
1 
 

 

 

 

Exploring large vision-language 

models with prompt engineering for 

peripheral blood cell image analysis 

and classification. 

 

 

 

Marina Sánchez Quijada 

 

Master in Bioinformatics and 

Biostatistics 

 

Area: 

Machine Learning 

 

Name of the Advisor: 

Edwin Santiago Alférez Baquero 

 

18th of June of 2024 



2 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Esta obra está sujeta a una licencia de 

Reconocimiento 3.0 España de Creative 

Commons 

http://creativecommons.org/licenses/by/3.0/es/
http://creativecommons.org/licenses/by/3.0/es/


3 
 

Title: 
Exploring large vision-language models with 
prompt engineering for peripheral blood cell 
image description and classification. 

Name of the author: Marina Sánchez Quijada 

Name  of the advisor: Edwin Santiago Alférez Baquero 

SRP: Edwin Santiago Alférez Baquero 

Date of delivery: 06/2024 

Studies: Master in Bioinformatics and Biostatistics 

Area: Machine Learning 

Language: English 

Keywords: 

Machine learning 

Medical imaging analysis 

Large visual-language models 

Abstract 

In recent years, large vision and language models (LVLMs) have gained a lot of attention 
due to their accessibility and impressive performance in various language and vision 
tasks. Consequently, their applications in the medical imaging field are being studied, 
showing already great potential in clinical settings. However, very few studies have been 
carried out to evaluate the potential of LVLMs for disease diagnosis, especially for 
microscopy images. In this work, we explore for the first time the capabilities of three of 
the most advanced LVLMs (GPT-4, Claude3, and LLaVa) in the analysis and classification 
of peripheral blood cells.  

To perform this exploration, we build multiple prompts based on different prompting 
techniques, including few-shot learning and chain of thought (CoT), to study and improve 
the performance of these LVLMs for blood cell image analysis. We also explore the 
functionality of the assistant and the system roles in model behaviour and performance. 
Moreover, we perform a comprehensive comparison of their accuracy rates and create a 
web application for white blood cell classification. 

Our experiments conclude that the best-performing method and LVLM combination is 
GPT-4o when using a two-shot learning strategy with the addition of the assistant role. 
When testing this approach on 100 images of leukocytes, we attained an accuracy rate 
of 78%. Although this performance is not reliable enough and LVLMs should not be used 
as diagnostic tools, we believe that due to the rapid advancement of large language-
vision models, LVLMs could become a great asset in the analysis of pathology images, 
working as an assistant for quick blood cell description and classification. 

The code and prompts used in this work are accessible on GitHub. 

https://github.com/Bio-Sanqui/TFM_MarinaSanchez
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1.  Introduction 

 

1.1. Context and justification of the work: 

Medical images (microscopy images, X-rays, or magnetic resonance images) are 

commonly used by clinicians to extract information about the condition of patients, 

make diagnoses, and plan appropriate treatments. However, this type of assessment 

and analysis requires a lot of expertise, is very time-consuming, and is subjected to 

intraobserver variability and cognitive bias.  Poor-resolution images, for instance, 

can lead to misleading observations and delayed or inappropriate treatment. 

Moreover, the huge increase in medical imaging data in recent years has made the 

management and analysis of these images a challenge.  

Over the past few years, machine learning and deep learning algorithms have 

become an important topic in the field of medical imaging. These new techniques 

can facilitate the detection of subtle abnormalities not even visible to the human eye, 

mitigate cognitive bias, and help to perform faster and more objective analysis, thus 

improving the fidelity of diagnosis. For instance, some pretrained convolution neural 

networks (CNNs) and transformer-based models have shown great performance in 

disease diagnosis and prognosis (Cui et al. 2023). 

More recently, large vision and language models (LVLMs) have gained a lot of 

attention because of their accessibility and impressive performance in various 

language and vision tasks. Although most of these models have not been fine-tuned 

on medical data, they are extensively trained on vast amounts of text and vision data 

and have already shown great potential in clinical applications (Yan et al. 2023). 

However, few attempts have been made to assess the capabilities of multimodal 

large vision-language models (LVLMs) in the medical image domain. In this work, 

we aim to evaluate the performance and robustness of GPT-4, Claude3 and LLaVa in 

the analysis of pathology images.  

For this reason, we will focus on the description, morphological analysis, and 

classification of peripheral blood cell images. The observation of peripheral blood 

smears has been used by pathologists over the years as a major tool in the analysis, 

diagnosis, and monitoring of blood-related diseases, such as blood disorders or 

cancers like leukaemia, lymphomas, or myelomas. However, as we mentioned before, 

this technique can be quite subjective, as it is influenced by intra-observer variability 

and can be subjected to perceptual and interpretative errors. We propose the use of 

LVLMs to mitigate these issues, minimize misdiagnoses, and improve the time of 

analysis. 
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1.2. Objectives: 

The main objective of this work is to explore the capabilities of large language-vision 

models for the morphological analysis and classification of blood cells. Hence, it is 

necessary to perform prompt engineering on these multimodal models, build 

prompts for the extraction and classification of blood cell morphology features, and 

compare the results obtained with different prompting techniques and LVLMs. 

Nonetheless, we intend to create an application web, using the model and prompts 

with the best performance, to serve as a tool for leukocyte classification.  

Therefore, the objectives of this thesis can be broken down into the following items: 

1. Research the state of the art of LVLMs in the medical image domain. 

2. Obtain morphological descriptions of the peripheral blood cell types. 

3. Create prompts for the description and classification of peripheral blood 

cells. 

4. Compare the efficiency of different prompting techniques to analyse and 

classify peripheral blood cells. 

5. Compare the capabilities of different large vision-language models to 

analyse and classify peripheral blood cells. 

6. Build an application web for the classification of leukocytes. 

 

1.3. Sustainability, social-ethical and diversity impact: 

This section, included inside the Global and ethical commitment competence 

(GECC), addresses acting in an honest, ethical, sustainable, responsible, and 

respectful manner for human rights in academic and professional settings. It also 

includes the design of solutions to improve these practices.  

Accordingly, this competence is divided into three different dimensions: 

• Sustainability 

• Ethics and social responsibility 

• Diversity, genre, and human rights 

In terms of sustainability, large language and vision models have a considerable 

environmental and carbon impact. This technology requires high-performance 

computers and GPUs, which require the mining of rare metals and the release of 

large amounts of greenhouse gasses. Additionally, these infrastructures are usually 

distributed in big computing facilities and, although their footprint may vary 

depending on where they are located, they use vast amounts of energy and water, 

and might also contribute to soil pollution (Rillig et al. 2023). A recent study has 

estimated that in 2027, the global AI may be responsible for up to 6.6 billion cubic 

metres of water withdrawal, more than half of the total annual water withdrawal of 

the United Kingdom (Li at el. 2023). 
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Another important issue surrounding large language models involves the data used 

to pretrain them. On the one hand, the datasets used can contain biases and 

discrimination against marginalised groups of people, which can be engraved into 

the machine learning algorithm. It is also important to note that most of the data 

used to train medical models come from high-income regions, so they may not 

represent the reality of low- or middle-income countries (Li et al. 2023). Therefore, 

it is important to identify these sources of potential bias moving forward.  

On the other hand, training data used in the medical field can contain protected or 

sensitive health information that could interfere with the patient’s right to privacy. 

By illicitly using this information, patient data could be exploited by third parties 

without their consent. Accordingly, there should be more transparency concerning 

data collection, storage, and usage. Moreover, data protection laws should be put in 

place to regulate their sale to private companies and ensure the ethical use and 

protection of this medical information (Chiruvella & Guddati, 2021). In our case, we 

will be working with images collected from blood smears of patients at the Hospital 

Clí nic of Barcelona, of which no personal data nor medical history is known, 

ensuring patient privacy and confidentiality (Acevedo et al. 2020). 

 

1.4. Approaches and methods: 

As a first step, we will perform a literature search on the history and state of the art 

of LVLMs, as well as their applications in medical image processing. Then, we will 

explore the GPT-4, Claude3 and LLaVa models to become acquainted with them and 

learn how to perform prompt engineering. As we expressed before, we will be 

analysing microscopic images of peripheral blood cells, so we will research the 

distinctive morphological features of these cells, establish a classification table, and 

sort out a database to use for this project. 

When all this has been established, we will perform prompt engineering to evaluate 

the performance of these LVLMs in the analysis of peripheral blood cell images. We 

will accomplish this by using their dedicated chat interface, as well as their officially 

released APIs. We will initiate our dialogue with both image and text inputs, asking 

for both image analysis and feature description, as well as cell type classification.  

We will build multiple prompts based on different prompting techniques and 

learning methods, such as few-shot learning and chain of thought (CoT), to extract 

this information and evaluate their effectiveness. We will also introduce the assistant 

and system roles to the prompt, along with the user role, to test their functionality 

in model behaviour and performance. Additionally, we will establish a criterion to 

gauge the accuracy of the answers and compare the results between them. To 

eliminate any biases and avoid any interference from previous conversations, we 

will start a new session each time. 
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Following this, we will do a systematic comparison of the results obtained with the 

different models and prompting techniques to describe the most successful 

combinations and evaluate their capabilities as a tool in medical imaging. Finally, we 

will develop a web application for white blood cell classification using the best 

performing model and prompting strategy. This application will be created as a tool 

for researchers to easily analyse and classify blood cell images and to showcase the 

potential of these LVLMs.  

 

1.5. Planification: 

 

1.5.1. Tasks: 

The work presented in this document will be divided into four phases, concurring 

with the four deliverables described in the subject guide: 

• Work plan: in this first phase, we will define the project and plan out the 

tasks. Moreover, we will perform a first literature search to learn about the 

subject at hand, the state of the art of large multimodal models in the medical 

image domain, and learn how to work with GPT-4, Claude3 and LLaVa. The 

following table shows these tasks in a more comprehensive manner, as well 

as their estimated durations: 

              Table 1. Planification of the first part of the project (Work plan). 

