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Abstract In this paper, we consider the problem of anonymization on directed
networks. Although there are several anonymization methods for networks, most
of them have explicitly been designed to work with undirected networks and they
can not be straightforwardly applied when they are directed. Moreover, ignoring
the direction of the edges causes important information loss on the anonymized
networks in the best case. In the worst case, the direction of the edges may be used
for reidentification, if it is not considered in the anonymization process. Here, we
propose two different models for k-degree anonymity on directed networks, and
we also present algorithms to fulfill these k-degree anonymity models. Given a
network G, we construct a k-degree anonymous network by the minimum number
of edge additions. Our algorithms use multivariate micro-aggregation to anonymize
the degree sequence, and then they modify the graph structure to meet the k-
degree anonymous sequence. We apply our algorithms to several real datasets and
demonstrate their efficiency and practical utility.
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CentraleSupélec, University of Paris-Saclay and Inria Saclay
Gif-sur-Yvette, France
E-mail: fragkiskos.malliaros@centralesupelec.fr

Michalis Vazirgiannis
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1 Introduction

In recent years, a huge amount of social and human interaction networks have
been made publicly available. Embedded within this data, there is user’s private
information that must be preserved before releasing the data to third parties and
researchers. The study by Ferri et al. [16] reveals that up to 90% of user groups
are concerned by data owners sharing data about them. Backstrom et. al. [1] point
out that the simple technique of anonymizing graphs by removing the identities of
the vertices before publishing the actual graph does not always guarantee privacy.
In particular, they have shown that an adversary can infer the identity of the ver-
tices by solving a set of restricted graph isomorphism problems. It is evident that
network anonymization processes become an important issue under this scenario.

Several methods have been developed to protect users’ privacy on networks, but
none of them has been designed specifically for directed networks. Some methods
remove the direction of edges in order to convert directed networks to undirected
ones and then they utilise undirected algorithms to protect users’ privacy. This
has two drawbacks. First, if the published network is undirected, the direction of
the edges is lost, hence in the published version there may be connected nodes
that were not connected by a directed path in the original directed graph. Second,
if the network is anonymized without considering the direction of the relations,
then this information may be used for reidentification, that is the case when con-
sidering k-degree anonymization without considering the direction of the edges.
However, removing the direction of the edges produces a severe loss of information
regarding the structure of the network, in the sense that the in-degree and out-
degree of each node are combined into a single characteristic that is anonymized
using models designed for undirected networks. There are cases where we are in-
terested to treat the in-degree and out-degree sequences of a graph in a different
manner – and not as the combined undirected degree – during the anonymization
process. For example, in Twitter’s who-follows-whom social graph, one may be in-
terested to consider different levels of anonymity for the in-degree (followers) and
the out-degree (followees) of a user, as the out-degree may contain more sensitive
information (e.g., in the case of a celebrity), and is also relevant to consider the
direction of the relation (who follows whom), since the flow of information goes
only in one direction (e.g., a celebrity does not knows what his followers post).

1.1 Our contributions

In this paper, we define two k-anonymity models specifically designed for directed
networks. Additionally, we present algorithms to implement these models and em-
pirically demonstrate their practical application on real directed networks. Since
these graphs have no attributes or labels on the edges, information is contained
only in the structure of the graph itself and, due to this, preserving network’s struc-
ture and edges’ direction are critical to reduce information loss. The contributions
of this work can be summarized as follows:

– We define two different models for k-anonymity on directed networks, offering
different privacy protection levels.

– We introduce algorithms to achieve the desired privacy levels based on the
previously proposed models.
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– We show that our algorithms are able to deal with large networks of thousands
and millions of vertices and edges, demonstrating their practical utility in real-
world problems.

– We conduct an empirical evaluation of these models on several real networks,
comparing information loss based on different graph properties and also on
clustering-specific processes.

– We demonstrate that our models preserve data privacy, while simultaneously
conduct the anonymization process towards reducing information loss and in-
creasing data utility.

1.2 Notation

Let G = (V,A) be a directed and unlabeled graph (also called digraph), where V
is the set of vertices (or nodes) and A the set of arcs (or edges) in G. We define
n = |V | to denote the number of vertices and m = |A| to denote the number of
arcs. We use (vi, vj) ∈ A to denote a directed arc from vertex vi to vj but not

vice versa. Finally, we denote by G = (V,A) and G̃ = (Ṽ , Ã) the original and the
perturbed graph produced by the anonymization process, respectively.

1.3 Roadmap

This paper is organized as follows. In Section 2, we review the related work and
the state of the art on privacy-preserving methods for networks. Section 3 intro-
duces the preliminary concepts and our k-anonymity models for directed graphs.
Then, in Section 4, we propose algorithms to fulfill the privacy levels pointed out
by our models1. Our experimental framework is provided in Section 5, and then
we discuss the results in terms of information loss and data utility in Section 6.
Experiments about scalability issues are presented in Section 7. Lastly, we discuss
the conclusions of this work and future research directions in Section 8.

2 Related Work

The k-anonymity model was introduced in [36,37] for privacy preservation on
structured or relational data. Formally, the k-anonymity model is defined as fol-
lows: let RT (A1, . . . , An) be a table and QIRT be the quasi-identifier associated
with it. RT is said to satisfy k-anonymity if and only if each sequence of values in
RT [QIRT ] appears with at least k occurrences in RT [QIRT ]. The k-anonymity
model indicates that an attacker can not distinguish between different k records
although he manages to find a group of quasi-identifiers. Therefore, the attacker
cannot re-identify an individual with a probability greater than 1

k .
Several concepts can be used as quasi-identifiers for k-anonymity on graph

structured data. A widely applied option is to use the vertex degree as a quasi-
identifier. Accordingly, we assume that the attacker knows the degree of some
target vertices. If the attacker identifies a single vertex with the same degree in

1 The source code for the paper is available at: https://jcasasr.wordpress.com/software/dga

https://jcasasr.wordpress.com/software/dga/
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the anonymous graph, then he has re-identified this vertex. That is, deg(vi) 6=
deg(vj) ∀j 6= i. This model is called k-degree anonymity [25] and these methods
are based on modifying the graph structure (by edge modifications) to ensure
that all vertices satisfy k-anonymity for their degree. In other words, the main
objective is that all vertices have at least k − 1 other vertices sharing the same
degree. Furthermore, Liu and Terzi [25] developed a method based on dynamic
programming and edge switch in order to construct a new k-degree anonymous
graph, where V = Ṽ and E∩ Ẽ ≈ E. Their work inspired many other authors who
proposed improved solutions based on different kinds of heuristics, such as [29,19,
6,10].

