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Abstract 

The diagnosis of malaria is still predominantly based on the manual observation of 
blood samples through optical microscopy, a time-consuming and tiring task for 
laboratory staff. As an alternative to this gold standard, previous studies suggest that 
the application of artificial intelligence can allow for faster and more accurate 
diagnoses, leading to more effective patient treatment. 

This study aims to develop a pipeline for the automatic image-based detection of 
malaria using a traditional machine learning method to classify Plasmodium-infected 
and uninfected red blood cells. Additionally, the project seeks to identify the most 
important types of image features that enable differentiation between infected and 
uninfected cells. 

The methodology includes the manual annotation of red blood cells from thin blood 
smear images of malaria patients, segmentation of cells using the novel Segment 
Anything Model (SAM), application of the Random Forest algorithm to classify 
segmented cells into infected or uninfected classes using a feature dataset, and 
calculation of feature importances. Moreover, an object detection model is trained to 
automate the detection of RBCs in microscopy images. 

Results of segmentation with SAM show remarkable performance. After training and 
testing the classification model within an eighty-feature dataset of colour, texture, and 
morphology, the accuracy and F1-score obtained are 99.5% and 99.2%, respectively. 
Thus, an accurate malaria diagnosis could be achieved by applying this pipeline based 
on SAM segmentation and Random Forest classification to analyse thin smears. 
Regarding feature importance, colour features, specifically green and red histograms, 
appear to be the most distinctive. 
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1 Introduction 

1.1 Context and justification 

Malaria is one of the most life-threatening diseases caused by Plasmodium parasites 
and transmitted by infected female Anopheles mosquitoes. According to the World 
Health Organization (WHO), millions of people are infected annually, and it is responsible 
for thousands of deaths in the infected population, nearly all in sub-Saharan Africa. In 
2022, 608.000 deaths and 249 million cases of malaria were reported globally, an 
increase of 5 million cases compared to 2021 (1). Investment in vector control tools, 
vaccines, antimalarial drugs, and new diagnostics is required to accelerate progress 
against malaria (2).  

The gold standard technique for detecting malaria is optical microscopy, which requires 
the manual checking of patient samples. Not only the identification of the parasite but 
also the counting of parasites is necessary to know the severity of the disease and the 
efficacy of drug treatment over time. However, the main drawback of the technique is 
that it needs a highly trained personal, and it is a time-consuming task, as around 15-30 
minutes are required by an expert to examine only one blood smear (3).  

As a breakthrough, artificial intelligence (AI) has become as an essential tool in diagnosis 
from medical images that can also be applied as an alternative technique to obtain a 
more reliable diagnosis for malaria in a real work environment, where human error in 
traditional microscopy has been identified as a major cause of misdiagnosis (4). 
Additionally, having a faster diagnosis provides timely treatment, allowing these new 
tools to have direct consequences in achieving safe patient care, reducing the risk of 
complications, and avoiding death. 

The main aim of this work is to develop a pipeline that allows an automatic, faster, and 
more accurate malaria detection from patient peripheral blood smear images as well as 
identify which are the most important features of the images that enable to confirm this 
disease. 

1.2 General description 

The project involves developing a pipeline for malaria detection using blood smear 
images. The proposed method includes the following steps: image acquisition, image 
annotation, red blood cell (RBC) segmentation, feature extraction, classification, and 
analysis of feature importance. 

Specifically, the novel Segment Anything Model (SAM) (5) was applied for RBCs 
segmentation. Colour, texture and geometric image feature extraction was then 
performed. Random forest algorithm was employed for image classification into infected 
or uninfected classes. The last step was an interpretive analysis of feature importance 
to determine which characteristics are crucial for malaria detection. Additionally, an 
object detection model was trained to locate RBCs within microscope images and 
complete the computer vision pipeline.  

The report work includes the current state-of-the-art in the field of malaria diagnosis, as 
well as the methodology, results and discussion, and conclusions obtained from the 
different sections described above. 
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1.3 Impact on sustainability, ethical-social and diversity 

The UOC includes in all programmes the interdisciplinary competency of ethical and 
global commitment (CCEG), which is defined as follows: acting in an honest, ethical, 
sustainable, socially responsible, and respectful of human rights and diversity, both in 
academic and professional practice, and design solutions to improve these practices.  

Thus, three main dimensions are considered: sustainability, ethical behaviour and social 
responsibility, and diversity and human rights. These three dimensions are aligned with 
the Sustainable Development Goals (SDG) defined by the United Nations for 2030 
(Figure 1).  

  

Figure 1. Sustainable Development Goals for 2030. 

In this regard, the contributions of this project to each dimension are detailed below.   

1.3.1 Sustainability 
This work could contribute to scientific progress in artificial intelligence-based medical 
image diagnosis, including malaria and other diseases related to blood. In terms of 
sustainability, the project could be related to SDG 9 (industry, innovation, and 
infrastructure), as it is based on a disruptive technology as the AI is, and it involves some 
technological advance and research and innovation to contribute to find a solution to a 
challenging problem, which affects in particular developing countries.   

According to the WHO (1), this project could also suppose a small contribution to mitigate 
the effects of climate change; thus, the SDG 13 (climate action) is involved. Temperature, 
rainfall, and humidity alterations could lead to changes in malaria transmission intensity, 
as they affect mosquito survival and parasite development within the mosquito. Having 
a faster diagnosis would help to improve the climate change effects related to this 
disease.  

1.3.2 Ethical behaviour and social responsibility 
Regarding the ethical behaviour and social responsibility, this work could also have a 
positive impact related to the SDG 3 (Good health and well-being), as its final application 
is the diagnosis of malaria.  

Specifically, the United Nations were committed to end the epidemics of AIDS, 
tuberculosis, and malaria by 2030. Nevertheless, the COVID-19 pandemic has impeded 
progress in SDG 3, as deaths from malaria have increased compared to pre-pandemic 
levels due to a decrease in vaccination and difficulty to healthcare access (6).  

1.3.3 Diversity and human rights 
In terms of diversity of gender, this application has not sex discrimination, as malaria 
affects both women and men. In contrast, it would have a positive impact in SDG 10, 
reducing inequalities based on ethnicity and income, as 94% of all malaria cases occur 
in sub-Saharan Africa in 2022 (1).  
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1.4 Objectives 

1.4.1 General objectives 
The two main objectives of the project are:  

1. Develop a computer vision and machine learning pipeline for automatic malaria 
detection in peripheral RBCs. 

2. Identify the RBC key image features that facilitate the analysis and interpretation of 
the presence of Plasmodium parasites. 

