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Abstract 

This research explores the integration of CLIP, a pretrained model, into video 
content analysis. In a landscape inundated with multimedia data, pinpointing 
specific moments within videos is a persistent challenge. By leveraging CLIP's 
semantic and visual search capabilities, this study endeavors to refine content 
retrieval methods. Emphasizing efficiency and applicability, this study aims to 
make this process more precise and practical. With this research we also 
reviewed the state-of-the-art methods and produced empirical analysis on the 
effects of postprocessing on the similarity vectors obtained from CLIP encoders. 
Finally, we developed two distinct methods aimed at moment retrieval tasks in 
audiovisual data, obtaining a model that is able to outperform previous works in 

Zero-shot moment revival, reaching 57.3 at R@1 IoU=0.5 and 51.6 at mAP@0.5. 

 
Aquesta investigació explora la integració de CLIP, un model preentrenat, en 
l'anàlisi de contingut de vídeo. En un paisatge inundat de dades multimèdia, 
identificar moments específics dels vídeos és un repte persistent. Aprofitant les 
capacitats de cerca semàntica i visual de CLIP, aquest estudi intenta 
perfeccionar els mètodes de recuperació de contingut. Subratllant l'eficiència i 
l'aplicabilitat, fent aquest procés més precís i pràctic. En aquesta investigació 
també s’ha revisat l’estat de l’art i s’ha produit un anàlisis empíric sobre els 
efectes del postprocessament sobre els vectors de semblança obtinguts a partir 
dels codificadors de CLIP. Finalment s’han desenvolupat dos mètodes diferents 
dirigits a tasques de recuperació de moments en dades audiovisuals, obtenint 
un model que és capaç de superar els treballs anteriors en Zero-shot moment 
revival, arribant a 57,3 a R@1 IoU=0,5 i 51,6 a mAP@0,5. 
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1. Introduction 
 
 

1.1. Context and motivation  
 
With the increase in access to cameras and streaming services by the global 
population, there is increasingly more production, editing, and consumption of 
audiovisual formats. In this context, there is a growing demand for specific tools 
for the detection of those moments existing in a video that may be relevant to the 
user and that, in many cases, are hidden among the tide of information composed 
of the “superfluous” frames present in the video. 
 
Although there are already some tools that can help in selecting relevant 
moments, normally the user, whether due to a technological or economic barrier, 
ends up spending considerable time manually scrolling through the video until the 
desired moment is detected. To help carry out this task and improve the 
characteristics of the existing tools, in this project we explore the potential of 
CLIP(Radford et al., 2021) with the objective of producing a model capable of 
performing both semantic and visual searches.  
 

1.2. Goals 
 
The primary objective of this project is to obtain a model that is capable of helping 
the users detect a moment in a video that fits the best description used as an 
input search. To do so, we aim to replicate, modify, and enhance the research 
presented in the paper by David Lin(D. C.-E. Lin et al., 2022), which utilizes CLIP 
as a base model to identify frames within a video that most closely resemble the 
input images. This project will explore different comparison methods to test the 
similarity between images, improving upon the original approach, in a similar 
manner, we will add a semantic search feature to allow users to search for frames 
not only using images but also using textual input. 
 
In short, our goals with this project are: 
 

• Primary goal: Implement a model based on CLIP that is able to detect 
highlight moments in a video based on an image or textual input search. 

 

• Secondary goal: Improve on previous research by experiment with 
alternative methods to improve the precision and the performance of the 
implemented model 

 

1.3. Sustainability, diversity, and ethical/social challenges 
 
Since our primary goal is to aid professional and amateur video editors into 
finding the moments in a video, we acknowledge that the product of this project 
can be used to find individuals present on the video by some of their 
characteristics, like racial traits, gender etc. At the same time, the product of this 
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project can also be used to detect certain behaviors performed by those 
individuals, but in any case, can’t be used to identify any subject other than the 
very well-known public figures. 
 
In terms of sustainability this project or its output should not pose a specific threat 
to nature or future generations, neither in terms of social, economic or 
environmental aspects. Although this work was developed with computational 
efficiency in mind, in general terms, exist some energetics concerns derived from 
high computational resources needed for video processing that may contribute to 
a large carbon footprint.  
 
Given the zero-shot nature of this project most ethical concerns regarding 
diversity like using representative samples for the training, avoiding biases and 
taking into account cultural/racial sensitivity are directly linked to CLIP 
development, and to the best of our knowledge, have already been tackle by 
OpenAI development team. It is important to notice that for the development of 
this project a non-multilingual version of CLIP has been used, consequently the 
output of this project caters to an English-only audience and in turn the linguistic 
diversity has not been contemplated. 
 
Finally, due to the nature of VLP’s models, some concerns linked to ethical and 
social challenges might be raised, noticeably, copyright infringements and fair 
use, manipulation of the image of 3rd party entities like deepfakes and privacy 
concerns. Thankfully, the first two challenges listed above are associated with 
generative models and should not be a byproduct of the use of any outcome of 
this project. On the other hand, as stated in the before, privacy is the major 
concern that we can foresee for the output of this project, this is because the 
search feature of the model can aid malicious entities to identify individuals within 
the video. 
 
 

1.4. Approach and methodology 
 
For the development this project, we aim to acquire a model that is able to extract 
and compare global features of an image, this can be archive either by training a 
model from scratch or by extracting those features from a pretrained model that 
already has proven to perform at a high level in the real-world domain. Choosing 
a pre-trained model over training from scratch can be advantageous for tasks 
with huge amounts of data and resources. Pre-trained models, having learned 
from vast datasets, capture intricate patterns and features. Utilizing these learned 
features as a foundation often leads to quicker, resource-efficient, and effective 
solutions, especially when time and data are constraints. They serve as a robust 
starting point, allowing customization for specific tasks without the need to build 
complex architectures from the ground up. 
 
