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Abstract 

Histopathological diagnosis is a time-intensive process dependent on the expertise and 

interpretative criteria of pathologists. Digital pathology, employing machine learning 

models, offers a promising avenue to enhance diagnostic accuracy and efficiency 

through computer-aided diagnosis systems. Specifically, the automated counting and 

identification of cells from blood smears constitute 80% of the initial analyses required 

for detecting haematological diseases. 

 

The intrinsic sensitivity of medical data demands robust privacy safeguards. This has 

focused recent investigations into the potential of collaborative learning, or Federated 

Learning (FL), as a scalable and inherently private training paradigm. By training data 

locally and subsequently aggregating parameters on a central server, the direct 

movement and sharing of medical data are circumvented. Nevertheless, recent studies 

have cast doubt on the privacy of these collaborative trainings. Moreover, collaborative 

learning faces the challenge of dealing with the heterogeneity of participating clients 

to generate an efficient model across various nodes. 

 

This work presents a performance comparison between different training types for 

peripheral blood cell classification models. The findings suggest that collaborative 

learning, both in homogeneous (IID) and heterogeneous (non-IID) clients, could 

enhance the predictive capability of conventionally trained classification models. 

Furthermore, collaborative learning has the potential to reduce the time and resources 

required for model training. 
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1. Introduction 

1.1. Work’s Context and Justification 

 

This work addresses the challenge of automatic hematologic cell type recognition in 

peripheral blood smears using deep learning (DL) techniques, considering the prism of 

security for highly sensitive data (medical data). 

 

Histopathological diagnosis is time-consuming and relies on pathologists' expertise and 

interpretation criteria (Fedeli et al., 2023). Digital pathology (DP) presents an opportunity 

to leverage computer-aided diagnosis (CAD) systems for improved diagnostic accuracy. 

 

The inherent sensitivity of medical data needs of stringent privacy protection. Data 

breaches during transfer (between hospitals, patient servers, cloud storage) or during DL 

model training/execution can expose highly sensitive information. In the wrong hands, 

such data could be misused by insurance companies, employers, pharmaceutical 

companies, or marketing firms, with potentially detrimental consequences. The General 

Data Protection Regulation (GDPR) (Regulation 2016/679, Article 9) classifies health 

data as "special data," demanding the implementation of robust technical and 

organizational safeguards against unauthorized access, disclosure, alteration, or 

destruction. 

 

Federated Learning  

 

Initially described by (Brendan McMahan et al, 2017) Federated learning (FL) has 

emerged as a promising approach for training machine learning models while preserving 

data privacy (Figure 1). Briefly, FL trains a single model in a distributed manner, utilizing 

data from various clients (hospitals) without ever pooling the raw data itself. After every 

client separately trains with its own data, each client shares their fine-tunned model 

parameters with global server. Global server receives fine-tunned parameters and 

performs and aggregates them, creating new ones that are capable of scoring good scores 

in every client separately. These new unique parameters are shared with every node, 

updating local model’s weights. This allows for model validation across different 

datasets, even if they are similar or dissimilar. Two primary variants of FL exist: Vertical 

Federated Learning (VFL) and Horizontal Federated Learning (HFL). 

 

 

 

 

 



 
Figure 1. Basic scheme of Federated Learning. Nodes/client train with their data 

locally, while a central server coordinates the training cooperation among nodes/clients. 

(Hu & Chaddad, 2023) 

 

HFL is particularly relevant for this work. In this approach, clients collaborate using the 

same set of features extracted from individual patient data. This facilitates the training of 

a shared model while ensuring individual data privacy. A robust HFL model would enable 

hospitals to jointly train a model using their combined data, effectively leveraging shared 

knowledge without compromising patient confidentiality. 

 

FedAvg 

 

There exists a variety of algorithms for the deployment of Federated Learning, 

encompassing a diverse range of architectural frameworks and methodologies for the 

aggregation of parameters. The focus of this investigation will be on the FedAvg 

(Federated Averaging) algorithm (Algorithm 1). Despite its foundational simplicity, it has 

consistently exhibited remarkable adaptability and efficacy. The operational mechanics 

of FedAvg are delineated as follows: 

 

1. Initialisation: A prototypical global model undergoes initialisation within the 

confines of the central server. 

 

2. Distribution of Updates: After initialisation, there is a dissemination of the global 

model’s weight adjustments across the client network. 

 

3. Local Update: In an autonomous manner, each client enhances the model utilising 

their exclusive dataset, thereafter, transmitting the refined model to the central 

nexus. 

 

4. Averaging: The central server executes a synthesis of the client-submitted 

enhancements, culminating in the refinement of the global model. 

 

5. Repetition: The process is repeated several times until the desired accuracy 

objective is achieved. 

 



 
Algorithm 1 FederatedAveraging. The K clients are indexed by k; B is the local 

minibatch size, E is the number of local epochs, and η is the learning rate. (Brendan 

McMahan et al, 2017) 

 

 

Federated Learning as privacy-preserving tool 

 

FL has shown promise in the development of privacy-preserving medical applications 

(Andreux et al., 2020; Hosseini et al., 2023; Shen et al., 2023). Within the field of 

histopathology, several studies have explored the potential of FL as a privacy-aware tool 

for healthcare professionals, achieving promising results (details will be provided in the 

State of the Art section).  

 

Identically Independent Distributed (IID) Data and non-IID Data 

 

In the context of Federated Learning (FL), IID (Independent and Identically Distributed) 

and non-IID are crucial characteristics that affect the performance and robustness of the 

learning process. In summary, IID data assumes independence and identical distribution 

of data among clients, while non-IID data relaxes these assumptions and introduces more 

complex data structures and dependencies. In real-case scenarios, one node/client tends 

to not be a good representation of all the population. This is why is important to consider 

the study of an FL model using IID and non-IID data.  

 

Peripheral Blood Cells 

 

The blood periphery contains several types of cells that play crucial roles in various 

physiological processes. Here's an overview (Figure 2) of the different types of cells 

found in the blood periphery and their importance in the context of a blood smear: 

 



 
Figure 2. Ematopoietic stem cell lineages. ProfessorDaveExplains 2021 

 

 
Erythrocytes (Red Blood Cells) 

 

These cells are responsible for carrying oxygen from the lungs to the body's tissues. They 

are typically biconcave and have a diameter of approximately 7 micrometers. 

Erythrocytes are not being considered for model training. 

 
Leukocytes (White Blood Cells) 

 

Granulocytes 

Neutrophils: These cells are the most abundant type of leukocyte in the blood and 

are responsible for fighting bacterial infections. They can be segmented or band 

shaped. 

Eosinophils: These cells are involved in the immune response and play a role in 

fighting parasitic infections. 

Basophils: These cells are involved in allergic reactions and play a role in the 

inflammatory response. 

 

 

Agranulocytes 

Monocytes: These cells mature into macrophages, which are responsible for 

phagocytosing foreign particles and cellular debris. 

 

Lymphocytes: These cells are involved in the immune response and can be further 

classified into B cells and T cells. 

 
Platelets (Thrombocytes) 

 

Platelets: These cells are small, irregularly shaped fragments of megakaryocytes and are 

essential for blood clotting. 

 



Counting cells in a blood smear is crucial for diagnosing and monitoring treatment of 

various blood disorders and diseases. Some examples: 

Infection Diagnosis: Counting leukocytes and their morphology can help diagnose 

infections, such as bacterial or parasitic infections. 

Blood Clotting Disorders: Counting platelets can help diagnose blood clotting disorders, 

such as thrombocytopenia (low platelet count) or thrombocytosis (high platelet count). 

Cancer Diagnosis: Identifying too many immature white blood cells in a blood smear can 

be an indicator for cancer disease.  

 

Importance of this work 

 

The ability to rapidly and accurately diagnose pathologies at an early stage is critical in 

modern medicine. Early detection, as demonstrated by various studies on cancer survival 

rates (Crosby et al., 2022). Such timely diagnosis not only saves lives but also reduces 

the burden of morbidity and healthcare resources. Several factors hinder us from 

achieving optimal diagnostic outcomes for these pathologies, but it is hard to ignore the 

potential impact of two key factors: a larger database and an automated cell type detection 

system. Two key factors hinder optimal diagnostic outcomes: limited data availability 

and a lack of automated cell detection systems. 

 

Blood sample collection and microscopic imaging are relatively simple and inexpensive 

procedures. Moreover, these data are routinely collected in healthcare facilities 

worldwide. Therefore, advancements in automated cell type detection using readily 

available data hold significant promise for healthcare systems globally. However, the 

sensitive nature of this data presents a significant challenge to traditional model training 

approaches. 

