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A B S T R A C T

Traditional dynamic energy management methods optimize the energy usage in wireless sensor nodes adjusting
their behavior to the operating conditions. However, this comes at the cost of losing the predictability in the
operation of the sensor nodes. This loss of predictability is particularly problematic for the battery life, as it
determines when the nodes need to be serviced. In this paper, we propose an energy and relevance-aware
monitoring method, which leverages the principles of self-awareness to address this challenge. On one hand,
the relevance-aware behavior optimizes how the monitoring efforts are allocated to maximize the monitoring
accuracy; while on the other hand, the power-aware behavior adjusts the overall energy consumption of the
node to achieve the target battery life. The proposed method is able to balance both behaviors so as to
achieve the target battery life, at the same time is able to exploit variations in the collected data to maximize
the monitoring accuracy. Furthermore, the proposed method coordinates two different adaptive schemes, a
dynamic sampling period scheme, and a dual prediction scheme, to adjust the behavior of the sensor node.
The evaluation results show that the proposed method consistently meets its battery lifetime goal, even when
the operating conditions are artificially changed, and is able to improve the mean square error of the collected
signal by up to 20% with respect to the same method with the relevance-aware behavior disabled, and of
up to 16% with respect the same algorithm with just the adaptive sampling period or the dual prediction
scheme enabled. Consequently showing the ability of the proposed method of making appropriate decisions
to balance the competing interest of its two behaviors and coordinate the two adaptive schemes to improve
their performance.
1. Introduction

The use of wireless sensor nodes is becoming more prevalent with
the passing of time. The increasing adoption of this technology is
mainly driven by the ever-growing focus on data analytics [1]. Ex-
tracting information from the collected data enables multiple use cases
such as predictive maintenance [2], structural health monitoring [3],
health care [4], and environmental monitoring [5], between many
others. Within the current data-centric mindset, wireless sensors play
a facilitator role, allowing the collection of data in a flexible, low-
cost, and simple-to-deploy way [6]. These advantages of wireless sensor
nodes are obsoleting the more traditional wired counterparts.

Wireless sensor nodes are self-contained devices, and thus, are
constrained in terms of available memory, processing power, and en-
ergy. Commonly, wireless sensor nodes are battery-powered [7], and

∗ Corresponding author at: Universitat Politècnica de Catalunya, Spain.
E-mail addresses: david.arnaiz@upc.edu (D. Arnaiz), francesc.moll@upc.edu (F. Moll), eduard.alarcon@upc.edu (E. Alarcón),

xvilajosana@worldsensing.com (X. Vilajosana).

extending the battery life is still one of the biggest challenges for this
technology. This is particularly the case in applications that require
the deployment of sensor nodes in hard-to-reach areas where servicing
the nodes to replace the battery is impractical, limiting the lifetime of
the node to the lifetime of their batteries [8,9]. To extend the battery
life of the node it is paramount to use the available energy as fru-
gally as possible. Usually, sensor nodes operate with a fixed behavior,
which is independent of the monitored environment. Nonetheless, the
environment is dynamic, and one behavior that may be optimal at
a given moment will be suboptimal at a different one. The problem
of dynamically adjusting the behavior of the sensor node based on
the environmental conditions has attracted attention in the research
community, resulting in the definition of a myriad of Dynamic Energy
Management (DEM) schemes [7,10,11]. Adjusting the behavior of the
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node to the operating conditions has been shown to increase the
efficiency of the sensor nodes, allowing them to extend their battery
life with minimal impact on their monitoring accuracy. However, the
increase in efficiency comes at the cost of losing predictability. DEM
schemes, by their very nature, are unpredictable, since they are driven
by environmental conditions.

One of the key parameters for battery-powered nodes is their battery
life. The main maintenance cost for battery-powered nodes is the
battery replacement process. In some environments such as mining,
structural health monitoring, and geotechnical monitoring, the nodes
are placed in hard-to-access locations and any maintenance task needs
to be planned months in advance. Furthermore, it is expected that the
number of nodes per network will continue to increase over time. In
this context, it becomes increasingly important to be able to define the
battery lifetime of the nodes to plan the maintenance efforts in advance
and homogenize their battery lifetime, so that multiple sensors can be
serviced with a single visit [12].

The unpredictability of DEM explains why traditional, static, ap-
proaches are still the standard in commercial applications, and more
particularly so in safety-critical applications. In these applications,
the loss in predictability is unacceptable and cannot be justified by
increased efficiency. At a first glance, it may seem that there is a trade-
off between efficiency and predictability. Nevertheless, a solution to
this problem can be devised by applying the notion of self-awareness.
For the context of the work presented here, self-awareness can be
defined as the ability of a system to obtain knowledge about itself and
its environment, use this knowledge to make appropriate decisions au-
tonomously, and act upon these decisions to achieve its goals [13,14].
Self-awareness changes the way environmental uncertainties are han-
dled. Traditionally, the responsibility of defining the device behavior
rested on the device designer. Under this view, the device designer
has to model the behavior of the device under all possible operating
conditions and define a set of configurations for the device, which will
result in it accomplishing its operational goals. If the device’s behavior
is unpredictable, the designer would be unable to model it and define
the appropriate configurations. Self-awareness changes this paradigm
so that the responsibility of defining the device’s appropriate configu-
ration is handed to the sensor node and is performed at runtime [15].
Using its increased level of awareness the sensor node autonomously
adjusts itself based on the operating conditions to achieve its goals. The
predictability of the sensor node will no longer come from our ability to
model its behavior, but it will rather come from the operational goals
we define for it. Considering the previous example with the battery
lifetime, instead of defining the sampling period required to reach the
target battery life, the target battery life can be defined as the goal
of the sensor node. In this example, even if the sampling period is
unknown at any given moment, we would still be able to know the
battery life, since it was defined as a goal.

In this article, we present an energy and relevance-aware monitor-
ing method, which leverages the principles of self-awareness so that
once the battery lifetime target has been specified, it autonomously
allocates the energy consumption so as to maximize the monitoring
accuracy, while complying with the specified battery lifetime goal.
Therefore taking advantage of temporal variability of the signal, as
DEM methods, without having to sacrifice the predictability of their
battery life. Furthermore, the proposed monitoring method has been ex-
tended to support two different control parameters of the node, i.e., the
sampling period of the sensor node and the rate of samples that are
transmitted using the radio interface using a dual prediction scheme.
The proposed method models the effect in terms of energy consumption
and monitoring accuracy of the two parameters dynamically adjusts
them based on their energy and data relevance criteria. The main
contributions of this work are summarized as follows:

• we modified the dual predictor scheme to operate on a fixed trans-
mission rate, instead of requiring to use the maximum tolerated
2

transmission error;
• we enhanced the energy and relevance-aware monitoring method
to support multiple control variables, specifically the sampling
period and the transmission rate of the sensor node, and manage
both variables effectively in a coordinated manner;

• the proposed monitoring method has been evaluated using data
from three different sources (atmospheric pressure, relative hu-
midity, and light intensity), and two additional tests where the
operating conditions were manually altered to stress the moni-
toring method;

The rest of the article is organized as follows. Section 2 gives an
overview of the relevant works related to dual prediction, dynamic
sampling, and energy-aware operation in the area of wireless sensor
nodes. Section 3 introduces the proposed dynamic monitoring method.
The experimental setup and the simulation results are presented in
Sections 4 and 5. Finally, Section 6 winds up the article by outlining
the main conclusions derived from this study.

2. Related work

2.1. Relevance-awareness

For the context of this article, ‘‘relevance’’ is used as a metric of
how much information is conveyed by the observed data. The principle
behind these methods is to decrease the monitoring efforts, and thus,
save energy when the relevance is low; so as to use this extra energy
to increase the monitoring effort when the relevance is high.

