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A metric for assessing, comparing and
predicting the performance of autonomous

RFID-based inventory robots for retail
Bernat Gastón, Membership, Vı́ctor Casamayor-Pujol, Sergio López-Soriano,

and Rafael Pous

Abstract—RFID technology is being widely adopted by
retailers due to its accuracy, versatility and reduction of
operational costs. Most commonly, RFID in retail is used
for taking frequent and accurate inventories of items in the
stores.

Usually, RFID inventories use handheld RFID devices,
which makes the task tedious, costly, and prone to hu-
man errors. More reliable, fully automatic alternatives exist,
such as smart shelves, overhead RFID antennas, and RFID-
equipped robots. Among them, robots seem to be the
preferred choice by retailers with large stores. However,
retailers need an objective way to compare the different
options for inventory solutions and to calculate the return
on investment (ROI) of each of them before they make and
investment decision.

In this article we present a metric for assessing, compar-
ing, and predicting the performance of autonomous RFID-
based robots in retail stores. The metric models both the
store and the robot, and predicts the performance of a given
robot when inventorying a specific store. The metric also
allows to compare the performance of different RFID robots
in different stores. The metric has been developed using
experimental data, and has been validated in a real store.

Index Terms—Applied Robotics, Inventory, Radio Fre-
quency Identification, Metrics, Performance, Measurement.

I. INTRODUCTION

In retail, the traditional strategy for inventory record in-
accuracy (IRI, [1]) mitigation is to perform periodic manual
inventories using autoidentification (Auto-ID) technologies.
The most traditional AutoID technology choice has been
handheld barcode readers, but using handheld RFID readers
the accuracy and frequency of the manual inventories can
be significantly increased. Nevertheless, these processes are
costly, tedious and prone to errors, due to the involvement
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of humans in the process. Another possibility is the use of
overhead antennas ([2]) or smart shelves ([3]), however their
acquisition and installation price is very high, specially in
large stores. Another approach is the use of robots equipped
with RFID readers and antennas, which have demonstrated
to drastically improve the accuracy and consistency of the
inventories, while significantly reducing the cost even when
the frequency of the inventories is increased ([4], [5], [6], [7],
[8]).

An RFID robot consists of an autonomous robot vehicle
carrying an RFID payload. The robot navigates autonomously
around the store, while the RFID subsystem reads all RFID
tags within reach. For the robot to navigate autonomously, an
initial mapping phase is necessary, in which the robot is driven
manually around the store so that it can use its sensors (mainly
laser sensors) to create a 2D map of the store, and at the
same time establish a sequence of waypoints that will later be
visited. In order to locate itself while constructing the map, the
robot uses the well-known algorithm Simultaneous Location
and Mapping (SLAM, [9]). After that, every time a new inven-
tory or location is required, the robot can start what is known
as a mission by leaving its charging station, navigating to each
successive waypoint, and finally returning to its initial position.
To calculate its position within the map during the mission,
the robot uses another well-known algorithm, the Adaptive
Monte Carlo Localization (AMCL, [10]), which estimates the
most likely position and orientation (collectively known as
pose) by comparing the current input from the sensors with
the previously stored map and computing likelihood metrics.

Nowadays, robot-based inventories are gaining momentum
([11]) and are starting to be adopted in real stores. Actually,
there are several companies that already offer robot-based
solutions for inventory (e.g. [12], [13] and [14]). Nevertheless,
there is still much ground for further research. One of the most
important issues that potential users of autonomous RFID-
based inventory robots face is the absence of a common set of
metrics that can be used to test and compare the performance
of different robots among them, and against manual inventories
and other automatic inventory solutions.

There have been several research efforts to define metrics in
field robotics (navigation, coverage, human-robot interaction,
multi-robots, rescue-robots, etc.). In the case of robots that
navigate using a map, the complexity of the navigation is
directly related to the complexity of the map. One approach
for calculating such complexity is presented in [15], where



the map’s complexity is defined as a quantity inversely pro-
portional to the map’s image compression rate. However,
establishing a proper complexity metric requires relating map
features to the grid distribution. In this regard, several works
have been conducted ([16], [17], and [18]) to assess the
complexity of cartographic maps using information theory.