1.4.2 Specific objectives 
To achieve the general objectives, the following specific goals were defined:  

1. Annotate RBCs manually from biomedical images of peripheral blood taken under a 
microscope using a specific tool. 

2. Develop a pipeline for automatic segmentation of RBCs using the novel segment 
anything model (SAM). 

3. Extract different types of image features from the segmented RBCs images. 

4. Train and test a classification model for malaria detection using a classical machine 
learning algorithm. 

5. Identify the most important features in the images that distinguish infected RBCs from 
uninfected ones. 

6. Perform an object detection model to automatically locate RBCs from microscope 
images.  

1.5 Approaches and Methodology 

The proposed methodology in this work is based on automatic detection of RBCs 
infected with a parasite in blood smears based on features that differentiate infected and 
uninfected cells. Original images were obtained from an open-source dataset of malaria 
infected thin blood smears of the Hospital clinic of Barcelona (7). 

 

 

Figure 2. Main steps followed for automated malaria diagnosis. 
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The proposed approach includes the following steps:   

1) Annotation: RBCs from microscopy images are manually annotated with bounding 
boxes. This manual annotation allows for not only continuing with the following steps to 
segment the cells and train the model, but also training an object detection model. 
Currently, there are numerous tools available for image annotation. For this work, Label 
Studio was used. 

2) Segmentation: apply the SAM using bounding boxes as prompts to automatically 
obtain all RBCs of an image, removing artefacts and other types of blood cells. SAM 
model was chosen for segmentation as it is a new open-source model released in 2023 
by Meta AI (5). Although its performance on natural images is impressive, here it was 
checked its ability to segment cells from medical optical microscopy images.  

In previous works (3), RBCs segmentation methods for malaria diagnosis are mainly 
based on thresholding, such as Otsu algorithm, combined with morphological operations 
and watershed transformation. These techniques are highly used due to their simplicity, 
although this may not be because of their superior performance (3). Deep learning 
techniques have been also applied for RBCs segmentation (7). Up to our knowledge, no 
bibliography applying SAM model in malaria images was found.  

3) Feature extraction: extract the most characteristic features of the previously 
segmented RBCs images, describing the appearance of infected and uninfected cells. 
Generally, three types of features are used in malaria images in the literature: colour, 
texture, and geometry (8,9). As parasites are stained, colour features are the most used 
in the bibliography to differentiate the two types of cells, as well as texture characteristics, 
to describe the spatial patterns of colour intensity (10). In principle, less useful in this 
approach, which aim is only determine the positivity or negativity of disease, morphologic 
features could be applied to describe the parasites found in the inside part of the cells 
(11). The obtention of a dataset helps for the next machine learning classification.  

4) Classification: this step classifies RBC images into malaria infected or not. In 
essence, all popular classification methods of supervised machine learning have been 
applied to malaria diagnosis (3). Moreover, deep learning algorithms, mainly Convolution 
Neural Networks (CNN), are also successfully used for malaria diagnosis, although they 
have an impact on long computation time (12). For this project, the classical machine 
learning algorithm Random Forest was selected as it is among the most frequently used 
approaches of supervised machine learning for malaria classification with good 
performance results in previous studies (3). Additionally, a key advantage of Random 
Forest over alternative machine learning algorithms is that it is interpretable and 
importance measures can be used to identify relevant features of the model (13). 

5) Interpretative analysis: determine the contribution of each feature to the model's 
prediction, providing human-understandable interpretation. Feature importances and 
SHAP values were evaluated to explain the significance of the features. This approach 
has been previously studied in malaria prediction using a machine learning model based 
on clinical data (14). However, to the best of our knowledge, no studies have applied 
these techniques to explain the features extracted from malaria images.  

6) Object detection: to automatically localize RBCs within microscopy images and draw 
bounding boxes around them, the popular and powerful model Faster R-CNN was used. 
Previously, researchers have employed Faster R-CNN to localize and classify malaria-
infected cells (15). 

The above description is shown as a graphical abstract scheme in Figure 2. 

 

 

 



Introduction  Anna Mur Suñé 

5 

1.6 Work Planning 

The master’s degree thesis project load is 15 ECTS credits, which corresponds to 375 
hours of work, as each ECTS credit point can equal to 25 hours of study. The course 
starts on February 28th and finishes between June 25th and July 5th, depending on the 
date when the public defence occurs. Thus, the weekly workload is around 22 hours of 
work.  

1.6.1 Tasks and milestones 
A table with the five main tasks is shown in Table 1: 
 

 

 

 

 

 

 

The different tasks and subtasks and the key dates at which milestones have to be hit 
are shown in Table 2.  

 

Table 1. Start and end dates of the five derivable tasks. 

PEC Start date End date 

PEC1 28/02/2024 19/03/2024 

PEC2 20/03/2024 23/04/2024 

PEC3 24/04/2024 28/05/2024 

PEC4 29/05/2024 18/06/2024 

PEC5 25/06/2024 05/07/2024 

Table 2. List of tasks and subtasks, their milestones, and duration in days. 

Tasks Start date End date Duration (days) 

PEC 1. Work planning 28/02/2024 19/03/2024 21 

Topic definition 28/02/2024 28/02/2024 1 

Set objectives 28/02/2024 01/03/2024 3 

Work planning definition 01/03/2024 03/03/2024 3 

Literature review 01/03/2024 12/03/2024 12 

Follow-up document delivery PEC1 09/03/2024 19/03/2024 11 

PEC 2. Development stage 1 20/03/2024 23/04/2024 35 

Data obtention and exploration 20/03/2024 20/03/2024 1 

Annotation of red blood cells 21/03/2024 24/03/2024 4 

Automatic segmentation (SAM) 25/03/2024 05/04/2024 12 

Features extraction 06/04/2024 09/04/2024 4 

Classification model (ML) 10/04/2024 20/04/2024 11 

Follow-up document delivery PEC2 12/04/2024 23/04/2024 12 

PEC 3. Development stage 2 24/04/2024 28/05/2024 35 

Interpretative analysis 24/04/2024 14/05/2024 21 

Object detection model 10/05/2024 25/05/2024 16 

Follow-up document delivery PEC3 14/05/2024 28/05/2024 15 

PEC 4. Report and presentation 29/05/2024 18/06/2024 21 

Documentation 29/05/2024 13/06/2024 16 

Presentation design 09/06/2024 18/06/2024 10 

PEC 5. Public defense (1 day) 25/06/2024 05/07/2024 1 
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1.6.2  Calendar 
The work progression during the semester is shown in a Gantt chart in Figure 3. An 
online tool to create the Gantt chart was used (https://www.onlinegantt.com/).  