Considering all the advantages that pretrained models offer, we choose to exploit 
the capabilities of CLIP, which allows us to obtain the features of an image in 
semantic manner. Not only allowing us to make a comparison between the 
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features extracted from an image, but also, the comparison between those 
features and a textual input. 
 

1.5. Schedule 
 
In this project, a series of tasks will be carried out, focusing mostly at the 
development of the pipeline and multiple experiments, but also at the 
development of this proposal and the review of the state of the art, as is shown 
in the schedule of the Gannt diagram. (see Figure 1) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

1.6. Summary of the outputs of the project 
 
The outputs obtained from this project will be the proposal of the project and a 
repository with the code and model resulting from the experimentation. The 
proposal must include the documentation of the theoretical foundation on which 
the experiment is based; the description of the implementation; and finally, the 
comparison of the results and conclusions of the experiments. At the same time, 
the repository must include at least a complete code, any dataset that might be 
produced as a result of our work and, finally, the result of the evaluations of the 
different experiments carried during the development. 
 

1.7. Brief description of the remaining chapters of the report 
 
The report is organized in several chapters. Starting with the Chapter 2: State of 
the art, where the current state of the field related to video content analysis is 
reviewed. It provides an overview of existing methodologies, technologies, and 

Fig 1. Gannt schedule 
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challenges in the domain. Understanding the state of the art is crucial as it lays 
the foundation for the methods employed in the study. 
 
The following chapter. Chapter 3: Methods and resources and Chapter 4: 
Results. Detail the methodologies, resources, and techniques used and explain 
how the model was implemented bridging theory and practice. Also, on Chapter 
4 the outcomes of the research efforts are presented. Including the findings from 
applying CLIP in video content analysis, showcasing the efficiency and precision 
achieved. That chapter provides detailed analysis and interpretation of the results 
obtained, demonstrating the practical applicability of the proposed methods. The 
results discussed here are essential for drawing conclusions in the next chapter. 
 
Finally, in Chapter 5, the study concludes with a summary of research outcomes, 
a discussion on the implications, significance, and potential future research 
directions. This chapter aims at providing a comprehensive understanding of the 
study's impact and a ground base for future research. 
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2. State of the art 
 
 

2.1. The problem 

2.1.1 Description 

 
The process of determining highlights in videos involves identifying distinct 
segments of the video that are the most significant or interesting elements of the 
content. Although this may appear straightforward, numerous obstacles exist 
associated with the classification of highlights in videos. 
 
Firstly, events deserving of attention can happen on a range of temporal scales 
and the models need to be able to recognize and differentiate between highlights, 
which can be anything from brief actions to lengthy sequences. Determining the 
appropriate temporal scale is crucial. It involves understanding the granularity of 
the content, recognizing different types of events, and deciding what duration 
qualifies as a highlight. 
 
Secondly, the significance of a particular segment can depend heavily on the 
context of the video. A specific scene might be a highlight in one context but not 
in another. Thus, increasing the importance of the semantic interpretation and 
understanding of the different moments in the video.   
 
Image classification and semantic description of images using AI models has had 
a big breakthrough in the last decade with the introduction of first the 
convolutional networks (Krizhevsky et al., 2017; Lecun et al., 1998) and more 
recently with the use of transformers (Radford et al., 2021; Vaswani et al., 2023). 
Many models excel nowadays at tasks like action and object recognition, but most 
of these models are designed to work with still images. Only recently, 
advancements that include methods that focus on aligning textual descriptions 
not only with temporal segments but also with specific visual entities or objects 
within the video frames have been made(Long et al., 2015; Zhao et al., 2017). 
Specifically in temporal grounding, where models localize actions or events within 
a few frames accurately, has been a challenging but crucial area of research(Lei 
et al., 2020; Yang et al., 2022). 

2.1.2 Overlapping tasks 

 
Having into account the complexities of highlight detection exposed in the 
previous chapter. A few Overlapping task have been identified that may lead into 
a successful highlight moment selection. 
 

• Video grounding: Involves associating natural language descriptions with 
specific temporal segments or objects in a video. Video grounding is 
crucial because it helps establish a connection between language 
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descriptions and specific moments in the video. Accurate grounding 
ensures that textual descriptions align precisely with the visual events.  

 

• Moment retrieval: Focuses on identifying and retrieving specific temporal 
segments within a video that correspond to particular actions, events, or 
activities. Moment retrieval is foundational to highlight detection. By 
accurately retrieving moments that contain significant events, highlight 
detection algorithms can then assess the importance of these moments, 
potentially classifying them as highlights based on various criteria. 

 
 

• Highlight detection: Is the primary task at hand. It encompasses the entire 
process, incorporating insights from video grounding and moment 
retrieval. Effective highlight detection algorithms leverage information from 
these tasks to make informed decisions about what qualifies as a highlight 
based on temporal, semantic, and contextual clues. 

 
2.2 Challenges 
 

2.2.1 Image to textual description and semantic annotation  

 
Bridging the gap between visual data and natural language, enabling machines 
to comprehend and interpret images in a manner similar to humans is probably 
the main challenge that researchers have to overcome when trying to 
successfully solve the task of video grounding. Thankfully nowadays, big 
pretrained transformer models exist (Feichtenhofer et al., 2018; Radford et al., 
2021) that are able to perform this transcription and offer a translation in form of 
embeddings. Likewise, multiple databases have been created that offer 
annotations and training data both in image and video format(Gao et al., 2017; 
Lei et al., 2021). 