Tasks Duration (days) 

Project description and work planning 8 

Bibliographic search of LVLMs and prompt engineering 6 

Familiarization with GPT-4, Claude3 and LLaVa 3 

PEC1 writing and delivery 3 

 

• Work development 1: in this second stage, we will research a dataset of 

microscopic blood cell images and explore their distinctive morphological 

features. We will carry out a first approximation to prompt engineering, 

create prompts based on different learning and prompting techniques (zero-

shot, few-shot learning, and chain of though), and test them on the LVLMs. 

We will explore different metrics to evaluate model performance and start 

comparing the capabilities of each model and technique. 
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             Table 2. Planification of the second part of the project (Work development 1). 

Tasks Duration (days) 

Examination of peripheral blood cell images 5 

Creation of prompts to describe and classify cell images (1) 20 

Comparison and evaluation of models and prompting 

techniques (1) 

4 

PEC2 writing and delivery 5 

 

• Work development 2: in this second part of the development, we will 

continue testing the models to try to improve cell classification accuracy. 

Moreover, we will introduce the assistant and system roles to the previous 

prompts to explore their function in model behaviour and performance. We 

will continue doing a systematic comparison between them, to describe the 

finest LVLMs and techniques to classify peripheral blood cells. Finally, we will 

create a web application with the best performing LVLM and prompting 

strategy. 

              Table 3. Planification of the third part of the project (Work development 2). 

Tasks Duration (days) 

Creation of prompts to describe and classify cell images (2) 20 

Comparison and evaluation of models and prompting 

techniques (2) 

4 

Building of a web application for leukocyte classification 5 

PEC3 writing and delivery 5 

 

• Final report and presentation: in this last phase of the project, we will write 

the final report and design and record the presentation. Furthermore, we will 

create a GitHub repository with the code utilised during the thesis. 

               Table 4. Planification of the fourth part of the project (Final report and presentation). 

Tasks Duration (days) 

Writing of the final memory 12 

Creation of the GitHub repository 2 

Preparation and recording of the presentation 6 

PEC4 delivery 1 

 

1.5.2. Calendar: 

Here, we created a Gantt Chart to schedule the previous tasks and visualize their 

duration in a calendar. Each image shows a different phase of the project, with the 

activities on the left side and time intervals on the right side.  
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Figure 1. Gantt Chart of the first phase of the project (Work Plan) 

   

Figure 2. Gantt Chart of the second phase of the project (Work Development 1) 

Figure 3. Gantt Chart of the third phase of the project (Work Development 2) 

Figure 4. Gantt Chart of the fourth phase of the project (Final Report and Presentation) 
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1.5.3. Risk analysis: 

The main risk of this project is the lack of time to develop it, as some of the previous 

tasks might take longer than expected. It is also important to keep in mind that time 

is a limiting factor during the week due to work and other obligations, and most of 

these tasks are going to be performed during the weekends.  

Another limiting factor for the development of this project is the cost of LVLMs. The 

usage of GPT-4 and Claude3 have a cost associated, that responds to the type of 

model and the number of tokens used, both in the prompt and the output. Hence, we 

will have to adjust the number of images used for every cell type. Our ability to 

perform very complex and cost-demanding prompt techniques might also be 

limited. We will be testing Claude3’s cheapest model, Haiku, and some more 

affordable alternatives to GPT-4V, such as GPT-4 Omni, to assess cost-effectiveness 

and to attempt to reduce expenses in the long run.  

An additional constraint of these models are the rate and token limits, which can 

restrict both the number of API requests that we can make and the length of the 

prompts that we can create. For instance, we might not be able to generate prompts 

with a lot of sample images, which reduces our ability to perform few-shot learning.  

Lastly, we must contemplate the availability and reliability of these LVLMs. We are 

depending on OpenAI and Anthropic for GPT-4 and Claude3 to be accessible and 

operational, and to provide reliable and timely responses. A failure of their 

infrastructure, service interruptions, or other errors in latency or maintenance 

might complicate our work. 

 

1.6. Expected results: 

By the end of the project, we want to accomplish the first-ever study of the 

capabilities of LVLMs in the analysis of stained microscopy blood cell images. 

Moreover, we expect to perform a comprehensive comparison of the effectiveness of 

different prompting techniques and LVLMs for this task and describe the most 

successful ones for their potential use in the medical imaging domain. As a final 

achievement, we want to create a web application capable of identifying and 

classifying leukocytes from peripheral blood cell smear images. 

Accordingly, we expect to obtain the following items: 

1. A final dissertation in line with the objectives and tasks we have presented in 

this planning. 

2. A web application that uses LVLMs to classify white blood cell images. 

3. A complete work plan of the project. 

4. A virtual presentation of the final thesis. 
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2.  Large language-vision models 

 

2.1. Origin and functioning of LVLMs:  

Large language and vision models have gained considerable popularity over the past 

couple of years, especially with the arrival of ChatGPT to the public sphere in 2022. 

However, to comprehend the origins and evolution of LVLMs, we must go back to the 

rise of natural language processing (NLP), a subfield of computer science that allows 

computers to interpret, comprehend and manipulate human language. Although this 

field dates to the 1940s, with World War II, it was not until the late 1980s with the 

increase in computer power and the advancements in machine learning that 

language models (LMs) started to flourish. LMs are an NLP technology that uses 

machine learning algorithms to analyse large amounts of text to understand and 

replicate human language styles and patterns. Another big breakout for NLP was the 

incorporation of deep learning methods, such as Recurrent Neural Networks (RNNs) 

and Long Short-Term Memory (LSTM), which provided LMs with a more nuanced 

comprehension of textual context, allowing the models to understand the context of 

words that were far away from one another (Carolan et al. 2024). However, the 

pivotal moment that led to the creation of large language models (LLMs) was the 

introduction of the Transformer architecture by Vaswani et al. in 2017. This 

architecture is based on attention mechanisms, which consist of assigning levels of 

importance to different words in a sentence to focus on the most important parts 

without relying on the distance between them. Since then, several successful LLMs 

have been created, like Google’s BERT (Bidirectional Encoder Representations from 

Transformers) and AI’s GPT (Generative Pre-trained Transformer).  

Parallelly, vision models have evolved as a specialisation of language models, first 

designed to process and understand images. However, in later years, vision models 

have been developed to align both vision and text information in a multimodal 

manner, and have been used in a variety of applications, such as image captioning. 

Most large multimodal models are based on CLIP (Contrastive Language-Image Pre-

Training), a multimodal approach trained on a wide range of text paired images 

found across the internet. By pretraining an image and a text encoder on these pairs, 

the model learns to recognize visual concepts in the images and associate them with 

their names, performing vision-related tasks without being specially instructed, 

thus in a zero-shot manner (Radford et al. 2021).  
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This simple approach is highly efficient and very flexible, and it does very well in 

recognizing common objects, as the model is trained on a wide range of visual 

concepts. However, it may struggle with images not covered in the pretraining 

dataset and with more abstract or systematic tasks. 

 

2.2. Most advanced LVLMs: 

Some of the most well-known, used and advanced large vision-language models are 

described below: 

• GPT-4: this transformer-based model, created by OpenAI, is the fourth-

generation language model in the GPT series. It is trained by both publicly 

available data and data licensed from third-party providers (Achiam et al. 

2023). It is also the first of its series to contain multimodal capabilities, 

with the ability to accept and generate both text and image data. This new 

model shows an improved performance in NLP tasks in contrast to the 

previous GPT-3.5, scoring in the 90% percentile in the bar examen 

compared to human performance. It also has several advanced features 

compared to its predecessors, including an increased model size of 175 

billion parameters, better model accuracy and performance, multilingual 

capabilities, better contextual understanding, and improved reasoning 

capabilities. However, GPT-4 also presents some limitations and 

challenges to be addressed. Due to the large scale of this model, it requires 

large computational resources to train and use effectively, making fine-

tuning a challenge, especially for tasks with limited labelled data. 

Moreover, the interpretation of how the model reaches its decisions and 

output can be quite challenging (Baktash & Dawodi, 2023). Different 

Figure 5. Overview of CLIP. The text and image encoders are pretrained on image-text pairs. When 

tested, the trained text encoder predicts the class of the caption that associates better with the given 

image, turning CLIP into a zero-shot classifier (Radford et al. 2021). 
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multimodal versions of this model can be found, including GPT-4V, GPT-4 

Turbo, and the newest GPT4o, published on the 13th of May 2024, which 

is faster and more affordable than its predecessor. 

 

• Claude3: published in 2023, Claude3 is a family of multimodal models 

created by Antrophic with sophisticated language and vision capabilities. 

It includes the models Opus, Sonnet, and Haiku, ranging from higher 

performance and complexity to more affordable and faster models. It is 

trained on a mixture of public, private and synthetic data, although its 

architecture is not available. According to Anthropic, their most 

intelligent model, Opus, outperforms GPT4 and Gemini in some of the 

most common evaluation benchmarks for AI systems, including 

undergraduate-level expert knowledge, graduate-level expert reasoning, 

and basic mathematics. In its vision capabilities, Claude stands on par 

with other state-of-the-art models, such as GPT-4V and Gemini Ultra 

(Anthropic, 2024).  
 

• Gemini: created by Google in 2023, this family of large multimodal 

models includes capabilities for text, image, audio, and video. Three 

models can be found, with different sizes: Ultra, the largest and most 

capable model for complex tasks, Pro, the best model for scaling across a 

wide range of tasks, and Nano, the smallest and most efficient for on-

device tasks. According to Google, at the moment of its release, Gemini’s 

Ultra surpassed the state-of-the-art results for 30 of the 32 academic 

benchmarks used in LLM research. It also outperformed human experts 

on massive multitask language understanding (MMLU), which tests both 

world knowledge and problem-solving abilities on 57 subjects like math, 

medicine, physics or history. Moreover, it showed great performance in 

image, video, and audio processing, surpassing even GPT4-V in some 

benchmarks (Pichai & Hassabis, 2023).  
 