 
Figure 3. Gantt chart of the project planning. 

1.6.3 Risk analysis 
Initially, no significant risks associated with this project are foreseen. The data used for 
the project development was open source and already available. Additionally, the 
different architectures to implement were well known by the community and the advisor 
had previous expertise in the topic.  

However, working on a laptop without good hardware could be limiting, as machine 
learning was involved in this project. To overcome this issue, Google Colaboratory was 
used to execute Python code in the cloud. Google Colab was chosen to write and 
execute tasks as it provides access to powerful computing resources without the need 
for expensive hardware. Specifically, this platform allows users to choose the best 
processor option based on their specific requirements. Whereas CPU is like the 
processor of laptops and is used for general-purpose tasks as data manipulation, GPU 
is a specialized processor particularly useful for simultaneous computations as those 
performed in machine learning, making them significantly faster than CPU. 

During the time tasks were carried out, some unexpected technical problems related to 
the computer equipment could occur. To minimize the consequences, Google Drive was 
used as cloud storage for the partial deliveries and the final written report documents.  

Personal problems could also become. Thus, the organization planning could be a bit 
flexible if this happens to finish the tasks before the delivery date. To minimize 
consequences and meet the deadlines, start writing from the very beginning was also 
planned.  

1.7 Brief summary of the obtained products 

Many different products will be obtained at the end of the project: 

- Different partial deliveries (PEC), including a working plan.  

- Final written report, which includes an introduction, objectives, results and 
discussion, and conclusions.  

- A video that shows a concise oral presentation with a graphical support 
explaining the most notable parts of the project. 

- GitHub repository with the code: https://github.com/mursune/TFM_malaria. 

https://www.onlinegantt.com/
https://github.com/mursune/TFM_malaria
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1.8 Brief description of the other chapters of the report 

- Chapter 2 includes the state of the art of malaria diagnosis with traditional 

methods and AI.  

- Chapter 3 describes the methodology used.  

- Chapter 4 shows the results and discussion.  

- Chapter 5 explains the final conclusions of the project. 

- Chapter 6 lists some relevant words or concepts.  

- Chapter 7 includes the bibliography. 

- Chapter 8 contains the appendix.  
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2 State of the art: malaria diagnosis 

2.1 Traditional methods 

Several methods of malaria diagnosis exist worldwide. However, diagnosis with optical 
microscopy is the gold standard and it is chosen in most cases.  

Two types of blood smears can be distinguished in malaria diagnosis depending on the 
thickness: thick or thin (Figure 4). A thick blood smear is a drop of lysed blood on a 
glass slide, and it allows to examine a larger sample of blood. Thus, thick smears are 
better to use as a first test for a positive/negative diagnosis when often a few parasites 
are present in the blood, with more sensitive by 30 times. In contrast, a thin blood smear 
consists of a drop of blood spread across a glass slide, allowing the identification of the 
parasite species and development stage as well as obtaining a quantification of malaria 
parasitaemia (16). The microscopic slides are examined with a 100x oil immersion 
objective. For a negative diagnosis, it should be inspected a minimum of 100 Field of 
View (FOV) for thick films or 800 FOV for thin films (4). 

A) B) C) 

   

Figure 4. A) Preparations of thick and thin blood smears (17). (B) Microscopic 
images of thick and (C) thin smears. (18) 

The diagnosis of malaria using optical microscopy is intricately linked to understanding 
the life cycle of the malaria parasite (Figure 5), particularly within the human host. In 
humans, after a first phase where parasites infect liver cells and replicate (exo-
erythrocytic cycle), they invade the bloodstream and multiply in the erythrocytes 
(erythrocytic cycle). Diagnosis occurs during this second phase, where four different 
stages of the parasite can be found (rings, trophozoites, schizonts and gametocytes). 
These morphologies of infected RBCs and parasites are used to diagnose malaria. 
Additionally, the specific appearance of the parasite and cells is used for species 
identification. Five species of Plasmodium can infect humans: P. falciparum, P. vivax, P. 
ovale, P. malariae and P. knowlesi. The most common species are P. falciparum and P. 
vivax, whereas P. falciparum is responsible for most malaria-related deaths. 

 

Figure 5. Life cycle of malaria (19).  
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Fluorescence microscopy has the potential to improve malaria diagnosis. Acridine 
orange is the most common dye employed, which is excited at 490nm and displays green 
fluorescence (20). The limitation of fluorescence microscopy is that it requires expensive 
equipment, and it cannot easily differentiate the diverse species of parasites. Moreover, 
the dye is nonspecific, as it stains nucleic acids from all cell types in the sample.   

As an alternative technique to microscopy, rapid diagnostic tests (RDTs) are used. 
These easy handling and fast tests can detect antigens of the parasite and provide 
results in 2-15 minutes. However, a positive diagnosis with RDT should be followed by 
microscope observation to quantify and confirm the species of parasite.  

Molecular diagnosis using polymerase chain reaction (PCR) is also available to detect 
DNA of the parasite. It allows higher sensitivity and specificity than conventional 
microscopy or RDTs and can identify the species of parasites (21). However, it requires 
good laboratory infrastructure, expensive equipment and is not usually adequately 
implemented in developing countries (22).  

Serology techniques to detect antibodies against malaria parasites also exists. 
However, indirect immunofluorescence (IFA) or enzyme-linked immunosorbent assay 
(ELISA) can only detect the exposure to the parasite, but not the current infection.  

2.2 Artificial intelligence methods 

Novel diagnostic strategies to fight against infectious diseases have been developed in 
recent years, including techniques of automatic image analysis based on artificial 
intelligence (AI). Therefore, AI has a high impact on health, as it helps healthcare 
professionals make decisions related to clinical diagnosis and treatment. 