2.1.1. Adaptive sampling
Wireless sensor nodes wake up periodically to take a measurement,

process it and transmit it through their wireless interface. Adaptive
sampling schemes dynamically adjust the period between measure-
ments (i.e., the sampling period) based on the perceived relevance
of the data at the current moment. In [16], Das et al. use temporal
correlation to calculate the utility of the sensor’s observations. Then,
they use reinforcement learning to dynamically adjust the sampling
rate of the node. Silva et al. introduce LiteSense in [17]. LiteSense
uses the mean deviation of the monitored signal to adjust the sampling
rate. The mean deviation provides a low overhead approximation of
the temporal correlation, making it interesting for its use in resource-
constrained sensor nodes. The Kruskal–Wallis test is used in [18] by
Tayeh et al. as the base parameter to adjust the sampling rate in a
sensor node. The Kruskal–Wallis test provides an estimation of the
variance of the measurements, which is used as an estimation of the
temporal correlation of the signal. The sampling rate of the sensor
node is calculated using a ‘‘behavior function’’ to take into account
the risk level of the application. In [19], Lou et al. propose using
linear regression to model the signal, and then, the temporal correlation
between the samples is calculated based on the median jitter obtained
after the line fitting has been updated.

2.1.2. Dual predictor scheme
Dual predictor schemes (DPS) use synchronized sample predictors,

one located in the sensor node and the other located in the sink node.
When the sensor node takes a measurement, it compares it with the
predicted value. The data is only transmitted if the prediction error
is outside the tolerated error range, thus reducing the radio usage
by allowing some error in the collected data. In [20] Santini et al.
presented a Least-Mean-Square (LMS) filter used for dual prediction.
In the proposed approach the sink model is only updated using the
transmitted data when the prediction error is out of range. Adero-
hunmu et al. [21] compare a Naive, Fixed-Weighted Moving Average
(WMA), LMS, and ARIMA (AutoRegressive Integrated Moving Average)
predictors; evaluating their accuracy and computational cost. In their
evaluation, Aderohunmu et al. ended up favoring the Naive model over

the rest, as it is the simplest method and has comparable characteristics
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to the rest. A combination of an LMS and an LSTM (Long Short Term
Memory) prediction model is proposed by Shu et al. in [22]. The LMS
model is able to predict linear changes in the data, while the LSTM
model is able to predict non-linear changes. During operation, the node
and the sink both use the LMS model. In case the prediction error for
the LMS filter gets out of range, the node will try using the LSTM model.
If the LSTM model is able to predict the measurement, the node will
send a beacon message to the sink as an indication to change the model.
If both prediction models fail, the sensor node will send the raw data
to the sink.

2.1.3. Adaptive sampling and dual predictor scheme
A combination between DPS and an adaptive sampling scheme is

proposed by Tayeh et al. in [18], which was already commented on
in Section 2.1.1. The monitoring method proposed by Tayeh et al.
adjusts the sampling period of the sensor node based on the signal
variability, allowing it to be reduced if the signal is smooth; and the
transmission rate of the DPS method depends on how well the signal
is predicted. Both schemes operate independently from each other
based on their initial configuration settings. In contrast, the monitoring
method presented in this paper manages the adaptive sampling and
DPS in a cooperative way. The sampling period and the transmission
rate of the DPS are dynamically adjusted to comply with the allocated
energy budget, and their respective values are calculated taking into
account the configuration of the other scheme. This does not only
allow controlling both schemes at the same time, but also increases the
dynamic range of the node’s response as if one of the values reaches its
limit, the other value can be recalculated to compensate for this.

2.2. Energy-awareness

All the techniques discussed in Section 2.1 have been shown to out-
perform conventional systematic sampling strategies by exploiting the
temporal correlation in the data. Alternatively, energy-aware methods
adjust the behavior of the sensor node based on the characteristics of
its energy source. Dai et al. in [23] proposed an energy-aware method
to dynamically adjust the charging power of the supercapacitor in a hy-
brid power supply, based on the available charge, the harvested energy
and the modeled event arrival rate to minimize the battery capacity
loss while maintaining a high wake-up success rate. More critically,
energy-aware methods may consider the available energy budget to
guide the adaptive actions. A clear example of this is Heliomote, a
solar-powered sensor node proposed by Kansal et al. in [24], which
is capable of modeling the available solar energy and adjusting its
energy consumption to match the solar energy generation so as to
achieve sustainable operation. The energy consumption of Heliomote
is adjusted by configuring its sampling period. Being able to model the
energy budget of the node is also useful in battery-powered networks to
homogenize the battery lifetime for the nodes. In [12], Martínez et al.
proposed a lean sensing technique to monitor parking spot availability.
The proposed method enables sensor nodes to forecast their power us-
age based on the activity level of the monitored spot and their sampling
period. Then, the sensor nodes are able to adjust their sampling period
to homogenize the battery discharge rate with the other sensor nodes
in the network. These methods are able to satisfy the energy constraints
but are oblivious to the relevance of the observed data.

2.3. Energy and relevance-awareness

Some efforts have been devoted to coordinating relevance-
awareness with energy-awareness. In [25,26], Silva et al. discuss e-
LiteSense, which is an upgrade of their previous work, LiteSense, that
adds some level of energy-awareness to the initial relevance-aware
technique. e-LiteSense technique is able to adjust the sampling rate
based on the mean deviance of the data, and it also adjusts the
reactivity of the adjustments based on the remaining battery charge.
3

It can be noted that there is a clear difference in the energy-awareness
level of e-LiteSense and the example methods discussed in Section 2.2.
The techniques discussed in the previous section had to satisfy a given
constraint. Heliomote had to operate continuously from its harvested
energy, and the lean sensing approach had to homogenize the discharge
rate of the nodes in the network. However, the energy management
done by e-LiteSense does not provide any specific guarantee about
its energy usage, as it only attempts to maximize its battery life in a
best-effort nature. An effort to manage hard energy constraints while
minimizing the monitoring error was proposed by Dang et al. in [27]
with QuARES. The method proposed by Dang et al. uses a DPS to
reduce the energy consumption of the sensor node and dynamically
adjusts the maximum allowed prediction error based on the energy
constraints. The goal of the proposed method is to minimize the
prediction error, while managing the energy consumption based on
the harvested energy. QuARES is partly coordinated by the sink node,
which is responsible for predicting the energy generation, and based on
that allocates the energy budget for the sensor node. The sensor node
monitors the actual energy generation during operation and performs
some adjustments to ensure it remains operating sustainably. Even
though the main objective of QuARES is to minimize the prediction
error, the actual monitored signal is not taken into account to modify
the initial energy allocation. Consequently, it is not able to fully exploit
the variability of the monitored signal.

The adaptive monitoring method presented in this article is an
extension of a previous method presented in a different publication
by the same authors [28]. The initially proposed method was capable
of managing the sampling period of the sensor node to comply with
the battery life target, allocating more resources when the signal was
more variable to improve the overall monitoring accuracy. This method
is not only able to meet its battery lifetime goals at the same time
it outperforms the equivalent systematic monitoring method with the
same battery life in terms of monitoring accuracy. Thus, showing it is
able to allocate energy more efficiently. This work extends the existing
one by introducing a new control variable in the form of the DPS, and
the modeling and decision-making capabilities to split the monitoring
efforts between the two control parameters. Adding the DPS reduces the
energy consumption of the sensor node by reducing the number of radio
transmissions while having minimal impact on the monitoring quality.
Moreover, managing both control parameters in a coordinated way
improves the efficiency of the monitoring method, since the adaptive
action can take into account the impact of adjusting both parameters
and select the most optimal configuration.

3. Energy and relevance-aware adaptive sampling

This section details the proposed energy and relevance-aware dy-
namic monitoring method. All notations used through this document
can be found in Table 1.

3.1. Architecture

The proposed architecture follows a hierarchical agent-based de-
sign, where each agent is responsible for managing one specific task
or module of the sensor node. Similar hierarchical agent-based archi-
tectures have been previously proposed to implement self-awareness
in the context of wireless sensor networks (WSN), [29,30]. This kind
of architecture is highly flexible and scalable, as any change in the
underlying components just requires an update of their respective
agent. It is also simple to scale, as new agents and interactions can be
added in the future. A block diagram of the proposed architecture is
shown in Fig. 1.

