generates automatically part of the implementation of
learning processes from their specifications. In order to do so, the method uses the OKI-OSID specification.
This specification proposes a framework for the creation of eLeaning sistems that promotes interoperability.
Since the specification does not include a metamodel, an ontology that defines an OKI-OSID metamodel has
been created. The ontology has been used to store the specifications of learning processes and to make
necessary inferences in order to generate part of the processes‘ source code. Apart of the OKI-OSID
ontology, the paper also presents some insights about some problems found in OKI-OSID and the
underspecifications these lacks produces. An implementation of the method has been implemented in order to
create the source code of learning processes in Java, but its extension to generate code in other languages is
straighforward.

Keywords: interface, educational setting, pattern, specification, ontology

1 Introduction

Today, educational institutions can reuse a great deal of applications in order to create
their own applications to improve learning processes. Applications aimed at e-learning
environments can be created in two different ways: a) by using, and extending when
necessary, the functions of a Learning Management System (LMS) or b) from scratch.
In the first option, the particularities of the LMS platform reused must be taken into
consideration, so possible extensions will depend mainly on the base LMS and its
limitations. The second option requires the development of applications that can be
adapted to the needs and management of each educational institution. Even though,
extending an LMS can save implementation time and resources, we believe that
implementing systems from scratch is preferable, given that it facilitates the adaptation
of applications to each organisational environment irrespective of the LMS.

The Object Management Group proposed in the Model Driven Architecture
methodology (MDA) a way to create platform-independent software systems from the
models that represent their specifications. In MDA the software development is directed
by models, meaning that the implementation is mostly done in a higher degree of
abstraction: people implement by modeling instead of by programming [12][24]. These
models can be seen as the ontologies the information systems need to know in order to
perform their functions [5]. In other fields some authors have also created a framework
using ontologies for reusing, extracting and extending large domain ontologies by
means of a SOA (Service Oriented Architecture) approach [3]. Information systems that

mailto:mriusg@uoc.edu
mailto:jconesac@uoc.edu
mailto:elena.garciab@uah.es
mailto:msicilia@uah.es

use ontologies to be improved are known as Ontology-Driven Information Systems
(ODIS) [23]. The main problem in these systems is the necessity to have an ontology
that is good enough to be of value to the information system. Creating this ontology is a
difficult and very time consuming task that may, sometimes, exceed the time or efforts
of developing the application from scratch. However, if we can create an ontology that
is general enough to be reused by different information systems of the same domain,
then the resources needed for its creation can be acceptable. In the context of eLearning,
an ontology that describes the most used specifications or standards, such as the OKI
OSID specification, can be used successfully in order to automate some processes,
increase interoperability among systems and supporting the programmers in the creation
of new applications.

The mid-term objective behind this work is to create an ODIS that supports the
creation of learning applications using the MDA methodology. With this objective in
mind, the objective of this work is two folded: 1) the creation of an ontology of the
OKI-OSID specification that allow represent learning processes specifications, and 2)
the creation of an ODIS system that uses the OKI-OSID ontology in order to support the
implementation of learning processes.

In order to fulfill these objectives, the paper proposes a method for the specification
of processes, irrespective of the learning system platform to be used, that is capable of
establishing links between the processes that are carried out in different educational
environments and their implementation. To prove the feasibility of the proposed model,
a prototype was created that part-generate the implementation of educational scenarios
by means of graphic representations in educational scenarios [7] and [6]. This
framework is specially aimed at the higher education community and aims to offer
support to the construction of learning systems and promote interoperability between
different e-learning applications. In order to store and manage the specifications of
learning processes the method uses the OKI-OSID ontology. This ontology has been
created from scratch and defines the part of the OKI-OSID specification relevant for the
proposed method. In addition, an in-depth study was also carried out on the O.K.I.
OSID specification that has made it possible to create a metamodel and also to detect a
number of its limitations.

This work contributes to the community in two main ways: the proposal of a new
method to represent learning processes and their interactions with other eLearning
applications, and an OKI metamodel that supports creating eLearning applications using
a model driven approach (MDA).

This paper is composed of seven sections. After the introduction, the paper studies the
relevant related work. Third section presents an overview of the proposed approach.
Thereafter, section four describes the case study that will be used in order to exemplify
the proposed approach. Fifth section describes the OKI metamodel that has been
created. Later, a discussion about the created metamodel and the architecture developed
to create partial implementation from the specification are done in section six. Finally,
in the last section conclusions and further work are addressed.

2. Related Research

In the last few decades research in the area of e-learning has evolved considerably with
respect to specifications and standards related to digital content, as is demonstrated by
the number of specifications and standards that have been developed. For example,
Common Cartridge is a standard under which the IMS Consortium has grouped

numerous specifications and standards such as Content Packaging v1.2 [16], Question
& Test Interoperability v1.2 [17], IMS Tools Interoperability Guidelines v1.0 [15],
IEEE Learning Object Metadata v1.0 [13] and SCORM v1.2 [1].

Also, research into learning systems platforms has undergone significant advances, as
is demonstrated by the proliferation of systems of this type, whether learning systems
(such as Claroline [9], LAMS [18] or SharePointLMS [30]) or course management
systems (such as Dokeos [10], ILIAS [14], Moodle [22] or SAKAI [28]).

However, there are no mechanisms to represent processes in educational
environments for the purpose of obtaining a certain degree of automation, as in business
with, for example, Business Process Modeling (BPM) ([26], [20]). Neither is there any
ontology when representing processes that makes it possible to formalise processes in
educational environments or to promote them being shared, although there are
ontologies that formally describe educational environments. For example there are
ontologies to describe: learning content [29], interaction between students and learning
systems in collaborative environments [21], learning tasks [27], objects of learning and
working groups [4] as well as other elements involved in collaborative environment
scenarios. As regards frameworks for the construction of learning environments, ELF
[18] and OSID (Open Service Interface Definition) by OKI [25] are worthy of mention.
Both have a clear orientation towards services and attempt to define what the services of
an e-learning system should be.

ELF, also known as e-Learning Framework, has been developed by different
international organisations with the aim of offering support for the development and
integration of systems in the e-learning environment, for research, and for educational
administration, which has currently been subsumed by the e-framework initiative. This
framework is made up of three levels, one for common services, another for services
related to the e-learning domain and finally, a third for users and agents.

The O.K.I. OSID specification is another framework aimed specifically at higher
education communities and aims to offer a set of web service interfaces for the
construction of learning systems for such environments that promotes interoperability
between applications. Version 2.0 of this framework onwards includes packages to
facilitate the development of e-learning systems in languages such as Java C#, but there
is still no metamodel to describe this specification on a conceptual level and, thereby,
facilitate its use.