Instead of using the vertex degree, Zhou and Pei [40] consider the 1-neighbourhood
subgraph of the objective vertices (Γ (v)) as a quasi-identifier. For a vertex v0 ∈ V ,
v0 is k-anonymous in G if there are at least k − 1 other vertices v1, . . . , vk−1 ∈ V
such that Γ (v0), Γ (v1), . . . , Γ (vk−1) are isomorphic. They demonstrated that the
neighborhood anonymity problem for vertex-labeled graphs is NP-hard. Other
authors modeled more complex adversary knowledge and used them as quasi-
identifiers. For instance, Hay et al. [21] proposed a method called k-candidate
anonymity, where a vertex v0 is k-candidate anonymous with respect to question
Q if there are at least k − 1 other vertices in the graph with the same answer.
Formally, |candQ(v0)| ≥ k where candQ(v0) = {vj ∈ V : Q(v0) = Q(vj)}. A graph
is k-candidate anonymous with respect to question Q if all of its vertices are k-
candidate with respect to Q. Zhou et al. [42] and Zhou and Pei [41] considered
all structural information about a target vertex as quasi-identifier and proposed
a new model called k-automorphism to anonymize a network and ensure privacy
against this attack. They define a k-automorphic graph as follows: (a) if there exist
k − 1 automorphic functions Fa(a = 1, . . . , k − 1) in G, and (b) for each vertex
vi in G, Fa1(vi) 6= Fa2(1 ≤ a1 6= a2 ≤ k − 1), then G is called a k-automorphic
graph.

Rossi et al. [32] studied the problem of k-degree anonymization on time-varying
(and multilayer) graphs. Let G = {G1, . . . , GT } be a time-varying graph with a
fixed set of vertices V , where |V | = n. In other words, G is defined as a sequence of
undirected graphs Gt = (V,ET ), t = 1, . . . , T , where Et denotes the set of edges
at time t. Also, let D = {dit} be the n× T degree matrix, where dit is the degree
of the i-th node of Gt. We say that matrix D is a set of k-anonymous vectors, if
for every row di: there are at least k − 1 vectors dj: such that dit = djt, for each
t = 1 . . . , T . Then, a time-varying graph G is defined to be k-degree anonymous,
if the degree D defines a set of k-anonymous vectors. Similar to the work of Liu
and Terzi [25], the authors of [32] propose a three-step approach where firstly
they enforce anonymity, then enforce realizability, and finally construct the graph.
However, their realizability constraints are only for undirected graphs.

All the aforementioned methods work only with simple and undirected graphs,
and it is not straightforward to extend those methods to directed networks. The
näıve approach to convert digraphs to undirected graphs, anonymize them and fi-
nally transform back to directed graphs, causes severe perturbations to the graph’s
structure. We will provide an empirical example of such approach in Section 6.
Other works focus on the problem of edge-weight anonymization, e.g., [13] aims
at anonymizing the weights of a graph with the aim of preserving the utility for
algorithms such as the Minimum Spanning Tree – thus, emphasizes at preserving
the inequalities among the edge weights; [24] protects the weights of the edges
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by adding Gaussian noise to them. To sum up, those methods preserve the edge
weights and not the amount of edge relations, hence, they cannot be adapted
to degree anonymity for directed networks. Alternatively, other types of privacy-
preserving methods can easily be extended to work with directed networks, such
as randomization techniques [17] or class-based generalization techniques [2,12].

However, [2,12] consider preventing an attacker from learning interactions be-
tween entities, which is equivalent to protecting against edge disclosure in bipartite
graphs, that for example may represent users and interactions, or costumers and
products. The authors of [17] aim at explicitly preserve the degrees of the nodes
while randomizing the graphs. Thus, even when adapted for directed graphs, those
approaches may still be vulnerable to attacks based on the degrees.

Therefore, in this paper, we are interested in proposing a k-anonymity model
specifically designed for directed networks and also to develop algorithms to pro-
tect user’s privacy with guarantees of the k-degree anonymity model.

Related to the complexity of k-degree anonymization algorithms, Hartung et.
al. [20] proved that the problem of degree anonymity (by only adding edges) is
NP-hard on 3-colorable graphs and on graphs with H-index three. Also, they
proved that there is a polynomial-time algorithm that transforms any instance of
the degree anonymity problem into an equivalent instance with at most O(∆7)
nodes. A similar result is obtained in [3] for directed graphs, that is, a polynomial
size problem kernel for the combined parameter (s,∆D), where ∆D denotes the
maximum in- or out-degree of the input digraph D and s is the number of edges to
be added. We emphasize that both papers obtain solutions for the original question
of Liu and Terzi of obtaining a k-degree anonymous graph, that contains the
original graph as subgraph, and are equivalent to generating graphs with specified
degree sequences and excluded graphs, as in [34]. While we argue that the original
edges are to be preserved as much as possible, we are aware that there are many
cases where this is not possible. So, we propose an algorithm that tries to obtain
k-degree anonymous directed graphs by only adding edges until it is necessary to
modify the original graph.

3 k-Anonymity Models on Directed Networks

In this section, we define our models based on k-degree anonymity to preserve
user’s privacy on directed networks.

3.1 k-degree anonymity

The concept of k-degree anonymity was proposed by Liu and Terzi in [25] for
undirected networks and it can be directly mapped to the degree sequence.

Definition 1 A vector of integers V is k-anonymous, if every distinct value vi ∈ V
appears at least k times.

Definition 2 An undirected network G = (V,E) is k-degree anonymous, if the
degree sequence of G is k-anonymous.
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Fig. 1: Toy example showing an anonymization process from the original graph
to an Independent 2-degree, Independent (1, 2)-degree and Paired 5-degree anony-
mous versions of the same network.

Let V and W correspond to the degree sequences of the input and anonymized
graph respectively. The distance between two vectors of integers V = [v1, . . . , vn]
and W = [w1, . . . , wn] is defined by Equation 1:

∆(V,W ) =
n∑

i=1

|vi − wi|, (1)

where vi ∈ V , wi ∈ W and |V | = |W | = n. The lower the value of ∆, the lower
the information loss of the anonymized network.

3.2 k-degree anonymity for directed networks

Direct successors of vertex vi ∈ V , denoted by Γ+(vi), are defined as the ver-
tices at distance 1 from vi, i.e. all vj : (vi, vj) ∈ A. The number of succes-
sors is defined as the vertex’s out-degree, dout(vi) = |Γ+(vi)|. Similarly, direct
predecessors of vertex vi are all vertices from which vi can be reached at one
hop. That is, Γ−1(vi) = {vj : (vj , vi) ∈ A} and vertex’s in-degree is defined as
din(vi) = |Γ−1(vi)|. Therefore, a directed graph is associated with two degree se-
quences: the in-degree sequence, din = {din(v1), . . . , din(vn)}, and the out-degree
sequence, dout = {dout(v1), . . . , dout(vn)}. Since each arc connects two vertices, it
is obvious that:

n∑
i=1

din(vi) =
n∑

i=1

dout(vi). (2)

It is important to note that, in the anonymization process, the same number of
arcs have to be added to both in-degree and out-degree, since each added arc
implies adding value one to in-degree and also to out-degree. Thus, anonymous
in-degree and out-degree have to satisfy Equation 2.

Next, we propose two models to achieve different privacy levels according to
the k-anonymity model.
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3.2.1 Independent (ki,ko)-degree anonymity

This model assumes that an adversary knows the in-degree or the out-degree of
some target vertices, but does not knows the in- and out-degree of the target
vertices.

Definition 3 A directed networkG = (V,A) is Independent (ki,ko)-degree anony-
mous if the in-degree sequence of G is ki-anonymous and the out-degree sequence
is ko-anonymous.

In the case that ki = ko = k, we simply call it Independent k-degree anonymity.

Definition 4 A directed network G = (V,A) is Independent k-degree anonymous
if both the in-degree and the out-degree sequences of G are k-anonymous.