• The sensor agent is responsible for managing the data acquisition
task. It reads the data from the internal sensor and computes the
relevance index, which is used by the decision engine to model
the perceived utility of the collected data.
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Table 1
Notation references.

Symbol Meaning

X Moving average of the sampled data.
𝛼 Weight for the X EMA.
S Sample taken by the node’s internal sensor.
V Moving average of the deviation.
𝛽 Weight for the for V𝑖 EMA.
Vmax Maximum value for the mean deviation.
R Relevance index.
R Moving average of the relevance index.
𝛾 Weight for the for R EMA.
Gr Gain of the relevance index.
Ipow Discharge rate of the energy-aware behavior.
Irel Discharge rate of the relevance-aware behavior.
TR Transmission rate target of the DPS.
TRsat Minimum transmission rate of the DPS before saturation.
𝛥t Sampling period.
Qbat Remaining battery charge.
Qtr Charge consumption with radio transmission.
Qntr Charge consumption without radio transmission.
𝜂 Weight for the Qtr and Qntr EMA.
ESR Estimated error of the sampling period.
ETR Estimated error of the DPS.
𝛥Qi Charge consumption since the last iteration.
Iidle Average idle current.
st Step size for the DPS.
stmax Maximum step size for the DPS.
P Proportional Gain of the PI controller.
I Integral gain of the PI controller.

Fig. 1. Proposed agent-based architecture.

• The Radio agent is responsible for managing wireless communi-
cations. It implements the DPS to reduce the number of trans-
missions and reports the transmission rate to the decision engine,
which is used to model and predict the power consumption of the
sensor node.

• The Energy agent monitors the power consumption of the node
with the use of a coulomb counter. It is also responsible for
modeling the battery charge and predicting the effects in terms of
energy consumption of any changes in the sampling period and
the transmission rate.

• The Decision engine coordinates all the agents. The decision engine
observes the data from all the agents, then decides the optimal
configuration based on the operational goals, current operating
conditions, and predicted effect of such configuration in terms
of energy consumption and monitoring accuracy. Finally, the
selected configurations are passed to the agents to guide their
behavior.

3.2. Block diagram

A summary block diagram of the proposed method can be seen in
Fig. 2. The overall method is driven by two behavioral tendencies:
(1) Energy-aware behavior, which is the one responsible for modeling
4

the power consumption and defining the energy budget required to
achieve the target battery life. (2) Relevance-aware behavior, models
the utility of the data, and performs momentary adjustments to the
energy budget allocation to maximize the monitoring accuracy, taking
advantage of the dynamic nature of the monitored data. The energy
budget allocation is defined as a target for the discharge rate of the
sensor node. The decision engine then uses this information to compute
the optimal sampling period and transmission rate so that the target
discharge rate is reached. This process uses the energy consumption
profile model maintained by the energy agent to predict the energy
consumption based on the selected configuration. Finally, the coulomb
counter is used to measure the actual discharge rate of the sensor node
and close the control loop by defining a new discharge rate.

The following subsections explain the different parts of the proposed
algorithm in detail.

3.3. Energy-aware behavior

The energy-aware behavior monitors the consumption profile of the
sensor node, along with the remaining battery life. For simplicity and
generality, the model presented here assumes that the actual usable
charge of the battery is known, and is used as an input parameter
for the proposed model. Every time the sensor node wakes up to
take a measurement, the Energy agent reads the accumulated charge
measurement from the coulomb counter and calculates the charge
consumption since the previous reading.

The remaining battery charge is updated using Eq. (1). The Energy
agent also models the energy cost of performing a full sampling cycle
[

Qtr
]

, and the energy consumed by the node to perform a sampling
cycle when the radio transmission has been avoided

[

Qntr
]

. If there
has been a radio transmission since the last time the coulomb counter
was read, the Energy agent uses Eq. (2) to update the energy cost
of a complete monitoring cycle. Otherwise, it uses Eq. (3) to update
the energy cost of the monitoring cycle with no radio transmission.
It should be noted that because of the energy consumption in sleep
mode, the actual energy cost of a monitoring cycle will depend on the
sampling period. This effect has been ignored since the sensor node is
expected to operate around a constant sampling period only performing
momentary adjustments, and adding this additional parameter would
add unnecessary complexity to the model.

𝑄𝑏𝑎𝑡𝑖 = 𝑄𝑏𝑎𝑡𝑖−1 − 𝛥𝑄𝑎𝑖 (1)

𝑄𝑡𝑟𝑖 = (1 − 𝜂)𝑄𝑡𝑟𝑖−1 + 𝜂𝛥𝑄𝑎𝑖 (2)

𝑄𝑛𝑡𝑟𝑖 = (1 − 𝜂)𝑄𝑛𝑡𝑟𝑖−1 + 𝜂𝛥𝑄𝑎𝑖 (3)

The Energy agent uses this information to define the required
discharge rate to reach the target battery life using Eq. (4).

𝛥𝐼𝑝𝑜𝑤𝑖
=

𝑄𝑏𝑎𝑡𝑖
𝑡𝑙𝑖𝑓𝑒𝑖

(4)

It is possible that the target battery life goal defined for the sensor
node cannot be realistically achieved. In this case, even if the control
variables are set to the maximum, or minimum, allowed, the sensor
node would not be able to operate at the target discharge rate. As a
result of the close loop system, the target discharge rate

[

Ipowi

]

would
be increased to compensate for this effect on the next iteration. If
this effect continues over time, the target discharge rate will start to
drift. When the target discharge rate crosses a predefined threshold,
the sensor node can send a request to the sink node for a new battery
life target and alert that the current target will not be achieved.
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Fig. 2. Simplified block diagram of the proposed adaptive monitoring method.
3.4. Relevance-aware behavior

The relevance-aware behavior allocates the resources based on the
perceived utility of the monitored data. The utility of the signal is mod-
eled by the relevance index. The relevance of the signal is calculated
using the mean deviation as it is a proven and lightweight method [17].
The mean of the monitored signal and the deviance are calculated using
Eqs. (5) and (6) respectively. The Exponential Moving Average (EMA)
prevents the need of storing historical data for the moving average.

𝑋𝑖 = (1 − 𝛼)𝑋𝑖−1 + 𝛼𝑆𝑖 (5)

𝑉 𝑖 = (1 − 𝛽)𝑉 𝑖−1 + 𝛽 ||
|

𝑋𝑖 − 𝑆𝑖
|

|

|

(6)

The data relevance is calculated as the normalized difference between
the current deviation and the average one. For the relevance index in
Eq. (7) the data relevance has the mean relevance index subtracted
to ensure that the mean data relevance is zero. The 𝛾 parameter
from Eq. (8) controls the memory period of the relevance index. If
there has been a large peak in relevance, it will affect the subsequent
measurements as it will have to compensate for the large increase in
relevance. The 𝛾 parameter defines the length of the compensation
period.

𝑅𝑖 =
|

|

|

𝑋𝑖 − 𝑆𝑖
|

|

|

− 𝑉 𝑖

𝑉𝑚𝑎𝑥
− 𝑅𝑖−1 (7)

𝑅𝑖 = (1 − 𝛾)𝑅𝑖−1 + 𝛾𝑅𝑖 (8)

The relevance index is used to adjust the discharge rate target
defined by the energy-aware behavior from (4). The modification is
performed using Eq. (9).

𝐼𝑟𝑒𝑙𝑖 = (1 + 𝐺𝑟𝑅𝑖)𝐼𝑝𝑜𝑤𝑖
(9)

The sign of the relevance index specifies if the monitored signal is
considered more or less important than average, and thus, the sensor
node should allocate more or fewer resources at this moment. The
magnitude provides an indication of how drastic should the changes
be. Since the mean value of the relevance index is zero, it will not
impact the average discharge rate of the sensor node. This is the key
principle behind the coordination between the relevance-aware and
the energy-aware behaviors. While the energy-aware behavior defines
the average discharge rate to achieve the lifetime goals; the relevance-
aware behavior makes momentary adjustments to take advantage of
5

changes in the utility of the signal, without affecting the average
discharge rate. It should be noted that even if the relevance index is not
exactly zero, because of the limited memory in the average relevance
index, the close loop nature of the proposed method will be able to
compensate for any discrepancies.