In the early stages of mobile robots it was very important
to define metrics for coverage tasks. The coverage problem
refers to the optimisation of the robot’s navigation in order to
completely cover a given area in the shortest time and/or with
the shortest path. For example in [19], they define metrics for
effectiveness and efficiency.

In the area of human-robot interaction, there have been some
efforts to define quantitative metrics. For example in [20],
they define five categories of metrics: navigation, perception,
management, manipulation, and social metrics. For a different
purpose, metrics are defined for modular (also called meta-
morphic) robots. For example in [21] and [22], they define
metrics to optimise the process of self-reconfiguration of a
modular robot. Also, in the field of body mapping for robot
imitation, it is crucial to determine the quality of the imitation
according to some defined metrics ([23]). In addition, metrics
are also defined for assisting robots, for example in the case
of robots assisting in surgeries ([24]).

Another approach is the creation of test arenas were robots
can be deployed, operated and evaluated in some specific
conditions. In this direction, the National Institute of Stan-
dards and Technology (NIST) has been leading the efforts to
develop methods for quantitatively evaluating the performance
of robots, specifically in the field of rescue robotics ([25]).
Using this approach, one testbed is composed by several
arenas representing different challenges and levels of difficulty.
The robots have to perform specific rescue tasks in each of
these arenas. Then, they are evaluated using metrics based on
the number of victims identified, but including penalties like
contacts with the victim or collisions with the environment.

In a similar direction, more general testbeds have been
designed for learning or research purposes. It is the case of
[26], where a multi-robot testbed is created allowing the testing
of different capabilities in a collision-safe environment. Unfor-
tunately, testbeds are only widely accepted by the community
either when there is a standardization organization behind
them (like NIST) or when there is no commercial competition.

In the specific case of metrics for inventories, the only
published research previous to the present work is [8]. In
this work, similarly to the robot coverage task, the metrics
are extracted from the characterization of both, the store
and the robot. However, the metrics were very simple and
defined only empirically, which were useful to compare a robot
performance against another but in the same scenario, or to
compare scenarios but without obtaining a relation with the
robot performance.

Even if this previous research is the origin of our work,
the metric we propose is much more ambitious since we
elaborate a complete model than quantitatively characterises
RFID robots, retail stores, and the inventory task of the robot
in the store. Our idea leverages metrics used heterogeneous
systems to normalise their performance. For instance, two

sailboats can compete with each other, even though one is
faster than the other in equal conditions, by using what is
called a “Rating”, which normally consists in applying a Time
Correction Factor (TCF) to the racing time ([27]) to calculate
a corrected time. When competing using the corrected time,
the competition is based almost solely on the performance on
the crew, not on the speed of the boat. Interestingly enough,
the TCF requires a predictive model to be able to estimate
the time that the boat would take with a standard performing
crew. A similar method is used in golf but in this case the
handicap is not a factor, but an offset to the course’s par.

In this paper we will present the first metric to predict
and compare the performance of autonomous RFID-based
robots: the effective inventory velocity, which is an estimated
average velocity at which a specific RFID robot completes
an inventory in a specific store. This metric can be used to
quantitatively evaluate the performance of this task and can be
used independently of the specific characteristics of the robot
or the store. It has been obtained using experimental data and it
has been validated both in, a laboratory with 1, 000 RFID tags
encoded with a unique Electronic Product Code (EPC), and in
an actual fashion store of 1, 000m2 with 11, 041 items, each
of them tagged. The store contained many different types of
garments displayed in different types of fixtures (tables, racks,
shelves, etc.)

This metric enables several use cases that are currently not
possible, for example predicting the performance of one robot
in one store without the need to purchase it, or compare the-
oretically the performance of different RFID robot solutions.
Due to the cost and technical difficulties of setting up these
types of robots in real stores, these are two use-cases that the
market is demanding.