 

A thorough literature search revealed no existing studies that specifically apply federated 

learning to peripheral blood smear images. This work aims to bridge this gap by exploring 

and developing initial steps towards a robust FL-based system for hematologic cell type 

recognition. 

 

This master's thesis will systematically evaluate the effectiveness of various supervised 

deep learning models within an HFL framework. The primary focus will be on classifying 

cell types in microscopic images of peripheral blood smears. Additionally, the model's 

robustness against potential privacy attacks will be investigated. 

 

The expected outcome is a privacy-preserving FL model capable of accurately classifying 

cell types from peripheral blood smears. Such a model could serve as a valuable support 

tool for histopathology, enhancing diagnostic efficiency and accuracy. 

 

 

   

 

1.2. Work’s Objectives 

 

a. General objectives 



To develop a scalable and privacy-preserving deep learning model for the 

classification of normal peripheral blood cell images. 

b. Specific Objectives 

c.  

 i. To develop and evaluate a Federated Deep Learning tool for the detection and 

classification of cellular types on peripheral blood samples. 

 ii. The developed tool should be scalable and suitable (low requirements) for 

hospital’s computers and connection. 

 iii. To conceive a data privacy study/blueprint for the developed AI tool. 

1.3. Socio-ethical and Diversity Impacts 

 

ODS 3 

 

This work aims for a faster and automatized detection of 

different pathologies via the automated classification of 

cellular types within peripheral-blood tissue samples. Doing 

so, we pursue for an improvement on citizen’s health from 

different perspectives. First, a tool for automated pathology 

detection may become helpful to diagnose those patients 

who are being checked for any condition in which blood 

tissue image samples are likely to play a role. Second, an 

automated tool for pathology detection, could facilitate the 

early detection of different blood-related pathologies on 

patients, who firstly, were not necessarily being checked for 

that specific condition.   Third, this tool may become useful 

to world areas and population that don’t have an easy access 

to medicine. These are the reasons for whose, with this 

work, we aspire to align with 3rd ODS’s statement, “Good 

Health and Well-being”. 

Data privacy 

 

This project aims to propose a machine learning model that 

safeguards the privacy of data used for learning. In this way, 

it can facilitate collaboration among hospitals to train a joint 

model with more samples and likely greater diversity. It is 

anticipated that this collaboration will enhance the reliability 

and applicability of the models. 

 

Beyond hospital collaboration, the project also seeks to 

ensure the privacy of patients’ personal medical data, 

preventing its inappropriate use. 

Concerns about 

laboral intrusion 

AI or automatic tools that perform histological tasks such as 

the ones studied in this work may generate concerns about 

laboral intrusion or replacement. This is far from reality. 

Automated tools for histological tasks are not intended to 

replace doctor’s tasks of diagnosis. These tools aim for an 

assistance for professionals, to help them on their routine 

tasks such as blood cell counting or WSI analysing. A nice 

example of this, which is being performed on Catalonia is 

the DigiPatICS project (Temprana-Salvador et al., 2022).  

 

 



1.4. Methodology 

The nature of this project is scientific, that’s why identifying and reading literature 

regarding similar issues is the first step forward to do. After doing so, taking care of the 

more specifical Machine Learning nature of the project, it is crucial to decide which or 

whose dataset/s are going to be used. 

 

Once the State of the Art and the dataset points are solved, there are multiple ways to 

approach the experimental research of the Deep Learning and privacy/security solution 

to the main issue; To first search for the best of the models, fine tune it and then address 

the privacy topic. It could also be possible first look for the optimal privacy preserving 

solution and the deal with the deep learning part. Nevertheless, prioritizing the importance 

of the temporal resources required for this work, as well as the goal of drawing relevant 

conclusions, and with the guidance of the supervisor, it has been logical to opt for the 

following methodology. 

 

Data preprocessing and feature selection: To enhance the scalability and adaptability of 

the model to the computational and connectivity capabilities of hospitals, we will conduct 

an initial study on the significance of different features within the dataset for label 

inference. Also, if needed, data normalization and scaling, like min-max scaling of pixels, 

will be performed. 

 

Artificial Neuronal Network (ANN) model selection and global fine-tunning: After an 

initial reading phase, 2 to 3 pre-existing Artificial Neural Network (ANN) models will be 

selected, based on the performance on similar tasks, computational efficiency and 

literature about them. These models will be fine-tuned using a dataset of peripheral blood 

images. The initial fine-tuned models will serve as reference points for the validation 

metrics that subsequent models aim to approximate. 

 

Data Distribution: Data will be distributed both in Independent and Identically 

Distributed (IID) and non-IID settings. In the case of non-IID data, various configurations 

will likely emerge to better understand the model’s weak and strong points. 

 

Federated Learning and Validation: If we successfully develop federated models with 

acceptable validation performance, considering the aforementioned reference, we will 

proceed to the next phase. 

 

Understandability of the model: Aiming for the computational requirements reduction of 

the models, in this phase, the requirements and fastness of the different models will be 

studied. Also, if possible, model understanding methods will be applied to check if the 

images can be pre-processed before entering the model, so computational cost can be cut 

down. 

 

Robustness Assessment: The subsequent phase involves studying the robustness of the 

different models against feature inference attacks (Privacy Attack) and Denial of Service 

Attack (DoS, Security Attack). We will attempt various relevant attacks based on existing 

literature (such as inference attacks, poisoning attacks, and denial-of-service (DoS) 

attacks). The goal is to evaluate the models’ resistance to these attacks. This phase will 

likely be the final part of the experimental work, during which we aim to enhance the 

model’s robustness against the most critical and plausible attacks in the context of medical 

data. 



 

Model’s Robustness and Performance trade-offs: When considering a Federated Learning 

architecture with non-IID data distribution, it is common to expect a poorer performance 

comparing to non-FL scenarios (Zou et al., 2023). The trade-offs between privacy and 

performance of the model are expected to appear while performing this study. The aim of 

this study is not to decide which is the correct balance between this to approaches, but to 

provide a first study on this topic on peripheral blood images. 

 

As the experimental phase unfolds, the chosen ANN models will be compared, 

considering their validation metrics, computational requirements, and robustness against 

privacy and security attacks.  As validation metrics, when classifying normal cellular 

types, the bet metrics may be Accuracy and F1-Score. This is because there is still no 

need of minimizing false positives (FP) or false negatives (FN), so we are looking for a 

balanced model, capable of correctly classifying different cellular types. If an approach 

to abnormal cellular types is finally performed, considering “normal” class as 

“0/Negative” and “abnormal” class as “1/Positive”, relevance will go with minimizing 

the false negatives. When looking for abnormal cells, it is preferable to incorrectly 

classify a tissue as abnormal confirm the classification with other procedures. A tissue 

incorrectly classified as healthy may avoid posterior analysis, which may resume in bad 

consequences for the patient. This is why in the classification of abnormal/normal cellular 

types, a high Recall metric is essential. 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 (𝑇𝑃)

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 (𝑇𝑃) + 𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 (𝐹𝑁)
 

 

Formula 1. Formula Recall evaluation metric calculation. 

 

 

Formula 1. Formula Recall evaluation metric calculation. 

 

Finally, based on the entire body of work, we will formulate the concluding remarks. If 

deemed useful, we will also highlight important takeaways. 

 

1.5. Working Plan 

1.5.1 Tasks 

Every specific objective is split into several realizable and evaluable tasks. Also, a short 

tag, in bold, is added to every task to identify it on the calendar. 

 

To develop a Federated Deep Learning tool for the detection and classification of cellular types 

on peripheral blood samples. 

Reading literature about previous applications of Federated Learning on medical data. FL-Read 

(ANN-1) 

Study of the peripheral blood dataset. Dataset-Study (ANN-2) 

Data normalization and feature selection of the dataset. Data-Prep (ANN-3) 

Selecting 3-4 already developed classification models for images. Model-selection (ANN-4) 

Selection of the validation metrics and graphs that are going to be used for comparison of the 

models. Validation-Selection (ANN-5) 



 

Table 2. Specific Objective 1 Tasks. 

 
 

The developed tool should be scalable and suitable (low requirements) for hospital’s computers and 

connection. 

Reading literature of this topic within Machine Learning and Federated Learning. Scalable-Read 

(SCAL-1) 

Learning about the standard computation capacities of hospitals. Hospital-Requirements (SCAL-

2) 

Recording fastness and computational hardware use of every model and training. Scalable-Metrics 

(SCAL-3) 

Training the models using CPU and GPU and comparing the output. GPU-CPU (SCAL-4) 

Avoid over-fitting of the models. Overfitting (SCAL-4) 

Study the minimum local-epochs necessary that are necessary to effectively train each round. Local-

Epochs (SCAL-5) 

Comparison of computational and scalability potential of models. Computational-Comparison 

(SCAL-6) 

Final comparison and conclusions.  