• LLaVa-1.6: this large language and vision assistant, released as an open-

sourced model, consists of a pretrained CLIP vision encoder and a large 

language model, trained end-to-end for both visual and language 

understanding purposes (Liu et al. 2023). This last LLaVa model has 

several improvements compared to LLaVA-1.5, maintaining its efficiency 

but with improved performance and more capabilities. The image input 

resolution has been increased to 4x more pixels, allowing the model to 

grasp more visual details. Moreover, it also has better visual reasoning, 

logical reasoning, and world knowledge. Regarding performance, it 

surpasses other open-sourced large multimodal models but not 

commercial ones, obtaining similar results to Gemini Pro on some 
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benchmarks. Where LLaVA-1.6 shines in its Chinese multimodal 

capabilities, surpassing every other model in benchmarks like MMBench-

CN (Liu et al. 2024).  
 

As mentioned before, the applications of these large vision and language models are 

large, including text-to-video generation, image captioning, text-to-speech, and 

more. It is no surprise that they have been utilised in a wide range of disciplines, 

such as business, education, social studies, politics, and even agriculture.  

 

2.3. LVLMs in medical imaging: 

 

2.3.1. Specialised models: 

The potential of some LLMs, such as ChatGPT, has been previously explored in the 

biomedical and healthcare domain, performing biomedical text mining and even in 

the context of clinical practice and research. For instance, Sorin et al. 2023 explored 

the potential of ChatGPT-3.5 as a tool for facilitating clinical decision-making in 

breast tumour cases, with favourable results. Some LLMs have even been trained 

using large datasets of medical literature to create specialised models for the 

interpretation of patient information, generating medical reports or assisting 

healthcare professionals (Hartsock & Rasool, 2024). One of the best examples of this 

is Med-PaLM2, a large language model designed to provide high-quality answers to 

medical questions (Singhal et al. 2023), that reached an 86.5% accuracy on the 

MedQA medical exam benchmark. 

However, the capabilities of LVLMs have been poorly explored for their use in 

medical imaging. Some attempts have been made with CT scans, MRIs, or X-rays, but 

not so much with microscopy images. Some specialized models trained for medical 

visual question answering (VQA), where the model is asked to provide an accurate 

response to a medical question posed about an image, are described below: 

o LLaVa-Med: this multimodal model, capable of understanding, conversing, 

and assisting with inquiries about medical images, was created by fine-tuning 

the LLaVa model on a figure-caption dataset of 600,000 examples extracted 

from PubMed Central. Trained in less than 15 hours, this model exhibits 

excellent performance, outperforming other state-of-the-art models on 

certain metrics (Li et al. 2023). 

o Visual Med-Alpaca: an open-source parameter-efficient biomedical 

foundation model created for multimodal biomedical tasks, such as 

interpreting radiological images. It was created by fine-tuning the LLaMa-7B 

model on a set of 54,000 medical question-answer pairs, curated by GPT-3.5-

turbo and human experts (Shu et al. 2023) 
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o Med-Flamingo: this multimodal few-shot learner, based on the 

OpenFlamingo-9B architecture, was trained on a curated database of paired 

and interleaved medical image text data from publications and medical 

textbooks. This approach enables the model to generalize and perform 

diverse multimodal tasks with only a few examples (Moor et al. 2023) 

Some other specialized models, focused on a specific type of medical image, include 

XrayGPT for chest radiograph summarization (Thawkar et al. 2023) and MedXChat 

for chest X-ray understanding (Yang et al., 2023), OphGLM with applications in 

ophthalmology (Gao et al. 2023), and RaDialog, a radiology report generation and 

conversational assistance model (Pellegrini et al. 2023).  

 

2.3.2. Prompt engineering: 

Apart from fine-tuning and the creation of specialized models, there is one other 

strategy used to try to improve model performance: prompt engineering. This in-

context learning strategy involves enhancing an already pre-trained model with 

prompts, specifically task instructions, to steer the model’s behaviour and output to 

the desired one. This is achieved by designing and optimizing these prompts. By 

using this simple and ingenue methodology, we can evaluate and harness the full 

potential of foundation models.  Some of the most frequently used techniques to 

achieve more complex tasks and improve the performance of LVLMs are zero-shot 

prompting, few-shot prompting, and chain-of-thought.  

Zero-shot prompting is used to evaluate the fundamental capabilities of these 

models when no examples or demonstrations are provided to the model. However, 

when this approach does not work, usually in more complex tasks, it is 

recommended to add some examples to the prompt. This approximation is known 

as few-shot learning and is used to soft-train the model and enable in-context 

learning.  The examples provided guide the models to act in a certain way and to 

generate specific responses (Touvron et al. 2023). Depending on the number of 

examples we use, we will perform one-shot, two-shot, three-shot, five-shot, etc. 

However, these strategies may still provide unreliable or erroneous outputs, 

especially for more complex reasoning tasks. In this case, it is advised to experiment 

with more advanced prompting techniques, such as the popular chain of thought 

(CoT). CoT is used to improve the ability of LVLMs to perform complex reasoning 

through the introduction of a series of intermediate reasoning steps. This prompting 

strategy has been shown to improve model performance on a range of arithmetic, 

commonsense, and symbolic reasoning tasks (Wei et al. 2022). It is usually combined 

with few-shot prompting as demonstrated in Figure 6, although it can be used with 

zero-shot prompting by adding “Let’s think step by step” to the original prompt 

(Kojima et al. 2022). 
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On the other hand, the messages or inputs provided to the LVLMs have two 

properties: the content, which contains the task or instructions given to the model, 

and the role. The latter can take one of three values: user, assistant, or system. The 

user role represents the input provided by the individual interacting with the AI, 

through giving prompts or asking questions to the model, while the assistant role 

delivers the model’s response to the user’s input. On the other hand, the system role 

is used to provide instructions to the model, give context for the conversation, or set 

behaviour rules. Integrating the assistant and system roles into the prompt can help 

set the context and direct the conversation, resulting in improved performance and 

enhanced inputs. 

Some approaches have been made on this front to evaluate the potential of LVLMs 

for medical imaging, especially with ChatGPT and GPT models. For instance, a recent 

study on the capabilities of GPT-4V for VQA on radiology images using a zero-shot 

strategy found an accuracy rate of 50% for both open-ended and closed-ended 

questions (Yan et al. 2023). Likewise, Van et al. 2024 reported an accuracy of 61.82% 

and 51.61% when performing zero-shot learning with ChatGPT-4 on a CX-ray and a 

brain tumour RMI database, respectively. These researchers also obtained similar 

results when testing BiomedCLIP, OpenCLIP, OpenFlamingo, and LLaVa on the same 

databases. Nonetheless, the accuracy rate of OpenFlamingo increased significantly 

(71.28%) when few-shot learning was performed, adding four images from the CX-

ray database to the prompt as examples to build some context. 

However, most of the specialized models and explorations of LVLMs for medical 

imaging focus on X-ray, radiography, and magnetic resonance images, and very few 

studies have been made with microscopy pathological images. A recent article by 

Figure 6. Example inputs and outputs with (a) Few-shot, (b) Few-shot CoT, (c) standard Zero-shot and (d) 
Zero-shot CoT. The blue text shows the multi-step reasoning generated by chain-of-thought prompting. 
(Kojima et al. 2022) 
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Yan et al. 2023 evaluated the zero-shot performance of GPT-4V, through the ChatGPT 

webpage version, on the PathVQA (Pathology Questions for Medical Visual Question 

Answering) database, which includes microscopy, dermoscopy, WSI and endoscopic 

videos. The overall accuracy score obtained in this instance was 29.9%. However, the 

accuracy of the QA pairs deemed “easy” by the researchers was set at 75%, showing 

proficiency in basic medical knowledge. However, for the hardest QA pairs, where 

the model was asked to give clinical advice, the score set was 8.03%. Another paper 

reported a surprisingly 84.85% accuracy rate for ChatGPT-4 when testing it on an 

acute lymphoblastic leukaemia image database, containing microscopic images of 

normal and blast cells (Van et al 2024). 
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3.  Material and methods 
 

3.1. Database: 

For this work, we have selected a public dataset stored as a Mendeley repository 

named “A dataset for microscopic peripheral blood cell images for development of 

automatic recognition systems” (Acevedo et al. 2020). This dataset contains 17,092 

images of individual normal cells, labelled by clinical pathologists as neutrophils, 

eosinophils, basophils, lymphocytes, monocytes, immature granulocytes, 

erythroblasts, and platelets. Neutrophils are differentiated into segmented and band 

neutrophils. 

Images were captured in the Core Laboratory at the Hospital Clinic of Barcelona, 

with the analyser CellaVision DM96 after automated May Gru nwald-Giemsa 

staining. Blood samples were obtained from healthy patients without infection or 

hematologic diseases. To protect the anonymity of these individuals, images were 

saved using random numbers.  

The following figure shows images of the different types of cells contained in the 

database: 

 

 
Basophil 

 
Eosinophil 

 
Lymphocyte 

 
Monocyte 

 
Segmented  

Neutrophil 

 
Band              

Neutrophil 

 
Erythroblast 

 
Platelet 

 

 

 

Figure 7. Images of the different blood cell types found in peripheral blood smears and provided by 

the database (Acevedo et al. 2020). 
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3.2. Prompt engineering strategies: 

For the exploration of LVLMs, we adopted a zero-shot and few-shot approach, where 

we asked the models to answer questions about the peripheral blood cell images we 

provided. We tried with very straightforward and simple questions (basic prompts) 

or by asking the models for a step-by-step justification of their answers. We also 

performed different prompt engineering techniques, such as role prompting and 

chain of thought (CoT). Role prompting was used to assign a role to the LVLMs, give 

them some context, and make the AI act as if they were pathologists. On the other 

hand, CoT was used to promote more complex reasoning in the large vision-language 

models through intermediate reasoning steps. Lastly, we set the temperature of all 

models at 0 to make the answers as deterministic and reproducible as possible. 

