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Urban cycles and mobility patterns
Exploring and predicting trends in a bicycle-based

public transport system

Andreas Kaltenbrunnera, Rodrigo Mezaa, Jens Grivollaa, Joan Codinaa,
Rafael Banchsa

aFundació Barcelona Media Universitat Pompeu Fabra,
Diagonal 177, planta 9
08018 Barcelona, Spain

Abstract

This paper provides an analysis of human mobility data in an urban area using
the amount of available bikes in the stations of the community bicycle program
Bicing in Barcelona. Based on data sampled from the operator’s website, it is
possible to detect temporal and geographic mobility patterns within the city.
These patterns are applied to predict the number of available bikes for any sta-
tion some minutes/hours ahead. The predictions could be used to improve the
bicycle program and the information given to the users via the Bicing website.

Key words: Mobility pattern, community bicycle program, urban behavior

1. Introduction

Public bike sharing services are becoming more an more popular in the last
few year. A still growing list of cities who provides such services systems can
be found at the Bike-sharing world map at 1. Since 2007 the city of Barcelona
operates one of the largest bike sharing systems called Bicing, with about 6000
bikes distributed in about 400 station across the entire city. The system was
very successful with more than 180.000 subscribers in 2009 according to a recent
study performed by Barcelona’s city council Lopez (2009). However, the same
study also addresses the result of a consumer satisfaction study, which shows
still some room for improvements. The two biggest problems detected, which
cause user frustration, are (a) the impossibility to find a bike when a users wants
to start his/her journey and (b) the impossibility to leave the bike in the user’s
destination due to empty or full stations. Without oversizing the system, there
are basically two ways to solve these problems: Inform the user in advance about
the best places to pick-up or leave the bikes and improve the redistribution of
bikes from full to empty stations.

1http:// bike-sharing.blogspot.com
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In this study we aim to contribute to the solution of these problems via
the analysis of cyclic mobility patterns which lead to short term predictions of
the number of available bikes in the stations. Such predictions would allow to
improve the current web-service of Bicing and in turn increase users satisfaction
with the system. Once this type of information is available, users may use mobile
devices to access it. Knowledge of those patterns could lead to an optimization of
the Bicing system itself, allowing the operator to predict shortage or overflow of
bicycles in certain stations well in advance and adapt its redistribution schedule
accordingly on the fly.

Furthermore we intend to show that this type of data allows also to infer the
activity cycles of Barcelona’s population as well as the spatio-temporal distribu-
tion of their displacements. Such knowledge may be interesting for city planers
and may also represent a cheap way to compare the activity cycles between
different cities.

To achieve these goal we use spatio temporal data, which has been obtained
by a web mining process from the Bicing website and corresponds to the number
of bicycles available for the users in a certain moment in time in every one of
the approximately 400 different stations.

The rest of paper is organized as follows. We first review related work on
the subject in 1.1 and give a more detailed description of the Bicing system in
section 1.2. Afterwards we describe details of the data retrieval (section 1.3)
and basic quantities of the collected data (section 1.4). In the results part of the
article we first describe the patterns of activity in some stations in section 2 and
then take a global picture analyzing the activity cycle of the entire city measured
by the amount of bicycles in the stations (section 2.2) and their variation as
spatial distribution (section 2.3). Then in section 3 we apply the findings to
predict future activity. Finally, we present the conclusions in section 4.

1.1. Related work

Human mobility patterns have received a certain amount of attention in re-
cent studies. However, it is not a straightforward task to obtain data which al-
lows a large scale study, mostly due to privacy issues. Notable exceptions where
the authors were able to overcome those difficulties include the use of geotagged
photos (Girardin et al., 2008) and location data of mobile phones (Reades et al.,
2007; Gonzalez et al., 2008; Song et al., 2010), or analyzing the circulation of
individual banknotes (Brockmann et al., 2006) and civil aviation traffic (Huf-
nagel et al., 2004) to reconstruct geo-spatial data of human displacements in
different distance-scales.

Most of these studies deal with the trajectories of individuals, but often
(as in the case of our data) only aggregate spatio temporal data is available
(e. g. the number of persons at time x in place y). An example for a study
with such type of data can be found in (Reades et al., 2007). It uses aggregate
mobile phone usage data to construct activity cycles for different locations,
with clear differences between working day and weekend patterns as well as a
characterization of certain areas within the city by a cluster analysis. Our study
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shows how such results can be obtained as well via web-mining techniques from
bike-sharing websites.