In the case of malaria diagnosis, these alternative tools emulate the microscope 
visualization by experts of blood smear samples and automate the procedure, resulting 
in faster and low-cost diagnostics. Likewise, the diagnosis of malaria would require less 
supervision and could be more reliable, as human error in traditional microscopy is 
identified to be a major cause of inaccurate diagnostics (4).  

Both classical machine learning and deep learning algorithms have been tested for 
malaria diagnosis in thick and thin blood smear digital images, resulting in notable 
improvements compared to traditional methods due to their faster procedure.  

2.2.1 Machine learning 
Machine learning can provide computer with the ability to learn the relationship between 
the input (training data) and the output using several algorithms, and it can then predict 
the output with new data. The most used technique of machine learning is supervised 
machine learning, which is characterized because it uses labelled datasets to train 
algorithms to predict outputs.  

Supervised learning is divided into two main categories depending on the type of output: 
regression, if the outputs are continuous values, or classification, if the predictions are 
discrete. Classification can be binary, if there are only two possible values (such as yes 
or no, infected or uninfected, true or false, etc.), or multiple classifications, if the number 
of outputs is more than two. Some common techniques used in supervised machine 
learning to solve classification problems are logistic regression, decision tree, random 
forest, support vector machines (SVM), k-nearest neighbours (KNN) and naive Bayes. 

Specifically for the diagnosis of malaria, the most used algorithm for image classification 
in the literature is SVM (3). Although it generally outperforms all other classifiers with 
higher classification accuracy (23), its main drawback is that it is less interpretable 
compared to decision trees. An exception is shown in (24), where Random Forest system 
achieves better accuracy than SVM.   
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2.2.2 Deep learning 
Deep learning employs artificial neural networks with multiple layers to learn, extracting 
automatically relevant features from the data. The most widely used method is the 
Convolutional Neural Network (CNN), a subset of deep learning that is designed to 
learn large volumes of images for classification. Highly effective for larger datasets with 
complicated patterns, in general, it is often preferable to traditional machine learning, as 
it needs less human intervention. A simple scheme to illustrate the position of CNNs 
within the field of AI is shown in Figure 6. 

For malaria diagnosis, various common architectures of deep learning have been tested 
with great performance to classify images into parasitized or non-parasitized, including 
custom-built CNN, VGG, MobileNetV2, ResNet, AlexNet, EfficientNet and DenseNet 
(7,25–27).  

Although deep learning has good results in detecting malaria, a negative point is that 
large training sets are typically needed, but annotated training images in medical 
applications are not easy to obtain due to the requirement of expert knowledge and 
privacy concerns (3). Moreover, these models are complex and can be difficult to 
interpret. Likewise, training deep learning models is computationally intensive and 
requires powerful hardware (GPUs). This need for more sophisticated hardware 
components makes it less affordable, which is critical since most malaria-endemic 
regions are resource-limited areas. Novel approaches based on deep learning to achieve 
low-cost diagnosis using smartphones are being developed (28,29).  

Deep learning-based models have also been successfully applied for object detection. 
One of the top-performing object detection models in recent years is Faster Region-
based Convolutional Neural Network (Faster R-CNN), which has demonstrated good 
performance not only in natural images, but also in detecting erythrocytes and leukocytes 
from microscopy blood images (30). 

 

Figure 6. Scheme of artificial intelligence organization. 

 

This work aims to perform an analysis of optical images from thin blood smears infected 
by malaria parasites. The method is based on feature extraction and analysis from 
previously segmented RBC images with the novel SAM model. The Random Forest 
algorithm is chosen as the algorithm as it allows to investigate the features importance. 
The process could be automatized by detecting RBCs with Faster R-CNN. The study 
would provide the scientific community other options for malaria diagnosis and more 
understanding about important features in the classification of infected and uninfected 
images, thus, the motivation of this work.  
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3 Materials and methods 

3.1 Tools 

Google Colaboratory was used to carry out this work. It is a web platform developed by 
Google that allows people to edit and run Jupyter Notebooks directly from the web, only 
with a Google account.  

The main advantages of Google Colab are: 

• It is not necessary to have anything installed, since all code runs on the servers 

of Google. 

• It allows you to connect to Google servers that have GPUs. 

• Simple connection to Google Drive, where data can be saved.  

• The project can be shared and edited with other Google accounts.  

Google Colab has also some disadvantages:  

• The duration of sessions is limited. After a certain period of inactivity, the session 

may disconnect, which is inconvenient for long-running tasks. 

• Storage space for notebooks and data is limited. This is an obstacle when 

working with big image datasets, as it causes high data usage.  

• Although there is free GPU access, its access depends on demand and it can be 

limited.  

• It requires a stable Internet connection, as it operates in the cloud.  

To solve the issues of limited session duration and GPUs access, Google Colab Pro was 
employed.  

3.2 The dataset 

A total of 331 images of thin blood smears from five malaria patients obtained in the 
Hospital clinic of Barcelona were used in this work. They are RGB images with a size of 
2400x1800 pixels in JPG format, acquired using an Olympus microscope BX43 with 
1000x magnification and an Olympus camera DP73. The dataset is available in (7). 

To obtain the images, peripheral blood samples from patients were collected in EDTA 
tubes as anticoagulant. Then, thin peripheral blood smears stained with May Grünwald-
Giemsa were obtained using the Sysmex sp-1000i automated slide preparer stainer.  

3.3 Annotation 

Images from thin blood smears contain three different types of cells: platelets, white 
blood cells, and RBCs. Only the last ones are of interest for the diagnosis of malaria as 
they are the ones infected by parasites.  

Erythrocytes from the images were labelled using the software application labelstud.io. 
(https://labelstud.io/). This platform allows to select every erythrocyte from the images 
and manually label them as uninfected RBCs (in blue) or malaria-infected RBCs (in red). 
An example is shown in Figure 7.  

Object detection with bounding boxes as labeling setup was used. Bounding boxes are 
rectangular frames drawn around the cells that can be defined by four coordinates, which 
are the x and y of the top-left corner and the bottom-right corner. These bounding boxes 
allow to identify and localize each cell in the image.  

https://labelstud.io/
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Figure 7. Image annotation in Label Studio 

The bounding box annotations were exported as COCO format, with a JSON file and a 
folder with the original images. The JSON file allows an efficient storage of bounding box 
annotations, and it includes information about:  

• Images: contains a list of images and information about each image, such as id, 

width, height, and file name.  