Example 1 A toy example of Independent k-degree anonymity can be seen in Fig-
ure 1. The original network, shown in Figure 1a, contains 5 vertices and 6 arcs and
its degree sequences are din = {2, 1, 2, 1, 0} and dout = {1, 2, 0, 1, 2}. Thus, adding
just one arc from v3 to v5 is enough to convert this network into a Independent
2-degree anonymous graph. Figure 1b shows the anonymous network, which has
din = {2, 1, 2, 1, 1} and dout = {1, 2, 1, 1, 2}.

Example 2 The graph represented in Figure 1b is also (2, 2)-anonymous according
to our definition. However, using this model we are able to create asymmetric pri-
vacy levels if we consider that, for example, the out-degree of some target vertices
can be the main knowledge of an adversary and we want to protect our network ac-
cordingly. Figure 1c shows an Independent (1, 2)-anonymous version of the graph,
where din = {2, 1, 2, 1, 3} and dout = {1, 1, 2, 2, 1}. Hence, it is possible to re-
identify a user using in-degree information but it is not possible using information
related to out-degree of some target vertices.

3.2.2 Paired k-degree anonymity

This model assumes that an adversary knows both the in-degree and the out-
degree of some target vertices. Obviously, this model gives us a higher privacy
protection than the above models, since it also protects users from an adversary
who knows only the in- or out-degree of some target vertices. We define the paired
degree of a vertex as a pair of integer numbers, where the first one is the in-degree
of the vertex and the second one is the out-degree, that is, (din(vi), dout(vi)).

Definition 5 A directed network G = (V,A) is Paired k-degree anonymous if the
paired degree sequence of G is k anonymous, i.e., for each pair (a, b) representing
the in-degree and the out-degree of a vertex, there exist at least k − 1 other pairs
with the same values.

Notice that, a Paired k-degree anonymous graph is always an Independent (k,k)-
degree anonymous one, but not vice versa. Thus, Paired k-degree anonymity is
stronger than Independent (k,k)-degree anonymity.
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Example 3 Figure 1d presents the Paired 5-degree anonymous version of our toy
example. Four arcs must be added to fulfill the properties of this model, and its
degree sequences are din = {2, 2, 2, 2, 2} and dout = {2, 2, 2, 2, 2}. It is interesting
to see that this network is also Independent (5, 5)-degree anonymous. Moreover,
the network depicted in Figure 1c is Independent (2, 2)-anonymous, but it is not
Paired 2-anonymous. Actually, it is Paired 1-anonymous.

4 Anonymization of Directed Graphs

In this section, we present the DGA (Directed Graph Anonymization) algorithm,
designed to preserve user’s privacy on directed and unlabeled networks according
to the proposed anonymization models. We use the concept of k-degree anonymity
to anonymize users’ relationship, performing modifications only on the edge set,
so as to generate a new anonymous graph Gk = (V,A∪Ak), where Gk is k-degree
anonymous and |Ak| is minimized.

Our approach to anonymize a directed graph relies on Definition 2. Thus, we
anonymize both the in-degree and the out-degree sequences of G = (V,A) by
edge-addition in order to meet the k-degree anonymity for a directed graph. Our
approach is based on two steps (similar to the one in [25]):

1. Anonymization of degree sequences. We construct a k-degree anonymous se-
quence dkin = {dkin(v1), . . . , dkin(vn)} from the in-degree sequence din = {din(v1), . . . , din(vn)}
of the original graph using Definition 1. The same process is applied to obtain
an anonymized version of the out-degree sequence, dkout.

2. Adding fake arcs. The second step adds fake arcs between vertices to meet
the anonymized in-degree (dkin) and out-degree (dkout), achieving a k-degree
anonymous directed graph Gk = (V,A ∪Ak), where |Ak| is minimized.

4.1 Step I: Anonymization of degree sequences

This step provides the anonymity level through the in- and out-degree sequences.
Therefore, we develop two different strategies according to the privacy models
we have introduced previously. First, we present the algorithm for Independent
(ki,ko)-degree anonymity, and later we propose a second approach for achieving
Paired k-degree anonymity. Last but not least, we detail a post-processing method
that needs to be applied when Equation 2 is not satisfied after the anonymization
of degree sequences.

4.1.1 Independent (ki,ko)-degree anonymity

We refer to (ki,ko)-DGA when Independent (ki,ko)-degree is considered. The same
process is applied both to in-degree (din) and out-degree (dout) sequences, there-
fore we will detail the process on a general degree sequence (d). The objective of
this step is to anonymize the degree sequence of the original network, d. Optimal
univariate micro-aggregation by Hansen and Mukherjee [18] is used to achieve the
best group distribution for both in-degree and out-degree sequences and then we
compute the values for each group that minimize the distance from the original de-
gree sequences by Equation 1. We choose such algorithm with complexity O(k2n)
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for its flexibility; by changing only one parameter, it can compute the optimal
k-anonymous degree sequences for different metrics such as euclidean, linear, or
any function of the nodes in the k-groups – contrary to Clarkson et al.’s algorithm
[11] that has complexity O(n) but is specifically tailored for taking the maximum
on the k-groups. Moreover, we implement it with the improvements proposed by
[35], which greatly reduce the execution time. Note that, the degree sequence
anonymization is the less expensive part, as can be seen on Table 5.

Our approach starts by applying a permutation f to the degree sequence to
reorder the elements. We refer to the ordered degree sequence as a monotonic,
non-decreasing sequence of the vertex’ degrees, that is d(vi) ≤ d(vj) ∀i < j. Let
k be an integer such that 1 ≤ k < n which is the k-degree anonymity value, i.e.
ki in case of in-degree and ko otherwise. Typically, k is much smaller than n. In
order to apply the optimal univariate micro-aggregation and according to [18],
we construct a new directed network Hk,n and get the optimal partition which is
exactly the set of groups that corresponds to the arcs of the shortest path from
vertex 0 to vertex n on this graph. We denote by g = {g1, . . . , gp} the optimal
partition, where n

2k−1 ≤ p ≤
n
k , and each of them has between k and 2k−1 items.

Obviously, each di ∈ d belongs to a specific group gj ∈ g. Since our approach
relies only on edge addition to modify the graph structure, we have to increase
or keep the same degree values, but not to decrease any of them which would be
equivalent to an edge removal. Therefore, the optimal partition corresponds to
increasing the value of each vertex’s degree up to the maximum value of its group,
i.e., di = max(dq) ∀di, dq ∈ gj . The cost of the shortest path on Hk,n denotes the
number of added arcs that is needed in order to meet the k-anonymity value.

4.1.2 Paired k-degree anonymity

We refer to k-DGA when Paired k-degree is considered. In this model, we need
to consider simultaneously both the in- and out-degree of each vertex. Thus, each
pair (din(vi), dout(vi)) represents the in-degree and the out-degree of a vertex vi.
According to Definition 5, we must find the optimal partition in this 2-dimensional
space. The decision problem of finding a paired k-degree anonymous sequence by
adding exactly s edges (referred to as the Numbers Only Digraph Degree Anonymity
problem), was proven to be NP-hard (Ref. [4], Theorem 23). Hence, we use mul-
tivariate microaggregation to find quasi-optimal partitions in a reasonable time;
specifically, we have applied the MDAV algorithm [15,14]. Similarly to the afore-
mentioned method, the optimal partition corresponds to increasing the pair values
of each vertex’s degree up to the maximum pair values of its group.