3. The Proposed Method

This section describes a method that supports the development of eLearning
applications independently of the LMS used. The proposed method uses a domain
ontology to support the automatic creation of part of the implementation of the
elearning applications from their specifications. The method transforms graphic
specifications of learning processes in the part of the code that implements them,
independently of the LMS reused and the final programming language. We can see a
graphical sketch of the proposed architecture in figure 1.

http://en.wikipedia.org/wiki/Content_package
http://en.wikipedia.org/wiki/QTI
http://en.wikipedia.org/wiki/QTI
http://en.wikipedia.org/wiki/Learning_object_metadata
http://en.wikipedia.org/wiki/SCORM

Domain
Ontologies

OKI
OntologyInference Compilator

Educational
Setting

Specification

Educational
Setting

Specification
in terms of
OKI Services

Educational Setting
Implementation in
different languages

JAVA

...

BPEL

Educational
Setting graphic
representation

Figure 1: A method to create source code of eLearning processes from their specification

The proposed method can be seen as a black box that takes the specifications of the
eLearning processes provided by the user and generates the source code that implement
those processes in a given language (or specification). In order to provide that
functionality the system is composed by a domain ontology and a compiler. In this
paper we focus in the green elements of the figure, that is the elements that deal with the
specification of learning processes in terms of OKI services and its final implementation
(OKI ontology and the compiler). The graphical language and the interface that the
designer uses in order to specify the learning processes are presented in [7] and [6].

The domain ontology allows specifying processes in the eLearning domain. For each
process, the ontology allows representing its behavior, its actors (human or computer
processes), its interactions, data sources used (queried and updated), etc. The
representation of particular learning processes is done by the instantiation of such
ontology. The instantiation may be performed taking into account a graphical
specification of the processes entered by the user, such as in [7]. In order to provide a
complete and mature interface that can represent implementation details of learning
processes independently of the implementation language we have used the OKI-OSID
specification. In particular, we created the ontology as a metamodel of the OKI-OSID
specification.

For each learning process, stored in the domain ontology an inference engine
processes a set of rules in order to translate the specification of the learning processes in
terms of OKI services, creating several instances in the OKI ontology. Once the
translation process is done, the OKI ontology will contain enough information to create
a partial implementation of the specified processes. Thereafter, a compiler translates the
knowledge stored in the ontology to source code that includes invocations to web
services useful to implement the processes to automate in different programming
languages. Even though the generated implementation is not complete, the system is
able to generate most of the web services contracts and the calls necessary to implement
the interactions between learning processes.

4 The Case Study

In order to exemplify our method and test it we used a real case, which is simple but
representative enough to serve as a concept text. This case study consists of an

educational scenario dealing with the assignation of teachers to a database subject of the
Open University of Catalonia.

However, before describing the selected scenario as a case study, we need to define
the concept of an educational scenario. In general, we understand an educational
scenario to be a set of activities that occur in a learning environment with the aim of
preparing that environment, offering support during the learning process and evaluating
the results obtained and the competences acquired during the learning process. For
example, educational scenarios could include the preparation of a course and the
correction of activities or course evaluation.

Scenarios in educational environments tend to follow a common pattern, although
they are adapted in one way or another depending on the institution, according to each
particular organization and its rules. Therefore, the figures involved and the resources
used to reach the established objective will vary according to the organisation context in
question.

For example, before the start of the course any educational institution should assign
teaching staff to the classrooms in which the course will take place. And a specific case
of this generic scenario might be the scenario of Basic Consultancy Task (EBC in
Catalan) Task Assignation for the Databases I course in the Autumn semester of 2010 at
the Open University of Catalonia (UOC), which has been chosen as for the case study.

The Open University of Catalonia is an online university offering all types of courses
including higher and postgraduate studies. Currently, more than 40,000 students are
enrolled and among other qualifications it offers Technical Systems Engineering (ITIS)
and Technical Management Engineering (ITIG).

One of the compulsory subjects in these courses is Databases I (BDI), which is taught
in several classrooms given the high number of students enrolled. Due the practical
nature of the subject it uses two types of classroom: theory classrooms and laboratory
classrooms.

All subjects at the UOC are led by the lecturer responsible for the subject (PRA), who
coordinates a team of teaching staff. The team members carry out the teaching and are
known as consultants. The PRA, among other tasks, prepares the course and has to
assign a consultant to each classroom. Assigning a classroom means that the consultant
accepts responsibility for guiding the students assigned to the classroom during the
learning process, correcting their activities and resolving any queries they may have.
The UOC calls this a basic consultancy task (EBC).

The EBC Task Assignment scenario for the BDI course occurs when the system
detects the need to assign consultants to classrooms. Therefore, for each course
identified by subject and semester, consultants or expert PDCs in the subject are found
who can teach the courses, whether on a theoretical or practical level, and this
information is given, together with the number of classrooms of each type, to the PRA,
who uses it to carry out an initial assignment proposal. This proposal is returned to the
system, which, in turn, sends individual notifications of the assignment to each
consultant for their acceptance. Once all the assignment acceptances have been
collected, the EBC is established for the course and, therefore, can be registered in the
UOC repository for payment purposes, at the same time as the system notifies the
finalisation of the scenario.

From this description it is deduced that in this scenario the following teaching figures
are involved: the PRA and the group of consultants, which, in this case, for the Catalan
campus are three theory consultors and one for the laboratory. The required resources
are the course data (IdSubject_DBI, IdTerm_DBI), the number of classrooms by type
(DefaultNumClassroomsByType_DBI), the list of consultants of each type for BDI

(ConsultantsByTypeList_DBI), the list of consultant assignments to BDI classrooms
(AsignmentsConsultancyList_BDI), the notifications of acceptance
(AssignmentToClassroom_DBI), the confirmations of acceptance
(AssignamentAcceptance_DBI), the list of EBC tasks for BDI (TaskListEBC_DBI) and
the UOC repository where the available consultants for the course can be accessed and
the assigned EBC tasks stored. The scenario can be represented as a single process
known as AssignEBCTasks_DBI_A10

Graphically, the educational scenario described above can be represented as indicated
in Figure 2.

Figure 2 - EBC Task Assignment Scenario for the BDI course in the Autumn 2010 semester

In Figure 2 a representational language based on the standard BPMN [20], [26] is
used as a notation, allowing the processes occurring in educational environments to be
represented as sequences of processes that require the use of certain resources and the
involvement of participants external to the system in order to perform the task. This
language is described in detail in [7] and to facilitate its use a CASE tool has been
developed to offer support to the specification of scenarios using this notation. More
information about this tool can be found at [6].

5 The Domain Ontology: The Metamodel of the OKI-OSID Specification

The O.K.I. OSID specifications emerged in 2001 as an initiative of the Mellon
Foundation to offer support to the development of LMS, which was later supported by
MIT and other collaborating institutions. This specification defines an open architecture
extendable for the construction of e-learning systems specially aimed at the higher
education communities.

A principal contribution of this specification is the set of definitions of web service
interfaces (Open Service Interface Definitions) proposed for communication between
the components of a learning environment, whether part of the platform or between
different platforms, designed to facilitate the adaptation towards new technology and
integration with the rest of the technological infrastructure of learning systems.