2.2.2 Audio treatment 

 
Even though we have been focusing on the visual aspects of the video, audio is 
a crucial component in videos that holds as much information as the images 
themselves, using audio for further treatment, analysis and incorporation in a 
multimodal model is as much as a challenge as is an advantage. Addressing this 
challenge successfully requires models capable of advanced audio processing 
techniques, including noise reduction, speech recognition, and emotion analysis 
(Hannun et al., 2014; Mehrish et al., 2023). Achieving comprehensive audio 
understanding can be an imperative for holistic multimedia analysis, and in turn 
for multimodal and fusion models (Liu et al., 2022). 
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2.2.3 Scene temporal window identification  

 
Many techniques exist to select and capture the frames that compose a specific 
shot or scene. Some of the most common methods are periodic, event-based 
and keyframe-based. Identifying and selecting the best approach can not only 
help improve the accuracy of the model, but also boost the general performance 
of the implementation.  

2.2.4 Resolution and Size of the data 

 
High-resolution images and large video files require substantial computational 
resources for processing and analyzing the content. Balancing the need for 
detailed analysis with computational efficiency is a significant concern. Efficient 
algorithms and scalable methodologies are indispensable to handle large 
volumes of data without compromising the depth and accuracy of the analysis. 
 

2.3 Pretrained models 

The public release of large visual-language pretrained models like CLIP(Radford 
et al., 2021) or SlowFast(Feichtenhofer et al., 2018) has significantly contributed 
to the development of new video-language processing (VLP) models. Indeed, in 
all reviewed works of literature targeting tasks such as video grounding(Yang et 
al., 2022, 2022), moment retrieval(Lei et al., 2021; Liu et al., 2022), or highlight 
detection(D. C.-E. Lin et al., 2022), a pretrained model has been utilized. Often, 
these pretrained models are employed primarily for basic video preprocessing to 
extract a set of embeddings or features. These are then used as inputs for the 
VLP models, even though the usage of these pretrained models is sometimes 
limited to this initial processing stage. 

2.3.1 Backbones 

 
In visual models, particularly in the context of VLPs, Backbones refer to the base 
network architectures that are used primarily for feature extraction.  Common 
Backbone architectures that have been widely used and researched are 
Convolutional Neural Networks (CNNs) and Vision Transformers (ViTs).  
 
These two architecturally distinct approaches come with their own strengths and 
weaknesses. In one hand, CNNs are built with convolutional layers and excel at 
capturing local features through spatial correlations and tend to be more 
parameter-efficient, making them suitable for tasks with limited data and 
computational resources. Also, some of the key strengths of the CNNs is their 
interpretability, a long history incremental improvement and a wide number of 
successful implementations. On the other hand, ViTs, based on the transformer 
architecture, process images by dividing them into patches and apply self-
attention mechanisms to capture global dependencies across the entire image. 
Although they tend to require more data and computational power, ViTs have 



 

 
 

8 
 

shown better performance in large-scale tasks, surpassing CNNs in some 
scenarios. 
 
Some of the Backbones relevant to pretrained models used in VLPs are: 
 

• VGG: Developed by Karen Simonyan and Andrew Zisserman(Simonyan 
& Zisserman, 2015), the VGG architecture highlighted that increasing the 
depth of CNNs is a straightforward way to improve their performance. VGG 
utilizes 13 convolutional layers and 3 fully connected layers, surpassing its 
predecessor, AlexNet(Krizhevsky et al., 2017), in depth and using smaller 
3x3 convolutional filters. These smaller filters enable finer feature 
extraction, while the network's greater depth allows for learning more 
complex patterns. The VGG models, marked a significant advancement in 
demonstrating the impact of depth in CNNs and have been extensively 
applied in various computer vision tasks. 

 

Fig 2. VGG architecture.(source VGG paper) 

 
 

• ResNet: Developed by Kaiming He et al. (He et al., 2015), the ResNet 
architecture introduces shortcut or residual connections to tackle the 
gradient vanishing problem common in deep CNNs. These connections 
allow for the effective updating of weights and biases across layers by 
preserving update information and enabling direct gradient flow. This 
innovation enables the construction of much deeper networks than 
traditional CNNs, as evidenced by variants like ResNet-50, ResNet-101, 
and ResNet-152. These versions have significantly advanced image 
classification and other tasks by facilitating the efficient training of deeper 
models. 

•  

Fig 3. Residual connection skip.(Source ResNet paper) 
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• ViT: Developed at Google Brain by researchers leaded by Alexey 
Dosovitskiy (Dosovitskiy et al., 2021). This model represents a significant 
shift in image processing approaches for deep learning tasks. In contrast 
to traditional convolutional neural networks, ViT treats an image as a 
sequence of fixed-size patches (32x32 pixels for ViT-32), similar to the 
way words in a sentence are processed in natural language processing. 
Each image patch is embedded and then processed through a series of 
transformer blocks employing self-attention mechanisms, allowing the 
model to capture complex, dependencies across different parts of the 
image. This global processing approach marks a major advancement over 
the local processing typical of CNNs.  