4.1.3 Degree sequences post-processing

It is important to note that the same number of arcs need to be added to the in-
degree and out-degree sequences, since each new arc implies adding value one to
both the in-degree and out-degree sequence. Consequently, anonymous in-degree
and out-degree sequences have to satisfy Equation 2.

We denote as ηin the number of added arcs on the in-degree and by ηout the
number of added arcs on the out-degree sequence, for a given k-degree anonymiza-
tion of a directed graph G. If ηin 6= ηout, our anonymous degree sequences do
not satisfy Equation 2, which is required for directed graphs. Hence, the minimum
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number of arcs we must add to the original graph is at least max{ηin, ηout}, if we
consider that ηin, ηout are the number of edges needed in an optimal microagreg-
gation for the in/out-degree sequences, respectively. Hence if we get a k-degree
anonymous sequence with max(ηin, ηout) edges, then, we know that it is optimal.

Let Sin and Sout be the optimal in- and out-degree sequence partition obtained
after applying the micro-aggregation algorithms, where Sin = ∪pi=1s

i
in and Sout =

∪qi=1s
i
out. Note that the number of partitions does not have to be equal (p 6= q).

Also, it is important to note that the minimal edge addition to fulfill Equation 2
is represented by finding the minimal values to solve:

p∑
i=1

ciin + αi × |siin| =
q∑

i=1

ciout + βi × |siout|, (3)

where ciin and ciout represents the number of added edges at partition i computed
by Equation 4, αi, βi ≥ 0 and αi, βi ∈ N:

ciin =
∑
|vj −∆i| : vj ∈ siin, (4)

where ∆i = max{deg(vj) : vj ∈ siin}. In order to simplify the equation and the
calculations, we consider only the different sizes of siin and siout, which are denoted
by ai and bi respectively. We will denote

∑p
i=1 c

i
in −

∑q
i=1 c

i
out as R. Then, we

can obtain the following equation from Eq. 3:

p′∑
i=1

αiai +R =

q′∑
i=1

βibi, (5)

where p′ < p and q′ < q, since we are taking out the repeated values of |siin| and
|siout|. For the same reason, the values of αi, βi in Equation 5 are different from
the values in Equation 3.

Recall that in optimal microaggregation, k ≤ |siin|, |siout| ≤ 2k − 1 for all
i ≤ max(p, q). Hence, k ≤ ai, bi ≤ 2k−1 for all i ≤ max{p′, q′}. If we assume that
βi0 6= 0 for a given i0, then we obtain the equation:

p′∑
i=1

αiai +R−
∑
i6=i0

βibi = βi0bi0 (6)

Therefore, a solution can be obtained by solving the following equation:

p′∑
i=1

αiai +R−
∑
i 6=i0

βibi ≡ 0 (mod bi0) (7)

Now, since we are working with congruences (mod bi0) we can consider the co-
efficients αi, βi to be less than bi0 , which gives a large reduction of our search
space for the solutions. In the worst case, we can obtain a solution by brute force,
considering all the combinations of αi, βi ≤ bi0 which would be a search in O(kk),
since bi0 ≤ 2k. Moreover, in practice we can find solutions to Eq. 7 much faster.
In all the sequences we have studied, αi = 0 for all i. While, for some i1 6= i0 and
βi1 the congruence R − βi1bi1 ≡ 0 (modbi0) was verified, so it is enough in most
cases to consider only one variable i1 6= i0.
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(a) Edge addition

vi vj

vk vp

(b) Edge switch

vi

vk vp
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Fig. 2: Illustration of edge addition, switch and extension processes. Solid lines
represent new edges to be added and dashed lines existing edges to be deleted.
Vertex color indicates whether a vertex changes its degree (dark grey) or not (light
grey) after the edge modification has been carried out.

4.2 Step II: Graph modification

As mentioned earlier, our algorithm is based on adding fake arcs. Other methods
anonymize the graph’s structure by adding and removing arcs, instead of additions
only. In our approach, we consider keeping arcs of the original network, since true
relations between users can be important for clustering or other graph mining
tasks. The authors of [8] empirically proved that edge addition is the best method
to keep graph’s properties when perturbing scale-free networks, which constitute
the most common type of real-world networks.

Once we have computed the k-degree anonymous in-degree and out-degree
sequences, our approach computes the vector of differences between the original
and anonymous sequences. That is, δin = dkin − din and δout = dkout − dout.
Each vector clearly shows which vertices have to increase their in-degree (δin) and
out-degree (δout). For each of them, we use three edge modification processes to
increase the in- and out-degree of vertices in δin and δout respectively, which are
the following:

1. Edge addition randomly chooses a combination of vertices which satisfies
(vi, vj) 6∈ A, where vi ∈ δout : δout(vi) > 0 and vj ∈ δin : δin(vj) > 0. The out-
degree of vertex vi and the in-degree of vj both increase, as shown in Figure
2a.

2. Edge switch occurs between four vertices vi, vj , vk, vp ∈ V where (vi, vj), (vk, vp) ∈
A and (vi, vp), (vk, vj) 6∈ A. It is defined by deleting arc (vk, vp) and adding new
arcs (vi, vp) and (vk, vj), as Figure 2b illustrates. Note that, the out-degree of
vertex vi and the in-degree of vertex vj will increase by 1, while other vertices’
degree will remain the same.

3. Edge extension exists between three vertices vi, vk, vp ∈ V , where (vk, vp) ∈
A and (vk, vi), (vi, vp) 6∈ A. Arc (vk, vp) is deleted and new arcs (vk, vi) and
(vi, vp) are created, as Figure 2c illustrates. Note that the in- and out-degree
of vertex vi increases, while auxiliary vertices’ degree remain the same.

The process is described in Algorithm 1. For each vertex vi ∈ δout, the algo-
rithm finds vj ∈ δin and adds an arc between them. Due to the edge sparsity of real
networks, this process is possible in several cases. However, in some cases it is not
possible to create a fake edge as described previously. Then, we propose to use edge
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Fig. 3: The order for adding edges may be relevant.

switch or edge extension to alter graph’s structure to fulfill the anonymous degree
sequences. It may be the case that the order of adding edges may be relevant, as
in Figure 3. Suppose that the anonymous sequence should be δout = (2, 2, 3) and
δin = (2, 2, 3), and the algorithm added the edges (v1, v4) and (v2, v5) first, as in
(b). In this case, it will not be possible to apply any of our three edge modification
processes to add one to the degrees of nodes v3 and v6, however by adding the
correct edges the sequence could have been obtained with our edge modification
processes, as in (c). Notice that, we have never encountered such situation in our
experiments possibly because of the sparsity of social networks, and due to the fact
that our algorithms choose the added edges at random – arriving at such situation
that no possible edge can be added, will only require to re-run the algorithm to
avoid it.

5 Experimental Framework

In this section, we will describe the experimental framework we have used to anal-
yse and compare the information loss induced by our anonymization methods.
For each dataset, we compute the Paired and Independent k-degree anonymous
networks considering different values of k in the range [1, 10]. Notice that, k = 1
corresponds to the original network. Independent (ki, ko)-degree anonymous net-
works are evaluated in the range of ki ∈ [1, 10] and ko ∈ [1, 10]; this implies a total
of 100 anonymous networks for each dataset.