3.5. Decision engine

The proposed adaptive monitoring method presented here coordi-
nates an adaptive sampling period and a dual prediction scheme. The
decision engine takes the energy budget provided by the energy and
relevance-aware behaviors and allocates it between the two schemes.
The discharge rate of the node can be calculated using Eq. (10).
For simplicity, this equation does not take into account the power
consumption in idle mode as the node will mostly operate around a
constant sampling rate, and thus, it will have very little effect.

𝐼𝑟𝑒𝑙𝑖 =
𝑇𝑅𝑄𝑡𝑟𝑖 + (1 − 𝑇𝑅) +𝑄𝑛𝑡𝑟𝑖

𝛥𝑡𝑖
(10)

Eq. (10) does not provide enough information to split the effort, and
thus, it needs to be complemented by an additional policy. In the work
presented here, a heuristic method is used to ensure that the estimated
error introduced by both methods is kept equal. Nevertheless, different
policies would also be valid.

The maximum error caused by the sampling rate can be calcu-
lated as the maximum possible change of the monitored signal in the
sampling period.

𝐸𝑆𝑅𝑖
= 𝑚𝑎𝑥

( 𝛿𝑆
𝛿𝑡

)

𝛥𝑡𝑖 (11)

The maximum error of the DPS will be the maximum allowed
prediction error. The tolerated error range is the input parameter of
most DPSs [31]. However, in the presented work, the DPS is modified
to use the transmission rate as input instead. This is further described
in Section 3.6. Consequently, the maximum error introduced by the
DPS is not a priori known. The relation between the transmission
rate and the predictor error can be seen in Fig. 3, which shows the
relation between the transmission rate and the prediction error for
multiple sampling periods. The legend in the figure shows the different
represented sampling periods expressed in s. A transmission rate of
one means that all the values are transmitted. The graph clearly shows
two regions of operation, a linear region when the transmission rate is
close to one, and a saturation region for low transmission rates. The
saturation region is the section of the curve where small variations of
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Fig. 3. Transmission rate and prediction error for different sampling periods.

the transmission rate produce large changes in the prediction error.
Consequently, the dual predictor cannot be correctly controlled when
operating in this region, and thus, it should be avoided.

If the dual predictor is forced to operate in the linear region, the
relation between the transmission rate and the predictor error can be
modeled as a line. It should be noted that the sampling period also
has an effect on this relation. As it can be seen in Fig. 3, when the
sampling period increases, the ability of the DPS to predict the signal
decreases. However, the effect of the sampling rate is small compared to
the effect of the prediction error or the transmission rate. Therefore, To
keep the model simple, the relation between the transmission rate and
the prediction error will be approximated by a best-fitting line using
the median sampling period, resulting in Eq. (12).

𝐸𝑇𝑅𝑖
= 𝑎𝑇𝑅𝑖 + 𝑏 (12)

The maximum signal derivative used to estimate the error caused by
the sampling period and the linear approximation used to estimate the
prediction error, are highly dependent on the signal being monitored.
To correctly estimate these parameters, the node can be configured to
undergo an initial training period. During this period, the sensor node
conducts measurements of the monitored signal and calculates its max-
imum derivative and the best-fitting line that relates the transmission
rate to the prediction error.

In the proposed heuristic the estimated errors from Eqs. (11) and
(12) are set equal. Solving in Eq. (10), the sampling period and the
transmission rate can be calculated with Eq. (13) and (14) respectively.

𝛥𝑡𝑖 =
𝑏
(

𝑄𝑡𝑟𝑖 −𝑄𝑛𝑡𝑟𝑖

)

− 𝑎𝑄𝑛𝑡𝑟𝑖

𝑚𝑎𝑥
(

𝛿𝑆
𝛿𝑡

)(

𝑄𝑡𝑟𝑖 −𝑄𝑛𝑡𝑟𝑖

)

− 𝑎𝐼𝑟𝑒𝑙𝑖
(13)

𝑇𝑅 =
𝑚𝑎𝑥

(

𝛿𝑆
𝛿𝑡

)

𝛥𝑡𝑖 − 𝑏

𝑎
(14)

It may happen that the sampling period calculated using Eq. (13) is
outside the allowed range defined for the node. Also, the transmission
rate calculated with Eq. (14) may be in the saturated region or higher
than one. In these cases, the parameter that has gone out of range
can be set to the limit value, while the other parameter is adjusted to
compensate for this effect. This shows that the proposed adaptive mon-
itoring method can take advantage of having two control parameters
to extend its dynamic range. The compensated transmission rate and
sampling period can be obtained using Eq. (15) and (16) respectively.

𝛥𝑡𝑖 =
𝑇𝑅𝑄𝑡𝑟𝑖 + (1 − 𝑇𝑅) +𝑄𝑛𝑡𝑟𝑖 (15)
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𝐼𝑟𝑒𝑙𝑖
𝑇𝑅 =
𝐼𝑟𝑒𝑙𝑖𝛥𝑡𝑖 −𝑄𝑛𝑡𝑟𝑖
𝑄𝑡𝑟𝑖 −𝑄𝑛𝑡𝑟𝑖

(16)

In more extreme cases the sampling period and the transmission rate
can both hit their limit points at the same time. In such conditions, the
sensor node will not be able to follow the target discharge rate Ipowi

,
causing it to drift over time as the control loop tries to compensate for
it. As identified in Section 3.3, if this condition is sustained over time,
the sensor node will raise an alarm.

3.5.1. Adaptive sampling period
The sensor node remains in sleep mode most of the time, only wak-

ing up periodically to take a measurement, process it, and if applicable,
transmit it using its wireless interface. The time between one node
waking up from the event and the next is the sampling period. The
sampling period is managed by setting an alarm in the internal Real-
Time Clock (RTC) of the sensor node. When the defined time has passed
the RTC generates an interrupt to wake up the main microcontroller of
the sensor node, thus, starting a new monitoring cycle. Before going
back to sleep mode, the sensor node updates the next waking up time
on the RTC using the updated value of the sampling period, so it takes
effect immediately.

3.6. Dual prediction scheme

Generally, the wireless interface has the greatest contribution to
the overall energy consumption of wireless sensor nodes [32]. Dual
Predictor Schemes (DPSs) [31] attempt to reduce the number of radio
transmissions using two linked data predictors. A local sample predictor
in the sensor nodes is kept synchronized with an equivalent predictor
located in the server or sink node. When the sensor node collects a
measurement, it compares the measurement with the value predicted
by the model. If the prediction error is within the acceptable error
range, the measurement is not transmitted, so the sink node will
use the value predicted with its model. Otherwise, if the prediction
error is out of bounds, the sensor node sends its measurement to the
sink and both of them update their model with the new value. The
model is only updated using the transmitted values, so no additional
synchronization messages between the node and the sink node are
needed to keep the models aligned. The model update and prediction
procedures are detailed in Algorithm 1, the prediction algorithm is a
first-order LMS [20] predictor with the maximum step size limited to
prevent it from becoming unstable.

Algorithm 1 Common procedures for the dual predictor algorithm
Parameters: stepsize, maxstep

1: procedure UpdateModel(𝜖𝑖,w)
2: st← 𝜖𝑖 ∗ stepsize
3: st ← max (min (st,maxstep) ,−maxstep)
4: w ← w + st
5: return w
6: procedure Predict(Δt𝑖,V𝑐 ,w)
7: p← V𝑐 + Δt𝑖 ∗ w
8: return p

The control parameter of the DPSs is the tolerated prediction error.
However, one of the key aspects of the proposed adaptive monitoring
method is that it manages the discharge rate of the node, and thus,
it is more convenient to directly control the transmission rate. On top
of this, with a conventional DPS, the current transmission rate cannot
be known, since it requires averaging the number of transmissions and
skips over a period of time. The decision engine requires knowledge
about the current transmission rate to estimate the power consumption
of the sensor node and select the appropriate adaptive actions. To
integrate the DPS in the proposed method, the transmission rate needs
to be known and more or less maintained around the target value.
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Fig. 4. Visualization of the dual prediction scheme.