Table 3. Specific Objective 2 Tasks. 
 

 

 

 

 

 

 

 

 

 

To conceive a data privacy study/blueprint for the developed AI tool. 

Reading literature regarding privacy and security topics within federated learning and ANN. 

Privacy-Read (ATTACK-1) 

Selection of the attacks that will be performed to the models. Attack-Selection (ATTACK-2) 

Performing of the attacks. Attack-Performing (ATTACK-3) 

Evaluation of the robustness of the models to attacks. Attack-Eval (ATTACK-4) 

Comparison of robustness of the models. Attack-Comparison (ATTACK-5) 

Explain, if possible, the vulnerability causes of every model. Attack-explain (ATTACK-6) 

Improve, if possible, the robustness of every model. Strategy proposal. Robustness-Improve 

(ATTACK-7) 

Fine tuning the selected models on a non-federated configuration. Fine-Tunning (ANN-6) 

Distribution of the data on an IID configuration. IID-Distribution (ANN-7) 

Distribution of the data on a non-IID configuration. Non-IID-Distribution (ANN-8) 

Federated architecture design and code. Federated-Architecture (ANN-9) 

Fine tuning of the federated models. Taking account of federated learning specific parameters: 

Number of local rounds, number of clients that train each round. Fine-tuning-FL (ANN-10) 

Validation comparison between models. Validation-Comparison (ANN-11) 

Model understandability test. White-Box (ANN-12) 

Final comparison and conclusions. 



Explain the consequences of the vulnerability of every model. Attack-Consequences (ATTACK-

8) 

Final comparison and conclusions. 

Table 4. Specific Objective 3 Tasks. 

 

 

1.5.2 Gant Chart 

In order to optimize task allocation within the available time frame and considering the 

credit requirements for the Master’s Thesis, a comprehensive evaluation has been 

conducted using a Gantt chart created (Table 5, 6, 7) with the Gantt Project software. It 

is important to note that certain items may appear more as considerations or methods 

rather than discrete tasks. However, for clarity and ease of visualization alongside 

relevant tasks, these items have been categorized as tasks. 

 

 

 

 

 

Table 5. PAC 2 Gantt Chart 
 



 

Table 6. PAC 3 Gantt Chart 
 

 

Table 7. PAC 4 Gantt Chart 
 

 

 

 

1.6. Obtained Products 

 

Result Description 

Work’s 

Document 

The project involves crafting a detailed report that includes an 

introduction, a survey of existing knowledge, the methods used, 

the results obtained, and the final conclusions. A key goal is to 

assess the performance, efficiency, and security of different 

federated learning models. 

Classification 

Models 

Several models have been successfully developed that accurately 

predict the cell type of peripheral blood cells. The text will be 

revised to ensure clarity and formality while maintaining a level 

of accessibility appropriate for a broad academic audience. 

Table 8. Obtained product descriptions. 

 

 

2. State of the art 
 

Digital pathology has been a transformative force in medical imaging, facilitating the 

analysis of medical images for disease diagnosis and classification. The advent of 



computer-aided diagnostic systems necessitates an effective classification model to 

support medical professionals in their decision-making processes. The DigiPatICS project 

(Temprana-Salvador et al., 2022) successfully developed a Deep Neural Network (DNN) 

model that aids medical experts (Figure 3) throughout Catalonia in analysing Whole Slide 

Images (WSIs) of stained breast tissue samples. These images encompass tens of 

thousands of cells, yet according to the World Health Organization (WHO) protocol, only 

about 1,000 are typically counted during routine analysis, focusing on five areas of the 

WSI deemed pertinent by the histopathologist. The DigiPatICS tool enables the 

automated enumeration and categorisation of all cells within the WSI, thus providing 

substantial support to healthcare professionals. 

 

 
Figure 3. Residents diagnosing using a 55-inch 4K UHD monitor (55UH5F-B) to 

analyse WSI of breast tissue sample. (Temprana-Salvador et al., 2022) 

 

In hematology, numerous studies have corroborated the proficiency of deep learning 

models in identifying various cell types, including both white and red blood cells, within 

tissue or peripheral blood samples. (Kohsasih et al., 2022) conducted a comprehensive 

evaluation of renowned classifiers such as VGG16, VGG19, ResNet50, and AlexNet, 

assessing their ability to accurately identify lymphocytes, eosinophils, monocytes, and 

neutrophils in single-cell images. Among these, ResNet50 was distinguished by its 

exceptional performance, achieving an accuracy rate of 99%. 

 

Substantial advancements have been achieved in the deployment and integration of deep 

learning paradigms within the medical sector. Nevertheless, these sophisticated models 

necessitate a plethora of diverse datasets throughout the training phase. Should the 

volume and integrity of data prove inadequate, the resultant models may exhibit deficient 

generalisation capabilities, thereby undermining their efficacy in practical scenarios. 

Moreover, there is a need for iterative retraining with novel datasets to ensure the models 

remain attuned to evolving real-world conditions. A salient resolution to the quandary of 

data scarcity is the establishment of collaborative networks amongst medical institutions.  

(Hu & Chaddad, 2023) elucidate the merits of a nascent machine learning paradigm, 

Federated Learning (FL), as postulated by (Brendan McMahan et al, 2017) in facilitating 

collaboration between hospitals FL facilitates the localised training of Deep Neural 

Networks (DNNs) across disparate nodes, culminating in the centralised amalgamation 

of their parameters through successive iterations, engendering a model proficient across 

all participating nodes. 



 

The heightened sensitivity associated with medical imagery has accentuated its 

significance in the evolution of machine learning apparatuses for analytical purposes. FL 

propounds a framework wherein disparate healthcare establishments can collectively 

refine models, without necessitating the transfer of images beyond their originating 

repositories. 

In the context of discerning anomalous lymphocytes within oncogenic tissues, as 

investigated by (Baid et al., 2022) FL has been instrumental in deriving robust models 

without extensive sample availability. Furthermore, FL’s intrinsic privacy-preserving 

attribute is underscored.  The distribution of data amongst clients during FL model 

training is pivotal. An Independent and Identically Distributed (IID) data configuration 

implies homogeneity across all nodes/clients. Conversely, a non-IID distribution, which 

mirrors real-world conditions more closely, entails heterogeneous data distributions 

among clients  (Brendan McMahan et al, 2017). Substantial advancements have been 

achieved in the deployment and integration of deep learning paradigms within the medical 

sector. Nevertheless, these sophisticated models necessitate a plethora of diverse datasets 

throughout the training phase. Should the volume and integrity of data prove inadequate, 

the resultant models may exhibit deficient generalisation capabilities, thereby 

undermining their efficacy in practical scenarios. Moreover, there is a necessity for 

iterative retraining with novel datasets to ensure the models remain attuned to evolving 

real-world conditions. A salient resolution to the quandary of data scarcity is the 

establishment of collaborative networks amongst medical institutions. 

 

Pertaining to privacy concerns, (Zhu & Han, 2020) have demonstrated the feasibility of 

reconstructing training images from the gradients of updated model parameters (weights 

and biases). This revelation, alongside other potential privacy breaches inherent to FL, 

has catalysed a plethora of studies dedicated to the development of FL-trained models 

fortified with robust privacy safeguards. In the research conducted by (Adnan et al., 2022) 

, the Differential Privacy (DP) framework (Figure 5), initially conceptualised by (Dwork, 

2006) was employed as a privacy bulwark in the federated training involving Whole Slide 

Images (WSIs) of stained tissues. DP, heralded as a potentially universal privacy 

safeguard, entails the obfuscation of sensitive data—herein, the training model 

parameters—through the application of various techniques, such as Stochastic Gradient 

Descent (SGD). 
 

 

Figure 5. Definition of Differential Privacy (DP). Function (M), Output(O), Dataset-

1(D1), Dataset-2(D2), ε (Indistinguishability parameter). In an optimal case, D1 and 

D2 only differs from a sample.  

 

The equation in the figure indicates that, given the same random function (M) applied to 

two different datasets, the difference between the two outputs should be as small as 

possible. Factor ε plays a crucial role; the smaller the ε, the greater the indistinguishability 

of the datasets based on their output. 

 



In this study, we aim to compare the performance and efficiency of different image 

classification models, with and without Differential Privacy (DP), for the particular case 

of automatic classification of white blood cell images. 

 

3. Materials and methods 
 

3.1 The framework – Tensorflow and cloud computing machine 

 

 

The frameworks selected to carry out the work have been TensorFlow (Abadi, Agarwal, 

et al., 2016) and Keras (Chollet, F., 2015). Both are known open-source machine learning 

frameworks for Python and were firstly chosen because their wealth of documentations, 

examples and can also integrate Tensorflow Federated, which facilitates Federated 

Learning training of Tensorflow models. 