There are different versions of this specification and, although there is a version 3, a
metamodel of the second version (the last stable version of the specification) has been
created, which offers a set of packages that facilitate the use of interfaces proposed in
Java and C applications.

This section focuses on the metamodel of the O.K.I. OSID specification and presents,
whose part required to test feasibility of the prototype for the case study. The full
version of the metamodel can be obtained from [8].

Given the restrictions of space, only the OSIDs relevant for the case study are
described. These OSIDs are:

a) Agent to define the roles of PRAs and consultants, as well as the different

processes involved, such as Asign Tasks EBC BDI T10

b) Scheduling to define the consultancy tasks, specifically the EBC task and the
assignment of said tasks to each consultant that will be teaching a course

c) Course Management to represent the assignment data, the semester in
question, the course and the different course classrooms

d) User Messaging to describe the information that is exchanged in each
interaction of the process with external elements, such as teaching staff

e) Repository to define the UOC repository and the information stored therein

Each of these OSIDs is defined through a set of properties and several associated

methods per property and OSID. In order to facilitate its description, we present for
each OSID:

1) An UML class diagram that graphically describes the classes of the OSID, the
properties of each class, and the relationships between classes (both belonging to
the OSID and external),

2) the classes contained in the OSID, and for each of them its properties and the
necessary rules to define derived properties or integrity constraints using
Semantic Rule Web Language (SWRL) and

3) the necessary comments regarding the relationships between classes and any
methods that are not explicitly class constructors or getters and that need to be
mentioned separately.

The derivation rules written in SWRL shown in this paper will be used by the reasoner
in order to infer the instances of some classes and properties based in the information
stored in other classes or properties.

5.1 OSID Agent

This OSID has been designed to create, manage and query agents, understanding an
agent as a person or a process that interacts with the learning system. There are groups

of agents that can contain other groups that are also managed and accessed through the
interfaces of this package.

Figure 3 shows the class diagram for the O.K.I. OSID-v2 Agent package in which
two classes can be distinguished: Agent and Group.

Figure 3 - OSID Agent class diagram

Agent class

An Agent is a body (individual or process) involved in specific services. Table 1 shows
the properties of this class:

Property Description

displayName Denomination of an agent

id Agent identifier, unique and non-transferable

properties Properties of a course defined by implementation

type Agent characterisation

Table 1: Properties of the Agent class

Even though the Agent class maintains relationships with many other classes, they are
not mentioned in this section since navigability is in the opposite direction. They will be
defined when the other classes are described.

One instance of the Agent class in the case study is the PRA in the DBI course
(PRA_DBI) and each of the consultants (TheoryConsultant_DBI_1,
TeoryConsultant_DBI_2, TeoryConsultant_DBI_3, LaboratoryConsultant_BDI_1), as
well as the process AssignEBCTaslks_DBI_A10.

Group class

A Group is a type of specific agent representing the grouping of one or more agents
under the same name or description.

Groups may contain other groups. Given that a group is a specialisation of an agent, it
inherits all of its properties and also includes some new attributes, as shown in Table 2:

Property Description

 Description Group description

Table 2: Properties of the Group class

An instance of a Group class is the BDI consultancy team (ConsultancyTeam_DDI)
whose members are consultants for the BDI course.

Relationship Types

The O.K.I. OSID specification takes into account some relationship types between the
classes Agent and Group: the agents that are members of a group (Members) and the
groups where agents belong (Groups). Table 3 shows these relationship types:

 Relationship types Description Domain Range

 Members Members constituting a group Group Agent

 Groups Groups to which an agent belongs Agent Group

Table 3: Types of relationship of OSID Agent classes

Methods

This OSID offer interfaces for searching agents and groups using search criteria
(getAgentBySearch, getGroupBySearch), by type (getAgentByType, getGroupByType),
to check whether a group or group member is contained in a group (contains) and to
determine which groups an agent belongs to (getGroupsContainingMembers).

5.2 CourseManagement OSID

The objective of the CourseManagement OSID is to support the creation and
management of a course catalogue. Figure 4 shows the diagram of UML classes for this
OSID.

Figure 4: Diagram of classes of the CourseManagement OSID

The course catalogue is organised mainly around a three-level hierarchy of classes
corresponding to the course concept (CanonicalCourse), a specific course in a certain
semester (CourseOffering) and the classroom in which the specific course is offered
(CoursesSection). However, it includes other classes such as CourseGroup,
EnrolmentRecord, CourseGradeRecord and relates to other external classes to
associate materials, evaluations, tasks or agents to each course.

Each of the classes that make up the UML class diagram in Figure 4, and which are
relevant to the case study, are described below.

CanonicalCourse class

A CanonicalCourse defines the highest-level organisational structure in the
CourseManagement package. A canonical course can be understood to represent the
concept of a subject that is defined at study plan level, i.e. independently of specific
academic courses and classrooms in which they are taught, and, within this context, in
relation to other subjects in the same study plan.

All canonical courses are characterised by having a description, a title, a course number,
a number of credits and a list of topics, in addition to other properties of the course such
as the course type or status. Table 4 presents the properties of this class.

Property Description

 DisplayName Denomination of a canonical course

 Title Course title

 Description Description of canonical course

 Number Course number

 Id Course identifier

 Properties Properties of a course defined by implementation

Type Course type

 Credits Number of course credits

 Topics Course topics

 Status Course status

Table 4: Properties of the CanonicalCourse class

In the case study, an instance of a canonical course might be the Databases I course
taught for two qualifications: Computer Management Engineering and Computer
Systems Engineering. Therefore, an instance of this class is Databases I (DBI) for which
the identifier, name, description, type and number of credits will be defined.

CourseOffering class

A CourseOffering is essentially the specification of a canonical course with a type of
assessment for a definite academic period, in other words, a subject that is taught over a
specific academic period. Table 5 shows the properties of this class.

Property Description

DisplayName Denomination of course offered

Title Course title

Description Description of course offered

Number Course number

Id Course identifier

Properties Properties of a course defined by implementation

Type Course type

CourseGradeType Course evaluation type

Status Course status

Table 5: Properties of the CourseOffering class

The properties Title, Description, and Number can be automatically derived from those
corresponding to the CanonicalCourse or they may be redefined. Also, all courses
offered have an evaluation type defined and have an associated course type and status
indicator.

An example of an instance of this class is Databases I for the Autumn semester of 2010
(DDI_A10).

Term class

A Term is an academic period that corresponds to a specific type. It should be
understood as a period in which a set of tasks needed to teach a course is planned. Table
6 shows the properties of this class.

 Property Description

 DisplayName Denomination of academic course

 Id Academic course identifier

 Type Course type

Table 6: Properties of the Term class

One example of this class is the Autumn semester of 2010 (A10).

CourseSection class

A CourseSection or classroom is the specification of a course offered with a fixed
location where the course is taught according to a given plan.

In the same way as for the course offered, the properties Title, Description, and Number
can be derived from those corresponding to the CanonicalCourse class or they may be
redefined on creating the classroom. Location of the course is fundamental in this class
and is determined by the value of the Location property. It also has other properties,
such as type or course status, associated with it. Table 7 shows the properties of this
class.