In our proposed method, the DPS uses a proportional–integral (PI)
controller, which automatically adjusts the tolerated prediction error
of the DPS to achieve the target transmission rate. This PI controller
can be seen in Fig. 1. The integral component of the PI controller
ensures that the accumulated error between the target transmission
rate and the obtained one gets compensated over time, and thus, the
energy consumption prediction of the DPS is correct. The output of
the PI controller is forced to remain within a defined operating range.
The operating range is defined between zero, as the prediction error is
in absolute value; and the maximum allowed prediction error, which
is defined based on the application needs. In some cases, because of
the limitation of the tolerated prediction error, the target transmission
rate may not be possible to achieve, causing a windup effect on the
PI controller. To prevent the PI from becoming unstable, whenever
the output of the PI controller has to be limited, the integral error is
set to zero. Resetting the integral error implies that the error in the
transmission rate is not compensated by the DPS, but as it will have
an impact on the energy consumption of the node, it will be later
compensated by the energy-aware behavior of the proposed method.
It should be noted that the DPS is generally expected to operate far
from this limit case, so this will have a limited effect on the overall
behavior of the DPS. The dual prediction algorithm that is running on
the node is described in Algorithm 2.
Algorithm 2 Dual prediction algorithm for the node

Parameters: stepsize, maxstep
1: w ← 0
2: V𝑐 , t𝑐 ←WaitForData()
3: 𝜖𝑐 ← 0
4: while Predictor is running do
5: V𝑖, t𝑖 ←WaitForData()
6: Δt𝑖 ← t𝑖 − t𝑐
7: V𝑝 ← Predict

(

Δt𝑖,V𝑐 ,w
)

8: 𝜖𝑖 ← V𝑖 − V𝑝
9: if |

|

𝜖𝑖|| ≥ 𝜖𝑐 then
10: V𝑐 ← V𝑖
11: TR ← 1
12: t𝑐 ← t𝑖
13: w ← UpdateModel

(

w, 𝜖𝑖
)

14: TransmitData
(

V𝑖
)

15: else
16: TR ← 0
17: 𝜖𝑐 ← ProporcionalIntegralGetError

(

TR,Δt𝑖
)

Another characteristic of the proposed adaptive sampling scheme is
the dynamic sampling period. The sensor node will adjust its sampling
period based on the operating conditions. Consequently, the server or
sink node does not have visibility of the sampling period of the sensor
node. The server will generate samples periodically using its predictor
7

Table 2
Tested adaptive monitoring schemes.

Label Description

Systematic: Opt Systematic with no adaptations.
E & R: Complete Proposed scheme.
E & R: Only Power Only energy-aware.
E & R: Only SR Only adaptive period.
E & R: Only TR Only with DPS.
E & R: Prev Prior publication.

with its own defined period, which may not be aligned with the sensor
node. When a message from the node is received, the prediction model
will be updated in an asynchronous way. Setting a fixed virtual sampling
rate on the server-side, masks the dynamic nature of the sampling
period of the sensor node, allowing the final application to operate
oblivious to it [18]. The algorithm for the dual prediction scheme
running on the sink node is detailed in Algorithm 3.

Algorithm 3 Dual prediction algorithm for the server
Parameters: stepsize, maxstep

1: w ← 0
2: V𝑐 , t𝑐 ←WaitForNodeData()
3: 𝜖𝑐 ← 0
4: while Predictor is running do
5: t𝑖 ←WaitForServerDataUpdate()
6: while DataAvailableFromNode() do
7: V𝑖, t𝑖 ← GetNodeData()
8: Δt𝑖 ← t𝑖 − t𝑐
9: V𝑝 ← Predict

(

Δt𝑖,V𝑐 ,w
)

10: 𝜖𝑖 ← V𝑐 − V𝑝
11: t𝑐 ← t𝑖
12: V𝑐 ← V𝑖
13: w ← UpdateModel

(

w, 𝜖𝑖
)

14: Δt𝑖 ← t𝑖 − t𝑐
15: V𝑝 ← Predict

(

Δt𝑖,V𝑐 ,w
)

16: UpdateServerData
(

V𝑝
)

An example of the DPS in action can be seen in Fig. 4. The fig-
ure shows how both models are updated whenever there is a radio
transmission, which is represented by the green marker, and it can be
seen that they remain perfectly synchronized. In the figure, the server
has a virtual sampling period of 10 s, while the sensor node has an
adaptive period between 50 and 200 s. It can be seen that even if the
virtual sampling period defined on the server side is different from the
sampling period of the node, the DPS is still able to work as expected.

4. Experimental setup

This section details the proof-of-concept simulation used to as-
sess the proposed dynamic energy management method. The proposed
method was compared with a systematic sampling scheme, which does
not apply any kind of adaptations; the equivalent method with no
relevance-aware behavior; the equivalent method but only adjusting
the sampling rate; the equivalent method, but only adjusting the trans-
mission rate; and the method from our previous publication, which
did not use the DPS. The systematic sampling scheme is not able to
manage its energy consumption, so the sampling rate for this scheme
will be manually fixed so that its battery life matches the target battery
life defined for the other methods. For the two methods where one
of the control parameters has been disabled (‘‘𝐸&𝑅 ∶ 𝑂𝑛𝑙𝑦 𝑆𝑅’’ and
‘‘𝐸&𝑅 ∶ 𝑂𝑛𝑙𝑦 𝑇𝑅’’), the disabled parameter is manually set to match
the mean value obtained by the complete method in the simulation.
The reference names used for each of the tested methods are detailed
in Table 2
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4.1. Datasets

Data from three different sources have been used for the simulation
(1) atmospheric pressure, (2) relative humidity, and (3) light intensity.
The dataset contains two different sets of measurements for each of
the considered sources. Each set of data was collected in the same
environment, using the same device, but at different times. One of
the sets was used as training data to adjust the model parameters,
and the other set of data was used to validate the proposed method.
This ensures that the selected parameters have not been overfitted. The
dataset was recorded with a sampling period of 10 s over several weeks.
This dataset have been made publicly available in [33].

The ability to take advantage of the changes in the relevance of the
data is highly dependent on how dynamic is the monitored signal. If
the temporal correlation of the signal is more or less constant over
time, the relevance-aware behavior will have very little effect on the
overall performance of the proposed method. On the contrary, if the
signal has drastic changes in the temporal correlation of the data, the
relevance-aware behavior will have more room for improvement. The
atmospheric pressure data has been selected as it has mostly a constant
temporal correlation. The light intensity data has very large variations
in the temporal correlation as it has periods of darkness with very
little variability, followed by sudden periods of illumination with high
variability. Finally, the relative humidity data sets a nice middle point
in terms of variability of its temporal correlation.

In the simulation, it may be possible that the sampling period of the
evaluated methods is not a multiple of the 10 s sampling period used
to record the original dataset. In such cases, the intermediate values
were obtained as the linear interpolant between the nearest points of
the original data. The interpolant is calculated using Eq. (17), where
S0, S1 are nearest points in the original time series; and t0, t1 are their
respective timestamps.

