
OPTIMIZING QUANTUM CIRCUITS FOR EFFICIENT EXECUTION
ON SUPERCONDUCTING HARDWARE: A CASE STUDY OF THE

CUCCARO ADDER

TECHNICAL REPORT

Ricard-Santiago Raigada-García∗
Department of IT, Multimedia and Telecommunications

Universitat Oberta de Catalunya
Rambla del Poblenou, 156, 08018, Barcelona, Spain.

rraigadag@uoc.edu

April 5, 2024

ABSTRACT

This technical report delves into the practical aspects of efficiently implementing quantum algorithms
on superconducting quantum hardware. A theoretical and practical framework on the compilation
of quantum programs is offered. In particular, three fundamental compilation steps are covered:
qubit mapping, routing, and gate scheduling. Essential for translating high-level algorithms into real
hardware implementations. The Cuccaro adder is used, a contribution to quantum arithmetic that
allows efficient addition to be performed using a single ancilla qubit. This report shows the practical
application of these compilation phases, with special emphasis on optimizing circuit performance for
superconducting quantum hardware.

Keywords Quantum Computing · Quantum Circuit Compilation · Qubit Mapping · Routing · Gate Scheduling ·
Superconducting Quantum Hardware · NISQ Era · Cuccaro Adder · Optimization Techniques

1 Introduction

Quantum computing is surpassing the current physical
capabilities that limit classical computing, including su-
percomputers. In fact, currently on AWS you have access
to QuEra—Aquila which has 256 qubits based on neu-
tral atoms. Classical supercomputers can try to simulate
at most 50 to 100 qubits Preskill [2012]. Therefore, one
of the main benefits is high computing power (quantum
supremacy). It has been announced by large companies
in the sector that in no more than a decade they will have
quantum computers with around 1000 qubits (governed by
Moore’s law).

However, it is only one of the many benefits. Among these,
I can highlight the double storage capacity or computa-
tional space due to the superposition capacity of classical
bits, and the benefit of being governed by the laws of
quantum mechanics to model events that are given in na-
ture itself. Particularly, in the field of quantum machine
learning, one of the great advantages is adiabatic quan-

tum computing, since it is capable of finding the global
optimum of non-convex objective functions Wittek [2014].
All of this translates into the ability to model and predict
natural events from your own real simulation. In fact, in-
formation theory suggests that the universe is a quantum
computer and that the world can be encoded by qubits.
This is explained by Seth Lloyd, professor at MIT, in the
book Programming the universe.

1.1 Purpose and Scope of Work Performed

This work focuses on aspects related to the efficient and
real implementation of quantum algorithms on quantum
hardware. Therefore, it offers a theoretical and practical
framework for the compilation of quantum programs. Com-
pilation involves going from a high-level description of a
quantum algorithm to a sequence of operations executable
and interpretable by a quantum processing unit. Funda-
mentally, maximum efficiency, maximization of quantum
resources, parallelization of quantum gates and maximiza-
tion of quantum coherence are required.

∗https://thedatascientist.digital/

https://orcid.org/0009-0009-9684-4745
https://thedatascientist.digital/


Optimizing Quantum Circuits for Efficient Execution on Superconducting Hardware: A Case Study of the Cuccaro
Adder TECHNICAL REPORT

The work is specifically focused on three fundamental
compilation steps: mapping, routing, and quantum gate
scheduling. These three steps are fundamental to trans-
lating a quantum algorithm to implementation on real
hardware. Likewise, ensuring the efficient and effective
implementation of the resulting circuits for maximum per-
formance optimization.

2 Theoretical fundament

2.1 Qubit Mapping

Logical qubits must be mapped to physical qubits in a
quantum processor with the goal of minimizing the num-
ber of additional operations required. The mapping of
qubits faces different complexities that involve everything
from decoherence due to applying an excess of gates, de-
coherence due to an incorrect physical distribution strategy
to connectivity between qubits regarding quantum archi-
tecture. Effective mapping involves minimizing the com-
putational cost associated with a quantum circuit.

To achieve a correct mapping of logical to physical qubits,
hardware connectivity and program interaction are con-
sidered. To evaluate hardware connectivity, it is usually
done using graphs that represent the physical connections
between qubits in a processor.

To achieve this, the physical qubits are represented as
nodes, and the edges represent the ability to perform two-
qubit operations in parallel. In relation to the interaction
of the program, the dependencies and interactions between
logical qubits in a quantum circuit are evaluated. Each
node represents the logical qubit, and the edges represent
two-qubit operations.