 

Fig 4. ViT architecture.(Source ViT paper) 

2.3.2. CLIP 

 
CLIP(Contrastive Language–Image Pretraining) developed by OpenAI and 
released in 2021, has become a cornerstone in the realm of visual-language 
tasks (Radford et al., 2021). CLIP is built upon two primary Backbones, a text 
encoder, typically a Transformer-based model similar to those used in natural 
language processing tasks, which processes text converting words and phrases 
into a high-dimensional vector space, and an image encoder that performs a 
similar function for visual inputs. This dual-encoder architecture allows CLIP to 
handle and interpret both textual and visual information within a unified 
framework, facilitating understanding and a pairing of both modalities. 
 
Thanks to this dual-encoder architecture, CLIP's training uses a contrastive 
learning approach, which involves teaching the model to correctly match images 
with their corresponding textual descriptions. During training, the model is 
presented with batches of image-text pairs and, for each image, the correct 
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textual description is paired alongside incorrect(negative) textual descriptions. 
Once the text and images are encoded into vectors and paired together, CLIP 
uses cosine similarity to measure the closeness of these vectors in the 
embedding space. Finally, the training objective is to adjust the parameters of the 
encoders so that the distance between the vectors of correctly paired image-text 
inputs is minimized, while the distance between the vectors of incorrectly paired 
inputs is maximized. 
 
 

 

Fig 5. Ilustration of the CLIP network. (Source CLIP paper) 

2.3.3 Slowfast 

 
Slowfast, a network developed by Facebook and introduced in 2019 
(Feichtenhofer et al., 2018) , is built on top of two ResNet convolutional networks 
that act as two parallel pathways that analyze the videos at different framerates. 
The architecture is based on the idea that different frames in a video sequence 
can have varying speeds of motion, some events occurring in a video might have 
slow and smooth motion, while other parts can have fast and rapid motion. Using 
this architecture have proven extremely effective on capturing motion driven 
events, and the information offer by the pretrained model of this network is often 
used in VLP models. 
 

 

Fig 6. Ilustration of the SlowFast network. (Source SlowFast paper) 

https://arxiv.org/pdf/1812.03982.pdf
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2.4. Metrics 
 
A wide range of metrics are used in VLP models, both, to asses the similarity 
between images and texts, and to evaluate the models. Notably, cosine similarity 
and Intersection over Union (IoU) play a pivotal role in the development and 
training of VLP models. While other metrics. like recall at one(R@1) and mean 
Average Precision(mAP) mark the standard for comparisons between models 
that perform moment retrieval and highlight detection tasks. 
 

• Cosine similarity: Used to measure the distance between vectors defined 
in an inner product space. Typically used in VLPs to assess the similar 
between the vectors produced by the text and images encoders. Given 
two n-dimensional vectors of attributes, A and B, the cosine similarity, 
\cos{\left(A, B\right)}, is represented using a dot product and magnitude 

as 
 

cos(A, B) =
A·B

|A||B|
=

∑ A𝑖B𝑖
𝑛
𝑖=1

√∑ (A𝑖)2𝑛
𝑖=1 √∑ (B𝑖)2𝑛

𝑖=1

            (1) 

 

• Intersection over Union(IoU): Commonly used 
in object detection, measures de interlap between 
two boundaries. In VLPs destinated to moment 
retrieval tasks, the boundaries are defined by the 
start and end of the temporal window that defines 
the shot or scene. Given 2 objects A and B the 
IoU(A,B) is defined as: 

 

𝐼𝑜𝑈(𝐴, 𝐵) =
|𝐴∩𝐵|

|𝐴∪𝐵|
=

|𝐴∩𝐵|

|𝐴|+|𝐵|−|𝐴∩𝐵|

      (2) 

 

• Recall@K (R@k): Recall at k is the proportion of relevant items found in 
the top-k recommendations. Where in this case, moment retrieval tasks, a 
relevant moment recommendation is considered relevant if the window 
recommended surpasses a given IoU threshold. For example, R@1 
IoU=0.5, determines the proportion of times that the first recommendation 
for a query has an IoU above 0.5. 
 
 

• Mean Average Precision (mAP): For a set of queries, mAP is calculated 
as the mean of the average precision scores for each query. Where the 
average precision is the area under the curve of precision and recall for 
retrieved windows within the query. This is, with Q number of queries and 
k windows retrieved: 
 

Fig 7. IoU overlap 
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𝐴𝑣𝑒𝑃 = ∑ 𝑃(𝑘)Δ𝑟(𝑘)𝑛
𝑘=1

       (3) 

𝑀𝐴𝑃 =
∑ 𝐴𝑣𝑒𝑃(𝑞)𝑄

𝑞=1

𝑄

                (4) 

 

2.5. Previous work 
 
To do a comparison of the State of the art we focus on those models that archived 
a high performance in both moment revival and Highlight detection. Most of these 
models are encoder-decoder based and exploit CLIP and Slowfast to create the 
encoders while in most cases implement slightly different techniques to obtain the 
window offset and saliency score for the highlight.  
 

• Videogenic: Is an Image based, CLIP Zero shot, moment retrieval model. 
Uses cosine similarity between embedding to perform the comparison 
between images. (D. C.-E. Lin et al., 2022) 
 

• Zero-shot Video Moment Retrieval: Is one of the few papers that focus on 
Zero-shot detection and, on their work, exploit ShotDetect[] for scene 
selection. Noticeably, to the best of our knowledge, is the only Zero-shot 
work that offers a baseline for comparison(Diwan et al., 2022). 

 

• Moment-Deter: First of its kind on moment retrieval, Moment-DETR, a 
transformer encoder-decoder, uses CLlP and Slowfast as the video and text 
feature extractors. In its architecture each decoder layer consists of 
a multi-head self-attention layer and a cross-attention layer. Another of its 
main contributions is the development of QvHiglights data set. Moment-
DETR offers two baselines, one for the pretrained encoder and one for the 
untrained encoder (Lei et al., 2021). 
 