𝑆𝑖 = 𝑆0 −
(

𝑡𝑖 − 𝑡0
) 𝑆1 − 𝑆0

𝑡1 − 𝑡0
(17)

4.2. Node model

The node model in the simulation is used to calculate the energy
consumption of the sensor node. The energy consumption of wireless
sensor nodes in [34,35] is modeled considering the energy contribution
for each of the different tasks of the node (i.e., sleep, sampling and
processing, and transmission). In the simulation, the energy consump-
tion of the sensor node is evaluated every time it wakes up to take
a measurement using Eq. (18). The charge consumption when there
has been a radio transmission is represented by Qtr , and the charge
consumption without a radio transmission is represented by Qntr . The
energy consumption of the sensor node is also used to generate the
measurement of the coulomb counter measurement, which is an input
parameter for the proposed monitoring method. It should be noted
that the simulation model does take into consideration the current
consumption in sleep mode to accurately model its power consumption.
However, the battery model used in the simulation, still only considers
the usable charge of the battery, so as to avoid chemistry-dependent
effects caused by temperature or discharge rates [36], which would add
unnecessary complications to the simulations.

𝛥𝑄𝑖 =

{

𝑄𝑡𝑟 +𝐻𝑜𝑢𝑟𝑠
(

𝛥𝑡𝑖
)

𝐼 𝑖𝑑𝑙𝑒 if 𝑇 𝑟𝑎𝑛𝑠𝑚𝑖𝑠𝑠𝑖𝑜𝑛
𝑄𝑛𝑡𝑟 +𝐻𝑜𝑢𝑟𝑠

(

𝛥𝑡𝑖
)

𝐼 𝑖𝑑𝑙𝑒 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
(18)

4.3. Computational cost of the energy and relevance-aware monitoring
method

The proposed energy and relevance-aware monitoring method runs
on the sensor node, and thus the energy required to run this method
adds to the total energy consumption of the node. In order for the mon-
itoring method to be practical, the energy saved by the method needs
8

Fig. 5. Typical consumption profile of a wireless sensor node. 𝑋-axis shows the time
in seconds, and the 𝑌 -axis shows the instantaneous current in mA.

to offset the energy overhead it creates. The reference wireless sensor
node utilized in this paper employs a Cortex-M4-based microcontroller
with a clock speed of 48 MHz. This microcontroller has a Floating Point
Unit (FPU), allowing it to perform one floating point operation per
clock cycle. Based on the approximation of less than 1M operations
being introduced by the proposed monitoring method; and with a
processor active current consumption of 20 mA; the cost of running
the proposed monitoring method for a single cycle is 0.115 μAh. The
power consumption required to sample and process the measurement
(a complete cycle without counting the energy required to transmit the
data), for this example sensor node is 0.04 mAh. It should be noted
that to collect a measurement, most of the energy consumption of the
sensor node is due to the warm-up time of the sensor node and the
oversampling of the sensor data, as shown in Fig. 5. The figure is a
capture of the node’s current consumption during a complete monitor-
ing cycle taken from a power profiler, which shows the different tasks
of the node. In general, it can be seen for the reference sensor node
considered for this paper, the energy overhead caused by the proposed
method is negligible compared to the energy required to acquire the
data.

4.4. Performance metrics

The battery and node models from Section 4.2 are used to model
the remaining battery life and the energy consumption of the nodes.
Comparing the battery life achieved in the simulation with the target
battery life provides a direct indication of the ability of the evaluated
method to reach the target battery life.

Assessing the monitoring accuracy of the node is not so straightfor-
ward, more so, considering that for each of the evaluated models, the
samples may be collected at different times. To compare the data, it
is resampled to match the 10 s period of the original dataset. For the
methods that use the DPS, the predictor on the server side was directly
used to resample by setting the virtual sampling period to 10 s. For the
rest of the models, a Naive predictor [21] was used to resample the
data. Finally, the monitoring accuracy is assessed by computing the
Mean Squared Error (MSE) and Mean Absolute Error (MAE) between

the resampled signal and the original. The quadratic nature of the MSE
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Table 3
Common simulation settings.

Symbol Value Symbol Value

𝛼 0.1 Iidle 0.1 mA
𝛽 0.1 𝛥Qntr 0.19 mAh
𝛾 0.0005 𝛥Qtr 0.04 mAh
Gr 10 𝜂 0.1
Qmax 2500 mAh st 0.000001
𝛥tmin 50 s stmax 0.000005
𝛥tmax 200 s P 0.05
tlife0 400 h I 0.1
TRsat 0.2

makes it more sensitive to large error spikes, while the MAE will be
more representative of the average error.

𝑀𝑆𝐸 = 1
𝑛

𝑛
∑

𝑖=1

(

𝑋𝑖 − �̂�𝑖
)2 (19)

𝑁𝑀𝐸 = 1
𝑛

𝑛
∑

𝑖=1

|

|

|

𝑋𝑖 − �̂�𝑖
|

|

|

(20)

where Xi is the sample from the evaluated method and X̂i is the sample
from the original dataset.

5. Experimental results

The simulation results are presented in this section. The proposed
adaptive monitoring method has been tested in five different tests.
The first three tests evaluate the proposed method using data from
three different sources of data (atmospheric pressure, relative humidity,
and intensity light). The fourth test modifies the operating conditions
during the simulation to evaluate the ability of the evaluated method
to react to changes. The final test is a more severe version of the fourth
test, where the operating conditions are modified to the point that
the sensor nodes can no longer meet their battery life. The fifth test
demonstrates the ability of the proposed method to recognize this issue
and request a new target.

The generic configuration parameters for the simulation are shown
in Table 3. This table contains the general parameters for the simu-
lation, such as the power consumption of the sensor node, maximum
and minimum sampling period values, etc. Along with some configu-
ration settings of the proposed method. It should be noted that these
configuration settings have little effect on the actual performance of the
proposed method, and thus, they do not need to be adjusted depending
on the data source. On top of these, there are some parameters that
are set specifically for each of the evaluated sources of data from
Section 4.1.

5.1. Atmospheric pressure data

The specific configuration parameters used for the atmospheric
pressure simulations are detailed in Table 4.

The atmospheric pressure data is used as an example of a data
source where the data relevance is mostly constant, and therefore, the
relevance-aware behavior will have very little effect on the overall
result. The results from the simulation are shown in Table 5. As can be
seen, all the evaluated methods have a battery life of 400 h. Figs. 6, 7, 8
show the evolution over time of the sampling period, the transmission
rate, and the discharge rate respectively. During this test, the control
parameters from all the tested schemes are very similar. This is to be
expected since the atmospheric pressure data has very little variability
in its data relevance. All of the tested methods are able to outperform
the 𝑆𝑦𝑠𝑡𝑒𝑚𝑎𝑡𝑖𝑐 ∶ 𝑂𝑝𝑡 scheme and the 𝐸&𝑅 ∶ 𝑃𝑟𝑒𝑣 methods, which are
the only methods that do not implement the DPS. Allocating some error
budget to the DPS allows the sensor node to decrease the sampling
period, without affecting the monitoring accuracy in a significant way.
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Table 4
Configuration settings for the atmospheric pressure simulation.

Symbol Value

a −11.915 Pa
b 11.741 Pa
max (dS∕dt) 1.766E−05 Pa∕ms

Fig. 6. Sampling period over time for the atmospheric pressure simulation.

Fig. 7. Transmission rate over time for the atmospheric pressure simulation.

Using our proposed method (𝐸&𝑅 ∶ 𝐶𝑜𝑚𝑝𝑙𝑒𝑡𝑒) resulted in a reduction
of 2.5% and 1.2% of the MSE and MAE respectively, compared with
the systematic method (𝑆𝑦𝑠𝑡𝑒𝑚𝑎𝑡𝑖𝑐 ∶ 𝑂𝑝𝑡); and a reduction of 2.1% and
1.1% of the MSE and MAE respectively compared with our previous
method (𝐸&𝑅 ∶ 𝑃𝑟𝑒𝑣). It should be noted that the atmospheric pressure
data is presented as a worst-case scenario where the proposed method
is expected to have minimal impact.

5.2. Relative humidity data

The specific configuration parameters used for the relative humidity
simulations are detailed in Table 6.