This paper is organised as follows. In section II we explain
the current performance metrics for an inventory task, we
propose the effective inventory velocity, and we outline the
methodology for its computation and use. In section III, we
define how to characterise a store and in section IV we define
how to characterise a RFID robot. In section V, we provide
a common ground for the task feasibility. In section VI, we
show how to predict the performance of an RFID robot in a
store using the metric. In section VII, we validate the model
with experiments. Finally, in section VIII, we present our
conclusions.

II. METHODOLOGY

In this section we introduce the two aspects that define
the performance of an inventory, and we present the metric.
Finally, we explain how to use the proposed methodology to
compute it.

A. Inventory performance

As it has been already introduced, the inventory perfor-
mance is currently assessed using the accuracy obtained and
the time required.



1) Inventory accuracy: it is the fraction of detected items
over all the items present in the store.

Obtaining the baseline, which is the list of all the items
present in the store, can be complex and not always an exact
baseline can be achieved [8]. In any case, once the baseline is
obtained, the inventory accuracy is defined as the number of
unique identified items by the robot divided by the number of
unique items in the store, as seen in Equation 1.

Inventory Accuracy =
# of identified items

# items present in the baseline
(1)

2) Inventory time: is defined the total time needed to
complete an inventory mission.

B. Effective inventory velocity

We propose the effective inventory velocity as the only
required metric to assess the inventory performance. Hence,
the effective inventory velocity ve is defined as the total length
travelled by the robot during the inventory mission, divided by
the inventory time, conditioned to the fact that the robot has
achieved a minimum inventory accuracy.

Note that the effective inventory velocity and the inventory
accuracy form a classic engineering trade-off pair: the slower
the inventory, the higher the accuracy (up to a maximum value)
and vice-versa. Hence, if the objective is to compare inventory
missions, we have to fix one in order to use the other for
comparison.

Since the accuracy is given as a requirement by the retailer,
the following assumes that the inventory robot will have
completed its mission when the accuracy reaches a value of
99%. If the accuracy value is not met, it will mean that the
robot parameters (e.g. velocity) are not properly adjusted. Note
that the adjective ‘effective’ refers to the fact that the velocity
is conditioned by a minimum predefined accuracy goal.

As we will see in the following, the effective inventory
velocity can be predicted given the characteristics of the store
and the robot. Hence, the proposed metric can be used in
multiple use cases, such as

• Predicting the performance of several robots in a given
store, in order to select which robots are going to perform
better.

• Predicting the performance of a particular robot type in
all the stores of a particular retailer, to help plan the
inventory schedule.

• Comparing the actual velocity with the predicted velocity
to detect possible incidents or malfunctions.

• Defining and characterising a standard store, and use it
as a benchmark to compare the performance of different
robots. The velocity of each robot in the benchmark store
can be considered the ‘Rating’ of the robot.

• Defining and characterise a standard robot, and using it as
a benchmark to compare the difficulty of different stores.
The effective inventory velocity of the benchmark robot in
the store can be considered the ‘par’ of the store, similar
to the par of a golf course.

C. Proposed methodology
The straightforward process to measure the effective inven-

tory velocity is by performing an inventory mission with the
robot in the store. Then, the length of the path that the robot
took is divided by the time it required to finish it, and the value
obtained is the effective inventory velocity for this specific
robot in this specific store.

However, we have developed a methodology in order to
predict this value from the characteristics of the store and
the robot, without requiring to perform an inventory mission.
Therefore, in order to compute the effective inventory velocity
we propose the following steps:

1) Characterise the store.
2) Characterise the robot.
3) Verify the feasibility of the inventory task.
4) Compute the effective velocity ve.
The following four sections provide a detailed description

of each step.

III. STORE CHARACTERISATION

This section describes the parameters used to characterise
the store.