5.1 Description of network datasets

We have used five standard and well-known real networks to test our methods:
(1) Polblogs [22], a network of hyperlinks between weblogs on US politics; (2)
UC-Irvine [23], which contains messages sent between the users of an online com-
munity of students from the University of California, Irvine; (3) Wiki-vote [28]
(Wikipedia vote network) contains all the Wikipedia voting data from the in-
ception of Wikipedia till January 2008, where vertices in the network represent
wikipedia users and a directed edge from node vi to node vj represents that user i
voted on user j; (4) DBLP-cite [27] is the citation network of DBLP, a database of
scientific publications such as papers and books, where each vertex is a publication



k-Degree Anonymity on Directed Networks 13

Function graph modification process
Input: δin, δout, V and A

Output: Anonymized arc set (Ã).

for vi : δout(vi) > 0 do
if ! edge addition (vi) then

for vj : δin(vj) > 0 do
if (vi, vj) ∈ A then

edge switch (vi, vj)
else

edge extension (vi)
end

end

end

end

return Ã
end

Function edge addition(vi)
for vj : δin(vj) > 0 do

if (vi, vj) 6∈ A then
create (vi, vj)
return true

end

end
return false

end
Function edge switch(vi, vj)

find vk, vp : (vk, vp) ∈ A and (vk, vj), (vi, vp) 6∈ A
delete (vk, vp)
create (vi, vp) and (vk, vj)
return true

end
Function edge extension(vi)

find vk, vp : (vk, vp) ∈ A and (vk, vi), (vi, vp) 6∈ A
delete (vk, vp)
create (vk, vi) and (vi, vp)
return true

end

Algorithm 1: Edge modification process.

and each edge represents a citation of a publication by another publication; and
(5) Epinions [31] is a who-trust-whom online social network of a general consumer
review site Epinions.com, where members of the site can decide whether to “trust”
each other. We have selected these datasets because they have diverse statistics
and properties, as shown in Table 1. We have removed loops and multiple edges
from all analyzed networks.

5.2 Information loss evaluation

In this part, we describe the criteria that are used to quantify the information
loss that is introduced by our anonymization models. Following the approach pre-
sented in [7], we use diverse structural measures which are strongly or moderately
correlated with clustering-specific processes. We claim that, by choosing those
measures, our results will be applicable not only to graph’s properties but also to
clustering and community detection processes. The first graph structural measure
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Table 1: Datasets used in this study. For each network we present the number of
vertices (n), number of edges (m), average degree (deg), average distance (dist)
and diameter (d).

Dataset n m deg dist d

Polblogs 1,490 19,022 25.53 3.39 9

UC-Irvine 1,899 20,296 21.37 3.19 8

Wiki-vote 7,115 103,689 29.14 3.34 10

DBLP-cite 12,591 49,728 7.89 5.42 20

Epinions 75,879 508,837 13.41 4.75 16

is the average distance (dist), which is defined as the average of the distances
between each pair of vertices in the graph. Diameter (d) is defined as the largest
minimum distance between two vertices in the graph, and edge intersection is the
percentage of original arcs which are also present in the perturbed version of the

graph, i.e. EI(G, G̃) = |A∩Ã|
max(|A|,|Ã|)

. The above measures evaluate the entire graph

as a unique score. We compute the error on these graph metrics as follows:

εm(G, G̃) = |m(G)−m(G̃)| (8)

where m is one of the graph metrics defined above, G is the original graph and G̃
is the k-anonymous graph.

The following metrics evaluate specific structural properties for each vertex of
the graph: the first one is betweenness centrality (CB), which measures the fraction
of the shortest paths that go through each vertex. The second one is closeness
centrality (CC) and it measures how many steps are required to access every other
vertex from a given vertex. We refer to C−C when the in-degree is considered and
C+

C in case of considering the out-degree. Finally, we use the degree centrality
(CD), which evaluates the centrality of each vertex based on its degree, i.e., the
fraction of vertices connected to it. Similarly, C−D refers to in-degree and C+

D to
the out-degree of each vertex. We compute the error on vertex metrics by:

εm(G, G̃) =

√
1

n

(
(g1 − g̃1)2 + . . .+ (gn − g̃n)2

)
, (9)

where gi and g̃i are the values of the metric m for vertex vi of G and vi of G̃
respectively.

5.3 Clustering-specific evaluation

Variations in the generic graph properties is a good way to assess the information
loss but they have their limitations because they are just a proxy for the changes
in data utility we actually want to measure. We define the specific information loss
measures as a task-specific measure for quantifying the data utility and the infor-
mation loss associated to a data publishing process. We focus on clustering-specific
processes, due to their importance in networks arising from diverse applications,
including social, biological and healthcare networks. Similar to generic graph mea-
sures, we compare the results obtained both by the original and the perturbed
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Fig. 4: Framework for evaluating the clustering-specific information loss measure.

data in order to quantify the level of noise introduced in the perturbed data.
This measure is specific and application-dependent, but it is necessary to test the
perturbed data in real graph-mining processes.

We consider the following approach to measure the clustering assessment for a
particular perturbation and clustering method: (1) apply our k-degree anonymity

algorithms to the original graph G and obtain G̃; (2) apply a particular clustering

method c to G and obtain clusters c(G) and then apply the same method to G̃

to obtain c(G̃); (3) compare the clusters c(G) to c(G̃) as shown in Figure 4. With

respect to information loss, it is clear that the more similar c(G̃) is to c(G), we
have the less information loss. Thus, clustering specific information loss measures
should evaluate the divergence between both sets of clusters c(G) and c(G̃).

Ideally, the results should be the same, that is, the same number of sets (i.e.,
clusters) with the same elements in each set. In this case, we can say that the
anonymization process has not affected the clustering process. When the sets do
not match, we should be able to calculate a measure of divergence. For this purpose,
we use the precision index [5]. Assuming that we know the true communities of a
graph, the precision index can directly be used to evaluate the similarity between
two cluster assignments. Given a graph of n nodes and q true communities, we
assign to nodes the same labels ltc(·) as the community they belong to. In our
case, the true communities are the ones assigned on the original dataset (i.e.,
c(G)), since we want to obtain communities as close as the ones we would get on
non-anonymized data – we are not interested in the ground truth communities.
Assuming that the perturbed graph has been divided into clusters (i.e., c(G̃)),
then for every cluster, we examine all the nodes within it and assign to them as
predicted label lpc(·) the most frequent true label in that cluster (basically the
mode). Then, the precision index can be defined as follows:

precision(G, G̃) =
1

n

n∑
i=1

δltc(vi),lpc(vi), (10)

where δ is the Kronecker delta function, i.e., δx,y equals 1 if x = y and 0 otherwise.
Note that the precision index is a value in the range [0, 1], which takes the value
0 when there is no overlap between the sets and the value 1 when the overlap
between the sets is complete.

We have considered two different graph clustering algorithms to evaluate the
anonymization process. Both them are unsupervised algorithms based on different
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concepts and developed for different applications and scopes. The selected clus-
tering algorithms are: (1) Infomap [33] that optimizes the map equation, which
exploits the information-theoretic duality between the problem of data compres-
sion and the one of detecting significant structures in the graph; and (2) Walktrap
[30] that finds densely connected subgraphs via random walks.

6 Information Loss and Data Utility

In this section, we present the results of our anonymization techniques in terms
of data utility and information loss. Generic information loss measures, which are
based on several graph’s properties, will be described in the next section, while
information loss regarding clustering-specific graph-mining tasks will be analyzed
in subsequent section.