 Property Description

 DisplayName Denomination of a classroom

 Title Classroom title

 Description Classroom description

 Number Classroom number

 Id Classroom identifier

 Properties Properties of the classroom to be defined by implementation

 Type Classroom type

 Location Classroom location

 Status Course status

Table 7: Properties of the CourseSection class

For the case study, there are as many instances of CourseSection as there are Database
classrooms. This would create instances of theory type classrooms (TheoDBI_1,
TheoDBI_2, TheoDBI_3) and instances of Laboratory type classrooms (Lab_DBI_1) –
as many as needed for each type.

Relationship types

In the table 8 we present the relationship types among the CourseManagement OSID
classes and to other external classes.

 Relationship types Description Domain Range

 EquivalentCourses Equivalent canonical courses CanonicalCourse CanonicalCourse

 Courses Canonical courses that form a
group of courses

 CourseGroup CanonicalCourse

 CourseOfferings Courses offered associated with a
canonical course

 CanonicalCourse CourseOffering

 CourseSections Classrooms associated to a
course offered

 CourseOffering CourseSection

 Term Academic course associated to a
course offering or classroom

 CourseOffering,
CourseSection

 Term

 CanonicalCourse Canonical course corresponding
to CourseOffering

 CourseOffering CanonicalCourse

 CourseOffering Course to which a classroom,
course grade record or enrolment
record is associated

 CourseSection,
CourseGradeRecord
, EnrollmentRecord

 CourseOffering

 CourseSection Classroom with which an
enrolment record is associated

 EnrollmentRecord CourseSection

 Assets Materials associated to a course CourseOffering, Asset

offering or a classroom CourseSection

 Roster Enrolments associated to a course
or classroom

 CourseOffering,
CourseSection

 EnrollmentRecord

 Schedule Planned tasks associated to a
classroom

 CourseSection ScheduleItem

 AgentId Agent that defines a course grade
record or that is enrolled on a
classroom of a course

CourseGradeRecord
, EnrollmentRecord

 Agent

Table 8: Types of relation of CourseManagement OSID classes

Apart from the constraints that can be seen in figure 3 the equivalentCourses
relationship is symmetric and transitive, and the relationships term and assets are
symmetric.

Canonical courses may have equivalent canonical courses (EquivalentCourses) and each
subject or canonical course can be offered on more than one course (CourseOfferings).

For each course offered there are relationships that means it is possible to determining
the canonical course with which it is associated (CanonicalCourse), which academic
course it belongs to (Term), which materials it uses (Assets), which students are
enrolled on it (Roster) and in which classrooms it is taught (CourseSections).

The classrooms or CourseSections are related to the course they teach (CourseOffering),
the academic period in question (Term), the course planning - understood as a set of
tasks (Schedule) - the set of materials used (Assets) and all student enrolments (Roster).

The relationship between a canonical course or subject with respect to a group of
courses is determined by the relation (Courses) in such as way that the courses that
make up each group of courses can be known. The O.K.I. OSID specification does not
provide interfaces for navigability in the opposite direction to find out which group of
courses belong to a canonical course.

An assessment record belongs to a course offered (CourseOffering) and is defined by
the evaluating agent (AgentId). O.K.I. OSID does not consider these relations in the
opposite direction and, therefore, does not offer interfaces to find out which courses
have been defined by an agent and what the assessment of a course was.

Neither is there a direct relationship between the students and the courses or classrooms.
However, it is possible to know which students have been assigned to a classroom or
course and those that are on a course or in a classroom by looking at the instances in the
EnrollmentRecord class. The same applies course evaluators, a list of which can be
obtained from the instances in the CourseGrade Record class.

Rules

The derivation rules that allow inferring the instances of the derived relationship types
specified in the class diagram of Figure 3 are shown below:

[Rule-DescriptionOfCourseOffering] The description of a course offered may be
derived from the description of the canonical course with which it is associated.

description(?ca, ?d) ∧ courseOfferings(?ca, ?co) → description(?co, ?d)

[Rule-DescriptionOfCourseSection] The description of the classroom may be derived
from the description of the canonical course with which the course taught in that
classroom is associated.

description(?ca, ?d) ∧ courseOfferings(?ca, ?co) ∧ courseSections(?co, ?cs) →
description(?cs, ?d)

[Rule-TitleOfCourseOffering] The title of the course offered may be derived from the
title of the canonical course with which it is associated.

title(?ca, ?t) ∧ courseOfferings(?ca, ?co) → title(?co, ?t)

[Rule-TitleOfCourseSection] The title of a classroom may be derived from the title of
the canonical course with which the course taught in that classroom is associated.

title(?ca, ?t) ∧ courseOfferings(?ca, ?co) ∧ courseSections(?co, ?cs) →
title(?cs, ?t)

[Rule-NumberOfCourseOffering] The number of the course offered may be derived
from the number of the canonical course with which it is associated.

number(?a, ?n) ∧ courseOfferings(?a, ?co) → number(?co, ?n)

[Rule-NumberOfCourseSection] The number of the classroom may be derived from
the number of the canonical course with which the course taught in that classroom is
associated.

number(?ca, ?n) ∧ courseOfferings(?ca, ?co) ∧ courseSections(?co, ?cs) →
number(?cs, ?n)

[Rule-TermOfCourseSection] The classrooms in which a course is taught have the
same academic period associated with them as the courses that are taught in them.

term(?co, ?t) ∧ courseSections(?co, ?cs) → term(?cs, ?t)

Methods

Interfaces are offered for consultation methods that allow group courses, canonical
courses, course offerings, classrooms and enrolment records to be obtained by type
(getCourseGroupByType, getCanonicalCourseByType, getCourseOfferingByType,
getCourseSectionByType, getRosterByType). Academic periods can also be obtained
from a specific date (getTermByDate).

There are also methods for the updating of descriptions (updateDescripton), titles
(updateTitle) and numbers (updateNumber) of a course offered or a classroom.

5.3 Scheduling OSID

The objective of the Scheduling OSID is the association of agents to specific tasks that
are assigned to them in a period of activity. For each task and agent involved a status is
determined. The status indicates the level of commitment acquired by the agent in
carrying out the task, as shown in Figure 5.

Figure 5: Diagram of classes corresponding to the Scheduling OSID

ScheduleItem class

The ScheduleItem class captures information relating to each of the tasks that must be
carried out.

A scheduled item or task is characterised by the period in which the task must be carried
out and the agents that are responsible for carrying it out. Table 9 shows the properties
of this class.

 Property Description

 DisplayName Denomination of a scheduled item

 Description Description of a scheduled item

 Id Identifier of a scheduled item

 Properties Properties of a scheduled item defined by implementation

MasterIdentifier Optional identifier provided by another application

 Start Start date

 End End date

 Status Scheduled item status

Table 9: Properties of the ScheduleItem class

One example of this type of class could be the EBC task at the UOC.