A. Store parameters
A store to be inventoried is characterised by a 7-tuple S̄ =
{A,B,C, L,W,H,Λ} where:
• A (m2) is the area of the store,
• B = {epcn} is the baseline, or set of items present in

the store, represented by their EPC codes.
• C = {ci} is the list of aisles,
• L = {li} (m) is the list of lengths of each aisle,
• W = {wi} (m) is the list of widths of each aisle,
• H = {hi} (m) is the list heights of each aisle, and
• Λ = {λi} (# tags/m) is the list of linear item densities

of each aisle.
Two aisles are considered different if there is a turn of

more than 45o between them. Aisles with complex shapes are
simplified to a rectangle using the average width of the aisle
if it is not uniform.

We define the list of linear item densities of aisles Λ as
the total amount of items of each aisle in C divided by their
length, as found in L. We can calculate the number of items
in aisle ci as ni = λi · li.

We define the intricacy of a path p (a more elaborated
discussion on the definition of path is found in section V),
a parameter that aims to measure the difficulty of navigating a
path due to the presence of turns, as the inverse of the average
aisle length. Let Cp be the list of aisles of a certain path p,
then the intricacy is:

I =
1

l̄
=

1(∑
ci∈Cp

li

|Cp|

) =
| Cp |
l

(2)

where l is the total length of the path p, l̄ is the average
length of the aisles li of p, and | Cp | is the number of aisles
that form the path p.



IV. ROBOT CHARACTERISATION

As previously done with the store, in this section we explain
how to characterise the RFID inventory robot.

A. Characteristics of the RFID inventory robot
An RFID robot for doing an inventory is characterised by

a 7-tuple R̄ = {v0, tt, wm, w0, hm, rc, λh} where:
• v0 (m/s) is the maximum linear speed of the robot,
• tt (s) is the average turning time, that is, the average time

it takes the robot to change direction,
• wm (m) is the minimum aisle width through which the

robot can navigate,
• w0 (m) is the optimal width, that is the minimum aisle

width that allows the robot to navigate at the maximum
linear speed v0,

• hm (m) is the minimum height clearance for the robot to
be able to navigate,

• rc (m) is the coverage range, that is, the maximum range
at which the robot can detect tags reliably, and

• λh (# tags/m) is the density of items that forces the robot
to reduce its linear speed to half of its maximum value
in order to keep the accuracy at the predetermined goal.

Although in reality it is more complex, we can simplify the
movement of the robot as being only composed of straight
paths and turns. Autonomous robots operating in retail stores
typically spend a significant amount of time planning and
executing turns, due to the complexity of turning in crowded
spaces (sensors dead zones, complexity of path planning, etc.)
In order to do such simplification of the model, we have
considered that in turning angles below 45o the robot turning
time is negligible, and for any larger turn, the average time
to turn (tt) is approximated by the average time needed to
perform a 90o turn.

To navigate in a given area, the robot characterised by R̄
should be able to pass between obstacles (usually fixtures) in
a given aisle. However, it is possible that a free space is too
narrow to be navigated at all. Therefore, we need to define
two different minimum values. The minimum height hm and
the minimum width wm are the minimum clearance values of
height and width at which the robot can navigate, which means
that any aisle with width w < wm or height h < hm, cannot
be navigated by the robot, and is not an accessible aisle. A
more elaborated discussion on the implications of these two
values can be found in section V.

Navigating in narrow spaces is more difficult than navi-
gating in wide spaces. We define the optimal width w0 as
the value which when w ≥ w0, the robot can navigate at
its maximum linear speed v0 without being slowed down by
obstacles. Note that we do not define an optimal height, since
we consider that the robot only moves in two-dimensional
space and, once the height is greater than the minimum, this
third dimension will not influence the navigation.

Due to the nature of the RFID technology, it is impossible to
use theoretical models to obtain the exact coverage area of an
antenna in real scenarios [28]. Hence, we simplify and assume
that a standard RFID robot will be able to radiate at 360º (if
not, it will have to spin), meaning that the robot detection

area can be approximated by a circle centered on the robot.
The radius of this circle is defined as rc and its length can be
calculated as the distance at which the robot can read 80% of
a large number (we have arbitrarily set 1, 000) of RFID tags
directly placed together at a fixed distance from the robot’s
RFID antennas.