6.1 Generic information loss evaluation

In this subsection, we compare the results of anonymizing several networks using
our models and algorithms for k-degree anonymity on directed networks. Specifi-
cally, we will use DGA for Paired and Independent k-degree anonymity. We apply
both algorithms on the same data with the same parameters and compare the
results in terms of information loss and data utility. It is important to note that
the privacy level achieved for both algorithms is similar, but not the same. As we
have discussed previously, Paired k-degree anonymity is a stronger model than the
one of Independent k-degree anonymity. However, the former or the latter method
could be of interest depending on the dataset and the application scenario. Unfor-
tunately, we cannot compare our methods to other k-degree anonymity algorithms,
due to the fact that our work is the first that considers k-degree anonymity models
specifically designed for directed networks.

Firstly, an in-depth analysis of generic information loss measures on DBLP-
cite network will is performed. We propose a detailed study of how generic infor-
mation loss measures evolves during the anonymization process. Then, we present
the same analysis on the other four networks, but skipping details due to the space
constraints.

The results are shown in Table 2. Each row indicates the scored value for the
corresponding measure and method, and each column corresponds to an experi-
ment with a different k-anonymity value. For each dataset and method, we vary k
from 1 to 10 (k=1 corresponds to the original dataset) and compare the results ob-
tained on EI, EA, dist, d, CB , C−C , C+

C , C−D and C+
D. The last column corresponds

to the average error εm. Each characteristic is reported two times, corresponding
to Paired and Independent k-degree anonymity. Clearly, the lower the information
loss, the better the method. Perfect performance in a row would be indicated by
achieving exactly the same score as in the original network (the k=1 column).
Although deviation is undesirable, it is inevitable due to the edge modification
process. Complementary information is introduced in Figure 5, where we can see
graphical details about the behaviour of different models during anonymization
process (those are the same values that we have reported in Table 2). Addition-
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Table 2: Results for Paired k (P-k) and Independent k (I-k) degree anonymity over
10 levels of anonymization on DBLP-cite dataset. For each method, we compare
the results obtained on edge intersection (EI), edge addition (EA), average dis-
tance (dist), diameter (d), betweenness centrality (CB), closeness centrality based
on the in-degree (C−C ) and out-degree (C+

C ), in-degree (C−D) and out-degree central-
ity (C+

D) and precision index using Infomap and Walktrap clustering algorithms.
The last column corresponds to the average error (εm) for generic information loss
measures (rows 1 to 9) or average precision score (p) for clustering information
loss measures (rows 10 and 11).

Metric Model k = 1 2 3 4 5 6 7 8 9 10 εm

EI (%)
P-k

1
0.983 0.963 0.948 0.936 0.920 0.912 0.898 0.882 0.874 0.067

I-k 0.996 0.982 0.969 0.963 0.948 0.936 0.919 0.906 0.906 0.046

EA (%)
P-k

0
1.641 3.837 5.060 6.540 8.361 9.305 11.165 13.115 14.121 7.314

I-k 0.308 1.359 2.385 2.626 3.638 4.579 5.590 6.590 7.336 3.441

dist
P-k

5.427
4.867 4.939 4.289 4.252 4.170 4.161 4.140 4.045 4.012 0.996

I-k 5.850 5.197 5.521 5.143 4.817 4.607 4.760 4.742 4.846 0.439

d
P-k

20
17 15 13 12 12 12 15 10 11 6.3

I-k 20 19 19 17 17 16 16 15 17 2.4

CB(e−4)
P-k

0
4.324 6.653 5.998 5.871 6.190 6.177 6.613 6.543 6.603 5.497

I-k 2.706 2.429 2.126 4.235 3.225 3.057 3.168 3.231 3.173 2.735

C−C (e−5)
P-k

0
0.993 1.294 1.402 1.502 1.616 1.643 1.804 1.868 1.902 1.402

I-k 0.366 0.309 0.478 0.676 0.572 0.571 0.552 0.607 0.579 0.471

C+
C (e−5)

P-k
0

2.955 5.211 5.974 7.366 9.963 10.816 18.101 20.226 23.162 10.377

I-k 1.198 1.088 1.370 1.894 1.546 1.548 1.498 1.621 1.556 1.332

C−D(e−4)
P-k

0
1.119 1.615 2.157 2.246 2.527 2.461 2.805 3.203 3.475 2.161

I-k 0.125 0.450 0.707 0.897 1.171 1.348 1.734 2.046 2.053 1.053

C+
D(e−4)

P-k
0

1.148 2.984 3.576 4.165 5.154 5.883 6.780 7.534 8.213 4.544

I-k 0.612 2.403 3.423 3.884 4.906 5.748 6.607 7.369 8.042 4.299

Clustering Model k = 1 2 3 4 5 6 7 8 9 10 p

Infomap
P-k

1
0.994 0.991 0.982 0.983 0.967 0.951 0.946 0.947 0.946 0.970

I-k 0.999 0.997 0.992 0.989 0.982 0.979 0.976 0.974 0.971 0.985

Walktrap
P-k

1
0.940 0.855 0.822 0.770 0.794 0.837 0.808 0.838 0.763 0.843

I-k 0.965 0.950 0.875 0.809 0.889 0.849 0.865 0.823 0.827 0.885

ally, information regarding degree distribution is provided in Figure 5a, where
several nodes do not fulfill k-degree anonymity both on in- and out-degree.

The first two rows in Table 2 correspond to edge intersection and edge addition.
Edge intersection is the percentage of edges on the anonymous networks which are
also present in the original network. Figure 5b shows that this metric is linear
on the k value on both methods. It is important to underline that more than
90% of the arcs in Ã are also present in A. The next metric is closely related
to this one and the behaviour is similar, as depicted in Figure 5c. Edge addition
indicates the number of arcs added to anonymize the network. The difference
between these metrics rely on the edge switch and edge extension operations,
which can modify some arcs to fulfill the anonymous degree sequences. We note
that usually the number of arcs added by Independent k-degree is half the number
of Paired k-degree. Average distance is pointed out in the third row. The value
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Fig. 5: Generic and clustering information loss evaluation on Paired k and Inde-
pendent k-degree anonymity on DBLP-cite dataset.

of the original network (denoted by k = 1) is 5.427. Thus, values close to this
one indicate low information loss. Although both methods achieve good results,
values of Independent k-degree anonymity remain closer to the original one over
all anonymization range than values of Paired k-degree, as can be seen in Figure
5d. Indeed, the average error computed over all range is 0.996 for Paired k-degree
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and 0.439 for Independent k-degree. A similar behaviour can be seen within the
second metric, diameter (see Figure 5e).

The centrality measures are computed by Equation 9, as described previously.
Therefore, the values in Table 2 are 0 for the original network, i.e. k=1. Clearly,
the lower the value, the better the performance of the corresponding method. Be-
tweenness centrality is an important measure for some clustering and community
detection algorithms. We remark that the error remains almost stable for values of
k ≥ 3, as can be seen in Figure 5j. Figures 5f and 5g depict the in- and out-degree
closeness centrality, respectively. We can observe that these values remain low,
except from the out-degree values of Paired k-degree anonymity which present
slightly high values. Finally, the in- and out-degree centrality measures, which are
depicted in Figures 5h and 5i, indicate very similar values and behaviour, indepen-
dently of the method used to anonymize the network. We should note here that
the results shown in Fig. 5 and Table 2 correspond to a single run of the proposed
models. As we can observe, some data utility criteria are not monotonous with
respect to the anonymization level k. For example, in Fig. 5e, the diameter of
the graph presents a spike at k = 8, which turns out to be an effect of the edge
modification process (edge switch and edge extension).