 

It was also an initial determination factor that Tensorflow can use the module Tensorflow 

Privacy (Abadi, Chu, et al., 2016), which has different privacy related functions for 

machine learning work, such as optimizers with Differential Privacy and privacy metrics 

calculators. Moreover, newest version Tensorflow Privacy 0.9.0, ensures compatibility 

with Keras models. 

 

To train the Machine Learning models, jarvislabs.ai was chosen as a cloud platform to 

have access to high-end GPUs like the NVIDIA RTX 5000. 

 

Code used can be found at: https://github.com/agarciall/TFM 

 

3.2 Classification Models 

ResNet50 

 

ResNet50 is a widely used deep convolutional neural network (CNN) architecture for image 

classification tasks. Developed by (He et al., 2015), ResNet50 has become a benchmark model 

for large-scale classification, achieving state-of-the-art performance on the ImageNet dataset. 

 

 

ResNet50 has an input size of 224, 224, 3 and is composed of 50 convolutional layers, interspersed 

with residual units. These residual units (Figure 6) are the key element of the ResNet50 

architecture and are responsible for its success. A residual unit consists of two convolutional 

layers followed by an element-wise sum. This sum allows the output of the first convolutional 

layer to be passed directly to the output of the residual unit, without going through the second 

convolutional layer. This creates a "shortcut" that allows information to flow directly through the 

network, mitigating the vanishing gradient problem that can arise in deep networks, in which 

earlier layers struggle to learn from errors during backpropagation. 

 



 
 

Figure 6. Residual Learning building block. (He et al., 2015) 

 

 

 

VGG16 

 

VGG16, is a deep learning model designed for image recognition tasks. It was developed by 

(Simonyan & Zisserman, 2014) of the Visual Geometry Group (VGG) at the University of 

Oxford in 2014. VGG16 achieved impressive results on image classification benchmarks, making 

it a popular choice for computer vision tasks. 

 

VGG16 consists of 16 convolutional layers, followed by 3 fully-connected layers for 

classification (Figure 7). This stacked architecture allows the network to learn complex features 

from the input images. VGG16 utilizes 3x3 filters throughout the convolutional layers. While 

these small filters may seem less powerful than larger ones, stacking multiple layers of 3x3 filters 

allows the network to capture a wider range of features effectively. Max pooling layers are 

strategically placed throughout the network to reduce the feature maps and reduce computational 

cost. 

 

The final part of the network comprises three fully connected layers. These layers transform the 

high-level features extracted by the convolutional layers into class probabilities. 

 

 
Figure 7. Layer composition of VGG16. Thaker, Nerd for Tech. 

 



Head Model and Trainable Layers 

“Head model” refers to the upper segment of the model tasked with the specific 

classification challenge we aim to address. This Head Model (Figure 8) is appended to 

the culmination of the “backbone” models, which have been pre-trained with images from 

the ImageNet dataset. It is stipulated that 30% of the layers in the final model will be 

employed for training, whilst the remainder will remain static. 

 
Figure 8. Head Model shaped to ResNet50 output. 

 

3.3 Datasets 

 

For the training of models using collaborative learning, Federated Learning, it is 

necessary to distribute data across clients or nodes. Each client will represent a medical 

organisation. In the case of Independent & Identically Distributed (IID) data distribution, 

the data will be separated into 5 different clients, all following the same probabilistic 

distribution. Essentially, the IID distribution of the data leaves 5 clients with apparently 

identical characteristics regarding data composition. However, when distributing data in 

a non-IID manner, we encounter the following question: How should we distribute the 

data to approximate a real-case scenario?  

 

(Adnan et al., 2022) distributed the data ensuring that different clients received different 

proportions of images of cells related to two subtypes of non-small cell lung cancer 

(NSCLC): Lung Adenocarcinoma (LUAD) and Lung Squamous Cell Carcinoma 

(LUSC). 
 

(Cetinkaya et al., 2021) obtained a non-IID data distribution scenario by having chest X-

ray images labelled into 4 different classes: Covid-19, Pneumonia, Lung Opacity, and 

Normal. 

 

In our case, the dataset we are using corresponds to images of single cells, classified into 

labels corresponding to the cellular type they belong to (lymphocytes, eosinophils, etc.). 



There is no clear criterion for distributing the dataset’s data in a non-IID manner. It has 

finally been decided to merge two similar datasets and use every image’s property of 

belonging to one another original dataset to generate IID and non-IID client scenarios. 

 

Dataset from Hospital Clinic de Barcelona 

 

The dataset by (Acevedo et al., 2020), from now on referred as Acevedo et al or 

PBC_DIB, contains 17,092 images of individual normal peripheral blood cells. Blood 

smears were automatedly stained with May Grünwald-Giemsa in the autostainer Sysmex 

SP1000i and images were obtained using the analyser CellaVision DM96 in the Core 

Laboratory at the Hospital Clinic of Barcelona. The images are in the format of jpg and 

have a resolution of 360 × 363 pixels. They were annotated by expert clinical pathologists 

and are organized in eight groups: neutrophils, eosinophils, basophils, lymphocytes, 

monocytes, immature granulocytes (promyelocytes, myelocytes, and metamyelocytes), 

erythroblasts, and platelets or thrombocytes (Table 9) (Figure9).  

 

Images were collected during the period 2015-2019 from blood smears from patients 

without infection, hematologic or oncologic disease, and free of any pharmacologic 

treatment now of blood extraction. 

 

 

Cell type Abundance Relative Abundance 

Neutrophils (Segmented 

and Band) 

3329 19.47 

Eosinophils 3117 18.23 

Basophils 1218 7.12 

Lymphocytes 1214 7.10 

Monocytes 1420 8.30 

Immature Granulocytes 2895 16.93 

Erythroblasts 1551 9.07 

Platelets 2358 13.79 

TOTAL 17102 100 

Table 9. Abundance and Relative abundance of each class within (Acevedo et al., 2020) 

 

This was the first dataset used to train the models. At an initial state of the model, it was 

conceived to be the only dataset to be used.  

 



 
Figure 9. Examples of images belonging to different classes of PBC_DIB dataset. 

Basophil (a), Eosinophil (b), Erythroblast (c), Immature Granulocytes (d), Platelet (e), 

Lymphocyte (f), Monocyte (g), Neutrophil (h) 

 

 

High Resolution Peripheral Blood Cells Dataset (HRD) 

 

(Bodzas et al., 2023) dataset contains a total of 16,027 annotated white blood cell samples. 

It includes nine types of white blood cells, including neutrophil segments and bands, 

eosinophiles, basophiles, lymphocytes, monocytes, nucleated red blood cells (NRBC), 

and immature cells of both myeloid and lymphoid lineage. All blood smear samples were 

stained manually with May-Grünwald and Giemsa-Romanowski staining solution. 

 

The images were captured using high-quality acquisition equipment, Basler acA5472-

17uc camera mounted into an Olympus BX51 microscope, resulting in an approximate 

resolution of 42 pixels per 1 μm, or 5472 × 3648 pixels. 

 

In this case, of 78 total patients from which blood smears were taken, 18 patients were 

diagnosed with acute myeloid leukemia, 15 patients suffered from acute lymphoid 

leukemia, and 45 patients did not show any pathological findings or had a non-leukemic 

diagnosis. This is why this dataset contains the typical 5 classes of normal blood cells 



found in peripheral blood samples (Basophiles, Eosinphiles, Lymphocytes, Monocytes, 

Neutrophile Segmented) along with 4 classes of immature blood cells (Myeloblasts, 

Lymphoblasts, Neutrophile Band, Normoblasts) (Table 10) (Figure 10).  

 

Class Abundance 

Basophile 1023 

Eosinophile 1017 

Lymphoblasts 2557 

Lymphocyte 3046 

Monocyte 2040 

Myeloblast 2534 

Neutrophile Band 99 

Neutrophile Segment 3201 

Normoblast 510 

Table 10. Counts of every class of HRD dataset. 

 

 
Figure 10. Examples of images belonging to different classes of HRD dataset. Basophil 

(a), Eosinophil (b), Erythroblast (c), Immature Granulocytes (d), Lymphoblast (e), 

Lymphocyte (f), Monocyte (g), Neutrophil (h) 

 

Merged Dataset (MergeD) 

 

MergeD is the result of merging both datasets (Figure 12). Firsts, classes of this new 

dataset were designed (Table 11). 