• Annotation: contains the coordinates (in pixels) of the bounding box and the total 

area of this rectangle around the object. It also includes the image id and the 

category label.  

• Categories: contains the id of each category (0 or 1) and the name of the category 

(uninfected or infected).  

3.4 Segmentation 

The bounding boxes generated by Label Studio provide a general indication of the 
location of each RBC within the images. However, these rectangles often include 
background regions, portions of other objects, or other types of cells that are not relevant 
to the analysis. To separate the object of interest from other elements, drawing its exact 
shape, a segmentation step is needed.  

Segment anything model (SAM) was applied for segmentation in this work. It is a new 
open-source tool for automatic image segmentation that was released in April 2023 by 
Meta AI. It is a powerful zero-shot foundational model. Specifically, it is based on 
Transformer vision models, an adaptation of the transformer architecture for computer 
vision tasks, a type of deep learning architecture which originally were design for natural 
language processing. SAM was trained on a diverse dataset (called SA-1B) of over 1.000 
million masks for image segmentation that can generate masks for images and objects 
that it has not seen during training. 

The model results in some advantages in image segmentation, as it is:  

• Promptable: can find a mask given different types of prompts such as points, 

bounding boxes, text, or a combination. 

• Ambiguity-aware: the model returns not only one mask, but the most likely 

options. This characteristic allows to face ambiguity about the object to be 

segmented, solving a problem for image segmentation in the real world.  
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In this study, segmentation masks are created with SAM using bounding boxes as 
prompts. A comparison between obtaining one or three masks as output was carried out. 

The model architecture of SAM, which is represented in Figure 8, has three 
fundamental components:  

• Image encoder: Mask Auto-Encoder pre-trained Vision Transformer (ViT) is 

used. It is an adaptation of the ViT capable of processing high resolution images. 

The model can work with three different encoders: ViT-B, ViT-H and ViT-L. The 

encoder ViT-H was chosen for this work, as it is substantially better than ViT-B, 

but does not have great improvements compared to ViT-L, although the latter has 

a larger size.  The output of the encoder is an embedding of the input image 

reduced 16 times, typically from 1024×1024 of the input image to 64×64. This 

downsizing process is crucial for efficient processing while retaining essential 

image features. It is carried out only once per image, so, it does not depend on 

the prompt. 

• Prompt encoder: There are two types of prompts: sparse (points in the image, 

bounding boxes or text) or dense (segmentation masks). 

• Mask decoder: A modification of the transformer decoder block is used to predict 

masks. The decoder considers the embeddings of the prompt and the image. The 

decoder outputs an embedding, which is then mapped to a linear classifier. This 

classifier predicts the probability that a given point belongs to the mask. To solve 

ambiguities, a maximum of three possible masks with its own confidence score 

can be obtained.  

A Python environment in Google Colab with access to a GPU was used for faster 
processing. After the segmentation step, the masks of all previously annotated cells with 
bounding boxes were obtained. 

 

Figure 8. Segment Anything Model (SAM) overview (5). 

3.5 Feature extraction 

Feature extraction is the process of obtaining relevant and discriminative properties from 
images to transform the higher dimensional data to fewer dimensions, and this, reducing 
complexity of analysis. It constructs the combination of variables in such a way that it 
reduces the resource usage and describes the data with sufficient accuracy. 

The selected features to extract from RBC images in this work are shown in Table 3.  

Table 3. Summary of the colour, texture, and geometric features extracted 

Type Channels Features 

Colour RGB Mean, Standard deviation, Kurtosis, Skewness, Histogram 

Texture Grayscale 

Grayscale and RGB 

Mean, Standard deviation, Kurtosis, Skewness 

Entropy, Contrast, Correlation, Energy, Dissimilarity, Homogeneity  

Geometric Binary Area, Perimeter, Circularity, Eccentricity 
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3.5.1 Colour features 
Five different features related to colour were extracted from each cell image of infected 
and uninfected classes. The colour features were computed separately for each colour 
channel (red, green and blue in RGB colour space) to obtain more information. The 
chosen colour features were the following: 

• Mean colour: measures the average colour of the image for each colour channel. 

• Standard deviation colour: represents the variation of colours in the image. It 

provides information about the diversity of colours present in the image. 

• Kurtosis: measures the "tailedness" of the intensity distribution of each channel, 

indicating whether the distribution is peaked (positive value) or flat (negative 

value) compared to a normal distribution. 

• Skewness: measures the asymmetry of the intensity distribution of each channel 

around its mean. A positive value indicates a long tail to the right of the mean, 

while a negative value indicates a long tail to the left of the mean. Both kurtosis 

and skewness provide information about the shape of the intensity distribution of 

the colour channels in an image. 

• Colour histogram: represents the frequency of occurrence of different colour 

values across each colour channel.  

The library NumPy was used to obtain mean, standard deviation, and colour histogram. 

Kurtosis and skewness were calculated with spicy.stats, which contains many 

statistical functions.  

3.5.2 Texture features 
The evaluated texture features of the images were:  

• For grayscale images, the mean, the standard deviation, the kurtosis and the 

skewness were calculated as for RGB images.  

• Entropy: can be used to evaluate the texture and complexity of an image. Higher 

entropy indicates more complexity and randomness (high detailed or noisy 

image), while lower entropy indicates less complexity (uniform or smooth 

images). 

• Features derived from the Gray Level Co-occurrence Matrix (GLCM), which 

considers the spatial relationship of pixels. These features are: 

- Contrast: measures the intensity contrast between a pixel and its neighbours. 

High contrast values indicate intensity differences between neighbouring pixels, 

implying more texture. Contrast emphasizes larger differences.  

- Correlation: measures how correlated a pixel is with its neighbour.  

- Energy: measures texture uniformity. High energy values correspond to 

homogeneous textures, with little variation in intensity values. 

- Dissimilarity: measures the difference between pairs of pixels. It is more 

influenced by small and medium differences than by very large differences as 

contrast. 

- Homogeneity: higher homogeneity values indicate a more uniform texture. 
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The library scikit-image was used to obtain entropy values with 

shannon_entropy() function and features derived from the GLCM with 

greycomatrix() and greycoprops().  

3.5.3 Geometric features 
The geometric features calculated were: 

• Area: is the number of pixels contained within the cell, indicating its size. 

• Perimeter: measures the boundary length of the cell. 