Table 3 presents the same analysis on the other tested networks. However, due
to space constraints, only the average error (last column of Table 2) is pointed
out for each metric, method and network. Polblogs is a medium size network
with some important hubs. Hence, anonymization process is harder than other net-
works, adding an average of 19% of total arcs to fulfill Paired k-degree anonymity.
When Independent K-degree is considered, less than 5% of arcs have to be added.
Nonetheless, the average distance and diameter show relatively small distortion
after the anonymization process. On the contrary, Epinions is our largest network
and the results are very encouraging. Less than 6% of the total number of arcs need
to be added to fulfill Paired k-degree anonymity. The same value reduces to less
than 2% in case of Independent k-degree anonymity. Moreover, the average dis-
tance and diameter show very small perturbation. Indeed, there is no perturbation
in diameter using Independent k-degree anonymity.

In the previous paragraph we have considered and compared Independent k-
degree when k = ki = ko. This is an specific case, but also the most probable,
interesting and useful one. Nevertheless, we want to analyze the general case, i.e.
Independent (ki, ko)-degree anonymity where ki 6= ko. In the following experi-
ments, we will consider all possible combinations of ki, ko ∈ [1, . . . , 10] on Pol-
blogs, which implies 100 anonymous datasets. Note that, 10 of these datasets are
the same in Independent k-degree anonymity.

Results of Independent (ki, ko)-degree anonymity are depicted in Table 3 (third
row) and in Figure 6. As it can be seen, the average error of Independent (ki, ko)-
degree anonymity on generic information loss measures remains higher than Inde-
pendent k but lower than Paired k. It is interesting to underline that the number
of edges added when ki ≈ 10 or ko ≈ 10 is very similar to the one when ki, ko ≈ 10,
but the privacy level is not. Indeed, the best ratio between number of arcs added
and privacy level is achieved when ki = ko, as can be seen in Figure 6a. The
average distance (Figure 6b) also shows that the error is greater when considering
very different values of ki and ko.

Finally, we have considered a baseline comparison to our methods. It is a näıve
approach based on converting the digraphs to undirected graphs, applying a k-
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Table 3: Results for Paired k (P-k) and Independent k (I-k) degree anonymity over
10 levels of anonymization, and Independent (ki, ko) (I-(ki, ko)) degree anonymity
over 100 levels of anonymization. For each dataset and method, we compare the
results obtained on edge intersection (EI), edge addition (EA), average distance
(dist), diameter (d), betweenness centrality (CB), closeness centrality based on
the in-degree (C−C ) and out-degree (C+

C ), in-degree (C−D) and out-degree central-
ity (C+

D) and precision index using Infomap (IM) and Walktrap (WT) clustering
algorithms.

Network Model EI EA dist d CB C−C C+
C C−D C+

D IM WT

Polblogs

P-k 0.160 19.45% 0.484 1.5 2.50e−3 7.33e−4 4.50e−4 7.14e−3 5.76e−3 0.835 0.882

I-k 0.064 4.26% 0.180 0.1 1.33e−3 1.47e−4 1.02e−4 3.38e−3 4.37e−3 0.930 0.925

I-(ki, ko) 0.067 5.40% 0.186 0.7 1.76e−3 1.63e−2 1.37e−2 3.20e−3 4.23e−3 0.901 0.885

U-k 0.395 68.16% 0.594 1.1 2.90e−3 1.60e−3 1.68e−3 1.09e−2 1.64e−2 0.744 0.723

UC-Irvine
P-k 0.098 11.27% 0.113 0.6 5.53e−4 1.50e−4 9.65e−3 1.76e−3 2.58e−3 0.951 0.710

I-k 0.022 2.19% 0.023 0.0 3.33e−4 0.79e−4 5.51e−3 0.74e−3 1.15e−3 0.950 0.785

Wiki-vote
P-k 0.078 8.78% 0.018 1 5.68e−4 2.54e−4 3.94e−5 9.75e−4 1.18e−3 0.683 0.786

I-k 0.024 1.88% 0.049 0 1.29e−4 0.07e−4 0.11e−5 4.81e−4 0.82e−3 0.796 0.709

Epinions
P-k 0.056 5.96% 0.200 1.3 6.12e−5 4.26e−6 2.79e−6 1.73e−4 7.66e−5 0.846 0.675

I-k 0.026 1.94% 0.016 0.0 1.74e−5 0.90e−6 0.41e−6 1.63e−4 6.24e−5 0.901 0.702
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Fig. 6: Independent (ki, ko)-degree anonymity on Polblogs dataset.

degree anonymity algorithm (with k in the same range as the other methods)
and transforming again to directed graphs to make the comparison fair. For this
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analysis we have used the UMGA algorithm [9], which demonstrated to preserve
data utility better than other k-degree-based methods.

We named this method Undirected k-degree anonymity (U-k), and its results
are depicted in Table 3 (fourth row). It is important to underline that the privacy
level achieved is the same as in the Paired k-degree anonymity, since the in- and
out-degree of the anonymous graphs are the same. However, the error values are
higher than the ones for Paired k on all metrics, except the diameter.

6.2 Clustering information loss evaluation

As we have stated previously, clustering-specific information loss measures are
important to consider data utility and information loss on real graph-mining pro-
cesses. Even though the generic information loss measures are a good way to assess
the data utility, specific information loss measures can help us to quantify data
utility and information loss associated to a data publishing process. The last two
rows in Table 2 and the last two columns in Table 3 present the precision index
computed using the Infomap and Walktrap algorithms. As we have previously
commented, the precision index takes the value of zero when there is no over-
lap between the sets and the value of one when the overlap between the sets is
complete.

Analyzing our in-depth experiment on the DBLP-cite network, we can point
out that more than 94% (Paired k) and 97% (Independent k) are correctly clus-
tered using Infomap after k = 10 anonymization process, as shown in Figure 5k.
Precision index average values are 0.97 and 0.985, respectively. Similar results can
be seen for our other tested networks in Table 3. Precision index on Independent
(ki, ko)-degree anonymity on Infomap can be seen in Figure 6c. As in the previous
experiments, Infomap seems to be more stable and less sensitive to data perturba-
tion. The average precision index keeps close to 90% well-classified vertices using
both clustering algorithms. These results allow us to claim that data utility is
preserved using our methods to anonymize directed networks.

Lastly, it is interesting to point out that the precision index achieved using
an undirected k-degree approach (U-k) is far worse than the methods specifically
developed to deal with directed networks when considering the clustering-specific
information loss.

Summarizing the results, it is interesting to stress out that both methods
achieve good results on generic and clustering-specific information loss measures.
Specifically, Independent k-degree anonymity gets the lowest average error on all
analyzed metrics and datasets, and the highest precision index values on all clus-
tering algorithms. It is also important to underline that although Paired k-degree
anonymity imposes the strongest privacy levels, it achieves very good results on
all analyzed metrics.