 

 

 

 



 

MergeD Acevedo et al class HRD class TOTAL 

Neutrophils Neutrophil 

Segmented 

Neutrophile Segment 3.328 

Eosinophils Eosinophil Eosinophile 3117 

Basophils Basophil Basophile 2242 

Lymphocytes Lymphocyte Lymphocyte 2428 

Monocytes Monocyte Monocyte 2840 

IG ig Myeloblast 2000 

Erythroblasts Erythroblast Normoblasts 2020 

Lymphoblasts x Lymphoblasts 2557 

Platelet Platelet x 2345 

TOTAL x x 22.824 

Table 11. Original dataset class of MergeD classes dataset and counts. 

 

Neutrophils 

 

In HRD, Neutrophils are split on two different classes: Band and Segmented. In PBC, 

Band and Segmented Neutrophils are identified differently but considered the same class. 

To make the model more specific on blood cell type recognition, only segmented 

Neutrophil images are used on the new dataset.  

Eosinophils, Basophils, Lymphocytes, Monocytes 

These classes are merged without need of further logic, as those are the same in both 

datasets. 

Immature Granulocytes (IG) 

Immature Granulocytes (IG) is a class that compresses 3 different cellular types on the 

PBC dataset: Metamyelocytes, myelocytes, promyelocytes. In the HRD, it found the 

Myeloblast class, being those Immature Granulocytes too (Figure 11).  

 

 
 

Figure 11. Description of WBC lineage, differentiation process of two main principal stem 

cells, Myeloid Stem Cell and Lymphoid Stem Cell. 

 



 

Erythroblasts 

Immature Erythrocytes are found in both datasets: Erythroblasts class for Acevedo et al 

and Normoblasts class for HRD.  

Lymphoblasts 

Lymphoblasts is a unique class for HRD, so it will not have heterogeneous composition 

of original datasets. 

Platelet 

Platelet is a unique class for Acevedo et al, so it will not have heterogeneous composition 

of original datasets. 

 

 

 

 
Fig 12. MergeD class composition of the original datasets of images. 

 

 

 

3.4 Data Augmentation 

 

To prevent model overfitting and ensure generalisation in the learning of the neural 

network, a series of ‘on the fly’ data transformations are applied in every model training. 

These transformations include: 

 

Rotation  

 



Images are randomly rotated in the range of -20 to +20 degrees. 

 

Vertical and Horizontal Flip 

 

Images are randomly flipped horizontally or vertically. 

 

Vertical and Horizontal Shift  

 

Images will be randomly shifted vertically and horizontally within a range of 10% of their 

total height or width. 

 

Shear 

  

Shifts each point of an image in a fixed direction, altering the shape while maintaining 

the image area. The bottom and top margins retain their length, while the right and left 

margins are elongated, distorting the image. 

 

 

Figure 13. Example of a shear transformation using a shear factor of 0.1. 

 

Zoom 

 

Applies a random zoom to the images, in the range of 40% (zoom in) to 160% (zoom 

out). 

 

Brightness 

 

Randomly changes the brightness of the images, within the range of 20% (darker) to 

100% (original brightness). 

 

3.5 Pre-processing and normalization 

 

In the context of image data, each pixel is represented by a value between 0 and 255 (for 

8-bit images). By rescaling these values by 1/255, we transform them to a range between 

0 and 1. 

This is a common pre-processing step in image processing tasks, especially in deep 

learning, as it can help the model converge faster during training and can lead to improved 

model performance. 



Also, when loaded to the training generator, all images are loaded as with a resolution of 

224x224, to fit with the pre-trained VGG16 and ResNet50 models input shapes. 

 

3.6 Data Distribution 

 

Train/Test split 

 

MergeD dataset is going to be randomly split into train (80% of original dataset) and test 

(20% of original dataset) (Figure 14). These two sets are going to be the same for global 

and federated training of the model, only with differences on how train data is used.  

 

Global Training 

 

For the comprehensive training of the classification models, the described train dataset 

will be employed, after being randomly divided into an 80% allocation for the training 

subset and a 20% allocation for the validation subset. 

 

 
Figure 14. Scheme of train test split of the original dataset and further training and 

validation subsets of train images. 

 

The validation subset is a collection of images extracted from the training partition. It is 

not directly utilised for training the model but serves to monitor that the model is not 

overfitting. At the conclusion of each training round, the model will predict the classes of 

the validation images and will provide a validation accuracy and loss, without these 

directly impacting the model’s parameter training. These samples are not used for the 

model’s backpropagation. Nevertheless, as we obtain the validation results each round, 

we can verify whether the model is learning general characteristics of each class or if it 



is learning patterns specific to the training set, leading to overfitting. For the subsequent 

evaluation of the models, the parameters of the model from the round in which the highest 

validation accuracy was obtained will be always used. 

 

Federated Training 

 

In the Federated Learning scheme, data is split among 5 clients, whose collaborate to train 

a global model capable of correctly perform as a prediction model on every client separate 

data.  

Depending on if it’s a IID (Identically Independent Distributed) scenario or a non-IID 

scenario, client’s composition may be the same or no. It is important to note that for data 

to be non-IID or IID distributed, we must decide which property or characteristic is 

considered interesting to be differential among clients. In this project, we decided that 

differential property of MergeD dataset is sample’s belonging to only one of the two 

original datasets that were merged to create MergeD,  (Acevedo et al., 2020) dataset or 

HRD.  

 

 

IID Distribution 

In an IID distribution, the differential property must remain equally and independent 

distributed, as the acronym calls. This means that every client must be as identic to the 

others as possible (Figure 15, 16, 17).  

 

 
Figure 15. Distribution of HRD and PBC_DIB images within IID clients. 

 

 



 
Figure 16. Heat-map of abundance of every original class of every IID client that 

initially belonged to HRD.  

 

 

 
 

Figure 17. Heat-map of abundance of images, within IID-clients from every class, 

within IID-clients, of every client that initially belonged to (Acevedo et al., 2020), 

PBC_DIB dataset. 

 

Despite being IID-distributed, MergeD dataset has 2 classes whose samples only exists 

on PBC_DIB Dataset (Platelet) and HRD (Lymphoblasts).  

Also, it must be noted that data was randomly mixed before filling clients with each 

class’s samples, so clients’ data is as equal as possible.  

 

 



No-IID  

To generate clients with differently distributed data, abundance of data originally 

pertaining to HRD and PBC_DIB was split on an uneven way among clients(Figure 18, 

19, 20). 

 

Client 1: Fully composed of HRD images 

Client 2: Client where PBC_DIB and HRD images are more levelled 

Client 3: HRD images are more abundant than PBC_DIB images. 

Client 4: Fully composed of PBC_DIB images. 

Client 5: PBC_DIB images are much more abundant than HRD images. 

 

 

 
Figure 18. Distribution of original dataset property among 5 non-IID clients.  

 

 

 

 

 
Figure 19. Heat-map of abundance of images, within non-IID clients, that initially 

belonged to (Acevedo et al., 2020), PBC_DIB dataset. 

 



 

 
Figure 20. Heat-map of abundance of images, within non-IID clients, that initially 

belonged to HRD. 

 

 

3.6 Training of models 

Instance weighting 

 

An imbalanced dataset is one where some classes have many more examples than others. 

This can cause a machine learning model to become biased towards the majority class, 

resulting in poor performance on the minority class. 

 

Instance weights are a way to tell the model to "pay more attention" to certain instances 

during training. By assigning a higher weight to an instance, it increased the contribution 

to the loss function that the model is trying to minimize. This means that the model will 

try harder to get these instances correct. 

 

Global Training 

 

On the Global training, models are trained with the same data for 60 epochs. Data 

amplification is performed one time, on the fly, when data is loaded to the model before 

round 1 training.  

 

Backpropagation and fine-tuning of model’s parameters is done by Adam optimizer, with 

a learning rate of 0.0001. Batch size of images on the training subset is 8. Batch size of 

images on the validation subset is 1. After each round of training, new model is going to 

be validated with the same validation subset, generating validation metrics (Figure 21). 

The model from the round that performs better on the validation is going to be used to 

evaluate the model later with the test subset.  



 
Figure 21. Simplified scheme of how global training of models is performed 

 

Federated Training 

 

When training a model using Federated Learning, some extra decisions must be made 

compared to usual global training ML. 

 

Number of epochs and rounds 

  

Federated Learning training involves two kinds of rounds/epochs. The times that each 

client trains the model with its data before sending the weights to the local server are 

going to be called epochs from now on. The times that the global server aggregates the 

weights received from the clients are going to be called rounds.  

 

In all trainings performed in this study, the number of rounds is 40 and the number of 

local epochs is 2.  

 

 

Federated aggregating protocol - FedAvg 

  

This protocol is the responsible for combining all the parameters that the global server 

receives each round, averaging them and resolving into a new unified model that aims to 

correctly fit every client.  

FedAvg is a simple and effective protocol for federated learning, although it assumes that 

all clients have equal importance and contribute equally to the global model. 