A similar yet less extensive study which does not include activity prediction
has been performed by Froehlich et al. (2008).

Prediction of Bicing activity is a problem related to traffic congestion con-
trol, which has been analyzed traditionally for vehicular traffic. See for exam-
ple (Hoogendoorn and Bovy, 2001) for a review on this subject. Related prob-
lems have also been investigated in the context of web-server traffic congestion
where time series analysis techniques, especially the auto-regressive integrated
moving average model or variants are widely used (Groschwitz and Polyzos,
1994; Papagiannaki et al., 2005), although other function approximation tech-
niques, spanning from linear fits (Baryshnikov et al., 2005) to recurrent neural
networks (Aussem and Murtagh, 2001), have been applied as well to obtain
predictions. Here we use a technique based on activity cycles more related to
(Kaltenbrunner et al., 2007) where different patterns reflecting a websites ac-
tivity cycle were used to predict the number of comments a news-item would
receive and implement as well time series analysis methods Box et al. (1990) in
the form of an Auto Regressive Moving Average (ARMA) model.

When data in the from of individual trajectories is available a recent study
Song et al. (2010) explored the possibility (and limits) of predicting a persons
position using his/her previous mobility data.

1.2. Bicing

Bicing is an urban community bicycle program, managed and maintained
in partnership by the city council of Barcelona and the Clear Channel Commu-
nications Corporation. Bicing is mainly oriented to cover small and medium
daily routes of users within the Barcelona city area.

Users register into the system paying a fixed amount for a yearly subscrip-
tion and receive an RFID Card that allows them an unlimited usage through
the year, where the first half hour of usage is free and subsequent half hour
intervals are charged at 0.30 euros up to a maximum of 2 hours. Exceeding this
period is penalized with 3 euros per hour. There are approximately 400 stations
distributed all through the city, where each station has a fixed number of slots,
either empty (without a bicycle), occupied (holding a bicycle) or out of service,
either because the slot itself or the bicycle it contains is marked as damaged.
Whenever a subscriber needs to use a bicycle, he must select one from a station
with occupied slots, travel to his destiny station, and leave it there on a free
slot. The system registers every time a user takes or parks a bike in a slot.
Bicycles can be withdrawn from the stations from Monday to Friday between
5:00 and 24:00. On Saturday and Sunday the service is open 24h. Outside of
these time windows the bicycles can only be returned but not withdrawn.

There are two cases in which the system does not allow a user to fulfill his
route:

1. The origin station does not have any available bicycles.

2. The destiny station does not have any empty slots to park in.
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Figure 1: Time-series of the number of available bicycles (black line), and the total number of
slots (red line) in an example station next to the beach. The two time-series are grouped by
weeks and ordered bottom up according to their temporal sequence. The bottom row shows
the average over these weekly patterns for this station. Gray areas correspond to mean ± one
stdv.

When any of these situations occur, users needing a free slot or a bicycle have
to choose between waiting at the station, going to another station or take other
means of transportation. In order to reduce these type of situations, there are
trucks which move bicycles from highly loaded stations to empty ones. However,
in practice users do not wait for these trucks since they do not have a fixed
schedule nor ensure a maximum response time to fix problems at a station.

To allow users to plan their routes in advance, the Bicing system provides on
their website a map of stations2, where users can check the status of the stations
(amount of available bikes and empty slots) close to their departure and arrival
points. However, this information is only available at the specific moment when
the user queries the system. The service does not provide a history of previous
loads to the stations3 or an expected load of the destiny station at the time that
the user gets to it.

2www.bicing.com/localizaciones/localizaciones.php
3A nice personal project (http://statistings.com) improves the service by providing the

daily progression of the number of bicycles in the stations.
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1.3. Data retrieval

The Bicing website provides an information service for users through the
Google maps API. It shows a map of Barcelona overlayed with small markers
indicating station positions and the amount of available bicycles and free slots
for every station. Data is inserted into the map using JavaScript code with
a string variable that contains a KML geospatial annotation document. This
KML document defines the next information for each station:

1. station name

2. graphic icon to be inserted in the map

3. latitude and longitude

4. number of available bicycles

5. number of free slots

In order to analyze the dynamics of station loads, we have been collecting these
KML documents since May 15th every two minutes, parsing it and storing
in a MySQL database all the relevant information, such as the station name,
localization, available bicycles and free slots. As the Bicing network changes
from time to time, new stations are added automatically to the database when
they first appear in the KML files collected from the Bicing website.