To perform zero-shot learning, we did not provide any previous context or examples 

to the model, so we could evaluate the fundamental capabilities of the models for 

blood cell image analysis and classification. We used a basic prompt, asking for the 

model to identify the blood cell type in the image, role prompting, asking for the 

same while making the model act as a “pathologist who specializes in the analysis of 

peripheral blood smears”, and chain of thought. To perform CoT with zero-shot 

learning, we asked the model to provide a step-by-step reasoning before answering 

(Fig. 8). 

On the other hand, we carried out few-shot learning by soft-training the models in 

advance with sample images for each leukocyte type. For this exploration, we 

excluded platelets and erythroblasts due to the limitations in time and tokens. For 

this very reason, we tested the accuracy of the models after training them only with 

one, two, or three labelled examples for each cell type. Therefore, we performed 

zero-shot, two-shot, and three-shot learning, respectively. In addition to using a 

basic prompt, we also tested CoT, although this strategy changes slightly from zero-

shot CoT. In this case, we provided the model with intermediate reasoning steps by 

Figure 8. Prompt strategies used for zero-shot learning. 
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complementing the examples with reasoned answers describing the morphological 

characteristics of each cell type. These descriptions were obtained by performing a 

bibliographical search on the cell size, nucleus shape, nucleocytoplasmic ratio, 

cytoplasm colour, and granulation of the blood cell types. This information was 

collected in a table, which was fed as a CSV file to GPT-4. Then, we asked the model 

to generate descriptions for each cell type based on the features shown in the file. 

By using this technique, we were able to steer the model’s behaviour to provide 

reasoned outputs. Moreover, we tried a third approach, by repeating CoT but 

explicitly asking the model for a step-by-step reasoning before answering.  

Finally, we used the accuracy as a metric to evaluate the model performance. The 

prompts were tested at first with 5 images per cell type, which were selected at 

random. For zero-shot learning, we included leukocytes, platelets, and erythroblasts, 

but to test few-shot learning only leukocytes were used, due to limitations in the 

number of tokens. To compare the performance between models and prompting 

strategies, the same 5 images were used in each instance. Moreover, to obtain more 

Figure 9. Prompt strategies used for few-shot learning. Only one example of a basophil is shown 
in this figure, although more sample images were included in the prompt where the ellipsis is 
located. 
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robust results and better understand the behaviour of the best performing models, 

we tested them on 100 new peripheral blood cell images, featuring 20 basophils, 20 

eosinophils, 20 lymphocytes, 20 monocytes and, 20 neutrophils (10 band 

neutrophils, and 10 segmented neutrophils). 

On the other hand, only correct and specific answers were used to calculate the 

accuracy rate. For instance, answers that identified the cells as “leukocytes”, were 

not clear enough or provided the user with more than one possible answer 

(“lymphocyte or monocyte”) were not considered.  

 

3.3. User, assistant and system roles: 

In this work, we also explored the function of the user, assistant and system roles in 

model behaviour and performance. As a first approach, we tried the prompting 

strategy described in the previous section as a single user prompt. After this first 

attempt at evaluating model performance, we introduced the assistant role with few-

shot learning. Instead of providing all examples in a single user message, we 

intercalated the user and assistant roles, as shown in Fig. 10. This way, we could 

recreate more accurately the structure and behaviour of a conversation between the 

individual and the AI. 

 

 

Finally, we introduced the system role, alongside the user and the assistant, to 

instruct the model to act as a “pathologist who specializes in the analysis of 

peripheral blood smears”. Moreover, we also tried adding to the system message a 

description of the morphological characteristics of each leukocyte type, the same 

Figure 10. One-shot learning with the user and assistant roles using a basic prompt. 
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ones used to perform few-shot CoT, to provide more context and improve model 

performance. 

 

3.4. GPT API: 

To evaluate GPT4’s performance in blood cell image analysis and classification, we 

predominantly used the vision model GPT-4V (gpt-4-vision-preview). Since this 

model is not available in GPT’s playground, we worked with OpenAI’s API, an 

application programming interface that allowed us to interact with the desired 

model for chat completion. The code was written in Python, although we used the 

JSON format to create the prompt and obtain structured output responses from GPT. 

The Google Colab platform was employed to write and execute the code. In Figure 

11, we show the code used to perform zero-shot CoT, which contains the basic 

structure utilised for all other prompt strategies with GPT-4. The images used as 

input had to be converted into a base64 string before using them in the prompt. 

import base64 

import requests 

 

# OpenAI API Key 

api_key = "INSERT_YOUR_OPENAI_KEY_HERE" 

 

# Function to encode the image 

def encode_image(image_path): 

  with open(image_path, "rb") as image_file: 

    return base64.b64encode(image_file.read()).decode('utf-8') 

 

# Path to your image 

image_path = "/content/SNE_968729.jpg" 

 

# Getting the base64 string 

base64_image = encode_image(image_path) 

 

headers = { 

  "Content-Type": "application/json", 

  "Authorization": f"Bearer {api_key}" 

} 

 

payload = { 

  "model": "gpt-4-vision-preview", 

  "messages": [ 

      {"role": "user", 

       "content": [ 

        { 

          "type": "text", 
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          "text": "Identify the blood cell type in this image. Provide a step-by-step reasoning 

before providing your answer:" 

        }, 

        { 

          "type": "image_url", 

          "image_url": { 

            "url": f"data:image/jpeg;base64,{base64_image}" 

          } 

        } 

      ] 

    } 

  ], 

  "max_tokens": 2000, 

  "temperature": 0, 

  "top_p": 0 

} 

 

response = requests.post("https://api.openai.com/v1/chat/completions", 

headers=headers, json=payload) 

 

print(response.json()) 

 

Due to the recent announcement that OpenAI is deprecating the GPT-4V model on 

December 6, 2024, we also tested some of the best-performing prompt strategies 

with two other GPT-4 models with vision capabilities: the newly released GPT-4 

Omni model (gpt-4o) and GPT-4 Turbo (gpt-4-turbo). 

 

3.5. Claude Workbench: 

To study the capabilities of the Claude3 models Haiku, Sonnet, and Opus, we used 

the playground provided by Anthropic. Using this console, we were able to easily 

upload up to 20 images and play with the user and assistant roles. To perform few-

shot learning, we adapted the nomenclature shown in the bibliography and guides 

provided by Anthropic (Fig. 12). 

Figure 11. Code used to perform zero-shot CoT with GPT-4V.  
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3.6. LLaVa Setup: 

To study the performance of LLaVa’s latest version (llava-v1.6-34b) we first started 

working with its online interface to carry out zero-shot learning. However, this 

interface is not suited to perform few-shot learning. For this purpose, we used an 

API, employing Ollama as a framework to run the model and the Jarvislabs platform 

to rent a powerful and affordable GPU. Moreover, we had to adapt the prompting 

strategies and the code used for few-shot learning to this new model. An example of 

this code, to perform one-shot with both the user and assistant roles, is shown in 

Figure 13. 

 

 

Figure 12. One-shot learning with Claude3 using the Anthropic playground.  
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!pip install ollama 

 

import base64 

import requests 

import json 

 

# Function to encode the image 

def encode_image(image_path): 

  with open(image_path, "rb") as image_file: 

    encoded_string = base64.b64encode(image_file.read()) 

    return encoded_string.decode('utf-8') 

 

# Path to your image 

image_path = "/content/BNE_752441.jpg" 

 

# Getting the base64 string 

base64_image = encode_image(image_path) 

basophil_image = encode_image("/content/BA_229935.jpg") 

eosinophil_image = encode_image("/content/EO_74387.jpg") 

lymphocyte_image = encode_image("/content/LY_164944.jpg") 

monocyte_image = encode_image("/content/MO_85774.jpg") 

neutrophil_image = encode_image("/content/SNE_746001.jpg") 

band_image = encode_image("/content/BNE_53949.jpg") 

 

import ollama 

from ollama import Client 

client = Client(host='https://fca4526b7b161.notebooksc.jarvislabs.net/') 

response = client.chat(model='llava:34b-v1.6', 

                       options = {"temperature": 0}, 

                       messages=[ 

    { 

      "role": "user", 

      "content": "Identify the blood cell type in this image:", 

      "image": f"data:image/jpeg;base64,{basophil_image}" 

    }, 

    { 

      "role": "assistant", 

      "content": "This image features a basophil." 

    }, 

    { 

      "role": "user", 

      "content": "Identify the blood cell type in this image:", 

      "image": f"data:image/jpeg;base64,{eosinophil_image}" 

    }, 

    { 

      "role": "assistant", 

      "content": "This image features an eosinophil." 

    }, 

    { 
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      "role": "user", 

      "content": "Identify the blood cell type in this image:", 

      "image": f"data:image/jpeg;base64,{lymphocyte_image1}" 

    }, 

    { 

      "role": "assistant", 

      "content": "This image features a lymphocyte.” 

    }, 

    { 

      "role": "user", 

      "content": "Identify the blood cell type in this image:", 

      "image": f"data:image/jpeg;base64,{monocyte_image}" 

    }, 

    { 

      "role": "assistant", 

      "content": "This image features a monocyte." 

    }, 

    { 

      "role": "user", 

      "content": "Identify the blood cell type in this image:", 

      "image": f"data:image/jpeg;base64,{neutrophil_image}" 

    }, 

    { 

      "role": "assistant", 

      "content": "This image features a neutrophil." 