AgentCommitment class

AgentCommitment records the degree of commitment of each agent in the task in which
they are participating. It is, therefore, a question of maintaining and managing the
assignment of people to tasks and the completion status of the tasks, irrespective of the
characteristics of the task and the period of time when they will be carried out, which
are described in the ScheduleItem class.

The identifier properties of the assignment and the status of the assignment are the
properties of this class, as shown in Table 10.

 Property Description

 Id Scheduled item identifier

 Status Status indicating the acquired level of commitment

Table 10: Properties of the AgentCommitment class

One example of this class could be the assignment of the EBC tasks for each consultant
in the Database I course (assignmentEBCTheoClass1_BDI,
assignmentEBCTheoClass2_DBI, asignmentEBCTheoClass3_DBI,
asignmentEBCLabClass1_DBI).

Relatioship Types

The relationship types for the classes in this OSID are detailed in Table 11.

 Relationship typesship Description Domain Range

 AgentId Agent to whom a task is assigned with a
certain level of commitment

 AgentComitment Agent

 ScheduleItem Scheduled task AgentCommitment ScheduleItem

 Creator Agent who schedules the assignment of
the task

 ScheduleItem Agent

 AgentCommitments Responsibilities assigned in the
scheduling of a task

 ScheduleItem AgentCommitment

Table 11: Types of relation for the Scheduling classes OSID

For each task scheduled and agents involved there is a commitment to carrying out the
task on the part of the agent. Each responsibility, or agent commitment, assigned is
associated with an agent (AgentId) and has a degree of commitment, which could be the
same for carrying out different tasks. However, a scheduled task may have different
agency commitments associated with it, as many as the number of agents involved.

What the O.K.I. OSID specification does not contemplate is the relationship of tasks in
which a committed agent may be found and all the tasks with the same level of
commitment.

Methods

The OSID provides interfaces for query methods that allow quering the scheduled items
from their identifier (getScheduleItem). On the other hand, some methods that allow
finding gaps in the schedules of several agents are also provided (getAvailableTimes).
These last methods may be very useful before creating a scheduled item and for finding
out the tasks assigned to a group of agents during a certain period
(getScheduleItemsForAgents).

5.4 User Messaging OSID

The User Messaging OSID provides interfaces for managing the sending and receipt of
messages as well as subscriptions for the receipt of messages associated with a theme or
messages of a certain type.

Given that messaging takes place between agents, this OSID is directly related to the
Agent OSID, whose Agent class must be expanded to make the sending/receipt of
messages by subscription possible. Figure 6 presents the class diagram for this OSID.

Figure 6: Class diagram for the UserMessaging OSID

It can be seen that a message is always sent by a single agent and can be received by
several agents.

Message class

A Message is anything sent by an agent at any particular time. The properties of this
class are presented in Table 12.

 Property Description

 Content Message content

 DeliveryType Delivery type

MessageTimeStamp Time of sending

 MessageType Message type

Table 12: Message class properties

All messages have an associated topic, message type and delivery type. The delivery
type may be by topic (sent to all subscribers to the topic), message type or by one or
more users.

An example of this class could be notification of the assignment consultancy to each of
the consultants on the Database I course (NotifyAssignmentsConsultancy_DBI) or the
confirmation of such assignments (ConfirmAssignmentConsultancy_DBI), the content
of which is a list of assignments to classrooms (AssignmentsToClassrooms_DBI) and
the acceptance that is received from each of the consultants
(AssignmentAcceptance_DBI).

Relationship Types

The Message class is only related to the Agent class from the Agent OSID. All messages
are sent by a single agent (Sender) and can be received by several agents (Receiver) as
shown in Table 13.

Relationship types Description Domain Range

 Sender Agent who sends the message Agent Agent

 Receiver Agent to whom the message is
sent

Agent Agent

Table 13: Types of relationship of the User Messaging OSID

It should be remembered that in order to make it possible to receive messages by topic
or by message type there has to be a subscription. For this purpose, as commented
above, the Agent class, which is external to this OSID, has been extended to offer two
new properties that allow subscription by an agent to different topics
(SubscribedTopics) and delivery types (SubscribedTypes). It should be noted that
subscription is optional and these properties, therefore, have no cardinality restrictions.

Methods

This OSID offers interfaces for the management of subscriptions
(Subscribe/Unsubscribe) by an agent or their elimination (UnsubscribeAll).

Additionally, like consultation method interfaces, it offers the chance to find out which
agents are subscribers (getSubscribers), which agents have subscribed to a certain topic
(getSubscribersByTopic) and which messages have been received by topic
(getReceiveByTopic), or by message type (getReceiveForMesageType).

It also provides interfaces to find out which messages have been sent by an agent (Send)
or by a group of agents (SendToAll) or to purge specific messages (purgeMessage).

5.5 Repository OSID

The objective of the Repository OSID is to provide interfaces for storage and retrieval
of all types of digital content and any information related to that content and/or its
composition.

Figure 7: Diagram showing classes corresponding to the Repository OSID

The digital content is known as Asset and its composition may be very diverse. So to
describe an Asset it may be necessary to use other classes such as: Part, PartStructure,
Record and RecordStructure, which allow the structure and content of the contents
stored in the repository to be determined. Figure 7 presents a diagram showing the
classes of this OSID.

Asset class

An Asset is a digital resource stored in a repository that has a fixed period of validity.

The content of an asset may be made up of: 1) content only (e.g. a summary document
for a subject), 2) content records and record structures describing the content (e.g. a
semantically annotated PAC) and 3) only metadata described using record structures
(e.g. metadata describing an examination format).

All assets have a type and content in addition to other properties which are presented in
Table 14.

 Property Description

 DisplayName Denomination of digital resource

 Description Description of digital resource

 Id Identifier of digital resource

 AssetType Type of digital resource

 EffectiveDate Date of effect

 ExpirationDate Expiration date

 Content Content

Table 14: Properties of the Asset class

Instances of this class could be the list of consultants of each type for the Database I
course (ConsultantsListRetreived_DBI) or the list of EBC task assignments to
consultants for the same course (EBCTaskSaved_DBI).

Repository class

A Repository is a storage facility for digital resources, or parts of them that allows
certain types of assets to be stored and managed.

The properties that define a repository are basically related to the type of digital content
and the criteria for their localization. This is shown in Table 15.

Property Description

DisplayName Name of a register structure

Description Description of a register structure

Id Register identifier

Course type Type of repository

Properties Properties of repository defined by implementation

PropertyTypes Property types

AssetTypes Types of digital resources

SearchTypes Search types

Status Status for each search

Table 15: Repository class properties

Relationship types

The relationship types established between the classes in the Repository OSID and other
external classes are presented in Table 16 and are described below.