 

Sample usage in each round 

 

In the epochs of each round, clients could be using all their data or just a part of it. To 

simulate a real scenario, makes sense to fraction data in X parts and perform X rounds to 

train with all the data. Each client’s data is split into 40 different parts, representing 40 

weeks of a year of sampling at 5 different hospitals. Every client has 40 different parts of 

its whole data. Two cases of how these part’s data is used are planned. 

  

Case 1 

Every round, every client is going to train the model for 2 epochs, starting with 

partition 1 on round 1 and finishing with partition 40 on round 40. In this case, 

each partition of every client only trains at the corresponding part and it’s never 

used again (Figure 22). 



 

 
Figure 22. Scheme explanation of case 1 training. Every round, global model is trained 

with a partition of the data in each client. This partition is never used again to train the 

model. 

 

 

Case 2 

In this scenario, data is recycled along rounds. Every round, when a client finishes 

training, a percentage (in this case, 60%) of the data that has been used is added 

to next round’s data partition of that client (Figure 23). Although this recycling, 

as seen in Figure 24, as the initial size of every partition is the same, this data 

addition reaches a top in which next partitions don’t grow any larger than the last 

one.  

This case may improve model’s training, as partitions of training data are mixed 

along round but the size of training data for each round keeps being very short 

when compared to Global Training. Also, it’s correct to assume that clients, in this 

case hospitals, may reuse its own data to try improve model’s capacity of 

generalization. 

 

 
Figure 23. Scheme explanation of case 2 training. Every round, global model is trained 

with a partition of the data in each client. To this partition is summed a 60% of the 

images used in the last round.  

 



 
Figure 24. Example of evolution of abundance of each class at the training of local models for 

each round. As seen, abundance grows until reaching a top. 

 

Validation sample usage in each round 

After partitioning train subset of each client into 40 parts, each of the 40 parts are split 

into train (80%) and validation (20%) of each round. Training data is used as explained 

above, in two different cases. Validation data is used one two different ways in all the 

models. 

 

First way, during local training of clients, validation data of each part, for example 

validation data part 3 from client 3 on round 3 training of client 3, is used to validate the 

model during local training (Figure 25). A median among the 5 clients of these validation 

metrics is calculated to study the learning of the models. 

 

 



 
Figure 25. Local Training Validation Example Scheme 

 

 

Second way, after the aggregation of the 5 models into one global model, this global 

model is evaluated client by client with all client’s validation data of every round until 

the actual round. Then, the median of all 5 global validation accuracies is calculated 

(Figure 26). This is done to simulate a real scenario in which global server doesn’t have 

access to client’s data, but every client can send the encrypted validation accuracy to the 

server.  

 

 
Figure 26. Global Validation Example Scheme. 

 

Client participation in each round  

 

As this study aims to simulate a real case, in normal conditions all clients should be 

training new data and sending parameters to the server every week.  

 



 

3.6 Model Evaluation and Metrics 

 

Evaluation of models is always performed with the fine-tunned model that performed 

better on the training validation.  

 

Prediction and analysis  

 

Using the best performing model, test dataset images classes are predicted. Then, a 

dataframe is created (Table 12), containing: 

 

File Name: Name of the image which class is being predicted 

Top 1 Predicted Class and Score. 

Top 2 Predicted Class and Score. 

True Class. 

 

File_name Predicted Class Score1 2nd Class Score2 True Class 

106439.jpg basophil 1.0 ig 7,90E-09 basophil 

107517.jpg basophil 0.99999964 ig 3,59E-01 basophil 

113396.jpg ig 0.67754223 basophil 0.313218419 basophil 

116467.jpg basophil 1.0 ig 4,49E-03 basophil 

130237.jpg basophil 0.9970361 ig 0.002323971 basophil 

Table 12. Example of the dataset created after prediction of test images’ class. 

 

From this dataset, a lot of analysis and metrics can be obtained, as explained below..  

 

Confusion Matrix 

 

A confusion matrix is a table that summarizes the performance of a classification model. 

It provides a detailed breakdown of the model's predictions compared to the actual target 

values. The confusion matrix has the following key elements: 

 

- True Positive (TP): The model correctly predicted the positive class. 

- True Negative (TN): The model correctly predicted the negative class. 

- False Positive (FP): The model incorrectly predicted the positive class. 

- False Negative (FN): The model incorrectly predicted the negative class. 

 

These key elements allow to calculate important evaluation metrics like accuracy, 

precision, recall, and F1-score Also provides a comprehensive understanding of where 

the model is making mistakes, which is crucial for improving its performance. 

 

 

 

Evaluation Metrics 

 

Accuracy 



Definition: Accuracy is the proportion of true positives and true negatives among 

all predictions. It is calculated as the sum of true positives and true negatives 

divided by the total number of predictions. It is often represented as a percentage. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 

 

Precision: 

Definition: Precision is the proportion of true positives among all positive 

predictions. It is calculated as the number of true positives divided by the sum of 

true positives and false positives. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 (𝑇𝑃)

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 (𝑇𝑃) + 𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 (𝐹𝑃)
 

 

Recall: 

Definition: Recall is the proportion of true positives among all actual positive 

instances. It is calculated as the number of true positives divided by the sum of 

true positives and false negatives. 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

 

F1 Score: 

Definition: F1 Score is a measure that combines precision and recall. It is the 

harmonic mean of precision and recall. It is calculated as the harmonic mean of 

precision and recall. It is often represented as a percentage. 

𝐹1 = 2 ×  
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ×  𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 

 

Scalability Metrics 

 

Training time 

 

As all models are trained under identical GPU and CPU conditions, the duration of their 

training serves as a reliable indicator of the requisite computational resources. 

 

Median CPU and GPU usage 

 

The online platform jarvislabs.ai has been utilised for model training. Employing this 

platform alongside Tensorflow 2.3 has encountered certain issues and drawbacks. It 

appears that Tensorflow is prone to memory accumulation problems, which particularly 

impinged upon the simulation of federated learning. Owing to the inability to precisely 

gauge memory usage throughout the training process, initial CPU memory occupancy 

values are recorded and averaged. GPU is shown to work at its full capability almost all 

the time. The used Nvidia RTX5000 has 32GB of graphic memory and 16GB GDDR6 

memory. 

 

 

 

 



Parameters Size 

 

One of the key factors that may constrain the feasibility of federated learning is the 

incessant iteration over the network between clients and the central server. To assess these 

costs and determine their potential impact on the standard progression of training, an 

average has been calculated for both the complete model’s size and the parameters of the 

trainable layers alone. 



4. Results 

4.1 Training Results 

 

General Results 

 

After training one by one the models, the train metrics depicted in Table 13 were obtained 

where obtained. 

Table 13. Model training results of all scenarios. 

 

The model that best performed on training was the FL-IID Case 2 (best val. Acc. = 97, 

15%, best median local val. Acc. = 95,23%). All models, except for ResNet50 FL no-IID 

without data recycling, obtained validation accuracies above 91%, which is a satisfactory 

result. Except case 3, all FL models obtained at least >5% global validation accuracy. In 

all cases, training time was hugely different between Global models and FL models, being 

the later an average of roughly 4 hours (3,997h) faster. 

 

 

Model Model size 

(compiled) 

Params size Trainable params size Average 

Physical RAM 

VGG16 272MB 58,99 MB 1,04 MB 63,82 GB 

ResNet18 168 MB 94,87 MB 2,69 MB 64,11 GB 

 

Table 14. Computational resources use and size of models and model’s parameters. 

 

 

Models were trained using ~64GB of RAM for all the training (Table 14). This value is 

approximately 50% of full capabilities of the hardware being used. This RAM usage 

added to the use of high-end GPU like Nvidia RTX500 has to be considered when looking 

at the time models took to train. Regarding the compiled model size, VGG16 was 

demonstrated to be a smaller model compared to ResNet50. Nevertheless, this does not 

significantly affect the RAM usage or the model training time. Given that VGG16 is a 

smaller model, the weights of its total and trainable parameters, 58.99MB and 1.04MB 

respectively, were less than those of ResNet50 (Total params size = 94.87MB, Trainable 

params size = 2.69MB). 

 

N Model Scheme Best Global 

Validation 

Acc. 

Best Global 

Validation 

Loss 

Best 

Median 

Local 

Validation 

Acc. 

Training Time 

1 ResNet50 Global 0.9123 0.2753 --- 5h 13m  

2 VGG16 Global 0.9193 0.2336 --- 5h 35m 

3 ResNet50 FL IID – Case 1 0.9666 0.18100 0.9459 52m 

4 ResNet50 FL IID– Case 2 0.9715 0.1520 0.9523 1h 12 m 

5 ResNet50 FL non-IID – Case 1 0.4951 2.2516 0.1500 48m 

6 ResNet50 FL non-IID – Case 2 0.9629 0.2086 0.9500 1h 7m 



As can be observed, there are no federated training results for VGG16. This is due to a 

Tensorflow error when attempting to federate VGG16 with the code that had been initially 

prepared for ResNet50. Having already obtained the results for ResNet50, it was 

considered that, taking into account temporal resources, there was no need to adapt the 

code to train VGG16 in a federated manner. 