    }, 

    { 

      "role": "user", 

      "content": "Identify the blood cell type in this image:", 

      "image": f"data:image/jpeg;base64,{band_image}" 

    }, 

    { 

      "role": "assistant", 

      "content": "This image features a band neutrophil.” 

    }, 

    { 

      "role": "user", 

      "content": "Identify the blood cell type in this image:", 

      "image": f"data:image/jpeg;base64,{base64_image}" 

    } 

]) 

 

print(response['message']['content']) 

 

 

Figure 13. Code used to perform one-shot learning with llava-v1.6-34b, employing both the 
user and assistant roles.  
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4. Results and Discussion 

 

4.1. Morphological description of peripheral blood cells: 

Peripheral blood contains red blood cells (erythrocytes), white blood cells 

(leukocytes) and platelets, but also immature forms of some of these cells. 

Erythrocytes are non-nucleated, bi-concave small cells, about 7-8um in diameter, 

mostly responsible for the transport of gases and oxygen throughout the body. 

Nucleated erythroid precursors, also called erythroblasts, can also be found in 

peripheral blood, although an abundance of this type of cells can be associated with 

severe anaemia. Platelets, which are also non-nucleated, have an important role in 

blood clotting. They are smaller than erythrocytes, with a diameter of 2-4um. Larger 

platelets or macrothrombocytes can also be detected in blood films as a sign of 

immune thrombocytopenia or other disorders. 

 Leukocytes are nucleated cells that play a role in protecting the body against 

infection and foreign bodies. They can be classified as granulocytes or agranulocytes. 

Basophils, neutrophils, and eosinophils are granulocytes, which contain specific 

granules along their cytoplasm with enzymes released upon infection or other 

immune responses, such as allergic reactions. On the other hand, monocytes and 

lymphocytes are agranulocytes. This means they lack specific granules in their 

cytoplasm, although they can contain azurophilic (lysosome) granules. However, 

their appearance and morphology can be easily distinguished when stained with 

Giemsa or Leishman. After extensive bibliographic research, we have created Table 

5, which shows the main morphological differences used by clinicians to identify 

these leukocytes in peripheral blood films.  

Table 5. Morphological characteristics of neutrophils, band neutrophils, eosinophils, 
basophils, lymphocytes, and monocytes.  

 

 

BLOOD CELLS SIZE NULEOCYTOPLASMIC 
RATIO 

NUCLEUS SHAPE SEGMENTS OF THE 
NUCLEUS 

NEUTROPHIL intermediate low segmented 2 to 5 
BAND NEUTROPHIL intermediate low band 0 

EOSINOPHIL intermediate low segmented 2 
BASOPHIL intermediate low segmented variable 

LYMPHOCYTE small high round mononuclear 
MONOCYTE high moderate indented mononuclear 
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As mentioned in the methods section, we fed these tables to ChatGPT to generate 

descriptions for each leukocyte type. These are the descriptions obtained, after 

reviewing them: 

• Basophils: Basophils have an intermediate size, low nucleocytoplasmic ratio, and 

a segmented nucleus whose segments can vary. They contain dark, 

condensed/heterogeneous nuclear chromatin and a wide azurophilic cytoplasm 

with round basophilic granulation. The large number of dark purplish granules 

often make the nucleus difficult to see. 
 

• Eosinophils: Eosinophils, with an intermediate size and low nucleocytoplasmic 

ratio, are recognized by their distinctly segmented nucleus, with 2 segments, and 

condensed/heterogeneous nuclear chromatin. Their wide cytoplasm is 

eosinophilic, complemented by round dark-pink granules. 
 

• Lymphocytes: Lymphocytes are small but have a high nucleocytoplasmic ratio. 

Their nucleus is round and mononuclear, with condensed/heterogeneous 

chromatin without nucleoli. Their scant, basophilic cytoplasm shows only 

occasional granulation. 
 

• Monocytes: Monocytes are characterized by their high size and moderate 

nucleocytoplasmic ratio. They exhibit an indented nucleus described as 

mononuclear, with low condensed nuclear chromatin. The cytoplasm of a 

monocyte is moderate in volume, displaying a grayish colour that accompanies 

its fine sand-like granulation. 
 

• Neutrophils: Neutrophils are intermediate-sized blood cells characterized by a 

low nucleocytoplasmic ratio. Its nucleus is segmented into 2 to 5 parts and 

features condensed/heterogeneous chromatin with no nucleoli present. The 

cytoplasm is wide and azurophilic, containing azurophil granulation. 
 

• Band neutrophils: Band neutrophils are a less mature form of a neutrophil. This 

form has an intermediate size and low nucleocytoplasmic ratio, but its nucleus 

takes a distinct band shape with no segments. Featuring similar nuclear 

BLOOD CELLS NUCLEAR CHROMATIN CYTOPLASM COLOUR 
CYTOPLASM 

GRANULATION 

NEUTROPHIL condensed/heterogeneous wide azurophilic azurophil 
BAND NEUTROPHIL condensed/heterogeneous wide azurophilic azurophil 

EOSINOPHIL condensed/heterogeneous wide eosinophilic round eosinophilic 
BASOPHIL condensed/heterogeneous wde azurophilic round basophilic 

LYMPHOCYTE condensed/heterogeneous scant basophilic occasional 
MONOCYTE low condensed moderate grayish in fine sand 
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chromatin and absence of nucleoli, its azurophilic cytoplasm also houses 

azurophil granulation. 

These morphological descriptions were subsequently used to carry out few-shot 

prompting with the selected LVLMs and perform in-context learning. 

 

4.2. GPT-4 Performance: 

 

4.2.1. GPT-4V: 

Firstly, we performed zero-shot learning, as described in the methods section, to 

evaluate the capabilities of this fundamental model. We tried different strategies, 

including a basic prompt, role prompting, and zero-shot CoT. The accuracy rates 

obtained by using these prompts on 5 random images for each cell type were 

25.71%, 22.86% and 25.71%, respectively. However, we could observe that the 

model did not identify correctly any platelets or erythroblasts, instead classifying 

them mostly as neutrophils and lymphocytes. Thus, considering only the results for 

the leukocyte images, the accuracy improved to 36%, 32% and 36%. Apart from the 

identification of the cell type, the model also provided us with descriptions of the 

cells in the image with varying degrees of concretion and specificity. With a basic 

prompt, descriptions were more generic and broader, while by using role prompting 

they were usually a bit more precise, pointing out more morphological 

characteristics of the cells. In the case of zero-shot CoT, descriptions were  

Apart from the identification of the cell type, the model also provided us with 

descriptions of the cells in the image with varying degrees of concretion and 

specificity. With a basic prompt, the descriptions were more generic and broader, 

while by using role prompting they were usually a bit more precise, pointing out 

more morphological characteristics of the cells. In the case of zero-shot CoT, the 

descriptions were much more specific, providing detailed information about the cell 

size, the nucleus and the cytoplasm before identifying the cell type, as we instructed 

(Figure 14).  
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Next, we performed one-shot and two-shot with GPT-4V, only with the leukocyte 

images (basophils, eosinophils, lymphocytes, monocytes and neutrophils), using 

only a user message or by intercalating the user and assistant roles. Although we 

also wanted to test three-shot learning with this model, we could not carry out this 

technique with GPT-4V, as prompts are restricted to a maximum of 10,000 tokens. 

Alternatively, to try to improve model performance and carry out an approximation 

to three-shot learning while maintaining the same number of images, we created a 

hybrid prompt with 3 sample images for lymphocytes and monocytes, which were 

the least recognized when using two-shot learning, and only 1 image for basophils 

and eosinophils. The accuracy rates are presented in Table 6. 

Table 6. Accuracy rate of GPT-4V for one-shot, two-shot, and an approximation to three-shot 
learning, using 3 samples images of lymphocytes and monocytes and only one for basophils 
and eosinophils. 

  
ONLY USER WITH ASSISTANT 

ONE-SHOT 
Basic Prompt 60.00 44.00 
CoT 48.00 52.00 
CoT (Step-by-Step) 68.00 72.00 

TWO-SHOT 
Basic Prompt 72.00 72.00 
CoT 68.00 68.00 
CoT (Step-by-Step) 56.00 68.00 

THREE-SHOT ADAPTED Basic Prompt 64.00 - 

 

The best results were obtained when performing two-shot learning with a basic 

prompt (without intermediate reasoning steps), using only the user role or with the 

assistant and user roles combined. Surprisingly, we did not see an improvement in 

the accuracy when carrying out CoT, although this strategy usually performs better 

for complex tasks. On the other hand, the three-shot learning approach did not 

improve model accuracy. It recognised correctly fewer eosinophils and basophils 

Figure 14. Outputs of GPT-4V obtained for the same image when using a basic prompt, role 
prompting or zero-shot CoT. 
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and, despite using 3 sample images for lymphocytes and monocytes, no increase in 

their identification was observed.  

With regards to cell description, we could test out how the examples and 

intermediate reasoned steps shaped model behaviour. When using a basic prompt, 

GPT-4V did not deliver a cell description, copying the style of the answer we had 

provided in the examples. Nonetheless, we obtained more detailed morphological 

descriptions when performing CoT, which included some of the features we had 

pointed out in the intermediate reasoned steps. However, more detailed descriptions 

were obtained by asking for step-by-step reasoning, resulting in a more detailed 

exploration of the features of the cells, including cell size, nucleus shape, 

nucleocytoplasmic ratio, cytoplasm colour and granulation (Figure 15). 