 Relationship types Description Domain Range

 Repository Repository in which the digital resource
is stored

 Asset Repository

 Assets Digital resources stored in a repository Repository Asset

 Parts Digital resources components of an
asset or part of an asset

 Asset Part

 Records Records of an asset Asset Record

 Asset Asset corresponding to a record Record Asset

 RecordStructure Record structure that determines the
organisation of a record

 Repository RecordStructure

 RecordsByPartStucture Records that have a determined
record structure

RecordStructure Record

 PartStructure Structure of part of an asset Part PartStructure

 PartsByPartStructure Parts that have a structure of part of a
determined asset

 PartStructure Part

 PartStructures Structure of a part of an asset that
contains other structures of parts of an
asset

 PartStructures PartStructures

 RecordStructure Structure of a record that corresponds
to a record

 Record RecordStructure

 RecordStructures Structures of records that recognise a
repository or define an asset

 Repository,
Asset

 RecordStructure

 MandatoryRecordStructures Obligatory record structures for the
assets in a repository

 Repository RecordStructure

Table 16: Types of relationship in the Repository OSID

Apart of the cardinality constraints shown in figure 7, the relationship types parts and
partStructures have also a constraint that defines their transitivity.

An asset is stored in a Repository and may be made up of Parts which, in turn, may be
made up of other Parts. An asset is not made up of content only, and will have more
than one Record and each of these records will have structure (RecordStructures)
describing how the records making up the asset are organised.

Parts of digital resources or parts of assets have an associated record structure, i.e.
information about the organisation of the asset's parts (PartStructure). These record
structures for asset parts may in turn be made up of other record structures
(PartStructures).

The records correspond to an Asset and have a record structure (RecordStructure).
Given that the records are parts of an asset that have some part structure associated with
them, which, in turn, may be made up of other part structures, it is possible to derive all
the record structures corresponding to an asset through their transitivity.

The repositories are of a certain type and recognise certain record structures, some of
which are obligatory (MandatoryRecordStructures).

Rules

The set of rules defined for this OSID are not required for the case study and, therefore,
are not included in this section because of space restrictions. However, they can be
found in [8] together with the extended O.K.I. OSID metamodel.

In our case we used rules to express model constraints or to derive new data according
to the OKI metamodel. Thus such rules can be also considered as part of the parser
mechanism that translates educational settings descriptions into OKI descriptions. Each
SWRL rule may be divided in two parts: the antecedent and the consequent. When the
antecedent is hold true then the consequent should also be true. When that happens, if
the consequent is not in the information base then the information base is extended with
the facts stated in the consequent. The created rules derives information about
educational settings to be added to the OKI construct. In that way, the antecedent holds
when there is enough information in order to generate an OKI construction from the
educational settings definition, and then the OKI construction is created using such
information.

Domain
Ontologies

OKI
OntologyInference Compilator

Educational
Setting

Specification

Educational
Setting

Specification
in terms of
OKI Services

Educational Setting
Implementation in
different languages

JAVA

...

BPEL

Educational
Setting graphic
representation

Figure 8: Schema of the prototype created to generate source code of eLearning processes from their specification

6 Implementation

The prototype created to test the feasibility of the proposed model allows for the partial
implementation of educational scenarios described in accordance with the O.K.I. OSID
specification.

This section describes the technology used to construct the proposed environment
(figure 8); the results obtained using the prototype developed for the case study
described above, and its validation.

6.1 The OKI Ontology

The prototype developed is based in an ontology that made it possible to formalise the
semantics of the metamodel, in OWL + SWRL, of the O.K.I. OSID specification. This
formalisation aims to facilitate the transcriptions of the specifications to code and,
specifically, in terms of web service invocations defined by O.K.I. OSID for use in C#
or Java programs.

The O.K.I. ontology was created in OWL and extended with SWRL and can be
downloaded from http://personal.uoc.edu/personalonto/ontologies. This metamodel
formalisation was chosen because it facilitated the representation of knowledge through
formal languages and their sharing, since both OWL and SWRL permit interoperability
of specifications. OWL is a first-order logic language based on XML, while SWRL is a
combination of OWL-Lite (the most basic part of OWL that guarantees computability)
and RuleML, which enables rules to be expressed using Horn clauses in high-level
language, which is especially useful for the objective pursued here.

The Protégé ontology editor (an open code, multiplatform editor and one of the most
frequently used nowadays) was used to facilitate the creation of the ontology. It also
offers facilities for the installation of plug-ins, which allow graphic visualisation of the
ontology, and the editing of SWRL rules, which are of special interest for building the
prototype.

6.2 Technical details

Once created and instantiated based on the case study, knowledge can be extracted from
the ontology by obtaining a list of web service invocations so that the prototype acts as
a compiler of OWL+SWRL for C#.

C# was chosen to take advantage of the packages of web service definitions offered by
the O.K.I. OSID specification and to continue with the .NET that was used in the
construction of the CASE tool, which facilitates the graphic specification of scenarios
so that a prototype integrating them can be constructed in the future.

6.3 Generation of partial implementations

The generation of partial implementations of educational scenarios using the prototype
consists in the incremental instantiation of the O.K.I. ontology and the automatic
extraction of knowledge.

This starts with the graphic representation of the educational scenario in accordance
with the notation described in [7]. To do this, each participant and process is
represented as an instance of the Agent class and each arrow on the diagram represents
an exchange of information between the process and the participants. or the process and
the resources, provoking the instantiation of one of the other classes of the ontology,
according to type and correspondence with the O.K.I. OSID metamodel described in the
previous section. The O.K.I. ontology for each case study may be downloaded from
http://personal.uoc.edu/personalonto/ontologies.

In general, instantiation allows us to:

1) Define the types of parameter of the different invocations or the values of the
methods that are invoked.

For example, in the case study there are an instance of the class Repository called
RepUOC, an instance of the class Asset called ConsultantsListRetrieved_DBI, and a
relationship between them. Such asset has a content that can be used in a message. In
our case example, the ConsultantsListRetrieved_DBI asset contains
ConsultantsListByType_DBI, which is used in CreateAssignmentsProposal_DBI
message. If our interest is in obtaining a list of consultants so that the PRA can make
a proposal for classroom assignation to BDI consultants, it will suffice to create an
instance of the Asset class to represent the getAsset method.

2) Define the methods to be used.

For example, the CreateAssignmentsProposal_DBI message, which goes from the
process (AsignEBCTasks_DBI_A10) to the PRA, would be represented in the
ontology as an instance of the Agent class with the value Send, corresponding to the
method needed to deliver the message. On the other hand, we need to have defined
the message to be delivered, which would contain a list of consultants by type
(ConsultantsByTypeList_DBI), and the number of classrooms of each type

(DefaultNumClassroomsByType_DBI), so that the implementation of an invocation
for the message Send can be deduced, the content of which would be that of the
CreateAssignmentsProposal_DBI message.

Every time the instantiation follows an interaction or the use of a resource there should
be an extraction of knowledge from the ontology. To do this, the use of an
OWL+SWRL to C# compiler is proposed, which uses the information stored in the
ontology and the packages provided by the O.K.I. OSID specification, to allow the
generation of the list of web service invocations implemented by this information
exchange or resource use.