 
Fig 8. Architecture proposal for Moment-Deter.(Source Moment-Deter paper) 
 

• Bam-Deter:Boundary-Aligned Moment Detection Transformer, follows the 
transformer encoder-decoder architecture proposed by Moment-deter, and 
introduces a Dual-pathway decoding layer that aims at refining the anchor 
and boundaries of the windows detected(Lee & Byun, 2023). 
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• QD-Deter:Query-Dependent Video Representation, follows the transformer 
encoder-decoder architecture proposed by Moment-deter, but focuses on 
Negative Relationship between examples on the training phase (Moon, 
Hyun, Park, et al., 2023). 
 

• CG-Deter:Correlation-guided Query-Dependency Calibration in 
Video Representation, follows the Deter architecture, but introduces a 
Dummy Encoder mechanism to refine the embeddings of video and query 
before they are feed to the decoder (Moon, Hyun, Lee, et al., 2023). 
 

 
Fig 9. CG-Deter architecture.(Source CG-Deter paper) 

 

• TALL: Is a scene based, Cross-modal Temporal Regression Localizer 
(CTRL) architecture. It uses encoders to extract both sentence embeddings 
and text video features that after combined are used as inputs in a temporal 
regression network (Gao et al., 2017).  
 

• UniVtg: Is a scene based crossmodal autoencoder. In this case inputs to the 
UMT decoder are clip-aligned text-guided queries instead of positional 
encodings that uses CLIP and Slowfast as embeddings and features (K. Q. 
Lin et al., 2023). 

 
 
Fig 10. Previous work baseline. 

    
R@1 
IoU=0.5 

R@1 
IoU=0.7 mAP@0.5 mAP@0.75 mAP 

Multimodal 
Vídeo+ 
audio 

Moment-DETR(w/PT) 59.78 40.33 60.51 35.36 36.14 

BAM-DETR 64.07 48.12 65.61 47.51 46.91 

QD-DETR 63.06 45.1 63.04 40.1 40.19 

Video Only 

UniVTG(w/PT) 65.43 50.06 64.06 45.02 43.63 

CG-DETR 65.43 48.38 64.51 42.77 42.86 

QD-DETR 62.4 44.98 62.52 39.88 39.86 

UniVTG 58.86 40.86 57.6 35.59 35.47 

Zero-Shot 

SD+C+SW  40.24 25.94 41.74 24.11 24.82 

SD+C+SW (w/PT) 42.12 27.89 43 24.68 25.5 
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3. Methods and resources 
 

3.1 Experimental Setup 
 
For the experimental setup, all the code was written in Python, and executed on 
a Google Colab account that provided access to a remote machine equipped with 
a T4 GPU and 50GB of RAM. These resources were chosen to address the 
computational demands of the project. The T4 GPU's processing capabilities 
were employed for faster algorithm execution, while the substantial RAM 
allocation prevented memory-related issues during complex computations. 
 
One TB data space was contracted to manage the storage requirements, 
accommodating the big video dataset, the processed arrays and embeddings and 
the python notebooks used to execute the experiments. Google Colab cloud-
based environment facilitated remote accessibility, eliminating the need for 
extensive local hardware. This approach proved cost-effective and accessible, 
allowing us to focus on experimentation without hardware maintenance concerns.  
 

3.2 Dataset  
 
Our experimentation centers around the QvHighlights dataset (Lei et al., 2021), 
a repository designed for video analysis tasks. Comprising 150-second video 
clips each paired with a textual query, this dataset serves as a benchmark for 
evaluating the efficacy of video retrieval systems. Notably, the dataset provides 
two distinct ground truths: one delineating the relevant frames within the video 
and another specifying the temporal window associated with the selected 
segments. 
 
The volume of raw data within the QvHighlights dataset is substantial, totaling 
130 gigabytes. The unprocessed dataset was extracted from Youtube segments 
and annotated to represent the moment expected to be retrieved from the video.  
 
To facilitate a systematic evaluation, the QvHighlights dataset has been 
partitioned into train and evaluation splits. The training set comprises 7218 
observations, while the evaluation split consists of 1550 observations. This 
partitioning ensures a balance between model training and performance 
assessment. 
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Fig 11. Example of an observation in the dataset. 

 
 

 

3.4 Approach 
 
In our experiments, we use CLIP for zero-shot moment retrieval instead of 
coupling another model on top of CLIP encoder. We avoid this approach due to 
its usual limitations, often rigid, not easily scalable, and restrictive in terms of input 
length. 
 
Skipping the additional model simplifies the process, making it more adaptable 
and scalable. CLIP's embeddings offer flexibility, allowing for a versatile solution 
to moment retrieval using embedding similarity. This choice is made to better 
handle diverse video content and different contextual requirements. 
 
The decision to bypass supplementary models considers their tendency to limit 
input length. Constraints on input length can hinder the model's ability to process 
longer video sequences. By relying solely on CLIP's embeddings similarity, we 
aim to maintain the natural temporal context in unmodified video data on a real-
world video context. This approach aligns with our experimental objectives and 
emphasizes exploring CLIP's inherent capabilities without unnecessary 
modifications. 
 

3.5 Video Preprocessing  
 
Given that CLIP Zero-shot requires images or texts as inputs, to represent a full 
video, our preprocessing step involves extracting frames from the videos to 
properly represent the content. To ensure ease of processing and consistency, 
we adopt a periodic frame extraction approach. The chosen framerate is set to 
1/2, aligning with the dataset's ground truth, which is calculated at this framerate. 
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The outcome of our selected approach is an array of 75 images for each 
observation V={F1,F2 … Fn}, this array forms the basis for calculating the similarity 

array. An alternative approach could involve selecting keyframes that mark scene 
changes and extracting a predefined number of frames to represent each scene. 
 