1.4. Basic quantities of the data collected

Due to a problem in the Bicing web-service, data after the 3rd of July was
updated only once or twice a day and could not be used for our study. We base
our results therefore on the data recollected during the 7 weeks between 12:00,
May 15th and 12:00, July 3rd, 2008. We also initially did not collect data during
Bicing ’s closing hours on weekdays between 0:01 and 5:00, which restricts our
analysis further to the time-window between 5:00 and 24:00.

In total, we collected data from 377 stations with a total of approximate 8700
free slots (three stations, which never contained any bicycles, were omitted from
the analysis). The number of slots per station varies between 15 and 39 and the
maximum amount of bicycles in the stations observed in our data was 3657.

2. Activity cycles

After having explained the data we are going to use in this study we will
analyze it in this and the following sections. We will start with an analysis of
the activity cycles we can obtain from the amount of bicycles available at the
different stations. First, we focus on the local cycles, one for every station. We
will later aggregate these cycles to infer activity cycles of Barcelona’s population
in 2.2. When taking into account the geographic distribution these cycles allow
to visualize the mobility patterns of the city as we will show in 2.3.

We will later examine the usefulness of these cycles to predict the future
amount of bicycles in the stations in section 3.
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St. 332: Pl. Teresa de Claramunt (41.3631,2.1398)
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Figure 2: Average number of available bicycles during working days (black), and weekends
(blue lines) for four example stations with different types of activity cycles. Red curve gives
the average total number of slots in the station. Gray and blue areas correspond to mean ±
one stdv.

2.1. Local activity cycles

Before we begin calculating activity cycles we take a closer look at the data
recovered from Bicing ’s web-service.

The top plot in Figure 1 shows an example of the recovered time-series data
from a station close to the beach, a hospital and some office and university
buildings. The recollection started on Thursday, 15-05-2008 (bottom of the
subfigure) and subsequent weeks are drawn with an offset towards the top of
the figure. The black lines indicate the amount of available bicycles. For control
reasons we also draw the sum of bicycles and empty slots (red line), which in
case the station were 100% operationally should correspond to the total number
of its slots. However, since often some slots or bicycles are marked as defect
and cannot be used, the red lines show some fluctuations. Sometimes they
experience a sudden drop during short time intervals (e.g. on Saturday, 17-
05-2008 morning), probably caused by a sporadic malfunction in Bicing ’s data
collection system.

Although the data is quite noisy with some sudden drops in the number of
bikes, maybe caused by replacement trucks which move bicycles from occupied
stations to empty ones, the mean weekly activity pattern shown in the bottom
subplot of Figure 1, allows to average out those fluctuations quite well. We
therefore have chosen to ignore those unpredictable truck events in the rest of
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this study. The relative small standard deviations (black areas) show that the
observed patterns are quite stable during the 7 weeks of data we analyzed. Note
especially the near zero deviation at the sharp rise in the morning which can
be observed from Monday to Friday. The greater standard deviation of the
Tuesday pattern is caused by the local holiday on June 24th, whose bicycle
pattern is more similar to those of a typical Sunday. We clearly observe two
different patterns for weekend and working days.

This is confirmed by a more detailed analysis of these two patterns in Fig-
ure 2, where weekend (blue lines) and weekday patterns (black lines) from four
different stations are compared. To calculate those patterns we first delete all
the elements of the time-series where the total number of slots in the station is
below a certain threshold (10). This allows to eliminate most of the moments
where we believe the data to be erroneous (e.g. the drops in the red line in
Figure 1). We then average those filtered time-series over the days of the cor-
responding categories and apply a median filter with window length 3 to filter
the noise further.