 

ResNet50 FL IID Case 1 

 

As an example of a nice FL training evolution, ResNet50 IID without recycling of data 

case is shown. Train and validation accuracy evolve as expected in a properly trained 

DNN model (Figure 27, 28), until reaching the plateau  

 

 
Figure 27. Train Accuracy Evolution of the 5 clients in ResNet50 FL-IID Case 1 and 

area under median coloured in blue. 

 

 

 
Figure 28. Validation Accuracy Evolution of the 5 clients in ResNet50 FL-IID Case 1 

and area under median coloured in blue. Global Validation metric evolution line and 

the area between its value and median local validation value coloured in violet. 



 

 

ResNet50 FL no-IID Case 1 

 

In this instance, we have observed a proper evolution of the model’s training metrics, 

achieving a training accuracy exceeding 80% (Figure 29). However, the evaluation 

metrics have remained exceedingly low (Figure 30), hovering around the values expected 

from random guessing (1/9 classes = 0.11) throughout the training process until the final 

round, where an increase in validation accuracy is noted. Yet, results beyond round 40 

are not available. These outcomes clearly indicate an issue of overfitting within the model, 

which has learned intrinsic patterns of the training subset but has not acquired the ability 

to generalize its learning. 

 

 
Figure 29. Train Accuracy Evolution of the 5 clients in ResNet50 FL-no IID Case 1 

and area under median coloured in blue. 

 

 
Figure 30. Validation Accuracy Evolution in ResNet50 FL no IID Case 1 of the 5 clients 

and area under median coloured in blue. Global Validation metric evolution line and 

the area between its value and median local validation value coloured in violet. 

 



 

Other Training evolution graphs 

 

The rest of the training evolution graphs can be found in the annexes. 

4.2 Test Results 

General Table  

 

The evaluation results on Table 15 show that both ResNet50 and VGG16 perform well in 

global training, with VGG16 slightly outperforming ResNet50. In federated learning with 

independent and identically distributed (IID) data, ResNet50 achieves high accuracy and 

F1-score. However, when the data is non-IID, ResNet50's performance drops 

significantly, indicating challenges in training models with heterogeneous data 

distributions. Interestingly, when techniques like client selection or data augmentation are 

used, ResNet50's performance recovers, suggesting that these methods can mitigate the 

negative impact of non-IID data. 

 

Model Scheme Accuracy Precision Recall F1-Score 

ResNet50 Global 0.9502 0.9484 0.9477 0.9466 

VGG16 Global 0.9620 0.9641 0.9603 0.9617 

ResNet50 FL IID – 

Case 1 

0.9700 0.9710 0.9700 0.9703 

ResNet50 FL IID– 

Case 2 

0.9757 0.9758 0.9758 0.9757 

ResNet50 FL non-IID 

– Case 1 

0.5053 0.7002 0.4933 0.4379 

ResNet50 FL non-IID 

– Case 2 

0.9707 0.9705 0.9707 0.9704 

Table 15. Evaluation metrics for all the models trained.  

 

 

ResNet50 FL-IID Case 2 

 

In the case of federated training on IID with data recycling for the ResNet50 model, the 

model evaluation results have been highly satisfactory. This confusion matrix (Figure 31) 

provides a more detailed and graphical representation of the excellent Recall, Precision, 

and F1-Score results achieved by this model. 



 
Figure 31. Confusion Matrix Heat-map comparing True Labels (y axis) with Predicted 

Labels (x-axis) in the evaluation of ResNet50 FL-IID Case 2. White indicates maximum 

matching among one class from true labels and one class from predicted labels, while 

black indicates 0 matching. 

 

 

ResNet50 FL-nonIID Case 1 

 

In the case of federated training on non-IID without data recycling for the ResNet50 

model, it seems that being evaluated with the model from the last round, which is the only 

one exceeding 20% validation accuracy, has been reflected in the model’s evaluation. 

Although the results remain quite poor (Figure 32), they may suggest that with additional 

training rounds, better values might have been achieved, but this is nothing more than 

mere speculation. 

 

 
Figure 32. Confusion Matrix Heat-map comparing True Labels (y axis) with Predicted 

Labels (x-axis) in the evaluation of ResNet50 FL no-IID Case 1. White indicates 

maximum matching among one class from true labels and one class from predicted 

labels, while black indicates 0 matching. 

 



 

 

4.3 Privacy results 

 

KerasSGD_DP optimizer from the Tensorflow Privacy module has been implemented to 

train the ResNet50 FL without data recycling. The model required 5 hours and 54 minutes 

for training, and the training results were as follows: 

 

Model name Best 

Global 

Validation 

Acc.  

Best Global 

Validation 

Loss 

Best Median 

Local 

Validation 

Acc. 

Training Time 

DPFL Resnet50 

Case 1 

0.1495 2.6451 0.1621 5 h 54 m 

Table 17. Training results of model ResNet50 FL-IID case 1 using DP optimizer. 

 

 
Figure 33. Train Accuracy Evolution of the 5 clients in ResNet50 FL-noIID Case 1 DP 

and area under median coloured in blue. 

 

 



 
Figure 34. Validation Accuracy Evolution of the 5 clients in ResNet50 FL-IID Case 1 

DP and area under median coloured in blue. Global Validation metric evolution line 

and the area between its value and median local validation value coloured in violet. 

 

Furthermore, a global privacy budget value of ε=3.52 was achieved, using Gradient 

Clipping of 1,3 and noise multiplier of 4. The training evolution graph appears to indicate 

that the model is not learning to classify the images accurately, as the displayed accuracy 

is close to what one would expect from a random classification of the images (1 total 

probability / 9 classes = 0.11). 

 

 

5. Conclusions 
 

5.1 Federated Learning may increase model generalization 

capability 

 

The evaluation metrics for the models, both during training and assessment, suggest that 

collaborative training generally exhibits superior learning and predictive capabilities in 

the scenarios examined. In global training, VGG16 and ResNet50 achieved maximum 

validation accuracies of 91.93% and 91.23% respectively, compared to 97.15% and 

96.29% achieve by ResNet50 in collaborative training using data case 2, under IID and 

non-IID data distributions respectively. 

 

These metrics converge more closely in the model evaluation with the test subset. The 

global models of ResNet50 and VGG16 attained accuracies of 95.02% and 96.20% 

respectively, compared to 97.57% and 97.07% achieve in the collaborative training of 

ResNet50, using data case 2, under IID and non-IID distributions respectively. As for the 

rest of the validation metrics, the progression is as anticipated; models with higher 

evaluation accuracy also garner the best results in F1-Score, Recall, and Precision. 

 



In all instances, barring the federated training of ResNet50 non-IID with data use case 1, 

satisfactory results were obtained, demonstrating the proficiency of VGG16 and 

ResNet50 models in predicting cell types in peripheral blood smear images. 

 

 

5.2 Federated Learning as a Private Collaboration Tool 

 

Following the training of the federated models, it has become evident that, at least with 

these datasets, there is no necessity to share images with a central server to train an 

effective cellular type of classification model. This could already be contributing to data 

privacy, as the data are not directly shared at any point. Nonetheless, studies such as (Zhu 

& Han, 2020) have demonstrated that privacy can be compromised through the analysis 

of weight logs communicated between clients and the server during training iterations. A 

viable solution would be the application of Differential Privacy to the weights generated 

by the models, safeguarding them from privacy breaches. The outcomes pertaining to the 

federated training of ResNet50 without data recycling using Differential Privacy (DP) 

have been somewhat underwhelming. The training duration has escalated from t=52m 

without DP to t=5h 56m with DP. This denotes a substantial increment of 5 hours to train 

the identical model with DP, which, moreover, has not succeeded in accurately classifying 

the images. 

 

5.3 Federated Learning as a Scalable Collaboration Tool 

 

The global training of the ResNet50 and VGG16 models spanned 5 hours and 13 minutes, 

and 5 hours and 35 minutes respectively, averaging 5 hours and 24 minutes. Federated 

training of the ResNet50 model, without data recycling, recorded an average training 

duration of 50 minutes, while the corresponding case with data recycling averaged 1 hour 

and 9 minutes. These findings, along with little size of model’s trainable parameters 

(Table 14), underscore the remarkable scalability of collaborative training in expediting 

the training of computationally intensive image classification models, as demonstrated in 

this study.  