• Circularity: measures how close the shape of the cell is to a perfect circle. A 

perfect circle has a circularity value of 1 and lower values indicate more 

elongated or irregular shapes. It is calculated by the following formula:  

circularity =  
4π ∙ Area

Perimeter2 

• Eccentricity: is a dimensionless parameter that ranges from 0 (a perfect circle) 

to 1. It is a measure of how much an ellipse deviates from being circular.  

Values of area, perimeter, and eccentricity were calculated from a binary image with the 
function regionprops()from the library scikit-image. Circularity was obtained from 

area and perimeter by applying the formula.  

After the feature extraction step, a dataset with the described features above was 
obtained. Moreover, for the following machine-learning training purposes, each group of 
features was labelled according to the previous annotation. Not only the corresponding 
labels but the paths of the RBC images were added to check the misclassified images in 
the model. The structure of the dataset is shown in Figure 9. This quantitative information 
provided by feature extraction is useful for subsequent learning and classification.  

  

Figure 9. Structure of dataset, which includes features, class and image path for each image. 

3.6 Machine learning classification 

3.6.1 Random forest algorithm 
Once the features were extracted from images, they were used to train a machine 
learning model to perform image classification.  

The algorithm Random Forest can be used not only for classification but also for 
regression problems. The model is called ‘random forest’ as it consists of a multitude of 
decision trees during training, and it is built taking a random sample of the data. It is 
based on the concept of ensemble learning, which is a process of combining multiple 
classifiers to solve a complex problem.  

A representation of a Random Forest model is illustrated in Figure 10. Each tree is a 
simple model that splits the data into a random subset of features. It creates a tree-like 
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structure where each node in the tree represents a feature from the input space, each 
branch a decision and each leaf at the end of a branch the corresponding output value. 
The output for classification tasks is the class of most of the trees, whereas in regression 
tasks, the prediction is the average of the outputs from all the individual trees. The aim 
of this work is to classify images in two classes: infected and uninfected.   

The training algorithm for random forests applies the general technique of bagging or 
bootstrap aggregating, as it selects a random sample with replacement of the training 
set and fits trees to these samples. This helps in reducing variance and avoiding 
overfitting. 

 

Figure 10. Random forest scheme (31). 

Then, a Random Forest classifier was created using the 
BalancedRandomForestClassifier class and 10-fold cross-validation. The object 

StratifiedKFold from the library sklearn provides train/test indices to split data 

in train/test sets. It is a variation of KFold that ensures each fold preserves the 

percentage of samples for each class as in the original dataset. 

Finally, the model was evaluated obtaining the confusion matrix (Figure 11), which 
includes:  

• True Positive (TP): number of instances that are correctly predicted as positive. 

• True Negative (TN): number of instances that are correctly predicted as negative. 

• False Positive (FP): number of instances that are incorrectly predicted as positive. 

Also known as Type I error. 

• False Negative (FN): number of instances that are incorrectly predicted as negative. 

Also known as Type II error. 
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Predicted 

Positive Negative 

Actual 
Positive True Positive False Negative 

Negative False Positive True Negative 

Figure 11. Confusion matrix. 

 

From the confusion matrix, the following metrics are calculated: 

• Accuracy: the proportion of correctly classified instances (both positive and 

negative) out of the total instances. It is calculated as: 

accuracy =  
TP + TN

TP + TN + FP + FN
 

• Precision: the proportion of correctly predicted positive instances out of all instances 

predicted as positive. It is calculated as: 

precision =  
TP

TP + +FP
 

• Recall: the proportion of correctly predicted positive instances out of all actual 

positive instances. Also known as Sensitivity or True Positive Rate (TPR). It is 

calculated as: 

recall =  
TP

TP + +FN
 

• F1-score: The harmonic mean of precision and recall, providing a balance between 

the two metrics. It is a useful metric for binary classification tasks, especially when 

the classes are imbalanced. It is calculated as: 

F1 score =  
2 × precision × recall

precision + recall
 

3.7 Features evaluation 

For features evaluation, a Random Forest model with undersampling and balancing was 
created. In this case, the dataset was split into training and testing sets using the 
train_test_split function, with the 80% of data for training and 20% of data for 

testing, a typical partition of datasets in bibliography. A random_state=42 was 

indicated to ensure the same split each time.  

3.7.1 Feature importance: Gini 
Feature importance in a random forest model consists of assigning a score to input 
features based on their significance in predicting a class. It is useful to identify which 
features contribute the most to the model and can be important for feature selection and 
model interpretability.  

The feature importance can be determined by the method of Mean Decrease Impurity 
(MDI), also known as Gini importance. This method is based on the total decrease in 
node impurity brought by a feature across all the trees in the forest.  

When a feature is used to split a node in the decision tree, the impurity is reduced. The 
reduction in impurity is a measure of how well that feature splits the data. The total 
importance for a feature is calculated as the sum of the impurity reductions it contributes 
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across all the nodes where it is used to split the data, averaged over all trees in the forest. 
Thus, a feature with high Gini importance has a substantial impact on reducing impurity, 
indicating it plays a crucial role in the model’s predictions. 

Features importance of the model were calculated with the attribute 
model.feature_importances_ from the scikit-learn library.  

3.7.2 SHAP values 
For a more comprehensive understanding of feature importance, SHAP values were 
calculated, as well.  

SHAP values approach, from SHapley Additive exPlanations, is based on cooperative 
game theory, specifically on the concept of Shapley values. The Shapley value, 
introduced by Lloyd Shapley in 1953, is a method to fairly distribute the total gains (or 
costs) among the players based on their individual contributions. SHAP values apply this 
concept to interpret the contributions of features in a machine learning model’s 
prediction, considering the model prediction as a cooperative game where features are 
the players. 

SHAP values can be applied to any machine learning model, unlike feature importance. 
They measure the impact of each feature on model predictions by evaluating the change 
in the predicted outcome when including or excluding that feature. Positive SHAP values 
indicate features that contribute to increasing the prediction, while negative values 
indicate features that decrease the prediction. In addition, SHAP can help identify not 
only which features are important but also how they influence specific predictions. 

SHAP values were calculated with shap.TreeExplainer provided by the shap library, 

which is optimized for computing SHAP values for tree-based models. First, the 
TreeExplainer was initialized with the Random Forest model. Then, the TreeExplainer 
object was used to compute Global SHAP values for the test data. Global SHAP values 
for the entire dataset and per class were visualized using summary plots.  