To maintain a given accuracy as the density of items
increases, the velocity of the inventory needs to decrease.
Not only because the readers have a maximum read rate (the
maximum number of tags per second they can identify), but
also because the influence of other RFID variables increases
with the density. Hence, we define an empiric parameter λh
which is the lineal density of items at which the robot has to
decrease its maximum linear speed to half i.e. v = 1

2v0, in
order to reach the accuracy goal of 99%.

The above parameters can be measured by doing experi-
ments in a simple environment. For example, v0 and tt can be
obtained by measuring the robot in an empty aisle. Similarly,
wm and w0 can be obtained by measuring the velocity of
the robot at different aisle widths. Also, rc can be obtained
by placing the robot in front of 1, 000 tags at increasing
distances until 80% of the tags are read. Finally, λh can be
obtained measuring the velocity in a single aisle and different
tag densities.

V. TASK FEASIBILITY

This section presents the criteria to analyse whether the
RFID inventory robot can successfully accomplish the inven-
tory mission in a given store.

We define the list of accessible aisles Ca as the list of aisles
of C with width greater than wm and height greater than hm,
where wm and hm: Ca = {ci ∈ C | wi ≥ wm, hi ≥ hm}.

We define a path p in the store, as a trajectory that traverses
one or more aisles in Ca. We define Cp as the list composed
of the aisles that have been traversed in p where ∀cp ∈ Cp
then cp ∈ Ca. Note that if an aisle of Ca is traversed more
than once in p, this aisle will appear more than once in Cp.
The length of path p is then l =

∑
ci∈Cp

li, with li being the
length of aisle ci.

We define a covered area as the union of the surfaces that
have been covered by a robot when moving along the path
p. Accordingly, we define a covering path as a path that
completely covers all the area A. Finally, we define the optimal
path po as the covering path with minimum length.

Finally, we can conclude that the inventory task will be
feasible only if a covering path exists. If for whatever reason
there does not exist a covering path, the metric will not be
valid.

VI. PERFORMANCE PREDICTION

A. Calculation of the effective inventory velocity
We have already introduced the effective inventory velocity

in section II. The final goal of this section is to be able to
predict its value for a given robot in a given store, characterised
by R̄ and S̄ respectively. Firstly, we will characterise and
predict the velocity of that robot in three canonical scenarios.
Secondly, we will use these velocities to calculate the predicted
effective inventory velocity in a store.



Fig. 1. Model extraction from the measurements of the velocity of the
robot for different aisle widths.

1) Intricacy-based velocity vi: In this first scenario, only
the difficulty of navigation in a path p with lots of turns is
considered, as opposed to a path consisting of a single straight
aisle. This difficulty can be quantified by the intricacy I of the
path, as defined in section III.

We can calculate the intricacy-based velocity as the velocity
of a robot in a store of intricacy I , but with wide aisles, empty
of tags, so neither the width of the aisle nor the tag density
limit the velocity, only the intricacy. First we calculate the
time it takes for the robot to navigate the path p, considering
that in the straight aisles li it navigates at velocity v0, and that
for each turn the robot spends a time tt:

t =
l

v0
+ | Cp | ·tt

hence, the intricacy-based velocity can be obtained:

vi =
l

t
=

l
l
v0

+ | Cp | ·tt
=

l
l
v0

+ I · l · tt

and finally we can define the intricacy-based velocity depend-
ing only on v0, I and tt as follows:

vi =
v0

1 + I · v0 · tt
(3)

2) Width-based velocity vw: In this second scenario, we
consider that if one aisle is narrow, the difficulty to navigate
such aisle increases. Hence, we should also define the formula
of the velocity depending on the widths of the aisles and the
minimum and optimal widths of the robot.

The effect of the aisle width on the robot velocity has
been studied experimentally where several tests have been
conducted in laboratory facilities. The base cases are when
wi ≤ wm where the velocity is zero and when wi ≥ w0

where the velocity is v0. When wm < wi < w0, the velocity
increases very fast for widths just above wm and then it
increases more slowly when the widths approach w0. This
behaviour is modelled by Equation 4 and can be seen in
Figure 1, where the experiment on a specific robot is shown
(wm = 0.66m, w0 = 0.71m). The experiment consisted in
travelling different aisles of different widths, and measuring
the velocity for each one of them.