2.2 Qubit Routing

Once qubit mapping is done, routing performs circuit tun-
ing so that two-qubit operations only occur between ad-
jacent physical qubits in the hardware. In the context of
NISQ machines, commonly when you have a long-distance
two-qubit gate, it is solved by moving one of the qubits
closer to the other through a chain of gates SWAP Ding
and Chong [2020].

2.3 Scheduling gate

Gate scheduling is the sequencing of quantum operations
in time that aims to minimize the total execution time of a
circuit. Likewise, allowing the parallelization of quantum
operations. This problem involves assigning start times
to each operation to respect the dependencies between
the gates. To efficiently program the gates, the duration
of the gates, the dependencies between them and parallel
execution are considered.

2.4 Cuccaro adder

The three main phases of compilation of quantum pro-
grams: mapping, routing and and scheduling of the gates;
will be applied to the Cuccaro adder. This is a contribu-
tion to quantum arithmetic where efficient addition is per-
formed using a ripple carry method. This implementation
allows the use of a single ancilla qubit, thereby minimizing
quantum hardware resources. This method is introduced by
Cuccaro et al. in his article: A new quantum ripple-carry
addition circuit Cuccaro et al. [2004].

The foundation of the Cuccaro adder is the carry through
the majority function MAJ(ai, bi, ci). Cuccaro et al.
[2004] propose ci + 1 = MAJ(ai, bi, ci) for i ≥ 0 and
the sum si = ai ⊕ bi ⊕ ci, which recursively computes the
sum and carry operations for n-bit numbers.

The original formula for the carry operation is given by:

ci + 1 = aibi ⊕ aici ⊕ bici

And the sum bit by:

si = ai ⊕ bi⊕ ci for all i < n, and sn = cn.

2.5 Practical implementation

In this work, theory has been translated into practice with
an implementation based on the concepts and formulas
derived from Cuccaro et al. [2004]. The majority gates and
UMA have been built as a fundamental components of the
quantum circuit. These gates capture the core logic of the
Cuccaro adder.

The MAJ gate is implemented as follows:

1 maj_c = QuantumCircuit (3, name=’MAJ’)
2 maj_c.cx(2, 1)
3 maj_c.cx(2, 0)
4 maj_c.ccx(0, 1, 2)
5 maj = maj_c.to_gate(label=’MAJ’)

Implementation of the MAJ gate

The implementation that decomputes the majority and adds
the bits, UMA gate, has used the 2-CNOT and 3-CNOT
versions. This allows greater parallelization of the circuit.

1 # 2-CNOT version of UnMajority
2 uma2_c = QuantumCircuit (3, name=’UMA2’)
3 uma2_c.toffoli(0, 1, 2)
4 uma2_c.cx(2, 0)
5 uma2_c.cx(0, 1)
6 uma2 = uma2_c.to_gate(label=’UMA2’)
7

8 # 3-CNOT version of UnMajority
9 uma3_c = QuantumCircuit (3, name=’UMA3’)

10 uma3_c.x(1)
11 uma3_c.cx(0, 1)
12 uma3_c.toffoli(0, 1, 2)
13 uma3_c.x(1)
14 uma3_c.cx(2, 0)
15 uma3_c.cx(2, 1)

2



Optimizing Quantum Circuits for Efficient Execution on Superconducting Hardware: A Case Study of the Cuccaro
Adder TECHNICAL REPORT

16 uma3 = uma3_c.to_gate(label=’UMA3’)

Implementation of 2-CNOT & 3-CNOT

Figure 1: Theoretical implementation of Cuccaro et al.
Cuccaro et al. [2004] of the 2-CNOT version

Figure 2: Theoretical implementation of Cuccaro et al.
Cuccaro et al. [2004] of the 3-CNOT version

2.6 Quantum circuit

The Cuccaro adder circuit has been implemented by apply-
ing the MAJ gate to the input and ancillary bits. Later to
the UMA gate to complete the sum. The final implementa-
tion can be seen in the figures 3 and 4

Figure 3: Implementation of the circuit with high-level
gates

Figure 4: Implementation of the decomposed circuit in basic gates

In figure 4 a decomposition of the circuit into a set of basic
gates has been carried out. This decomposition is due to
the limitations of current quantum hardware. To ensure
compatibility, the high-level gates MAJ and UMA have
been translated into the operations supported by the QPU.
QisKit’s transpiler has been used to map the constructed
adder circuit to the basis gates CX, RX, H, and RZ. The
CX gate represents the controlled-NOT operation, RX is
the rotation around the X-axis of the Bloch sphere, H is
the Hadamard gate which creates superposition, and RZ is
the rotation around the Z-axis.