 

On the one hand, it should be noted that these durations do not account for the time that 

would be invested in real-world scenarios for data communication and sharing between 

clients and the central server. Nonetheless, such communication would not significantly 

impact the GPU or CPU resources of the nodes, as it primarily involves data upload and 

download processes.  

 

On the other hand, when examining the Federated Learning (FL) training durations, it is 

imperative to acknowledge that it reflects the time taken by a single machine to train all 

clients across all rounds. While it is true that the computational resources utilised, 

particularly the graphics card, may not be readily available in smaller medical centres, 

one must consider that in a real-world scenario, the workload conducted by the hardware 

in this study would be distributed among the hardware of all participating nodes. 

Consequently, the findings suggest that in this instance, FL could be a viable paradigm 

for the scalability of Deep Neural Network (DNN) models. 



5.4 Data Usage during Federated Learning 

 

As previously noted, all models have achieved satisfactory predictive capabilities, except 

for the federated training of ResNet50 with non-IID data distribution and without data 

recycling, which attained a maximum training accuracy of 49.51% and an evaluation 

accuracy of 50.53%. The analogous training with data recycling achieved a training 

accuracy of 96.29% and an evaluation accuracy of 97.07%. This suggests that in cases of 

non-IID data distribution, which more closely resembles real-world scenarios, data 

recycling may be crucial for the effective training of models. 

 

Conversely, in the federated training of ResNet50 with IID data, the outcomes without 

data recycling (training accuracy = 96.66%, test accuracy = 97%) and with data recycling 

(training accuracy = 97.15%, test accuracy = 97.57%) are remarkably similar. This 

indicates that in this scenario, where all clients are identical, data recycling may not be 

necessary, as it is inherently occurring when training five clients with the same data 

distribution in each round. 

 

5.5 Objectives achieving  

 

 
“To develop and evaluate a Federated Deep Learning tool for the detection and classification of cellular 

types on peripheral blood samples.” 

 

The federated training of the classification models has demonstrated a satisfactory 

performance on training as well as on test ecaluation.  

 

“The developed tool should be scalable and suitable (low requirements) for hospital’s 

computers and connection.” 

 

While the hardware used to train the models is not the lowest requirements, it’s still not 

high tier technology, and it’s not difficult to assume some medium and large sized 

health centres may have access to similar hardware. In the case it isn’t like that, 

Federated Learning has proven to need much less time to learn. Although more 

specific work should be done, this work is positive on thinking that FL models, in 

this case, can be trained without GPU.  

 

“To conceive a data privacy study/blueprint for the developed AI tool.” 

 

This objective has not been fully achieved. While research has been conducted into 

potential privacy issues in Federated Learning and attempts have been made to find 

solutions, there has not been sufficient time to conduct a satisfactory analysis of the topic. 

The objective has not been met due to a lack of time and organization. 

5.6 Planning analysis 

 

The project’s planning has not been adhered to rigorously since the submission of PEC1, 

with a consistent delay of approximately 2-3 weeks. The primary causes of this delay 

have been attributed to a lack of organisation and initial challenges in securing access to 

powerful GPUs for model training. Furthermore, due to constraints related to space, 



compatibility, and features, TensorFlow Federated was not utilised for federated model 

training. Consequently, a Python codebase was developed to simulate this environment. 

 

 

5.7 Socio-ethical Impact 

 

Models have been developed that predict the cellular type of blood cells from individual 

cell images. This tool has the potential to become a valuable asset in the future, following 

further refinement, to assist in routine cellular counts and the identification of abnormal 

cells. These applications could significantly contribute to enhancing physiological health. 

 

In terms of privacy, a framework has been established that enables collaborative training 

with medical data without the need to directly share these images with the cloud. 

Although local data training ensures that data does not leave its node, it is known that 

training data can be inferred from the gradient of parameters during model updates. 

Therefore, the achievement of privacy impact is only partial. 

 

Regarding job displacement, it has been reaffirmed that no machine learning model is 

flawless, and professional expertise will always be essential for validation. 

 

5.8 Future work 

 

In the future, the most critical area for development, in my opinion, is privacy. At least in 

cellular type classification, federated learning has demonstrated learning capabilities 

equal to or surpassing conventional training. Therefore, the focus should now shift to 

ensuring that federated training upholds data privacy. For future endeavours, I would 

recommend exploring Pytorch as a machine learning framework, as TensorFlow has 

exhibited certain compatibility issues as well as memory usage concerns. Moreover, 

Pytorch is equipped with more established tools for privacy studies. A prospective 

objective would be to conduct a privacy analysis of the developed Federated Learning 

(FL) models, utilising Differential Privacy (DP) optimisers and examining how the 

epsilon value influences the training and performance of the model. 

 

Additionally, the evaluation results obtained from federated training with non-IID data 

distribution and data recycling are quite remarkable. Typically, these models are expected 

to perform less well than their IID or globally trained counterparts. It would be intriguing 

to continue investigating this area to determine the full potential of non-IID training. 

 

Discussing the applicability of science is always beneficial. The outcomes of this research 

are quite satisfactory, yet research does not directly impact society until it is transformed 

into technology. Thus, it would be prudent to explore the real-world applicability of the 

federated learning models developed in this study. 
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7 Annexes 
 

 

 

 
 



 
 

 

 

Figure A1. Original dataset property within every class of every client on no-IID 

distribution. 

 

 

All Training Plots 

 

FL-IID Case 1 

 

 

 
Figure A2. Train Accuracy Evolution of the 5 clients of FL-IID without data recycling 

and its median. 



 

 
Figure A3. Train Loss Evolution of the 5 clients of FL-IID without data recycling  and 

its median 

 

 
Figure A4. Validation Accuracy Evolution of the 5 clients of FL-IID without data 

recycling  and its median. Also average global accuracy of each round is shown in 

violet. 

 



 
Figure A5. Validation Loss Evolution of the 5 clients of FL-IID without data recycling 

and its median 

 

 

FL-IID Case 2 

 

 
Figure A6. Train Accuracy Evolution of the 5 clients of FL-IID with data recycling and 

its median 

 



 
Figure A7. Train Loss Evolution of the 5 clients from FL non-IID and its median 

 

 
Figure A8. Validation Accuracy Evolution of the 5 clients from FL-IID with data 

recycling and its median. Also average global accuracy of each round is shown in 

violet. 

 



 
Figure A9. Validation Loss Evolution of the 5 clients from FL-IID with data recycling 

and its median. 

 

 

FL non-IID Case 1 

 

 
Figure A10 Train Accuracy Evolution of the 5 clients from FL-nonIID without data 

recycling and its median 

 

 



 
Figure A11. Validation Accuracy Evolution of the 5 clients from FL-noIID without data 

recycling and its median. Also average global accuracy of each round is shown in 

violet. 

 

 
Figure A12. Validation Loss Evolution of the 5 clients frm FL-noIID without data 

recycling and its median 

 

 

 

FL non-IID Case 2 

 



 
Figure A13. Train Accuracy Evolution of the 5 clients from FL-noIID with data 

recycling and its median 

 

 
Figure A14. Train Loss Evolution of the 5 clients from FL-noIID with data recycling 

and its median 

 



 
Figure A15. Validation Accuracy Evolution of the 5 clients from FL-noiid with data 

recycling and its median. Also average global accuracy of each round is shown in 

violet. 

 

 
Figure A16. Validation Loss Evolution of the 5 clients from FL-noIID and its median 

 

 

 

Test Confusion matrix 

 

 

 

ResNet50 Global Training Confusion Matrix 

 

  



 
Figure A17. Confusion Matrix Heat-map comparing True Labels(y axis) with Predicted 

Labels (x-axis) in the evaluation of ResNet50 Global Training. White indicates 

maximum matching in one class true and predicted labels, while black indicates 0 

matching. 

 

VGG16 Confusion Matrix 

 

 



Figure A18. Confusion Matrix Heat-map comparing True Labels(y axis) with Predicted 

Labels (x-axis) in the evaluation of VGG16 global training. White indicates maximum 

matching in one class true and predicted labels, while black indicates 0 matching. 

 

 

ResNet50 FL-IID Case 1 

 

 

 
Figure A19. Confusion Matrix Heat-map comparing True Labels(y axis) with Predicted 

Labels (x-axis) in the evaluation of ResNet50 FL IID Case 1. White indicates maximum 

matching in one class true and predicted labels, while black indicates 0 matching. 

 

 

ResNet50 FL-nonIID Case 2 

 

 



Figure A20. Confusion Matrix Heat-map comparing True Labels(y axis) with 

Predicted Labels (x-axis) in the evaluation of ResNet50 FL nonIID Case 2. White 

indicates maximum matching in one class true and predicted labels, while black 

indicates 0 matching. 

 

 