As another attempt to improve the model accuracy, we tried implementing the 

system role, as explained in the methods section. We performed zero-shot learning, 

with both a role prompting approach and by introducing the leukocyte descriptions 

in the system message. Performing role prompting using the system did not improve 

the accuracy of the model (36%), in comparison to the previous zero-shot learning 

results. However, introducing the cell descriptions in the system message did result 

in a much better accuracy (56%) obtaining even better performance than with zero-

shot CoT. We also tried combining this last strategy with two-shot learning while 

using the assistant and the user roles.  However, we saw a decrease in model 

accuracy (60%), contrary to what we expected. Considering that most of the wrong 

answers were identified as band neutrophils, we repeated this process excluding the 

band neutrophil description from the system message, obtaining an improved 

accuracy rate of 84% (Table 7). 

Figure 15. Outputs of the same image obtained by performing few-shot prompting on GPT-4V using a 
basic prompt, CoT or by asking for a step-by-step reasoning.  
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Table 7. Accuracy rates for one-shot and two-shot learning with the assistant and system 
roles.  

 
 

Role Prompting + Cell Description 
 Role Prompting With Band Neutrophil Without Band Neutrophil 

ZERO-SHOT 36.00 56.00 - 
TWO-SHOT - 60.00 84.00 

 

So far, we have tried these prompting strategies using a limited number of peripheral 

blood cell images, only 25. To obtain more robust results, we have tested again the 

two-shot learning strategies that resulted in the best accuracy rates on 100 new 

peripheral blood cell images selected at random. 

Table 8. Accuracy rate for every leukocyte type using a two-shot strategy using only the user 
role, intercalating the user and assistant roles, or by incorporating a system message with 
the description of the cells. 

 Two-Shot with a Basic Prompt 

 ONLY USER WITH ASSISTANT WITH ASSISTANT AND SYSTEM 
Basophils 65.00 90.00 80.00 
Eosinophils 65.00 75.00 90.00 
Lymphocytes 45.00 35.00 55.00 
Monocytes 25.00 35.00 45.00 
Neutrophils 100.00 100.00 100.00 
Total accuracy 60.00 67.00 74.00 

 

As we can see in Table 8, the accuracy obtained by testing these two-shot prompting 

strategies in a bigger pool of images decreases a bit. Nonetheless, the overall 

accuracy rate when using the assistant role (67%) is slightly better than the one 

obtained using only the user role (60%). Moreover, by incorporating the assistant 

role, we accomplished a better accuracy for all leukocyte types except for 

lymphocytes, which decreased from an accuracy of 45% to 35%. However, the best 

overall accuracy was accomplished by incorporating the system role (74%), asking 

for the model to act as a pathologist, and integrating the morphological descriptions 

for each leukocyte type into the prompt, excluding band neutrophils.  

 

4.2.2. GPT-4 turbo and GPT-4o: 

To evaluate the vision capabilities of the new GPT-4 Turbo and GPT-4o models, we 

tested them with some of the strategies described in the previous section. As a first 

approach, we performed zero-shot learning using a basic prompt, role prompting or 

CoT. Thereafter, we carried out two-shot learning with a basic prompt using only the 

user message, intercalating the user and assistant roles, or including the system role 

into the prompt (Table 9). 
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Table 9. Accuracy rates obtained when performing zero-shot and two-shot learning, using 
a basic prompt, with GPT-4 Turbo and GPT-4o. 

  
GPT-4 Turbo GPT-4o 

ZERO-SHOT 
Basic Prompt 36.00 76.00 
Role Prompting - 76.00 
CoT - 64.00 

TWO-SHOT  
(Basic Prompt) 

Only User 68.00 84.00 
With Assistant 64.00 84.00 
With Assistant and System 84.00 80.00 

 

When using GPT-4 turbo, we do not observe any improvement in model performance 

compared to the GPT4V model. However, we see once again an increase in the 

accuracy rate with two-shot learning when the system role was implemented. On the 

contrary, we see a substantial improvement in model accuracy with GPT4o. We even 

get better results without any soft training (76%) than with GPT-4V using two-shot 

learning (72%). In fact, by using this new model, we could improve the accuracy 

obtained by two-shot learning on both the user and assistant roles from 72% to 

84%. On the other hand, we obtained similar outputs to those of GPT-4V for zero-

shot prompting, obtaining more detailed morphological descriptions with the zero-

shot CoT approach. In the case of two-shot learning, as we were using a basic prompt 

without intermediate reasoned steps, we did not obtain cell descriptions.  

Finally, considering the enhanced performance of this new GPT4o model, we tried 

again zero-shot and two-shot learning with the user and assistant roles on 100 

images. This way, we could better evaluate the capabilities of this model (Table 10). 

Table 10. Accuracy rates of GPT-4o for each leukocyte type using a zero-shot or a two-shot 
learning approach, intercalating the user and assistant roles, on 100 images. 

 
ZERO-SHOT TWO-SHOT WITH ASSISTANT 

Basophils 30.00 95.00 
Eosinophils 55.00 95.00 
Lymphocytes 75.00 40.00 
Monocytes 70.00 70.00 
Neutrophils 70.00 90.00 
Total accuracy 60.00 78.00 

 

Once again, we can see that even without any soft training, this model shows a 

similar performance to the one obtained by GPT4V with two-shot learning. 

Moreover, by performing two-shot learning with GPT4o, we have been able to 

increase the overall accuracy from 67% to 78%, without even using the system role. 

This accuracy is even slightly higher than the one obtained by testing the GPT4V 

model with 100 images when the system role was integrated into the prompt, 
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increasing the accuracy from 74% to 78%. Nonetheless, this new model still 

struggles to recognize lymphocytes, showing an accuracy rate for this leukocyte type 

of 40%.  

 

4.3. Claude3 Performance: 

As a first approach to evaluating Claude3, we performed zero-shot with Opus, its 

most powerful model, using 5 images for each cell type, including platelets and 

erythroblasts. The accuracy rates when using a basic prompt, role prompting, or 

zero-shot CoT were 14.29%, 20% and 5.71%, respectively. However, we could 

observe again that the model struggles in detecting erythroblasts and platelets, 

identifying them as eosinophils or neutrophils for the most part. Therefore, by just 

taking into account the leukocyte images, we obtained better accuracy rates (Table 

11).  

Table 11. Accuracy rates of Haiku, Sonnet, and Opus with zero-shot learning trying only the 
leukocyte images 

 ZERO-SHOT 

 Basic Prompt Role Prompting CoT 

Haiku 8.00 16.00 28.00 
Sonnet 20.00 20.00 20.00 
Opus 20.00 24.00 4.00 

 

At first glance, we can observe that role prompting slightly increased the accuracy of 

the Haiku and Opus models, from 8% to 16% and from 20% to 24%, respectively. 

Moreover, we can see an improvement in the accuracy of the Haiku model when CoT 

was performed, showing the best performance for all models and prompting 

techniques (28%). Interestingly, some of the answers provided by Claude3, while 

identifying the red blood cells surrounding our cell of interest, did not recognise the 

latter. They are rather mentioned as an artefact or abnormality in most cases. This 

type of output was especially common when performing CoT with Opus, which is 

why the accuracy rate is 4%.   

Once again, we performed one-shot learning by containing the prompt in a single 

user message or incorporating the assistant role into the prompt (Table 12).  
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Table 12. Accuracy rates of Haiku, Sonnet and Opus with one-shot learning using a basic 
prompt, CoT or CoT (Step-by-step). Columns show the results with or without the assistant 
role. 

  
ONE-SHOT 

  
ONLY USER WITH ASSISTANT 

Basic 
Haiku  4.00 0.00 

Sonnet 32.00 32.00 
Opus 20.00 8.00 

CoT 
Haiku  0.00 0.00 

Sonnet 48.00 0.00 
Opus 4.00 0.00 

CoT (Step-by-
Step) 

Haiku  20.00 24.00 
Sonnet 40.00 36.00 
Opus 32.00 44.00 

 

Surprisingly, the best performing model was Sonnet, which did surpass Haiku and 

Opus in accuracy rate. Accordingly, the best accuracy (48%) was obtained with 

Sonnet by performing Chain of Thought in a single user prompt. Alternatively, Haiku 

showed poor performance, as most cells were identified as platelets when using a 

basic prompt or CoT. On the other hand, incorporating the assistant role into the 

prompt did not improve the overall accuracy of the Claude3 models. 

Moreover, we did also carry out two-shot and three-shot learning with Sonnet and 

Opus, using only the user role. Haiku was excluded due to its poor results. 

Surprisingly, we did not observe a significant improvement in model performance 

compared to the one-shot learning results. The only significant improvement was 

obtained by using the basic prompt with Sonnet, which increased the accuracy rate 

from 32% to 56%. Moreover, we obtained the same accuracy when performing two-

shot and three-shot learning (Figure 13). 

Table 13. Accuracy rates of Sonnet and Opus with two-shot or three-shot learning using 
only the user role. 

  
TWO-SHOT THREE-SHOT 

Basic Prompt 
Sonnet 56.00 56.00 
Opus 24.00 24.00 

CoT 
Sonnet 48.00 - 
Opus 28.00 - 

CoT (Step-by-step) 
Sonnet 32.00 - 
Opus 20.00 - 
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Finally, we tried Sonnet again with the best performing strategy (two-shot learning 

with a basic prompt) on 100 new images. This resulted in an underwhelming overall 

accuracy of 47%. Moreover, the model struggled to identify eosinophils and 

lymphocytes (Figure 14). 

Table 14. Accuracy rate of Sonnet for each leukocyte type when performing two-shot 
learning with a basic prompt on 100 images. Only the user role was used.  

 
TWO-SHOT (Basic Prompt) 

Basophils 80.00 
Eosinophils 0.00 
Lymphocytes 10.00 
Monocytes 65.00 
Neutrophils 80.00 
Total accuracy 47.00 

 

4.4. LLaVa Performance: 

To evaluate the performance of this last LVLM, we tried once again zero-shot, one-

shot and two-shot learning. Starting with zero-shot learning, we did observe similar 

results to Claude3, both by using all cell types (including platelets and erythroblasts) 

or only leukocytes (Table 15).  