Local SHAP values were also calculated with shap.force_plot in 10 specific 

instances (5 for uninfected samples and 5 for infected samples). This is particularly 
useful for understanding a particular prediction of the model for a specific instance.  

3.8 Object detection model 

An object detection model was created to automatically detect RBCs in field-of-view 
images and generate potential bounding boxes. Thus, this model enables the automation 
of the analysis of blood images obtained from microscope. After identifying the bounding 
boxes using the object detection model, segmentation with SAM and classification with 
a Random Forest machine learning model complete the automation of sample analysis 
for malaria diagnosis. 

A Faster R-CNN pretrained object detection model from torchvision was selected 

due to its widespread use in the scientific community for object detection tasks. Its 
architecture is based on a standard CNN, to extract deep feature maps from the input 
image, and a Region Proposal Network (RPN), a small neural network that generates a 
set of bounding boxes candidates and assigns scores to these proposals based on their 
likelihood of containing an object. 

Annotations obtained from LabelStudio, along with images, were used to train the object 
detection model and identify bounding boxes around cells. Then, the model was fine-
tuned for our number of classes, that in our case is 2: one class representing RBCs in 
general (undifferentiated by subclass) and another class representing the background. 
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4  Results and discussion 

4.1 Annotation 

All RBCs from images were annotated with Label Studio using bounding boxes, labelling 
them as infected or uninfected. 

Different types of cells were found in the original images apart from RBCs, as white blood 
cells, platelets and gametocytes (Figure 12). These objects were not labelled for this 
study. In addition, it is worth highlighting that some RBCs with stained cytoplasmatic 
inclusions, called Howell-Jolly bodies, can be easily confused with infected RBCs, 
although they must be labelled as uninfected.  

      

Uninfected 
RBC 

Infected RBC RBC with 
Howell–Jolly 

bodies 

WBC platelet Gametocyte 

Figure 12. Example of the different type of cells found in the samples. 

 

The results of annotation were visualized in Google Colab to check the upload was 
properly done. An example of annotated image is shown in Figure 13. 

 

Figure 13. Annotated image with LabelStudio visualized in Google Colab. 
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4.2 Segmentation 

After annotation of all original images with Label Studio, individual RBCs were needed 
for further steps. SAM was tested for segmentation.  

Initially, the multimask_output = False option was tried, obtaining only one mask option. 
However, some of the images were not properly segmented, especially those from 
patient 5, in which the centre of the cells had a lighter colour (Figure 14.A). 

A) 

 

B) 

 

Figure 14. Comparison of segmented images from patient 5 with 
SAM (A) without multimask option or (B) with multimask option.  

Hence, the multimask_output =True option was utilized to generate three masks as 
outputs with a score value of the quality of these masks. Then, the best single mask was 
chosen considering the one with the highest score, observing an improvement in the 
segmented images with SAM (Figure 14.B). An example illustrating the overlap of the 
three obtained masks with the original images, along with their respective score value is 
in Figure 15. In that case, mask 3 was the definitive due to its highest score. 

Mask 1 
Score: 0.983 

Mask 2 
Score: 0.988 

Mask 3 
Score: 0.995 

   

Figure 15. Image overlayed with the three masks obtained with the multimask option of SAM.  
 

Therefore, to visually verify segmentation, an overlapping of the source images and the 
definitive masks was done. An example is depicted in Figure 16. 
     A)         B)        C) 

 
Figure 16. Visually verification of segmentation. A) source image with bounding boxes, B) 

definitive mask (the one with a highest score) and C) image overlapping. 
 

After checking the obtained masks, the goal was to get each individual cell. This was 
accomplished by overlaying the mask and the source image using cv2.bitwise_and 

(Figure 17.A). Subsequently, the masked image was cropped obtaining the coordinates 
of the minimum enclosing rectangle with cv2.boundingRect (Figure 17.B).  
       A)              B)        

       
Figure 17. Overlap of source image and mask (A) and final image (B). 
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The final cropped images were checked manually. Overall, satisfactory segmentation 
performance was achieved. Some examples of infected and uninfected segmented 
RBCs are imaged in Figure 18. 

 

Figure 18. Example of segmented RBCs. 

Although not discarded, it is interesting to consider that some uninfected RBCs appear 
incomplete, as shown in Figure 19. This could be explained by the overlapping of cells 
in high-density areas, where the underlying cell was cut, obtaining a RBC formed by only 
the visible part of the cell in the image. This occurrence is more likely with uninfected 
cells due to the imbalance in the dataset, where uninfected cells are more prevalent than 
infected ones. 

 

Figure 19. Example of not entire uninfected RBCs. 

After all, the efficiency of SAM model to perform a segmentation of RBC images from 
thin blood samples was 98.3%, as 149 images out of a total of 8.750 were discarded. 
Some examples of discarded images are shown in Figure S1 and S2 from the appendix. 

After the segmentation step, the images were organized in two separate folders based 
on class for further steps, having a total of 901 infected images and 7.700 uninfected 
images.  

4.3 Features extraction 

Colour, texture and geometric features were extracted. For this purpose, red, green and 
blue components from the original RGB images, as well as grayscale and binary images 
were obtained. An example of each type of image from an infected and uninfected RBC 
is illustrated in Figure 20. 

A) 

 

B) 

 

Figure 20. Example of A) infected and B) uninfected RBC images in RGB, red, green 
and blue components from RGB image, grayscale image and binary image. 
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An optimization of the threshold value to obtain binary images was performed and it is 
included in Figure S3 from the appendix. 

Among other types of features, the histograms from red, green and blue component 
images are included.  Histograms count, for each colour channel, the number of pixels 
that fall into a specified number of intensity bins. A comparison of histograms between 
an infected RBC and an uninfected RBC is shown in  Figure 21. 

A) 

 

 

B) 

 

 

Figure 21. Example of A) infected and B) uninfected RBC image in RGB and their 
corresponding histograms in red, green and blue components.  

 

The obtained dataset comprised 8.601 rows representing the total number of images 
and 80 columns containing features values. From the total samples, 7.700 were 
uninfected while 901 were infected, which correspond to 89.5% and 10.5%, respectively.  