Fig. 2. Velocity of the robot as a function of the density of items (v0 =
0.25 m/s and λh = 36 tags/s).

We define the width-based velocity as the velocity of a robot
in a straight aisle, empty of tags as:

vw = v0 ·
(

1−
(
w0 −max(wm,min(w0, w))

w0 − wm

)α)
(4)

where α is a parameter to be adjusted using experimental data
from the experiment depicted in Figure 1. According to our
measurements α ≈ 5.

3) Density-based velocity vd: In this third scenario, we
consider that when doing an inventory with a preset accuracy,
as the density of the items increases the velocity decreases,
since the robot needs more time to identify all the items.

We propose an empiric approach based on experimental
results to compute the velocity depending on the lineal density
of tags of an aisle given a certain accuracy. It can be empir-
ically proved that, when the lineal density is low, the robot
can navigate at maximum speed, so vd = v0 for that aisle. As
the density increases, at some point the robot has to decrease
its velocity or otherwise it will not be able to achieve the
preset accuracy, as it would be travelling too fast to be able
to identify all the tags.

To model such function, several tests have been performed
in the laboratory, where different aisles with different lineal
densities have been inventoried and the velocity measured, see
Figure 2. The resulting behaviour can be approximated by the
following equation:

vd =
v0

1 +
(
λ
λh

)2 (5)

where λh is the value of λ for which vd = 1
2v0. Figure 2

shows an average of the experiment results compared to the
proposed equation.

B. Estimation of the effective inventory velocity
Now we are ready to compute the proposed metric, the

effective inventory velocity. We will obtain its expression as a
combination of the canonical velocities: Equations 3, 4, and 5.
For instance, in the case of an aisle of width w, linear density
λ but no turns, we can compute ve(S̄, R̄) = vwd = vw · vd:

vwd = v0 ·
(
1−

(
w0 −max(wm,min(w0, w))

w0 − wm

)α)
· 1

1 + (λ/λh)
2

Using the same logic, we can create viw and vid.



We can easily aggregate the three velocities, if their param-
eters are constant along the entire path. So, when there are
turns, the aisles are narrow but all of the same width w with
wm < w < w0), and the density of tags λ > 0, the combined
effective inventory velocity can be calculated as:

ve(S̄, R̄) = viwd =
vwd

1 + I · vwd · tt
(6)

Where we are using Equation 3 and substituting v0 by the
computed speed over a straight path with a fixed aisle width
and density.

However, when the path p is composed of aisles of different
lengths li, widths wi, and densities λi we need to split the
computation according to these changes:

viwd = v0·
(
1−

(
w0 −max(wm,min(w0, wi))

w0 − wm

)α)
· 1

1 + (λi/λh)
2

In this case, we calculate the total time it takes for the robot
to navigate entire path p as the sum of each part of the path:

t =
∑
ci∈Cp

(
li/v

i
wd + tt

)
and compute the velocity as follows:

ve(S̄, R̄) = viwd =
l

t
=

l∑
ci∈Cp

(
li/viwd + tt

)
=

l∑
ci∈Cp

li/viwd+ | Cp | ·tt

=
1∑

ci∈Cp

li
vi
wd

l +
|Cp|
l · tt

which can be expressed as:

ve(S̄, R̄) = viwd =
v̄hwd

1 + I · v̄hwd · tt
(7)

where v̄hwd is the weighted harmonic mean of the aisle veloc-
ities:

v̄hwd =

∑
ci∈Cp

li∑
ci∈Cp

li/viwd
.

So the effective inventory velocity of the robot in the store,
ve(S̄, R̄), can be calculated from Equations 6 or 7 depending
on whether the aisles in the path have the same or different
widths or item densities.