We first focus only on the weekday patterns. The top right subplot cor-
responds to the station analyzed in Figure 1 in more detail. We observe very
different patterns in the different stations. Station #295 (top left) is close to a
university and shows a quite narrow peak in the number of bicycle in the station
between 8:00 and 13:00, typical for a university with morning classes only. The
following two stations are also close to universities (top right and middle left
subplots). However, their observed patterns are somehow different. All three
stations show the initial rise in activity in the morning. Sharp in station #13
(top right) and less pronounced in #9 (bottom left). Station #13 is also close
to some important office buildings and a hospital which might explain the sharp
raise in activity around 8:00, more prone to a fixed working schedule in compa-
nies or hospitals than varying starting hours of university classes. The location
close to the beach probably causes the lower decay in the number of bikes in
the afternoon hours where beach traffic collides with the leaving students and
office and sanitary workers. Station #9 shows more variability. Although more
spread than station #295 the morning peak is quite similar. However, this
station experiences a second peak starting at 15:00 and reaching its maximum
at 16:00 in the afternoon, This might either be caused by people leaving the
university to take their lunch elsewhere or a change of shift between morning
and afternoon lesson students. Finally, this station also experiences an increase
in activity after 20:00 caused with high probability by the popular close-by area
of bars and restaurants called “Born”.

Finally, station #332 (bottom right subplot) shows an opposite cycle com-
pared to the previous ones, typical for residential areas, where people leave the
region during the morning to return later in the afternoon or late evening.

The onsets of activity in the weekend patterns (blue lines) occur later than
during working days, or is nearly absent as can be observed for example in
station #332, where only some minor activity is observed. Station #295 shows
an interesting bimodal distribution on weekends, which might be caused by a
nearby shopping center which attracts afternoon visitors on weekends.
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Figure 3: Average of the total amount of bicycles available in the stations.

2.2. Global activity cycles

If we look instead of the local cycles in the particular stations at the sum of
bicycles available at all stations during a certain hour of the day, we get an idea
of the global mobility cycle of Barcelona.

In Figure 3 we plot these average cycles of available bicycles for the working
days from Monday to Friday (black curve) and the weekend (blue curve). To
filter the worst noise out of the data, caused by malfunctions in the system, we
use only measurements where the total sum of slots (free and occupied) in all
the stations is greater than 8000 and furthermore we apply again a median filter
with a window length of 3 to achieve smother curves.

The less bicycles are available for rent in the station the more displacements
using them are being performed. First, we analyze the traffic during working
days (black line). We observe a first local minimum (i.e. a local maximum
in displacements) a little earlier than 8:00, and a second lower one at 9:00.
These two minima correspond to the typical starting hours in offices, which in
Barcelona varies normally between 8:00 and 10:00. This is further confirmed by
the fact that the curve reaches a local maximum at this hour, the time when late
starters finally reach their working or study locations. A third lower minimum
is observed around 14:00, which might be caused by students who leave their
classes. The number of available bicycles increases during people’s lunch breaks
(typically between 14:00 and 16:00), but when the local maximum at the end of
this time span is reached it decays again. Finally, the global minimum number
of available bicycles (the maximum in displacements) is reached slightly after
19:00 in the afternoon. Typical finishing time of many working schedules.

The weekend pattern is different in the sense that it does not show the
early morning minima. Instead we observe the maximum of available bicycles
around 8:00, the equinox between late home-comers from the last parties and
early birds starting their day with a bicycle ride. The use of the bikes steadily
augments until their number in the stations reaches a local minimum at 14:00
just before lunch time, during which it increases again. Afterwards the number
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of available bicycles decays again and follows a similar pattern as during working
days, although the local maximum at 16:00 occurs slightly earlier and the global
minimum slightly later (at 20:00) and is less pronounced than during working
days. It is therefore difficult to separate working day from weekend activity only
based on afternoon activity, as can be observed as well for most of the stations
presented in Figure 2.

Note that initially we only collected data between 5:00 and 24:00, which
corresponds to the opening hours of Bicing from Monday to Friday. However,
although the users are not allowed to withdraw from a station outside of this
time schedule, they can return a bicycle also between 24:00 and 5:00. This
explains the difference in the number of bicycles available at the beginning and
end of the above described cycle.

The small standard deviations (gray and blue areas in Figure 3) show that
the observed cycles are quite stable throughout the period the data was col-
lected. The weekend deviation is slightly greater than its working day counter-
part which is caused by the greater number of working days in our data set (35
vs 14) and the more flexible personal time-schedules on weekends.