Table 15. Accuracy rates of LLaVa 1.6 using zero-shot learning with a basic prompt, role 
prompting or CoT. Columns show the results obtained with all the cell types or only with 
leukocyte images.  

  
ALL CELLS ONLY LEUKOCYTES 

ZERO-SHOT 
Basic Prompt 11.43 12.00 
Role Prompting 14.29 20.00 
CoT 0.00 0.00 

 

When we carried out zero-shot CoT, most cells were identified as red blood cells, 

hence the 0% accuracy. On the other hand, when we used a basic prompt or role 

prompting, most images were recognised as lymphocytes, although some outputs 

were just classified as leukocytes or were not specified.   

Afterwards, we performed one-shot learning using only the user role in a single 

prompt, the same as we did with GPT4-V and Claude3. However, this prompt 

provided us with the same inconclusive result for all images: 

“The image you've provided is too small and blurry for me to accurately identify the 

specific type of blood cell. If you can provide a clearer, higher-resolution image or more 

information about the cell, I may be able to help you identify it.” 
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Therefore, we carried out one-shot with the assistant role, following the examples 

provided by the bibliography. By using this approach, we were able to obtain proper 

responses. We also performed two-shot learning with this same strategy (Table 16). 

Nonetheless, these prompting techniques did not improve model performance. The 

highest accuracy we were able to achieve was 20%, and we could only recognise 

neutrophils or lymphocytes correctly when performing two-shot or one-shot 

learning, respectively. On the other hand, when using a basic prompt, the images 

were recognised either as red blood cells or platelets, thus obtaining an accuracy 

rate of 0%. 

Table 16. Accuracy rate of LLaVa 1.6 with one-shot and two-shot learning using a basic 
prompt, CoT or CoT (Step-by-step).  The assistant role was incorporated into the prompt.  

 
ONE-SHOT TWO-SHOT  

Basic 0.00 0.00  
CoT 0.00 20.00  
CoT (Step-by-Step) 20.00 20.00  

 

Considering the unsatisfactory performance of LlaVa, we did not continue working 

with this model. 

 

4.5. Comparison between models and prompting techniques: 

After reviewing the accuracy rates of all prompting techniques for each model, we 

would like to provide a more comprehensive comparison between them. Firstly, we 

have put together Table 17, with all accuracy rates obtained for each model and 

prompting strategy.  
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Table 17. Comparison of all the accuracy rates between the LVLMs and prompting techniques. The highest values are shown in green.  

   
GPT-4 Claude3 LLaVa 1.6 

   
GPT-4V GPT-4 turbo GPT-4o Haiku Sonnet Opus   

ZERO-SHOT 

All cells 
Basic Prompt 25.71         14.29 11.43 

Role Prompting 22.86         20.00 14.29 

CoT 25.71         5.71 0.00 

Only leukocytes 
Basic Prompt 36.00 36.00 76.00 8.00 20.00 20.00 12.00 

Role Prompting 32.00   76.00 16.00 20.00 24.00 20.00 

CoT 36.00   64.00 28.00 20.00 4.00 0.00 

ONE-SHOT 

Only user 
Basic Prompt 60.00     4.00 32.00 20.00   

CoT 48.00     0.00 48.00 4.00   

CoT (Step-by-step) 68.00     20.00 40.00 32.00   

With assistant 
Basic Prompt 44.00     0.00 32.00 8.00 0.00 

CoT 52.00     0.00 0.00 0.00 0.00 

CoT (Step-by-step) 72.00     24.00 36.00 44.00 20.00 

With assistant and system 
Role Prompting 36.00             

Cell description 56.00             

TWO-SHOT 

Only user 
Basic Prompt 72.00 68.00 84.00         

CoT 68.00             

CoT (Step-by-step) 56.00             

With assistant 
Basic Prompt 72.00 64.00 84.00   56.00 24.00 0.00 

CoT 68.00       48.00 28.00 20.00 

CoT (Step-by-step) 68.00       32.00 20.00 20.00 
With assistant and system Cell description 84.00 84.00 80.00         

THREE-SHOT   Basic Prompt 64.00       56.00 24.00   
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Moreover, we have created barplots to represent some of the most notable results 

obtained for zero-shot, one-shot and two-shot learning, comparing the accuracy 

rates between models and prompts. 
 

 

Figure 16. Barplot of the zero-shot learning accuracy rates, using a basic prompt, role prompting, or 
CoT with the GPT-4, Claude and LLava 1.6 models.  
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Figure 17.  Barplot of the one-shot learning accuracy rates, using a basic prompt, CoT or CoT (Step-by-step) and the GPT-4, 
Claude3 and LLaVa models. Results are shown when intercalating the assistant and user roles (right) or by using only the 
user role (left). 
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First, we can observe that GPT-4 is the best-performing model in all instances. 

Moreover, the GPT-4o model provided twice the accuracy of GPT-4V when 

performing zero-shot learning, showing proficiency in VQA. Although we can see an 

overall improvement when carrying out one-shot prompting, in contrast to zero-

shot learning, the best performance was obtained with two-shot prompting. 

Providing the model with two examples of each cell type improved the accuracy by 

up to 84%. Overall, the best strategies and models were GPT-4V, GPT-4 turbo, and 

GPT-4o, incorporating the assistant and system roles while using a basic prompt 

without intermediate reasoned steps. Nonetheless, as we described in previous 

sections, when trying these strategies in a larger number of images, we could obtain 

more reliable accuracy rates. Thus, we could determine that the best-performing 

method and LVLM combination, with an overall accuracy rate of 78%, is GPT-4o 

using a two-shot learning strategy, incorporating the assistant role but without 

adding intermediate reasoning steps. 
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Figure 18. Barplot of the two-shot learning accuracy rates, using a basic prompt, CoT or CoT 
(Step-by-step) with the assistant and user roles, or by incorporating morphological cell 
descriptions into the system message.  
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5. Web application 
 

With the objective of portraying these results in a more practical and tangible way, 

as well as providing researchers with an easy tool to analyse and classify white blood 

cells, we created a web application. 

For this purpose, we used Flask as a web application framework and created a 

Python script by taking advantage of the GPT API. We used the GPT4o model with 

two-shot learning and with the assistant role, which provided the best overall 

accuracy when tested on 100 images (78%). Moreover, we generated a basic HTML 

form to collect user input and give shape to the web application. The full code can be 

found on the Appendix and GitHub. 

In Figure 19, we show an image of this web application, already with an uploaded 

image and the provided result. 

 

 

Although the interface and the accuracy of the current GPT-4o model should be 

improved, we believe this is a good first step in the application of LVLMs for the 

analysis of peripheral blood cell images. Moreover, this script works as a template to 

use with other GPT-4 prompts and models. 

 

 

Figure 19. Image of the web application interface. A basophil image was uploaded and recognised by the 
application. 

https://github.com/Bio-Sanqui/TFM_MarinaSanchez
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6.  Conclusions 
 

Firstly, we successfully did bibliographical research on the state-of-the-art of LVLMs 

and their application for biomedical imaging. We explored the evolution of LVLMs, 

some of the most advanced large multimodal models, and a few specialised 

biomedical models. Likewise, we researched different prompt engineering 

strategies to explore and improve the capabilities of GPT-4, Claude3 and LLava on 

peripheral blood cell analysis and classification. Moreover, we were able to research 

the morphological characteristics of these cells, create tables to summarise these 

distinctive features, and generate specific descriptions for each cell type with the 

help of ChatGPT. These morphological descriptions were subsequently used to carry 

out few-shot prompting with the selected LVLMs and perform in-context learning.  

Furthermore, we have identified GPT4 Omni as the best-performing method for the 

identification of peripheral blood cell images. Although its best overall accuracy was 

obtained when carrying out two-shot learning, its results on zero-shot were also 

much superior to those of its competitors. This means that, even without any soft 

training, GPT-4 Omni shows better proficiency in basic medical knowledge. This is 

particularly convenient as GPT-4 Omni is one of GPT-4's cheapest and fastest models.  

On the other hand, LLaVa showed the worst performance of all  LVLMs. This model 

struggled to recognise white blood cells, identifying a large part of them as red blood 

cells or platelets. Moreover, soft-training the model by one-shot or two-shot learning 

did not improve accuracy. Regarding Claude3, we recognised Sonnet as the best-

performing model, improving its precision when carrying out two-shot prompting. 

However, the best accuracy rates obtained by Claude3 barely surpassed 50%, 

showing poor performance in comparison to GPT-4V. 

In terms of the inclusion of the assistant role, we obtained mixed results, depending 

on the model. For GPT-4, the intercalating user and assistant responses did increase 

by a small margin the accuracy rate. However, we could not detect this improvement 

with the Claude3 models when working with Anthropic’s Workbench. In the case of 

LLaVa, the use of the assistant role was mandatory for few-shot learning, otherwise, 

the model would detect the images as "blurry" and did not analyse the cells properly.  

On another note, adding more context to the model through role prompting did not 

improve its capabilities, although the outputs contained more precise and in-depth 

descriptions of the cells. Moreover, the addition of intermediate reasoning steps by 

performing chain of thought did not improve either model accuracy. For the most 

part, using a simpler and straightforward approach results in the best performing 

strategies. Nonetheless, the inclusion of morphological descriptions for each cell 

type in the system role did improve the precision of some models. This could be due 

to the fact that by introducing these descriptions in the system and not as part of the 
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chain of thought, we are providing a much more comprehensive and less restraining 

context for the overall conversation between the user and the assistant. 

Finally, we were able to determine that the best-performing method and LVLM 

combination is GPT-4o when using a two-shot learning strategy, with the addition of 

the assistant role but without the use of intermediate reasoning steps. By using this 

approach on 100 images of leukocytes, we attained an accuracy rate of 78%. 