Upon obtaining the array of frames for each observation, a processing pipeline is 
implemented, leveraging CLIP image encoder to derive embeddings for each 
frame and CLIP text encoder to derive embeddings for the query associated with 
the observation, obtaining VE={Fe1,Fe2 … Fen} and QE. Finally using the 

embeddings, a cosine similarity array is computed, Sc(VE,QE)= { s1, s2 .. sn}. This 

gives us an array that captures the similarity between the embeddings of the 
frame array and the query embedding, explaining how each frame relates to the 
query. Additionally, a continuous frame similarity array is also computed reflecting 
the similarities between each frame and the subsequent one, CFSc = {Sc(Fe1,Fe2), 
Sc(Fe2,Fe3) … Sc(Fen,Fen+1) } = { cfs1, cfs2 .. cfsn}. These similarity arrays will serve as 

base components for the empirical evaluation of diverse methodologies aimed at 
identifying relevant windows. 
 
 
 

 

Fig 12. Video preprocessing and similarity vectors extraction. 

 
 
 
 

3.7 Data and similarity array Exploration 
 
Once the similarity arrays are obtained, a qualitative exploration of a subset of 
observations was made, this exploration seeks to assess the depth of information 
encapsulated within the similarity arrays and to scrutinize their accuracy in 
relation to potential keyframes and pivotal moments present in the video. 
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Fig 13. Similarity array Exploration. Video observations paired with both similarity vectors, 
Sc and CFSc, we also display the ground truth for the windows. A, B, D and G display clear 
patterns for both vectors. F displays a ground truth scene cut that are not clearly reflected 
on the vectors. C displays a more erratic signal specially on the CFSc.  

A
 
B 

 

C 
 
D

 

F 
 
G 

 

 
We also explored the CFSc alongside a continuous SSIM index(Wang et al., 
2004) based array and the window ground truth. The objective was to do a 
qualitative assessment on how well the CFSc performs against an Image-to-
Image comparison metric. We can observe that the CFSc follows a similar pattern 
to the continuous SSIM, although the range on the signal produced seems to be 
lower, where similarity distances between the frames rarely fall under the 0.5 
threshold. When we compare the cuts predicted by CFSc < 0.85 with the window 
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ground truth, we can observer that the continuous frame similarity tends to fit the 
boundaries of the windows. 
 
Fig 14. Continuous similarity exploration. Video observations paired with continuous 
frame similarity and continuous frame SCC, we also display the ground truth for the 
windows. A, B, C cut detections using the CFSc approach really well the ground truth. D 
fails to properly detect the cuts. 

 
A

 

 

B 
 

C 
 
D 

 

F
 
G
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3.8 Selection methods 
 

3.8.1 VC1: Similarity array comparision with treshold λ 

 
This is the most basic selection method, we defined a threshold λ, and for every 
similarity sn in the similarity array Sc, we evaluate if the value of Sn is over the 

threshold λ, if this is the case, we consider the Fn a relevant frame. obtaining a 
vector of selected frames Sf={0,1 … 1}, 

 
To obtain windows from the array of selected frames, we first create a window for 
every group of continuous selected frames in the Sf vector. Then we use those 
windows and the similarity array Sc to calculate the confidence of the window. 
where the wconfidence is the mean of the similarities within the window, Finaly, we 
introduce a second threshold β and select every window with wconfidence > β. 

 
 

                                                Fig 15. VC1 selection method. 
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3.8.2 VC2: Continuous frame similarity-based window method  

 
This method leverages the continuous frame similarity array CFSc to detect scenes 

changes within the video. Given a threshold α for each cfsn in the CFSc array, if 

cfsn falls below the threshold α we evaluate if any of the contiguous frames cfsn-1 

and cfsn+1 are above the threshold α, if this is the case, we consider that a change 

of scene has occurred. Afterwards we introduce a factor p and a second threshold 

λ, and for each scene we use the similarity array Sc and p to evaluate the 

confidence score within the boundaries of the window, if the confidence score of 
the scene is above the threshold λ the scene is considered relevant and is 

selected. Finally, if multiple contiguous scenes are selected those scenes are 
fused together. 
 

 

Fig 16. VC2 Selection method. 
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3.9 Similarity array postprocessing 
 
Parallel to the selection methods described above, we defined three 
postprocessing methods for the similarity array Sc., The objective of this 
postprocessing is to normalize and further enhance the differentiation between 
relevant and non-relevant frames within the Sc. The three methods selected are 
the following: 
 

1- Min-max normalization per Sc basis: 
 

𝑆𝑐′ =
𝑆𝑐−𝑚𝑖𝑛(𝑆𝑐)

(𝑚𝑎𝑥(𝑆𝑐)−𝑚𝑖𝑛(𝑆𝑐))

  (5) 

 
2- Min-max normalization within the boundaries of all the Sc obtained from 

all the videos in the dataset, where TscMax = max({Sc1, Sc2 ... Scn }) and 
TscMin.= min({Sc1, Sc2 ... Scn }) 

 

𝑆𝑐' =
 𝑆𝑐 − 𝑇𝑠𝑐𝑀𝑖𝑛

(𝑇𝑠𝑐𝑀𝑎𝑥 − 𝑇𝑠𝑐𝑀𝑖𝑛)

   (6) 

 
3- Obtaining the logarithmic values of the Sc to further enhance the 

differentiation between similarities within the Sc, and then, smoothing 
the Sc to get rid of standalone high values. To do the smoothing we 
choosed the Savitzky–Golay filter(Savitzky & Golay, 1964) with sliding 
window M and polynomial order 2, in general terms the Savitzky–Golay 
filter tends to preserve local maxima and minima compared to other 
smoothing techniques. Finally, we normalize the smoothed Sc. 
 