// Code fragment generated automatically. Since code is partial the programmer should finish some parts of the code.
// Elements between @element@ are gaps that the programmer should fill in with the necessary information.

public @EBCTasksList_DBI_Type@ Assign_EBC_Tasks_DBI_A10(@IdSubject_DBI_Type@ idSubject_DBI,

@IdTerm_DBI_Type@ idTerm_DBI, @DefaultNumClassroomsByType_DBI_Type@ DefaultNumClassroomsByType_DBI)

{
 // return variable is created
 @EBCTasksList_DBI_Type@ response = new @EBCTasksList_DBI_Type@();

// Repositories necessary for the educational setting are obtained
Repository Rep_UOC = new Repository(@parameters for the REP_UOC repository@);

// message bound to PRA is prepared and sent
@ConsultantsByType_DBI_Type@ ConsultantsByType_DBI = Rep_UOC.getAssetBySearch(@SearchCriteria@, @TypeSearch@).getContent();
@DefaultNumClassroomByType_DBI@ DefaultNumClassroomByType_DBI = @get DefaultNumClassroomByType_DBI@;
PRA pra = @get PRA@;
UserMessagingManager.send(

pra,
ConsutancyByType_DBI.toString() + DefaultNumClassroomByType_DBI.toString(),
“CreateAssignmentsProposal”,
“Topic”
);

// message from PRA is received and processed

 @AssignmentsConsultancyList_DBI_Type@ AssignmentsConsultancyList_DBI = UserMessagingManager.Receive();

// message bound to CONSULTANT is prepared and sent
CONSULTANT consultant= @get CONSULTANT@;
@AssignmentToClassroom_DBI_Type@ AssignmentToClassroom_DBI = @get AssignmentToClassroom_DBI@;
UserMessagingManager.send (consultant, AssignmentToClassroom_DBI, “NotifyAssignmentConsutlancy_BDI”, “Topic”)

// message from CONSULTANT is received and processed

 @AssignmensAceeptance_DBI_Type@ AssignmensAceeptance_DBI = UserMessagingManager.Receive();

// response of the educational setting is calculated
@EBCTaskList_DBI_Type@ EBCTaskList_DBI = @get EBCTaskList_DBI@;
response = DigitalRepositoryManager.CreateAsset(EBCTaskList_DBI, @description@, “assetType”);

// Repositories are updated
RepUOC.addAsset(EBCTaskList_DBI_Asset.getId());

 return response;
}

Figure 9: The fragment of code automatically generated from the educational setting Assign_EBC_Tasks_DBI_A10.
Since it is a partial implementation there are some parts indicated between @@ that should be filled by the

programmers.

Therefore, the compiler should identify the instances of the ontology that refers to the
parameters for each O.K.I. method. Later, the values of the parameters (taken from the
ontology) will be used as parameters in the C# interface that describes the OKI method.
It may be that not all formal invocation parameters can be substituted, in which case the
invocation should be completed manually. We can see in Figure 9 an example of a
fragment of generated code.

Consequently, once the extraction of knowledge from the ontology has been carried out
incrementally, respecting the logical sequence described by the scenario, the web

service invocation required to implement each scenario can be obtained automatically
and, since they are defined in accordance with the O.K.I. specification, are valid for any
learning system.

6.4 Prototype Validation

The validity of the O.K.I. ontology has been tested on several levels. The Pellet
reasoner allowed for automatic verification that it is well written on a formal level and
that it contains no contradictions. The instantiation through the case study enabled us to
test its satisfactibility; however its completion has not been tested as it is an ontology
for open environments [2]. As regards the extraction of knowledge by the compiler it
allows partial implementations of educational environments to be generated and
therefore their usefulness.

7 Lessons learnt

The creation of the O.K.I. ontology required an in-depth study of the specification,
which made it possible to detect a number of limitations. In the following we comment
the limitations found in the specification and how they affect to the possible use of the
OKI-OSID:
• The Agent OSID does not contemplate the possibility that an agent might have more

than one role in a scenario, which is necessary in order to describe complex
processes in which the same participant can play two or more roles. For example, in
the case study the PRA could play two roles, one as the lecturer responsible for a
subject and the other as a consultant of the subject. In such a case, the OKI-OSID
specification would need to create two agents for the same participant in order to let
the same person act as a PRA and a consultant in the same scene.

• The Assessment OSID does not allow sharing published activities among the
different classrooms of the same course. In the OSID specification each activity is
only associated to a classroom, making not possible to associate an activity to either
a course or all the classrooms of the given course.

• The Course Management OSID does not allow assigning more than one assessor to
a course. Thus the OKI specification does not allow the evaluation of the each
course activity by a different evaluator independently. In addition there’s a lack of
interfaces related to the management of courses. For instance, the OKI specification
does not provide interfaces to know which courses or classrooms belong to a given
academic period or which course a student has enrolled for, although the latter can
be deduced. The same occurs with the qualifications of a course, the evaluations
carried out by a specific evaluator, the delivered activities belonging to a student,
the evaluations carried out by an evaluator or the courses where a student is
enrolled. However, this information can be retrieved by means of a search, for
example looking for, among all the delivered activities, the activities delivered by a
student.

• The Grade OSID does not allow defining evaluation objects at the course level or
for a group of activities of a course. So is due to the fact that the evaluation object is
associated to each activity of each course. Then this metamodel don’t let to share
evaluation criteria or rules among different classrooms of the same course, or
similar activities of a given course independently.

• The Scheduling OSID does not support scheduling of tasks made up of different
stages unless it is done together with the Workflow OSID. The preparation of
question tests independently to be joined at the end is not allowed, for instance.

• The Repository OSID does not consider certain forms of assets used in other
standards such as hierarchical or sequential composition.

• The User Messaging OSID should extend the Agent class in order to allow sending
and receiving messages by either topic or type message.

• The Workflow OSID is not useful to describe flows of processes with the aim of
achieving a further automation. Some of the noticed lacks are the following:

o The initial conditions and the output states are expressed in a textual way.
This is not useful to align preconditions, postconditions and the automatic
processing.

o Reusability of processes, tasks and steps are not allowed.
o It does not seem suitable to achieve modularity. There isn’t possible to

establish any kind of relation between pairs of processes and therefore, it
does not allow process composition.

o Each step is associated to only one role. Thus, it does not permit representing
complex processes in which participants can assume more than one role.

o It requires considering the OSID Authorization. Such OSID describe a
service of lower level than those considered in the OKI metamodel.

It is important to mention that the presented limitations only focus in the studied OSIDs,
which are the OSID necessary to describe high level educational settings. Other
limitations of OKI specification could be found when studying the OSIDs from other
perspectives or studying other OSID packages.