Moreover, by using this strategy, we were able to create a web application capable of 

classifying white blood cells from peripheral blood cell smears with a 78% accuracy 

rate. 

Although we have accomplished a decent performance by simply exploring prompt 

engineering techniques in LVLMs, more precise and accurate machine learning 

techniques have been published, reporting up to a 96.2% classification accuracy for 

peripheral blood cell images using convolution neural networks (Acevedo et al. 

2019). In addition, it is important to point out that the performance displayed by 

these LVLMs is not reliable enough and, on account of the severity of possible errors 

in the medical field, they should not be used as a diagnostic tool. Nonetheless, we 

believe that due to the rapid advancement of large language-vision models and the 

progressive cheapening of their costs, LVLMs could become a great asset in the 

analysis of pathology images, working as an assistant for quick blood cell description 

and classification. 
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7.  Future perspectives 

For future work, we intend to try more advanced prompting techniques with GPT-4 

and Claude3. Considering the good performance of GPT-4o, we would like to carry 

out self-consistency, prompt chaining, and tree of thoughts (ToT) with this model. As 

another way to try to improve model performance, if we manage to overcome token 

limitations, we want to continue exploring few-shot prompting with GPT-4 using up 

to 10 examples. Another thing we would like to implement is function calling to 

obtain more structured data back from the models and to be able to perform 

multiple calls together.  

Furthermore, we plan on exploring other LVLMs for the analysis and classification 

of peripheral blood cells. Another interesting approach would be to evaluate the 

capabilities of some specialised models trained on medical data, such as LLava-Med 

or Med-Flamingo, and compare their performance with that of the foundational 

models. Moreover, due to the rapid progress in this field, we will need to keep track 

of emerging models and evaluate their capabilities for medical image analysis.  

Once we do a deeper exploration of prompt engineering with these LVLMs, we plan 

on fine-tuning the best-performing models by retraining them on hundreds of 

images of peripheral blood cell smears to generate a specialised model for white 

blood cell classification.  

Finally, if the results are favourable, we could try translating this strategy to the 

analysis of other types of pathological images that have been poorly explored, like 

stained histology samples or tissue biopsies.  
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9.  Appendix 
 

#FLASK WEB APP 

from flask import Flask, render_template, request 

import base64 

import requests 

 

app = Flask(__name__) 

api_key = " INSERT_YOUR_OPENAI_KEY_HERE " 

 

def gpt4(base64_image): 

    # Function to encode images 

    def encode_image(image_path): 

        with open(image_path, "rb") as image_file: 

            return base64.b64encode(image_file.read()).decode('utf-8') 

    # Getting the base64 string 

    basophil_image1 = encode_image("BA_229935.jpg") 

    basophil_image2 = encode_image("BA_594501.jpg") 

    eosinophil_image1 = encode_image("EO_74387.jpg") 

    eosinophil_image2 = encode_image("EO_280451.jpg") 

    lymphocyte_image1 = encode_image("LY_164944.jpg") 

    lymphocyte_image2 = encode_image("LY_320312.jpg") 

    monocyte_image1 = encode_image("MO_85774.jpg") 

    monocyte_image2 = encode_image("MO_116840.jpg") 

    neutrophil_image = encode_image("SNE_746001.jpg") 

    band_image = encode_image("BNE_53949.jpg") 

    # Generate openai response 

    headers = { 

        "Content-Type": "application/json", 

        "Authorization": f"Bearer {api_key}" 

    } 

    payload = { 

        "model": "gpt-4o", 

        "messages": [ 

            { 

                "role": "user", 

                "content": [ 

                    { 

                        "type": "text", 

                        "text": "Identify the blood cell type in these images:" 

                    }, 

                    { 

                        "type": "image_url", 

                        "image_url": { 

                            "url": f"data:image/jpeg;base64,{basophil_image1}" 

                        } 

                    }, 
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                    { 

                        "type": "image_url", 

                        "image_url": { 

                            "url": f"data:image/jpeg;base64,{basophil_image2}" 

                        } 

                    } 

                ] 

            }, 

            { 

                "role": "assistant", 

                "content": [ 

                    { 

                        "type": "text", 

                        "text": "These images feature a basophil." 

                    } 

                ] 

            }, 

            { 

                "role": "user", 

                "content": [ 

                    { 

                        "type": "text", 

                        "text": "Identify the blood cell type in these images:" 

                    }, 

                    { 

                        "type": "image_url", 

                        "image_url": { 

                            "url": f"data:image/jpeg;base64,{eosinophil_image1}" 

                        } 

                    }, 

                    { 

                        "type": "image_url", 

                        "image_url": { 

                            "url": f"data:image/jpeg;base64,{eosinophil_image2}" 

                        } 

                    } 

                ] 

            }, 

            { 

                "role": "assistant", 

                "content": [ 

                    { 

                        "type": "text", 

                        "text": "These images feature an eosinophil." 

                    } 

                ] 

            }, 

            { 

                "role": "user", 
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                "content": [ 

                    { 

                        "type": "text", 

                        "text": "Identify the blood cell type in these images:" 

                    }, 

                    { 

                        "type": "image_url", 

                        "image_url": { 

                            "url": f"data:image/jpeg;base64,{lymphocyte_image1}" 

                        } 

                    }, 

                    { 

                        "type": "image_url", 

                        "image_url": { 

                            "url": f"data:image/jpeg;base64,{lymphocyte_image2}" 

                        } 

                    } 

                ] 

            }, 

            { 

                "role": "assistant", 

                "content": [ 

                    { 

                        "type": "text", 

                        "text": "These images feature a lymphocyte." 

                    } 

                ] 

            }, 

            { 

                "role": "user", 

                "content": [ 

                    { 

                        "type": "text", 

                        "text": "Identify the blood cell type in these images:" 

                    }, 

                    { 

                        "type": "image_url", 

                        "image_url": { 

                            "url": f"data:image/jpeg;base64,{monocyte_image1}" 

                        } 

                    }, 

                    { 

                        "type": "image_url", 

                        "image_url": { 

                            "url": f"data:image/jpeg;base64,{monocyte_image2}" 

                        } 

                    } 

                ] 

            }, 
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            { 

                "role": "assistant", 

                "content": [ 

                    { 

                        "type": "text", 

                        "text": "These images feature a monocyte." 

                    } 

                ] 

            }, 

            { 

                "role": "user", 

                "content": [ 

                    { 

                        "type": "text", 

                        "text": "Identify the blood cell type in these images:" 

                    }, 

                    { 

                        "type": "image_url", 

                        "image_url": { 

                            "url": f"data:image/jpeg;base64,{neutrophil_image}" 

                        } 

                    }, 

                    { 

                        "type": "image_url", 

                        "image_url": { 

                            "url": f"data:image/jpeg;base64,{band_image}" 

                        } 

                    } 

                ] 

            }, 

            { 

                "role": "assistant", 

                "content": [ 

                    { 

                        "type": "text", 

                        "text": "These images feature a neutrophil." 

                    } 

                ] 

            }, 

            { 

                "role": "user", 

                "content": [ 

                    { 

                        "type": "text", 

                        "text": "Identify the blood cell type in this image:" 

                    }, 

                    { 

                        "type": "image_url", 

                        "image_url": { 
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                            "url": f"data:image/jpeg;base64,{base64_image}" 

                        } 

                    } 

                ] 

            }, 

        ], 

        "max_tokens": 4000, 

        "temperature": 0, 

        "top_p": 0 

    } 

    response = requests.post("https://api.openai.com/v1/chat/completions", headers=headers, 

json=payload) 

    text_response = response.json() 

    content_response = text_response['choices'][0]['message']['content'] 

    return content_response 

 

@app.route('/', methods=['GET', 'POST']) 

def index(): 

    return render_template('index.html') 

 

@app.route("/submit", methods=['GET', 'POST']) 

def get_image(): 

    if request.method == 'POST': 

        img = request.files['my_image'] 

        img_path = "static/" + img.filename 

        img.save(img_path) 

        with open(img_path, "rb") as image_file: 

            image64 = base64.b64encode(image_file.read()).decode('utf-8') 

        cell_type = gpt4(image64) 

    return render_template("index.html", response=cell_type, img_path=img_path) 

 

if __name__ == '__main__': 

    app.run(debug=True) 
 

HTML Script: 

<!DOCTYPE html> 

<html lang="en"> 

<head> 

  <title>Leukocyte Image Classification</title> 

  <meta charset="utf-8"> 

  <meta name="viewport" content="width=device-width, initial-scale=1"> 

  <link rel="stylesheet" 

href="https://cdn.jsdelivr.net/npm/bootswatch@4.5.2/dist/cosmo/bootstrap.min.css"> 

</head> 

<body> 
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<div class="container"> 

  <h1 class="jumbotron bg-primary text-white display-6 p-4">White Blood Cell Image 

Classification</h1> 

  <h4 class="description">This web app uses GPT4o and a two-shot learning strategy to identify the 

leukocyte type (neutrophil, eosinophil, basophil, monocyte or lymphocyte) in peripheral blood cell 

smear images.</h4> 

  <br> 

  <form class="form-horizontal" action="/submit" method="post" enctype="multipart/form-data"> 

 

    <div class="form-group"> 

      <label class="control-label col-sm-2" for="pwd">Upload Your Image :</label> 

      <div class="col-sm-10"> 

        <input type="file" class="form-control" name="my_image" id="pwd"> 

      </div> 

    </div> 

 

    <div class="form-group"> 

      <div class="col-sm-offset-2 col-sm-10"> 

        <button type="submit" class="btn btn-success">Submit</button> 

      </div> 

    </div> 

  </form> 

 

   {% if response %} 

  <img src="{{img_path}}" height="175px" width="175px"> 

  <br><br> 

   <h4><i> {{response}} </i></h4> 

 

   {% endif %} 

 

</div> 

 

</body> 

</html> 

 