This is: 
 
Extract logarithmic values: 
 

𝑆𝑐 = 𝑙𝑜𝑔(𝑆𝑐)  (7) 

 
Given the Savitzky–Golay function, where sj is an observed value within 
the Sc’, and the values within the Sc’ are treated as a set of m 
convolution coefficients, Ci, according to the expression: 
 

S𝑗 = ∑ 𝐶𝑖

𝑚−12

2
 

𝑖=
 1−𝑚2

2

 s𝑗+𝑖 ,   
𝑚+1

2
≤ 𝑗 ≤ 𝑛 −

𝑚−1

2

    (8) 

        
 
 
 



 

 
 

22 
 

Apply the filter and normalize: 
 

𝑆𝑐’’ =  𝑆𝑎𝑣𝑖𝑡𝑧𝑘𝑦– 𝐺𝑜𝑙𝑎𝑦(𝑆𝑐 , 𝑀 , 2)     (9) 

𝑆𝑐 ''' =
𝑆𝑐 − 𝑚𝑖𝑛(𝑆𝑐'')

(𝑚𝑎𝑥(𝑆𝑐'') − 𝑚𝑖𝑛(𝑆𝑐''))

 

 

3.10 Assessment of pretrained models. 
 
In the evaluation of various pretrained models, we employed the Similarity Array 
Comparison with Normalization method across a spectrum of thresholds 
(λ=[0.5,0.55,0.6,0.65,0.7 ,0.75]). This involves testing the Average IoU to ensure 
the model and pretrained weights selected are the ones that offer the best 
differentiation over a wide range of thresholds. 
 
This selection criterion focuses on the models offered by the OpenCLIP (Cherti 
et al., 2022) project. We narrow our selection to models designed for 3*224*224 
input images, facilitating a comprehensive understanding of their performance in 
the context of similarity array analysis. 
 

3.11 Optimization and evaluation 
 
 
To test the effects of the postprocessing and selection methods first we need to 
select the optimal values for the hyperparameters λ ,α, p and M defined in 
sections 3.8 and 3.9. To do so we use the training split and the Bayesian 
optimization algorithm offered by Optuna (Akiba et al., 2019), the metrics selected 
for the optimization process are  AP at IoU(0.5) for frame selection and R@1 at  
IoU(0.5) for window selection. In both cases we seek to maximize the correct 
detections with IoU > 0.5. 
 
Once the optimal values are chosen for each combination of selection method, 
postprocessing and selection type, we validate the results over the validation 
split. The metrics evaluated and displayed are the ones defined in the section 3.3 
of this document. 
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4. Results 
 

4.2 Assessment of pretrained models. 
 
The results indicated that for input images at size 3*224*224, Vit-B-32 backbones 
with openai or laion2k weights tend to generalize better, and offer a highest IoU 
overall. This means that the distance between good and bad similarity of frame 
embeddings and query embeddings tends to be greater for those models and, 
that for any given threshold, we are able split better between good and bad 
examples.  
 
Fig 17. Pretrained models assessment on IoU >0.5 
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4.2 Validation and assessment of proposed methods 

4.2.1 Frame per video Ground truth: 

 
After the optimization process, we evaluated the vector of selected frames 
against the ground truth, and as we analyzed the results, we didn’t see a major 
improvement for any combination of selection method and preprocessing of the 
similarity array. Even though the smoothing tends to have a slightly higher avg 
IoU for both selection methods, the VC1 and the VC2. 
 

method Sc postprocess accuracy precision recall F1 IoU AP 05 AP 07 

VC1  0.757 0.723 0.615 0.585 0.460 0.429 0.210 

VC1 norm 0.781 0.723 0.629 0.625 0.490 0.473 0.211 

VC1 adjust_norm 0.776 0.759 0.631 0.635 0.505 0.484 0.249 

VC1 log_smooth_norm 0.798 0.700 0.693 0.641 0.517 0.538 0.292 

VC2  0.772 0.703 0.653 0.596 0.481 0.483 0.277 

VC2 norm 0.800 0.666 0.696 0.615 0.501 0.531 0.301 

VC2 adjust_norm 0.776 0.728 0.666 0.625 0.507 0.516 0.292 

VC2 log_smooth_norm 0.804 0.711 0.691 0.647 0.527 0.544 0.314 
Fig 18. Frame per video Ground truth: 

 
A 

 
B

 
C

 

 
Fig 19. Distribution of observations by IoU. A:Non normalized VC1. B Normalized VC1. 
C:Smoothed VC2. 

 
4.2.2 Window per video ground truth: 
  
In the evaluation of the selected windows with the ground truth, for any 
combination of selection method and preprocessing, we could see that the 
smoothing of the Sc had a significant effect on the VC1 selection method. 

Improving by 20 points or more on the major metrics compared with the 

unprocessed similarity array, reaching 57.38 at R@1 and 51.62 mAP at Iou > 0.5.  