3 Proposed method

To address the objectives of the notebook, which include
the effective implementation of the compilation phases
in a specific quantum environment, a structured method
is followed that combines theoretical and experimental
approaches. This method is articulated around the op-
timization of quantum circuits for execution on specific
quantum hardware, using advanced software tools. The
key aspects of this method are detailed below.

To meet the objectives of this work, a sequential implemen-
tation of the different compilation phases of a program in a
quantum environment is used, in the manner described in

the theoretical foundations. Advanced software tools such
as Python, Qiskit, Numpy, GateWrapper and NetworkX
have been used.

3.1 Description of Methods Used

Firstly, the implementation of the Cuccaro adder described
in the theoretical foundations and which is known for its
application in quantum arithmetic has been carried out.
The circuit has been decomposed into basic quantum gates
that are universal for quantum hardware.

Secondly, a qubit mapping has been carried out to map
logical qubits to physical qubits based on the typology of
the quantum hardware described. Theoretical implications
have been considered, such as the objective of minimizing
interactions and maintaining circuit fidelity using SWAP
gates.

Thirdly, a simulation of the schedule gate has been carried
out. A programming of quantum gates is developed with
simulated start times of each operation.

3.2 Specification of Quantum Hardware Used

The quantum hardware used for the experimental execution
of the optimized circuit is superconducting. An example

3



Optimizing Quantum Circuits for Efficient Execution on Superconducting Hardware: A Case Study of the Cuccaro
Adder TECHNICAL REPORT

of such quantum hardware is the IBM Q IBM. To use this
hardware, the number of available qubits, their charac-
teristics, decoherence and error rates must be taken into
account and how they can be minimized in the era of NISQ
machines.

3.3 Software and Programming Tools

To implement the method and optimize the circuit for the
specific hardware (simulated), the following software tools
are used:

• Qiskit - Open source framework for working with
quantum circuits and running them on simulators
and real quantum hardware.

• NetworkX: Used to create and manipulate com-
plex data structures such as graphs, which are
essential for qubit mapping and routing strate-
gies.

• NumPy: Used for numerical calculations and ma-
trix manipulations.

4 Experiments and Results

4.1 Mapping programs to quantum hardware

The goal of mapping logical to physical qubits is to mini-
mize the computational cost associated with interactions
between qubits that are not directly connected. So this is an
optimization problem where the minimization of the total
distance of the shortest paths for all interactions between
qubits must be found.

4.1.1 Mathematical formulation

An interaction graph is defined as G = (Q,E) where Q is
the set of qubits and E is the set of edges representing in-
teractions between qubits. Each edge e(u, v) has a weight
w(u, v) that represents the interaction frequency between
the qubits u and v in the quantum circuit. The distance
d(u, v) is the length of the shortest path between the qubits
u and v once they have been mapped to the hardware.

The goal is to minimize the following metric:

Minimize
∑
u∈Q

∑
v∈Q

w(u, v) · d(u, v)

subject to the constraints of the quantum hardware topol-
ogy.

4.1.2 Heuristic Approach

This is a type of problem widely studied in graph theory.
There are many algorithms that try to provide a solution.
Some of them are the Dijkstra algorithm or the Bellman
- Ford algorithm. This is a type of problem with NP-hard
computational complexity. So a heuristic approach can be
used to find the feasible solution. The steps to follow are:

• Interaction weighting: we calculate a weight ma-
trix W where Wij = w(i, j) if there is an inter-
action between the qubits i and j , and Wij = 0
otherwise.

• Distance calculation: we use the shortest path
algorithms to calculate the distance matrix D in
quantum hardware, where Dij is the shortest dis-
tance between the qubits i and j in the hardware.

• Heuristic assignment: we proceed to map the log-
ical qubits to the physical ones, prioritizing those
pairs with greater weights to minimize the total
sum of the weighted distances.