8 Conclusions and further work

The main contribution of this article is to propose an environment capable of
automatically generating web service invocations as part of the implementation of
educational scenarios from their specification. However, other contributions derives
from this work, such as 1) the creation of an OKI-OSID ontology, which can be
downloaded from http://personal.uoc.edu/personalonto/ontologies, and 2) the diction of a
set of limitations to the O.K.I. OSID specification.
The proposed environment has as its front-end an OWL+SWRL ontology that describes
the semantics of a metamodel of the O.K.I. OSID specification, which has been defined
from the study of that specification. As support for the instantiation of the ontology a
CASE tool was available which facilitated the graphic representation of the educational
scenarios that would populate the ontology. And for the extraction of knowledge an

http://personal.uoc.edu/personalonto/ontologies

OWL+SWRL to C# compiler was used to generate web service invocations defined in
accordance with the O.K.I. OSID specification from the information stored in the
ontology and the web service specifications contained in the C# packages offered by
O.K.I. OSID.
Apart from adapting the ontology to eliminate detected limitations, we propose the
integration of other standards and specifications to extend the number of OKI interfaces
following other authors who had extended the SCORM Content Aggregation Model in
order to describe learning objects [11]. For example, it would be interesting to take into
account the IEEE-LOM standard [13] for the definition of resources or the IMS-QTI
[17] for the definition of assessable learning activities. Another potential further work is
the creation of a generic framework that uses different ontologies in the specification of
educational scenarios focused to their implementation. That would allow to generate the
source code of the educational scenarios using any specification and written in any
language.

References

[1] Advanced Distributed Learning, Sharable Content Object Reference Model Version
1.3.1, http://www.adlnet.org. (2004)

[2] A. Gómez-Pérez, M. Fernández-López & O.Corcho, Ontological Engineering: with
examples from the areas of Knowledge Management, e-Commerce and the Semantic
Web, Springer Verlag (2004)

[3] A. Flahive, D.Taniar, W. Rahayu, B.O. Apduhan, Ontology tailoring in the semantic
grid, Computer, Standards & Interfaces, Special Issue: Specification, Standards and
Information Management for Distributed Systems, 31(5), pp.870-885 (2009)

[4] A. Inaba, T. Tamura, R. Ohkubo, M. Ikeda, R. Mizoguchi & J. Toyoda, Design and
Analysis of Learners’ Interaction based on Collaborative Learning Ontology,
Proceedings of the 1st European conference on computer-supported collaborative
learning (Euro-CSCL’2001) p. 308–315, Maastricht, The Netherlands (2001)

[5] A. Olivé, Conceptual modeling of information systems. Springer-Verlag New York
Inc. (2007)

[6] A. Rius, J. Conesa, D. Gañán, A DSL Tool to assist specifications of educational
settings. The 2010th International Conference on Semantic Web and Web Services
(2010)

[7] A. Rius, Un marco formal para la representación de escenas educativas reutilizables,
Internet Interdisciplinary Institute (UOC) (2010)

[8] A. Rius, J.Conesa, E. Garcia-Barriocanal, Metamodelo de la especificación OSID
versión 2 de OKI to be published in IN3 Working Paper Series, UOC (2011)

[9] Claroline, http://www.claroline.net/

[10] Dokeos, http://www.dokeos.com/es

[11] E. Jui-Lin L, C. Hsie, A relation metadata extension for SCORM Content
Aggregation Model, Computer, Standards & Interfaces, Special Issue: Specification,
Standards and Information Management for Distributed Systems, 31(5), pp.1028-1035
(2009)

[12] D.S. Frankel, Model Driven Architecture: Applying MDA to Enterprise
Computing: Applying MDA to Enterprise Computing, Indianapolis, Indiana: Willey
Publishing Inc. (2003)

[13] IEEE Learning Technology Standards Committee [LTSC WG12], Draft for
Learning object metadata,
http://ltsc.ieee.org/wg12/files/LOM_1484_12_1_v1_Final_Draft.pdf (2002)

[14] ILIAS, http://www.ilias.de/docu/

[15] IMS Global Learning Consortium, IMS Tools Interoperability Guidelines v1.0
Final, http://www.imsglobal.org/ti/index.html (2006)

[16] IMS Global Learning Consortium, Public Draft 2 Content Packaging Specification
v.1.2, http://www.imsglobal.org/packaging/ (2007)

[17] IMS Global Learning Consortium, Public Draft 2 IMS Question & Interoperability
v2.1, http://www.imsglobal.org/question (2008)

[18] JISC e-Learning Frameworks and Tools,
http://www.jisc.ac.uk/whatwedo/programmes/elearningframework.aspx (2004)

[19] LAMS, http://www.lamsinternational.com/

[20] M. Chinosi, A. Trombetta, BPMN: An introduction to the standard, Computer,
Standards & Interfaces, In Press, Accepted Manuscript, Available online DOI:
10.1016/j.csi.2011.06.002.

[21] M. Ikeda, U. Hoppe & R. Mizoguchi, Ontological Issues of CSCL Systems Design,
Proceedings of the 7th World Conference on Artificial Intelligence in Education pp. 16-
19 (1995)

[22] Moodle, http://moodle.org/

[23] N. Guarino, Formal Ontology and Information Systems (pp. 3-15), IOS Press
(1998)

[24] O. Pastor, J.C. Molina, Model-driven architecture in practice: a software
production environment based on conceptual modeling. Berlin, Heidelberg: Springer
Verlag (2007)

http://www.jisc.ac.uk/whatwedo/programmes/elearningframework.aspx

[25] OKI, Open Service Interface Definitions. v 2.0.0,
http://heanet.dl.sourceforge.net/project/okiproject/Doc%20%28previous%20OSID%20v
ersions%29/Full%20Documentation%20Set/OSID_Documentation_rc6.1.pdf (2004).

[26] OMG & BPMI.org, Business Process Modeling Notation (BPMN) Specification.
Final Adopted Specification, dtc/06-02-01 (2006)

[27] Mizoguchi, R., Sinitsa, K., & Ikeda, M.,Task Ontology Design for Intelligent
Educational/Training Systems, Positon Paper for ITS 96 Workshop on Architectures
and Methods for Designing Cost-Effective and Reusable ITSs ,Vol. 96, pp. 1-21 (1996).

[28] SAKAI, http://www.sakaiproject.org /

[29] S.C. Kabel, B.J. Wielinga, R. de.Hoog, Ontologies for Indexing Technical Manuals
for Instruction, AI-ED (Artificial Intelligence in Education) conference, Proceedings
workshop on ontologies for intelligent educational systems pp. 44-53 (1999)

[30] SharePointLMS, http://www.sharepointlms.com/

http://heanet.dl.sourceforge.net/project/okiproject/Doc%20%2528previous%20OSID%20versions%2529/Full%20Documentation%20Set/OSID_Documentation_rc6.1.pdf
http://heanet.dl.sourceforge.net/project/okiproject/Doc%20%2528previous%20OSID%20versions%2529/Full%20Documentation%20Set/OSID_Documentation_rc6.1.pdf

	DEF_Caratula_Article_Postprint_CC_BY-NC-ND_en
	automated_educational
	5.1 OSID Agent
	5.2 CourseManagement OSID
	5.3 Scheduling OSID