 
After looking at the results of the VC2 selection method we detected that the 
effects of the processing of the Sc has a lower impact in the results compared with 
the VC1 selection method. This results were expected given that the windows 
detected using the CFSc. remains fairly constant regardless of the postprocessing 
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of the Sc. This is not the case with the VC1, where windows are determined 

directly using the Sc. 
 

method Sc postprocess R1@0.5 R1@0.7 mAP mAP@0.5 mAP@0.75 mIoU 

VC1 -- 35.34 23.16 16.97 28.53 16.61 34.42 

VC1 norm 37.26 25.61 21.97 38.95 21.72 34.59 

VC1 adjust_norm 45.14 30.05 26.32 44.46 25.77 45.23 

VC1 log_smooth_norm 57.38 36.14 28.48 51.62 27.68 51.38 

VC2 -- 46.86 29.52 22.53 38.08 21.82 46.17 

VC2 norm 47.32 29.98 24.22 41.83 23.62 45.37 

VC2 adjust_norm 41.03 25.55 24.99 43.53 24.21 41.99 

VC2 log_smooth_norm 50.69 33.36 25.19 42.93 24.76 48.03 

 

Reviewing the mAP results by windows lenght. We observed that for any given 
method, and processing of the Sc, the detection of shorter windows performs 
significantly worse than long and middle range windows. Wich can be an 
indication that a lower framerate is needed in the preprocessing of the vídeo. 
 

method Sc postprocess 
MR-long-
mAP 

MR-middle-
mAP 

MR-short-
mAP 

VC1 -- 20.65 17.17 2.82 

VC1 norm 19.6 26.19 4.95 

VC1 adjust_norm 36.76 23.45 3.64 

VC1 log_smooth_norm 33.36 30.91 1.93 

VC2 -- 33.08 19.88 2.46 

VC2 norm 33.22 22.75 3.12 

VC2 adjust_norm 35.97 22.29 3.93 

VC2 log_smooth_norm 33.64 25.22 2.47 

 
Overall, the results from the window per video ground truth systematic evaluation 
are quite promising, specially on the VC1 selection method with Smoothing.  
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4.4 Baseline comparison 
 
Looking at the baseline. We can observe that the VC1 selection method with 
smoothing performs better when compared to other Zero-shot approaches. 
Although still performs significantly worse than other autoencoder models that 
use CLIP and Slowfast as base encoders. 
 

    
R@1 
IoU=0.5 

R@1 
IoU=0.7 mAP@0.5 mAP@0.75 mAP 

multimodal 

Moment-
DETR(w/PT) 

59.78 40.33 60.51 35.36 36.14 

BAM-DETR 64.07 48.12 65.61 47.51 46.91 

QD-DETR 63.06 45.1 63.04 40.1 40.19 

Video Only 

UniVTG(w/PT) 65.43 50.06 64.06 45.02 43.63 

CG-DETR 65.43 48.38 64.51 42.77 42.86 

QD-DETR 62.4 44.98 62.52 39.88 39.86 

UniVTG 58.86 40.86 57.6 35.59 35.47 

Zero-Shot 

SD+C+SW  40.24 25.94 41.74 24.11 24.82 

SD+C+SW (w/PT) 42.12 27.89 43 24.68 25.5 

 VC1+LSN (Ours) 57.38 36.14 51.62 27.68 28.48 

 VC2+LSN(Ours) 50.69 33.36 42.93 27.68 25.19 
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5. Conclusions and future work 
 
 
As a result of this project, we confirmed that by using the similarity on the frame 
embeddings produced by clip its possible to obtain a vector that carries the 
information with a fairly high degree of accuracy of the scene changes within the 
video. We also confirmed that is possible to improve the moment retrieval 
methods developed using CLIP Zero-Shot explored in the state of the art, while 
avoiding external tools to detect scene changes, and instead applying a 
preprocessing to the similarity vector.  
 
We expected a better result on the method that exploits the continuous frame 
similarity array to determine the windows, on the other hand we observed that the 
effects of applying smoothing on the similarity array had a greater effect overall, 
especially on the window detection of the similarity comparison method, which 
surpassed our expectations. 
 
Although we archived our initial goal to leverage CLIP Zero-Shot capabilities to 
obtain a model that its able to detect relevant moments within a video and improve 
the developed methods by doing a systematic assessment of the effect of 
preprocessing of the continuous similarity array. The results of the developed 
method still fall short when compared with the state-of-the-art models that couple 
a decoder on top of CLIP encoders. 
 
On the positive side by applying our systematic assessment methodology, we 
develop a comprehensive study on the effect of different preprocessing 
techniques upon the similarity array, that to our knowledge, hasn’t been done 
before. Even though, the development of the pipeline for that systematic 
reproducible assessment has taken a longer than expected, robbing us from a 
precious time to explore some machine learning oriented techniques. By following 
our methodology and avoiding the development of a machine learning approach, 
we can confidently say that in general terms the ethical-social challenges are 
restricted, and directly linked, to the ones faced in the development of the CLIP.  
  
In short, as output of the project, we produced a model that is capable of 
proposing segments of a video given a textual query, allowing the users to 
perform a search over the total length of the video, helping them to detect relevant 
moments in within. We also performed a comprehensive comparison of 
preprocessing techniques to better enhance Zero-shot methods that use 
similarity arrays as input features. In future works, we can expand of the 
preprocessing techniques, explore the effects of increasing the framerate on the 
proposed methods and implement a more machine learning oriented approach. 
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6. Glossary 
 
CLIP: Contrastive Language–Image Pretraining 
VLP: Video Lange Processing. 
CNNs: Convolutional Neural Networks 
ViT: Visual transformers 
Cs : Similarity Vector 
CFSc: Continous frame Similarity vector 
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