The relative humidity data is used as an example of a data source
with intermediate variability in its data relevance. The result from the
simulation can be seen in Table 7. As in the previous test, all the
evaluated methods were able to successfully reach the target lifetime
of 400 h. The simulation results show that all the evaluated methods
that include the DPS, have an average sampling period close to the
minimum allowed, and the transmission rate is close to the saturation
point. Therefore, most of the error is allocated to the DPS, indicating
that it is much more effective than the adaptive period for this data
source. This is further confirmed in Figs. 9–11. For this data source,
the complete method and the method only adjusting the SR obtained
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Table 5
Atmospheric pressure simulation results.

Scheme Battery Life [h] MSE [Pa2] MAE [Pa] Avg Period [ms] Avg TR

Systematic: Opt 399.46 28.841 4.164 109 300 1.000
E & R: Complete 400.07 28.115 4.113 95 520 0.839
E & R: Only Power 400.08 28.431 4.139 95 510 0.839
E & R: Only SR 400.06 28.371 4.130 95 091 0.834
E & R: Only TR 400.14 28.352 4.140 95 505 0.838
E & R: Prev 400.05 28.707 4.157 109 462 1.000
Fig. 8. Discharge rate over time for the atmospheric pressure simulation.

Table 6
Configuration settings for the relative humidity simulation.

Symbol Value

a −11.469%
b 4.937%
max (dS∕dt) 7.604−05 %∕ms

Fig. 9. Sampling period over time for the relative humidity simulation.

the same results, since for this data source both methods maintained the
DPS close to its saturation point and only controlled the sampling rate.
Using our proposed method (𝐸&𝑅 ∶ 𝐶𝑜𝑚𝑝𝑙𝑒𝑡𝑒) resulted in a reduction
of 17.5% and 18.1% of the MSE and MAE respectively, compared
with the systematic method (𝑆𝑦𝑠𝑡𝑒𝑚𝑎𝑡𝑖𝑐 ∶ 𝑂𝑝𝑡); a reduction of 16.8%
and 17.3% of the MSE and MAE respectively compared with our
previous method (𝐸&𝑅 ∶ 𝑃𝑟𝑒𝑣); and a reduction of 19.5% and 12.24%
of the MSE and MAE respectively compared with the method without
relevance-aware behavior (𝐸&𝑅 ∶ 𝑂𝑛𝑙𝑦 𝑃 𝑜𝑤𝑒𝑟).

5.3. Light intensity data

The specific configuration parameters used for the light intensity
simulations are detailed in Table 8.
10
Fig. 10. Transmission rate over time for the relative humidity simulation.

Fig. 11. Discharge rate over time for the relative humidity simulation.

The light intensity data shows large variations in its data relevance,
and consequently, it is the data source where the relevance-aware
schemes are expected to have the greatest effect. Figs. 12–14 clearly
show this, as the period, transmission rate, and discharge rate suffers
greater variations on all the methods with the relevance aware behavior
enabled. The result from the simulation can be seen in Table 9. In
this test, the proposed scheme is able to outperform all the other
evaluated methods, including the other relevance-aware schemes. The
proposed method (𝐸&𝑅 ∶ 𝐶𝑜𝑚𝑝𝑙𝑒𝑡𝑒) was able to reduce the MSE and
MAE by 41.3% and 22.4% respectively compared with the systematic
method (𝑆𝑦𝑡𝑒𝑚𝑎𝑡𝑖𝑐 ∶ 𝑂𝑝𝑡); by 22.7% and 9.8% compared with our
previous method (𝐸&𝑅 ∶ 𝑃𝑟𝑒𝑣); and by 10.1% and 20.7% respec-
tively compared with the method without the relevance-aware behavior
(𝐸&𝑅 ∶ 𝑂𝑛𝑙𝑦 𝑃 𝑜𝑤𝑒𝑟).

In Table 8, it can be seen that the method with only control over
the transmission rate (𝐸&𝑅 ∶ 𝑂𝑛𝑙𝑦 𝑇𝑅) obtained a higher MSE than
the method without the relevance-aware behavior, however, the MAE
was lower for this method. For the light intensity data, increasing the
sampling period during the periods of high variability decreases the
time it takes to detect a change in the light level, which introduce high
peak errors and thus increase the MSE. By not being able to increase the
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Table 7
Relative humidity simulation results.

Scheme Battery Life [h] MSE [%2] MAE [%] Avg Period [ms] Avg TR

Systematic: Opt 399.46 0.120 0.105 109 300 1.000
E & R: Complete 400.16 0.099 0.086 50 003 0.312
E & R: Only Power 400.13 0.123 0.098 50 003 0.312
E & R: Only SR 400.17 0.099 0.086 50 005 0.312
E & R: Only TR 400.11 0.117 0.108 50 003 0.312
E & R: Prev 400.06 0.119 0.104 109 463 1.000
Table 8
Configuration settings for the light intensity simulation.

Symbol Value

a −18.006 lx
b 8.344 lx
max (dS∕dt) 10.139−06 Lx∕ms

Fig. 12. Sampling period over time for the light intensity simulation.

Fig. 13. Transmission rate over time for the light intensity simulation.

sampling periods during these moments, the 𝐸&𝑅 ∶ 𝑂𝑛𝑙𝑦 𝑇𝑅 method
was not able to reduce the MSE.

5.4. Reaction test

The reaction test evaluates the ability of the proposed monitoring
method to react to changes in the operating conditions, while still
being able to accomplish the battery life goals and exploit relevance-
awareness. The reaction test was performed using the atmospheric
pressure data with the relevant configurations from Table 4. During
the reaction test, at the 200 h mark, the radio power consumption
Qtr was increased from 0.19 mAh to 0.29 mAh. In Figs. 15, 16, and
17, the event time is marked by a horizontal purple line. In Fig. 17
it can be seen that the discharge rate is not visibly affected after
11
Fig. 14. Discharge rate over time for the light intensity simulation.

Fig. 15. Sampling period over time for the event simulation.

the event, however, the transmission rate and the sampling period do
change as a consequence of the event. This is the case because the
node continuously monitors the energy consumption and recomputes
the control parameters with every activation. It should be noted that
the transmission rate represented in Fig. 16 appears to react to the
change before it takes place. This only appears to be the case because
the transmission rate signal represented in the plot has been smoothed
using a Gaussian kernel. This needs to be done because the transmission
rate is either 1 if there has been a transmission or 0 if it was skipped,
and the relevant parameter is the average transmission rate. The results
from the simulation are shown in Table 10. As can be seen, all the
energy-aware schemes evaluated are able to achieve the target battery
life. Consequently, showing the ability of these schemes to successfully
react to the event. The results also show that the proposed monitoring
method is able to outperform the rest by obtaining a lower MSE and
MAE. It can be noted that for this test case, the systematic method
obtained lower MSE and MAE values, but this is only the case because
it used more energy than the other methods, as can be seen by its lower
battery life.
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Table 9
Light intensity simulation results.

Scheme Battery Life [h] MSE [lx2] MAE [lx] Avg Period [ms] Avg TR

Systematic: Opt 399.46 40.651 0.901 109 300 1.000
E & R: Complete 400.11 23.857 0.699 61 491 0.445
E & R: Only Power 400.12 26.528 0.882 59 761 0.425
E & R: Only SR 400.10 25.029 0.758 63 423 0.467
E & R: Only TR 400.10 28.468 0.726 61 770 0.448
E & R: Prev 400.09 30.844 0.775 109 465 1.000
Table 10
Event simulation results.

Scheme Battery life [h] MSE [Pa2] MAE [Pa] Avg period [ms] Avg TR

Systematic: Opt 330.69 28.823 4.155 109 300 1.000
E & R: Complete 400.09 29.119 4.188 104 848 0.824
E & R: Only Power 400.04 29.144 4.193 104 866 0.824
E & R: Only SR 400.09 29.309 4.208 103 248 0.807
E & R: Only TR 399.90 29.977 4.252 95 600 0.671
E & R: Prev 400.08 29.823 4.232 122 193 1.000
Fig. 16. Transmission rate over time for the event simulation.

Fig. 17. Discharge rate over time for the event simulation.