A Python function has been used that executes the previous
procedure and returns a dictionary with the assignment of
each logical qubit to the physical one. The dictionary has
the following form:

1 Mapping: {Qubit(QuantumRegister (4, ’q’),
1): 0, Qubit(QuantumRegister (4, ’q’)

, 2): 1, Qubit(QuantumRegister (4, ’q’
), 0): 3, Qubit(QuantumRegister (4, ’q
’), 3): 2}

Mapping dictionary

The mapping obtained is:

Figure 5: Graph resulting from applying the mapping with
a heuristic approach

4.2 Routing two qubit interactions

Once the previous approach has been carried out, we pro-
ceed to route two qubit interactions. It will be considered
that if two qubits are not adjacent in hardware, a SWAP
will be performed to make them adjacent, the appropriate
gate from the circuit will be executed and a SWAP will
be performed again to return them to their original posi-
tion. One of the objectives is to make the routes with the
smallest number of SWAP possible.

4



Optimizing Quantum Circuits for Efficient Execution on Superconducting Hardware: A Case Study of the Cuccaro
Adder TECHNICAL REPORT

4.2.1 Mathematical representation of SWAP

The SWAP gate swaps the states of two qubits, qi and
qj . Mathematically, it is represented by the unitary matrix
SWAP:

SWAP =

1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1


The SWAP operator is reversible and does not alter the
global state of the system, except for the exchange of state
amplitudes.

4.2.2 Floyd–Warshall algorithm

The Floyd-Warshall algorithm computes the shortest path
between each pair of vertices in a single run. The algo-
rithm iterates through all possible intermediate vertices,
updating the shortest distance between each pair of ver-
tices, considering whether the intermediate vertex could
provide the shortest path.

The shortest path matrix D is updated as follows for each
pair of vertices (i, j), considering an intermediate vertex
k:

D
(k)
ij = min(D

(k−1)
ij , D

(k−1)
ik +D

(k−1)
kj )

where D
(k)
ij is the weight of the shortest path from i to j

using only the vertices between 1 and k as possible inter-
mediate vertices.

For the routing of interactions of two qubits, the Floyd-
Warshall algorithm is used to deterministically calculate
the shortest path, since it is not an optimization problem
but rather a matter of finding a fixed metric: the minimum
distance for necessary exchanges.

4.2.3 Quantum Routing Algorithm

To implement quantum routing theory, in practice a Python
function has been created that facilitates two-qubit opera-
tions between non-adjacent qubits.

1. A new circuit is initialized with the same number
of qubits as the target hardware.

2. The shortest path between every pair of hardware-
grade nodes is calculated using the Floyd-
Warshall algorithm. In this way, the number
of minimum SWAPs for temporal adjacency is
known.

3. Subsequently, it is iterated over each quantum
gate of the original circuit:

• For a single qubit the gate is applied directly
to the mapped qubit.

• For two qubits:
– If they are adjacent in hardware, the gate

is applied.
– Otherwise, the shortest path is used to

perform the SWAP operations, the gate
is executed and the SWAP gates are ap-
plied in reverse order.

The adjacency achieved with SWAP is important to pre-
serve quantum coherence and correlation between qubits.

4.2.4 Optimization and Complexity

The approach used minimizes the number of SWAP opera-
tions needed to reduce quantum errors and execution times.
The Floyd-Warshall algorithm has a complexity of O(n3)
for n qubit hardware. The more gates are applied, the
greater the need and payback of applying this algorithm.

Figure 6: Routing result

4.3 Gate Scheduling

In real hardware, the computation of different gates entails
different execution times, both at the gate level and at the
level of the total quantum circuit. Therefore, to minimize
delays and possible quantum errors due to decoherence,
the start times of each of the gates must be scheduled.

4.3.1 Mathematical foundations

As seen above, the circuit has dependencies and each node
(qubit) may have to wait for some quantum dependencies.
The dependency graph G, where each node is a quantum
gate and each edge a dependency; if a gate g1 must be exe-
cuted before g2 then there exists a directed edge g1 → g2.

The execution time associated with each gate is denoted as
T (g) for a gate g. For the case study, the execution time

5



Optimizing Quantum Circuits for Efficient Execution on Superconducting Hardware: A Case Study of the Cuccaro
Adder TECHNICAL REPORT

is constant T1. For example, for CNOT gates, the time is
TCX.