2.3. Mobility patterns

To get a spatial picture of the mobility pattern in the city, we use these local
activity cycles together with the stations geo-coordinates (longitude and lati-
tude) and place the difference in the number of bicycles in the stations compared
to their amount at 5:00 on the map of Barcelona for different times of the day.
Afterwards we interpolate a 3D surface using this difference as color-encoded
height4. Red stands for a positive difference, i.e. more bikes can be found in
this stations than at the beginning of the day, while blue regions show areas
whose number of bicycles has been reduced. Green areas indicate a more or less
constant relation between incoming and outgoing bicycles. Figure 4 shows such
geo-patterns for 6 different hours using the stations working day cycle5. At 6:30
(top left subfigure), no big difference form the initial distribution of bicycles in
the stations can be observed. At 9:30 however (top right subfigure), just after
the morning minimum in Figure 3, we observe quite a different picture. Several
areas change color either into deep red or dark blue. Blues regions correspond
to mainly residential areas, from which people move out, while the red hot-spots
are found mainly close to university and business quarters6. Interestingly, al-
though the number of bicycles in the station increases by roughly 400 until 12:00
in Figure 3, the snapshot of the geo-pattern (not shown) at this moment in time
does not change very much. The only noticeable difference is that in already red

4Alternatively one can repeat the same procedure with other starting times (e.g. 16:00 to
emphasize afternoon patterns).

5A similar but simpler spatio temporal visualization by Fabien Girardin using just the
evolution of bicycles in the stations during one day can be found at http://www.girardin.

org/fabien/tracing/bicing/
6For a comparison with land-use date see pages 38 (for university areas) and 42 (areas with

high commercial activity) of (Rueda, 2002).
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Figure 4: Geographic mobility patterns: Black crosses indicate the location of Bicing station
and the color-overlay the average variation during working days in the number of available
bikes from the level at 5:00. Blue tones indicate regions which loose bikes while red tones
stations which increase their number of bicycles.

regions the amount of bicycles increases slightly even more. We can conclude
that the morning peak in activity leads to quite a narrow band of stations with
high bicycle concentration. The band crosses the city starting at its westmost
entrance, where one the mayor university area of the city lies, and follows the
Diagonal through a business district towards Passeig the Gracia, where it turns
right and heads down passing by one of the mayor business and shopping ar-
eas and the University of Barcelona to meet the city center and later the sea.
There it turns left again to follow the beach towards Port Olympic, leaving out
one station in the also mainly residential area of Barceloneta and passing by
several campuses of Universitat Pompeu Fabra. Close to Port Olympic we also
find important office buildings as well as in a narrow band which grows from
there northwards towards Glories. Another area which receives a big surplus in
activity is Diagonal Mar, the east-most point of Barcelona, also a region with
important business activity and a large shopping center.

In the afternoon the picture changes, at 16:30 (bottom left subfigure) a lot
of bicycles have moved away from the previously described hot-spots, and the
residential areas get some of their lost bikes back. Only the regions close to
Port Olympic remains deeply red, probably now caused mainly by beach traffic.
Also Diagonal Mar maintains its bicycles. At 20:30 (bottom right), finally, also
those bikes head home again, only some regions in the city center still have a
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surplus of bicycles, probably caused by people enjoying Barcelona’s nightlife.
Those regions maintain their bicycles still at 23:30 (not shown) when most of
the remaining stations have recovered all their bikes and their original green
tones. Those stations will recover their bikes during the night.

3. Prediction of activity

In this section, we present initial results on the prediction of bicycles or free
slots at a given station at a given time. We compare several simple prediction
models, and establish evaluation measurements as well as a baseline with which
other (more complex) models can be compared. We then present a more ad-
vanced time-series analysis technique that can use information not only from
the given station but also its surroundings.

3.1. Basic predictors

Our initial set of prediction models is based on the current state of the station
as well as aggregate statistics of the station’s usage patterns. As the simplest
baseline we chose to predict the current state of the station (number of bikes or
free slots) for any time in the future. If there are currently 5 available bicycles,
the system will predict that in 10 minutes there will still be 5 bicycles available.
This corresponds to the best prediction algorithm one can apply using only the
present situation as displayed on the actual Bicing website.