VII. VALIDATION

In order to validate the model, we have performed an
experiment in a laboratory and an experiment in one floor
of a fashion retail store. In the laboratory (Figure 3 left), the
tags were placed in boxes over 7 metallic shelves. In the store
(Figure 4 left), the tags were placed in the garments, which
were of different sizes, colours and materials and which were
placed in different positions inside the furniture of the store.
The robot used in both cases was Keonn’s AdvanRobot® [12]
which is a map-based inventory robot as it can be seen in
both figures. The experiments consist of 3 missions.

Fig. 3. The robot operating at the laboratory (left), and the map of the
laboratory with the robot path containing the different aisles (right)

Fig. 4. The robot operating at the store (left), and the map of the store
with the robot path containing the different aisles (right)

A. Verification of the accuracy goal

In the case of the laboratory, there were |B| = 1, 000 tags.
In the case of the store, due to the lack of a valid perpetual
inventory record, three runs of the experiments gave 11, 010,
11, 041 and 11, 039 tags respectively, so we have estimated the
presence of 11, 041 tags. Notice that the maximum discrepancy
between the three runs is of 31 tags (less than 0.3%), so |B| =
11, 041 is most likely a good estimate of the baseline, and the
accuracy of the runs is Acc ≥ 99.7%. The accuracy value
objective set in both cases is Acc ≥ 99%, which in the case
of the store leaves a reasonable margin of error of 0.7%, in
case the accuracy estimation differs from the actual accuracy.

B. Characteristics of the laboratory

The laboratory is placed in the storage room of Keonn
facilities as shown in Figure 3.

The characterisation of the laboratory is the following (S̄):
• A = 91 m2,
• C is composed of 9 aisles,
• B is composed of 1, 000 items,
• L (m) is [7.05, 6.72, 6.72, 6.72, 6.19, 6.19, 6.19, 11.19,

7.05],
• W (m) is a list with 9 widths of 1.5m,
• H (m) is a list with 9 heights of around 10m, and
• Λ (# tags /m) is [0, 18.9, 9.9, 17.9, 19.4, 17.2, 20.5, 0,

0].



The path had a length l = 64.43m, with an average aisle
length of l̄ = 7.15m.

C. Characteristics of the store

The store is a floor in a real store of a fashion retailer.
The floor is divided internally into 10 areas that contain 183
fixtures of different shape and size, mainly tables (where items
are placed on top of the table) and hanger fixtures some of
them fixed to the walls and some of them up to 1.5m high.
Also there are some items at the floor level, like shoes.

The characterisation of the store is the following (S̄):
• A = 1, 000 m2,
• C is composed of 75 aisles,
• B is composed of 11, 041 items,
• L (m) is the list of lengths of the aisles,
• W (m) is the list of widths of the aisles,
• H (m) is the list of height of the aisles, and
• Λ (# tags /m) is the list of linear densities of tags of the

aisles.
This data has been made available in [29] as open data. The

designed path is composed by 75 aisles as shown in Figure 4
right. The path had a length l = 343m, with an average aisle
length of l̄ = 4.58m.

D. Characteristics of the robot

The RFID robot used was the Keonn AdvanRobot® [12]
which uses two Keonn RFID readers AdvanReader-150® [30]
operating at 30 dB, have a reading rate of around 400 tags/s
and a maximum read range of around 9 m. Each reader is
placed in one side of the robot’s payload and is connected to
4 Keonn RFID-Antennas Advantenna-SP11® [31].

The robot has a total height of 1.95 m and the base has a
diameter of 55 cm. It has differential traction, which means
that can turn on its own axis. The robot is provided with 3
sensors, 2 RGB-D cameras (one at the base and one at the
top) and one LIDAR (a 220º degrees laser) to avoid obstacles
and achieve automatic navigation.

The characterisation of the robot is the following (R̄):
• v0 = 0.247m/s
• tt = 4 s,
• wm = 0.66m,
• w0 = 0.71m,
• hm = 1.95m,
• rc = 5.5m,
• λh = 36 tags/m.

E. Task feasibility and calculation of the effective velocity

Comparing the widths, heights and covering radius of the
robot and the characteristics of both environments, we can
conclude that the selected paths shown in Figures 3 and 4 are
both covering path. Hence, the problem can be completed (as
corroborated by the accuracy verification).