7 Performance and Scalability

In this section, we aim to improve the scalability of the proposed methods to-
wards being able to anonymize large-scale directed networks. To this direction,
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Table 4: Large datasets used to test the scalability of our methods. For each
network we present the number of vertices (n), number of edges (m), independent
(ki,ko)-degree anonymity and paired k-degree anonymity.

Dataset n m (ki, ko) k

DBLP-2006 484,161 1,422,263 (1,1) 1

Pokec 1,632,803 30,622,564 (1,1) 1

Table 5: Results for Paired k (P-k) and Independent k (I-k) degree anonymity for
k ∈ {10, 20, 50, 100}. For each dataset, method and k value, we present the main
values for each step of our method: computation time (in sec.) and number of new
arcs for degree sequence anonymization; and number of edge addition, edge switch
and edge extension, and computation time (in seconds) for graph modification
process.

Network
Model Deg. seq. anon. Graph modification

Meth. k Time (s) Arcs Add Switch Extend Time (s)

DBLP-2006

P-k

10 13 18,107 18,106 1 0 15

20 15 33,915 33,915 0 0 44

50 105 70,365 70,286 68 11 118

100 457 130,447 130,417 10 20 326

I-k

10 81 1,143 956 187 0 12

20 65 2,885 2,346 539 0 30

50 48 8,053 6,769 1,284 0 118

100 39 18,485 14,971 3,514 0 298

Pokec

P-k

10 503 265,095 230,875 31,675 2,545 44,502

20 357 623,930 477,875 138,646 7,409 142,926

50 400 1,145,660 889,369 243,467 12,824 246,668

100 456 1,861,159 1,444,475 396,106 20,578 323,473

I-k

10 60 95,281 53,659 39,209 2,413 47,307

20 73 222,653 54,731 166,545 1,377 72,807

50 604 618,259 233,867 383,892 500 141,137

100 1,880 1,281,275 517,036 763,910 329 274,976

we have applied two preprocessing techniques for obtaining the k-anonymous de-
gree sequences. The first one, which is tailored for the Independent (ki,ko)-degree
anonymity model, is based on a lossless representation of the degree sequences din,
dout with a considerable reduction in size [35].

For the case of Paired k-degree anonymity, since the microaggregation tech-
nique is not scalable (e.g., the MDAV algorithm has time complexity proportional
to O(n2)), we have applied k-means as a partitioning method (preprocessing step
of O(n) complexity). In particular, we have used Lloyd’s algorithm in a hierarchical
way to obtain partitions of manageable size.

More precisely, we start by applying k-means to obtain a partition for the
entire data set. If the parts are not small enough (smaller than a threshold s), we
further apply k-means on each of them, until we satisfy the required threshold.
Notice that our solution could have been executed in parallel, yielding an even
faster algorithm in practice. The method is presented in Algorithm 2.
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Fig. 7: Details of our experiments on Pokec network. The horizontal axis represents
the k-degree anonymity value.

Function graph partition process
Input: (δin, δout), threshold = s
Output: Partition C
Apply k-means clustering to obtain clusters C = C1, . . . , Cm0

while |Ci| > s for some Ci ∈ C do
for C1 : |C1| = max{|Ci| : Ci ∈ C} do

Apply k-means clustering to obtain clusters C1 = C11, . . . , C1m1

Update C = (C \ C1) ∪ C1
end

end
return C

end

Function MDAV parallel
Input: Partition C
Output: Anonymized sequence (δkin, δ

k
out) = P

for Ci ∈ C do
Apply MDAV to obtain k-anonymous subsequences Pi for each Ci

end
return P = ∪Pi

end

Algorithm 2: Scalable Paired k-degree anonymity

In order to examine the scalability of our methods, we have used two large
scale real networks. The first one is the DBLP-20062, which corresponds to the
co-authorship network of the DBLP computer science bibliography in 2006. The
second one, Pokec [38], is the most popular online social network in Slovakia. Ta-
ble 4 provides the main properties of these networks. All the experiments reported
in this section have been performed on a 4 CPU Intel Xeon X3430 at 2.40GHz
with 32GB RAM, running Debian GNU/Linux.

Table 5 depicts the results of the scalability experiments. For each network
and method, we have considered values of k ∈ {10, 20, 50, 100}. As a summary
of the first step of our method, we provide the computation time (in secs.) and
the number of new arcs that is needed to create a k-degree anonymous sequence.
Regarding the second step of our method, we report the computation time, as well
as the number of edge addition, switch and extension that is performed.

2 DBLP Bibliography Server: http://dblp.uni-trier.de/xml/
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As it can be seen in Table 5, the computation time of degree sequence anonymiza-
tion (step 1) is negligible compared to the one of graph modification process (step
2). Consequently, the Paired k model is more time-consuming compared to the
Independent k model, mainly due to the fact that the Paired k involves the inser-
tion of more new edges in order to reach the desired privacy level. Figure 7a also
shows that the total running time grows linearly with respect to the value of k.
Additionally, the number of arcs that need to be added also grows linearly with
the value of k, as shown in Figure 7b. Finally, as depicted in Figure 7c, the number
of edge additions, swaps and extensions grows proportionally while the value of k
increases.

However, the computation time needed by the Paired and Independent k
anonymity models is quite similar in the DBLP-2006 graph. Although the number
of arcs that need to be created is much lower in the Independent k model, the num-
ber of edge switch operations is higher; edge switches, along with edge extensions,
are more time-consuming compared to edge additions which are computationally
easy to be performed.

Finally, regarding data utility and information loss, we underline that the pre-
processing technique on Independent (ki,ko)-degree anonymity model preserves
the quality of the solution, as demonstrated by authors in [35]. On the contrary,
the preprocessing technique on Paired k-degree anonymity can slightly reduce the
quality of the solution compared to the case where no preprocessing step is applied.
We measure this divergence as the number of added extra arcs to the k-anonymous
degree sequences, which is between 0.1% and 1.5% according to our experiments
on DBLP-2006. Specifically, the values are 0.13%, 0.33%, 0.93% and 1.57% for
k ∈ {10, 20, 50, 100}.

8 Conclusions

In this paper, we have defined two different k-degree anonymity models specifi-
cally designed for directed networks. Furthermore, we have introduced different
algorithms to achieve the desired privacy levels, based on the proposed models.
An empirical evaluation of these models have been conducted on several real net-
works, comparing information loss based on different graph properties and also on
clustering-specific criteria. We have demonstrated that our anomymization mod-
els aim to reduce information loss, while simultaneously retain data utility. As
we have seen throughout our experimental framework, the Independent k-degree
anonymity model demands fewer edge additions and switches in order to meet the
desired privacy level. Nevertheless, the Paired k-degree model gives good results
in several generic information loss measures and also achieves excellent precision
index values in our clustering-specific information loss framework. Furthermore,
we have demonstrated that our edge modification technique is scalable to large
scale networks.

Many interesting directions for future research have been uncovered by this
work. Firstly, a deeper analysis of the Independent (ki,ko)-degree anonymity model
have to be performed in order to better understand how these parameters can
be used according to network’s specific properties in order to achieve good pri-
vacy levels, while preserving the underlying graph structure. Secondly, it would be
thought-provoking to also consider edge deletion in order to better preserve data
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utility. Moreover, other information loss measures based on real graph-mining pro-
cesses can be considered, such as information flow. Lastly, it would be also very
interesting to extend those models to other rich graph types, including weighted,
signed and multilayer [32] directed networks.
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