S(g) represents the optimal execution time and should
minimize the latest completion time of any gate, always
considering the dependency constraints:

minmax
g∈G

(S(g) + T (g))

subject to:

S(g2) ≥ S(g1) + T (g1) ∀(g1 → g2) ∈ G

4.3.2 Practical implementation

A Python function has been created that allows implement-
ing the theoretical framework mentioned above. The func-
tion uses the SWAP decomposition and the dependency
graph to calculate the start time as well as the maximum
qubit release times. The function also accepts a parameter
in the form of a dictionary, where the duration of each gate
is specified.

The result is a dictionary of GateWrapper objects that rep-
resents the execution time and minimizes the total exe-
cution time while respecting the dependencies between
gates. The result of the final circuit with all the phases
implemented is the one in the figure 7.

Figure 7: Final circuit after implementation of the scheduling gate

5 Discussion

This work has presented a structured sequence of the essen-
tial steps to compile a quantum circuit on superconducting
hardware. The implementation of the techniques described
in the Cuccaro adder has been explored and routing and
gate scheduling have been carefully demonstrated.

The mapping of logical to physical qubits has been proven
important for circuit optimization, allowing a reduction in
the additional operations required. Likewise, routing is
effective for the interaction between pairs of qubits that
are not adjacent in hardware. Highlighting the importance
of applying the minimum number of SWAP gates.

Finally, the importance of managing the execution time of
each of the gates has been highlighted to adapt the circuit
to parallelization processes and to minimize the quantum
error; especially significant in the NISQ era. Through time
management, it is possible to maximize the efficiency of
the total execution time of the circuit.

6 Conclusions and Future Work

The application of quantum optimization techniques al-
lows us to reduce the possibility of errors, improve circuit
fidelity and better manage quantum resources. The decom-
position and reconfiguration of quantum gates into basic
elements has allowed the circuit created with high-level
gates to be executed on current hardware.

Regarding the practical applicability of this work, the pro-
cedures and practical recommendations have been verified
to improve the compilation and execution tasks of quantum
circuits on real hardware. The theoretical algorithms, as
well as the pseudocodes provided, offer a guide that allows
direct implementation of optimization strategies.

In future work, it is expected that gate scheduling processes
can be optimized to evolve in parallel with the develop-
ment of more complex and hardware-demanding quantum
algorithms.

The contribution of this technical report lies in presenting
a comprehensible and reproducible framework on quan-
tum circuit optimization. Valuable for researchers and
practitioners in the field of quantum computing.

This report concludes the need for an in-depth under-
standing of quantum theory and practical implementation
methodologies that often offer a multidisciplinary perspec-
tive. Involving graph theory experts and data scientists,
as well as software and hardware engineers, specialists in
hardware compilation.

References
John Preskill. Quantum computing and the entanglement

frontier. 3 2012. URL http://arxiv.org/abs/1203.
5813.

Peter Wittek. Quantum Machine Learning: What Quantum
Computing Means to Data Mining. Elsevier, 8 2014.
ISBN 9780128009536. doi:10.1016/C2013-0-19170-2.

Yongshan Ding and Frederic T. Chong. Quantum Com-
puter Systems. Springer International Publishing, 2020.
ISBN 978-3-031-00637-1. doi:10.1007/978-3-031-
01765-0.

Steven A. Cuccaro, Thomas G. Draper, Samuel A. Kutin,
and David Petrie Moulton. A new quantum ripple-carry
addition circuit, 2004.

IBM. Ibm quantum computing | technology. URL
https://www.ibm.com/quantum/technology.

6

http://arxiv.org/abs/1203.5813
http://arxiv.org/abs/1203.5813
https://doi.org/10.1016/C2013-0-19170-2
https://doi.org/10.1007/978-3-031-01765-0
https://doi.org/10.1007/978-3-031-01765-0
https://www.ibm.com/quantum/technology

	Introduction
	Purpose and Scope of Work Performed

	Theoretical fundament
	Qubit Mapping
	Qubit Routing
	Scheduling gate
	Cuccaro adder
	Practical implementation
	Quantum circuit

	Proposed method
	Description of Methods Used
	Specification of Quantum Hardware Used
	Software and Programming Tools

	Experiments and Results
	Mapping programs to quantum hardware
	Mathematical formulation
	Heuristic Approach

	Routing two qubit interactions
	Mathematical representation of SWAP
	Floyd–Warshall algorithm
	Quantum Routing Algorithm
	Optimization and Complexity

	Gate Scheduling
	Mathematical foundations
	Practical implementation


	Discussion
	Conclusions and Future Work