The next set of models is based on extrapolating from the current state using
the tendencies registered on other dates. To the current number of bikes we add
the expected change based on the average gradient in the aggregate model. The
aggregate model in this case can be based on all days other than the one for
which predictions are made7, or can be limited to the same day of the week, or
split between weekdays and weekends/holidays.

We evaluate the different models by measuring the mean error (difference
between predicted and actual availability of bicycles) over all stations and all
available dates. This is done for different time offsets, i.e. predicting 10 minutes,
20 minutes, or several hours into the future.

Figure 5 (top) shows an example for the fit obtained using the baseline
model (i.e. predicting the current state 2 hours into the future) and (middle)
a gradient based prediction (using only data of to the same day of the week)
for one particular station and day. The blue curve corresponds to the actual
number of bicycles (filtered with a median filter) in the station, while the red
one indicates the prediction. In this example we achieve a much lower prediction
error (indicated by the light blue areas) using the gradient of the average activity
cycle (green curve in Figure 5 middle).

This is confirmed further by Figure 5 (bottom) where we compare the overall
performance of our prediction algorithms as explained above. For very short

7In a real application setting this would obviously be limited to days prior to the current
date.
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periods (10 minutes) there is no notable difference between the baseline and
other models, which may partly be due to a large number of low activity stations
where predicting no change is the safest bet for very short time scales. However,
we notice a significantly better performance of prediction algorithms using the
activity cycles for larger offsets.

3.2. Using time series analysis for prediction

Differently from the approach using the daily average variations of available
bicycles at each station as explicative variable for prediction, we explore now
the use of time series analysis methods Box et al. (1990) for predicting bicycle
availability at the stations.

More specifically, an Auto Regressive Moving Average (ARMA) model will
be considered for implementing the predictor. This specific approach allows
for taking into account the recent history of both, the current station and its
closest surrounding stations, to predict bicycle availability. As its name implies,
an ARMA model incorporates two fundamental models: an Auto Regressive
(AR) component which is able to exploit relevant information related to the
autocorrelated nature of the time series, and a Moving Average (MA) model
which is able to incorporate information from additional sources of information
generally denominated “inputs”.

A general form for an ARMA estimator is as follows:

Xt =

p∑
i=1

aiXt−i +

m∑
j=1

q∑
i=1

b(i,j)I
j
t−i

where X is the time series to be predicted, p and q are the orders of the auto
regressive and moving average models, respectively, m is the total number of
“input” time series Ij , t is the time index for each time series, and ai and b(i,j)
are the model coefficients that have to be computed during the training phase.

ARMA models are trained by means of an optimization procedure aiming
at minimizing the fitting error within selected training dataset. In our case, we
selected a continuous section of about 800 hours of data for training the models.
Similarly, a non-overlapping data section of 30 hours was selected for evaluating
prediction quality, which was measured in terms of the average absolute error.

In all experiments presented here, we used a history of 20 minutes (10 sam-
ples) of both, the same station the predictions are generated for (AR compo-
nent) and the surrounding stations (MA component) to generate the predictions.
Hence, the corresponding orders of our ARMA model are q = p = 10. Before
applying time series analysis to station data, all time series were smoothed with
a FIR low-pass filter based on a Hamming window.

The first experimental result, which is depicted in Figure 6, was intended
to determine the optimal number of surrounding stations to be used in order
to achieve minimum prediction error. The bars presented in the figure show
the average absolute error over the 30 hours of evaluation data for a set of
10 different stations when considering 1, 5, 10, 15, 20, 25 and 30 surrounding
stations for training the prediction models. In all cases, the predictions were
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Figure 6: Dependence of the average prediction error on the number of surrounding stations
used.