Using the characterised elements (laboratory, store and
robot), we can calculate the effective velocity. Specifically, us-
ing equation 7. In the case of the laboratory, ve = 0.1857m/s,

TABLE I
MEASURED VERSUS PREDICTED MISSION TIME AND VELOCITY, AND

RELATIVE ERROR IN THE PREDICTION OF THE VELOCITY.

Inventory Length (m) Time (mm’ss”) Velocity (m/s) Error

Lab Prediction 64.43 5’47” 0.1857
Lab #1 64.43 6’05” 0.1765 -5%
Lab #2 64.43 5’29” 0.1958 5,4 %
Lab #3 64.43 5’50” 0.1841 -0,9 %

Store Prediction 343 46’39” 0.1227
Store #1 343 46’15” 0.1238 0.9%
Store #2 343 48’54” 0.1171 -4.6%
Store #3 343 47’41” 0.1201 -2.2%

which predicts that the robot will finish its mission in t =
64.43
0.1857s = 347s = 5′47′′.

In the case of the store, ve = 0.1227m/s, which predicts
that the robot will finish its mission in t = 343

0.1227s =
2, 799s = 46′39′′.

The empirical results for all the tests are shown in table I.

F. Comparison with previous solutions

Even if they are two different problems, the inventory task
and the coverage task as explained in section I, have some
similarities. Specifically, in the robot coverage problem ([19]),
they characterize the area i.e. the space to cover, the robot i.e
a movable shape of some specific size, and the task i.e. a robot
being able to navigate the area and cover it as much as possible
with its shape. Then, they define two metrics: effectiveness,
which is the coverage percentage, and efficiency, which is the
distance traveled. In our case, we also characterize the area (the
store), the robot, and the task. Then we define one metric, the
effective inventory velocity which has a direct relation with
the area covered (in our case by the area covered by the RFID
readers), and the length of the path.

In [8], they define some metrics for the store. Specifically,
they define the accuracy of the inventory, the aisles length,
the intricacy, and the item density. Note that in this previous
work, the intricacy is simply defined as the length of the
paths divided by the area of the store. Then they measure
the effective speed, which is the real velocity at which the
robot operates. Hence, they can somehow evaluate both, the
store (intricacy, path length, and item density), and the robot
(effective velocity) doing a specific task (inventory accuracy).

Since our goal is much more ambitious and we aim to
predict the robot performance in a store, we leverage on this
previous effort extending all these concepts and defining them
in much more detail. Hence, we define a much more accurate
intricacy, we introduce the width of the aisles (which limit
the robot in real operations), and we extend the concept of
item density to a much more precise concept based also on
the RFID antenna coverage radius.

VIII. CONCLUSIONS

In this article we have presented a metric for assessing, com-
paring, and predicting the performance of an RFID inventory
robot in a store. This metric can be estimated using a model



based on the characteristics of the inventory task, the RFID
robot and the store. The presented metric has demonstrated
to be simple and accurate enough to be utilised in a real
environment. Hence, several use-cases can leverage on this
work, like comparing the performance of the different robot
solutions without the need to purchase them, or predict the
performance of a robot in a store.

The formulas used have been fitted to laboratory experi-
ments but the validation has been done in both, a mock store in
a laboratory and a real fashion store. The area of the latter was
1, 000m2 and the number of RFID tags 11, 041, which is a
large enough store to consider it a real challenge for the model
validation. In order to create the model, several simplifications
were made specifically, approximations to empirical values
using mathematical formulas.

Nevertheless, the results were remarkably accurate, with the
empirical values being deviated between 0.1% and 5.5% from
the real velocity of the robot. In practical terms and in the
case of the store, for a task that was theoretically predicted to
last for 46′12′′, it took between 46′15′′ and 48′54′′ to finish
when measured.

Hence, we think that the metric can be considered valid for
assessing, comparing and predicting inventory tasks of RFID
robots in retail stores. However, future work should validate it
with more complex scenarios i.e collaborative robots, robots
not based on maps, etc.
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