5.5. Extreme reaction test

There may be situations where achieving the target battery life is
not feasible within the allowed operating range. In such cases, the
energy-aware behavior should detect this condition and promptly no-
tify the server to request a more realistic battery life target. The extreme
reaction test assesses the effectiveness of the proposed monitoring
method in recognizing when the battery life cannot be met, requesting
a new battery life target, and making the appropriate adjustments to
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comply with the new goal. As in the previous test, it uses the atmo-
spheric pressure data with the relevant configurations from Table 4.
For the extreme reaction test, at the 200 h mark, the radio power con-
sumption Qtr was increased from 0.19 mAh to 2 mAh. When the target
battery life cannot be achieved, the power index will start drifting. For
this simulation, the sensor nodes were programmed to raise an alarm at
any point of the simulation if the power index decreased below −100.
After this alarm, the target battery life was updated from 400 h to 250
h.

Fig. 19 shows the remaining battery charge through the simulation,
once the event takes place, which is marked by the vertical purple line,
the remaining battery charge starts to decrease rapidly. As can be seen
in Fig. 18, not all the methods detect the alarm at the same time. The
time at which the alarm is raised can be seen by the sudden increase
in their discharge rate, as the monitoring methods adjust for the new
battery life target. The complete and only power-aware methods take
the longest to raise the alarm since they are both able to maintain the
previous discharge rate for some time, even after the event takes place.
In contrast, our previously proposed method is the first to raise the
alarm, since it is unable to maintain the current discharge rate. This
shows that being able to adjust the sampling period and the transmis-
sion rate extends the range at which the proposed monitoring method
can adapt. Moreover, this is further confirmed by the fact that the
𝐸&𝑅 ∶ 𝑂𝑛𝑙𝑦 𝑆𝑅 and our previously proposed method cannot correctly
adjust even after the new battery life target is passed, and start to drift
at the end of the simulation. Overall, the results demonstrate that the
proposed monitoring method is not only capable of detecting when the
battery life target cannot be realistically achieved, but also dynamically
adjusting when the battery life target is changed at runtime.

5.6. Analysis of the experimental results

The DPS used in the proposed monitoring method was modified
so that the transmission rate is kept at the specified value using a
PI controller. The ability of the PI to control and maintain a fixed
transmission rate can be seen in Figs. 7, 10 and 16, as the transmission
rate for the proposed method with only the adaptive sampling rate
enabled, is kept approximately constant. For the light intensity data,
Fig. 13, it can be seen that there is some variability in the transmission
rate since this signal experiences large changes in variability when
the sensor is suddenly illuminated. During this period, the required
prediction error to maintain the specified transmission rate becomes
larger than the maximum error setting of the DPS, and thus it cannot
be achieved. At this point the anti-windup mechanism acts, allowing it
to recover once the period of high variability ends.

One of the key aspects of the proposed monitoring method is its
ability to comply with hard energy constraints, by being able to achieve
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Fig. 18. Discharge rates measured during the extreme event simulation.

Fig. 19. Discharge rate over time for the extreme event simulation.

the target battery life. This is managed by the energy-aware behavior
of the proposed monitoring method. The tests demonstrate that the
proposed method is able to successfully meet the battery life target for
the three different data sources, even when the operating conditions
are artificially modified. The extreme event test shows that when the
target battery life target is unachievable with the current operating
constraints (e.g., power consumption of the sensor node, maximum
sampling period, etc.), the proposed monitoring method is able to
detect this condition and raise an alarm. The extreme event test also
illustrates that the proposed method is able to adjust to changes in its
operational goals at runtime.

The other key aspect of the proposed monitoring method is its
relevance-aware behavior, which is responsible for efficiently allocating
energy in order to increase the monitoring accuracy without impacting
the energy-aware behavior. The tests show that enabling the relevance-
aware behavior resulted in a reduction between 1.1 and 19.5% of the
MSE and between 0.6 and 20.7% of the MAE; and an improvement
between 2.5 and 41.3% in the MSE and between 1.7 and 28.9% in the
MAE with respect to the systematic scheme.

This paper proposed an improved monitoring method that builds
upon a previously presented approach by introducing cooperative man-
agement of two energy management schemes, namely an adaptive
sampling rate and a DPS. By adding an additional energy manage-
ment method, our newly proposed method enhanced the monitoring
accuracy with a reduction between 2.1 and 22.7% in the MSE and
a reduction between 1.1 and 17.3% of the MAE compared with our
previously proposed method. Furthermore, The experimental results
reveal that this joint control approach enhances the monitoring accu-
racy, with up to 4.7% reduction of the MSE and up to 7.8% of the
MAE compared to the method that adjusts only the sampling period.
Similarly, compared to the method that adjusts only the transmission
13
rate, the proposed approach obtained up to 16.2% reduction of the
MSE and 20.3% reduction of the MAE. During the tests, the disabled
control variable of the partial methods was set to the average value for
such variable obtained in the simulation of the complete energy and
relevance-aware monitoring method. Hence, the improvement in accu-
racy is solely attributed to the coordinated management of both control
variables. Moreover, the coordination of both control parameters allows
compensating for the effect of one of them reaching its control limit
by adjusting the over parameter. This effectively extends the adaptive
range of the sensor node. The extended adaptive range was evident in
the extreme event test case, as the monitoring method with only the
adaptive sampling period enabled, and our previously proposed method
were unable to adjust to the new operating conditions.

6. Conclusions

In this paper, we propose a lightweight energy and relevance-aware
monitoring method, which leverages the principles of self-awareness so
the sensor node is able to comply with a battery lifetime goal, while
it efficiently allocates its resources based on the operating conditions
to improve the monitoring accuracy. We demonstrate the ability of
our proposed monitoring method to meet the battery life target, even
when the operating conditions are changed at runtime. Moreover,
our monitoring method achieved a reduction of up to 19.5% in the
MSE of the collected signal, compared to the proposed method with
the relevance-aware behavior disabled. Thus, showing the ability to
exploit changes in the temporal correlation of the collected data to
improve its energy allocation. The monitoring method proposed in this
paper Builds upon our existing method [28], which only considered
one control parameter (i.e., the sampling period), by adding a new
control parameter (i.e., a DPS) and the ability to jointly manage both
schemes. Our newly proposed method was able to achieve a reduction
in the MSE of the collected signal by up to 22.6% compared with our
original method. We modified the DPS so that it maintains a specified
transmission rate, making it possible to estimate its expected energy
consumption and its integration with the proposed monitoring method.
The join control of both operation parameters showed to improve not
only the dynamic response of our proposed method allowing it to adjust
a wider set of operating conditions, but it also resulted in a reduction
of up to 16% of the MSE compared to the monitoring methods where
one of the control parameters was set static at a predefined value.

One of the main limitations of the monitoring method presented in
this paper is the need for a training period to estimate the error con-
tribution of the adaptive sampling period and the DPS. Future versions
of this method will create and maintain their own models at runtime,
eliminating the need for a training period. Another future work is to
evaluate this model using a non-linear battery model, where there may
be some uncertainty in the amount of usable charge. Furthermore,
having an accurate model of the battery will allow the node to optimize
the discharge based on chemistry-specific properties [8], adding a
supercapacitor in a hybrid power supply configuration [37], or even
using an energy harvesting device so the energy budget changes over
time [24].

Overall, the proposed method supposes a further step in the intro-
duction of self-awareness at the wireless sensor node level, by enabling
the monitoring method to decide between multiple adaptive actions. To
do so, the monitoring method has to be able to predict the impact of
each action in terms of energy consumption and monitoring accuracy
that the new configuration has on the node, and select the best op-
tion. Currently, the proposed monitoring method prioritizes the battery
lifetime and optimizes the monitoring accuracy on a best-effort basis.
a higher level of awareness will be achieved if the node was able to
manage multiple competing goals and use its predictive capabilities to
prioritize between them. Future publications will focus on enhancing
the level of awareness in wireless sensor nodes, guiding the transition
toward self-awareness.
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