generated for a time interval of 30 minutes ahead. As seen from the figure,
optimal prediction is achieved when considering the information related to the
15 surrounding stations, while including the information related to only the
closest station or too many stations (25 and over) significantly deteriorates the
prediction error. This result reveals that the dynamics of neighboring stations
definitively have an important incidence on the ability of predicting bicycle
availability at a given station. Further experimentation has shown that, in
general, considering a number of surrounding stations between 5 and 20 will
provide a good predictive power.
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In the second experimental result, we evaluate how the prediction error in-
creases as the time interval for predictions is increased. Figure 7 shows the
increment in the mean absolute error when the prediction time interval varies
between 2 minutes (just the next sample) up to 60 minutes. In all cases, the
predictions were generated by considering the 5 closest surrounding stations.
Curves in the figure illustrate the average, standard deviation, maximum and
minimum error values for prediction errors computed over 357 stations out of the
377 available stations (20 stations had to be discarded because of the amount of
noise and errors in their corresponding data series). As seen from the figure, at
a 30 minute prediction interval, the average prediction error is below 1 bicycle,
reaching a maximum value of 3 bicycles after one hour interval. It is important
to mention at this point that, although predictors are indeed providing good
estimates, such a small error values for time intervals below 20 minutes are also
a consequence of the low-pass filtering applied to the data.
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Figure 8: Prediction vs. actual bike availability for station #150, 60 minutes in advance,
using data from 5 surrounding stations. Bottom subplot shows the difference between actual
and predicted number of bicycles

Finally, a specific prediction curve is presented in Figure 8. In this case,
predicted and the actual number of available bicycles at station #150 over the
30 hours interval of evaluation data is presented. The prediction presented here
was generated for a time interval of 60 minutes ahead and was computed by
considering the closest 5 surrounding stations. In the lower panel of the figure,
the prediction error curve is provided. Notice that, although mean absolute

15



prediction error is relatively low (1.39 bicycles), the maximum error value along
the prediction interval is 6 bicycles.

The results are not directly comparable with those obtained using the basic
gradient based predictors, due to the evaluation being done on one 30-hour
period whereas the previous evaluation was averaged over all days between 2008-
05-15 and 2008-06-29, as well as slight differences in the smoothing and cleaning
of the original data. However, it seems that ARMA can provide an important
improvement over simpler methods (which already improve significantly over
the baseline of only knowing the current state). It is particularly interesting to
see the significant positive impact of using the neighboring stations to improve
the prediction.

4. Conclusions

We have shown that mining usage data from community bicycle services
allows to infer the activity cycles of a large city’s population as well as the
spatio-temporal distribution of their displacements. There are clear patterns
of user behavior by station and type of day. Visualization of the average daily
variation in activity allows to observe that stations with similar behavior also
often correspond to adjacent areas in the map revealing residential, university
and leisure areas. The cycles allow a prediction of the amount of available
bicycles in the stations, which is significantly better for time windows greater
than 20 minutes than the current approach on the Bicing website where only
the actual number of bicycles/free slots is shown. Use of more sophisticated
time-series analysis techniques (ARMA) and in particular the incorporation
of information from surrounding stations allows to improve these prediction
further.

Many enhancements and other approaches remain to be tested, including
the incorporation of knowledge about interventions of Bicing trucks and other
events that deviate from the “normal” trend into the more successful predic-
tion methods. Weather conditions and many other factors (events, geographic
characteristics, etc.) may also be taken into account.

We believe that the findings on predicting the amount of bicycles in the
stations could easily lead to an improvement of the Bicing web site’s bike avail-
ability information, by including a short time outlook into the future. It may
also help to improve the Bicing service itself, avoiding a future empty or full
station through an improved manual redistribution of the bikes via trucks. Both
aspects would help to improve user satisfaction with the service, and make peo-
ple more likely to use Bicing with important sustainability impacts.

The knowledge gained from analyzing the mobility patterns in Barcelona
could be very helpful in planning the future deployment of the Bicing system
throughout the city as well as identifying hotspots in the current infrastructure.
The predictive models could be applied to resource optimization, in particular
in relation with route planning of maintenance trucks and balancing of bicycle
distribution in the city.

16



It would be interesting to contrast our results with more specific usage statis-
tics. The Bicing system must internally produce more information that is not
public, such as the origin/destination of individual users. Access to this data
would allow to produce more precise models and make better predictions. Other
information is not even available to the Bicing operator: e.g. the users that
could not take/leave a bicycle because the station was empty/full. A survey
aimed at obtaining a more detailed picture of the Bicing users and their moti-
vations, currently being carried out by Jon Froehlich et al.8, could help uncover
this information.

A growing number of community bicycle services are appearing world wide9,
some of them with a similar web-service as the one we used to obtain our
data, which is sure to generate increasing interest in this research topic. We
are currently collecting data from many cities around Europe in order to do a
comparative study of activity patterns between these cities.
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