Therefore, the obtained dataset had a significantly higher number of observations for the 
uninfected class, while the number of rows for the infected class had a notably lower 
count, resulting in imbalanced data. This class imbalance can affect the subsequent 
prediction with machine learning algorithms.  

4.4 Machine learning classification 

The problem of having an imbalanced dataset is that the model may tend to predict the 
majority class with higher probability. To improve the handling of the imbalanced dataset 
and achieve more reliable predictions for both classes, three strategies were 
implemented: 

- Undersampling: is a technique for imbalanced datasets to reduce the number of 

observations in the majority class, which in this case was the uninfected class. 

- Use of the BalancedRandomForestClassifier: this classifier adjusts the 

class weights during training and helps mitigate the impact of class imbalance.  

- Evaluation metrics other than accuracy: evaluation metrics such as precision, 

recall, and F1-score were considered to assess model performance. 

As mentioned, a random undersampling approach was applied to remove uninfected 
data, with a fixed seed to ensure reproducibility of the experiments. It was decided to 
perform subsampling so that the infected class had approximately 30% of the number of 
samples of the uninfected class (before undersampling, the infected observations 
corresponded to 10.5%). The total number of data points and percentages before and 
after undersampling are shown in Table 4. The dataset after undersampling was used to 
train and test the model.  
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Table 4. Comparison of data before and after undersampling. 

 Uninfected 
total 

Uninfected 
% 

Infected 
total 

Infected 
% 

Uninfected 
to remove 

Total 
samples 

Before  
undersampling 

7700 89.5 901 10.5 5598 8601 

After  
undersampling 

2102 70.0 901 30.0 - 3003 

 

After undersampling, the Random Forest model was trained with 10-fold cross-validation 
using 100 trees. In k-fold cross-validation, the dataset is divided into k smaller sets (in 
this case, k=10). For each fold, the model is trained using k-1 of the folds as training 
data. The resulting model is then validated against the remaining part of the data, which 
is used as a test set to calculate the performance metrics. 

The metrics of the model performance are shown in Table 5.  

Table 5. Model performance metrics 

TP FP TN FN accuracy precision recall F1 

896 10 2092 5 0.995 0.989 0.994 0.992 

 

An accuracy of 99.5% was achieved, with ten false positives and five false negative. In 
imbalanced datasets, accuracy can be misleading because the model might predict the 
majority class most of the time and still achieve high accuracy. To take this into account, 
other metrics of the model were calculated. Precision measures how many of the 
predicted positives are true positives, while recall (sensitivity) measures how well the 
model identifies all actual positives. The F1-score combines these to focus on the 
performance of the model concerning the minority class. In this case, F1-score was 
99.2%. It should be considered that these metrics are overestimated, as they do not 
include mis-segmentation error. 

The misclassified images (false positives and false negatives) are shown in Figure S4 of 
the appendix. Some of the labels of these missclassified images are not entirely clear, 
as the possible parasites are not properly visible, likely due to poor focus of the 
microscope during sample measurement. 

Thus, a model with high values of accuracy, precision, recall, and F1 score was achieved, 
indicating that it correctly classifies almost all instances with low number of errors. Such 
good results might be explained by the simplicity of the problem, with images where the 
patterns between infected and uninfected RBCs are clear and distinct, and the classes 
are easily separable. While the model achieves remarkable scores, it would be essential 
to ensure that it generalizes well to new images from different patients.  

In this work, both false positives and false negatives were low. However, their 
implications for malaria diagnosis differ significantly. A false positive can cause 
unnecessary stress to the patient and their family, as it implies that a patient is diagnosed 
with the disease, but they do not have it. In contrast, a false negative can delay treatment 
and lead to more severe health problems, as it means that patients are not diagnosed 
with malaria when they actually have it. F1 is a particularly useful metric when the 
minority class is critical, as in this case.   
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4.5 Features evaluation 

4.5.1 Features importance 
To visualize feature importance, a bar plot is shown in Figure 22, where the x-axis lists 
the features and the y-axis represents the feature importance scores. 

Gini importance is a metric used to measure the relative importance of each feature in 
predicting the class. It indicates the reduction in the impurity of each feature during the 
training process. Higher importance values indicate that these features have a larger 
impact on the model's ability to make predictions. Moreover, Gini importance is useful 
for feature selection, as features with lower importance values might be considered less 
relevant and could be removed from the model without significant impact, selecting 
features with higher importance values. 

 

Figure 22. Features importance bar plot. 

In Table 6, the 20 most important features with their importance values are shown. 

Table 6. Features importance values of the 20 most important features. 

position Feature Importance position Feature Importance 

1 hist_7_green 0.151905 11 entropy_red 0.016890 

2 hist_5_green 0.151384 12 hist_8_green 0.013445 

3 hist_8_red 0.136617 13 entropy_green 0.010206 

4 hist_6_green 0.124532 14 homogeneity_red 0.008832 

5 hist_7_red 0.118374 15 hist_3_green 0.007654 

6 hist_4_green 0.072164 16 hist_4_red 0.006617 

7 hist_6_red 0.056674 17 hist_9_red 0.004262 

8 hist_5_red 0.032635 18 homogeneity_gray 0.004088 

9 hist_8_blue 0.022049 19 entropy_gray 0.003720 

10 homogeneity_green     0.018141 20 dissimilarity_gray 0.003469 
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4.5.2 SHAP values 
The global SHAP summary plot provides an overview of feature importances across all 
samples in the test dataset, where each point represents a SHAP value for an instance. 
The corresponding SHAP value is on the x-axis, representing the positive or negative 
impact on the model’s prediction. On the y-axis, 20 features are sorted by decreasing 
order of importance depending on the sum of the absolute SHAP values across all 
instances. High values of the feature are represented in red, whereas low values are 
shown in blue.  

The Global SHAP to understand feature importance across the entire dataset can be 
found in Figure 23. This graph shows the impact of each feature on the model output 
across all instances in the dataset. It can be observed that histogram from green and red 
components of RGB images are the features with higher SHAP value, indicating that, on 
average, these are the features that contribute more significantly to predictions. The 
features with lower or near-zero values are the ones with less impact. 

 

Figure 23. Summary plot of SHAP 

 

Additionally, to compare SHAP values for uninfected and infected classes, SHAP 
summary plots separately for each class were obtained and are illustrated in Figure 24.  
This comparison helps to see how features contribute differently to each class's 
predictions and potentially highlight features that differentiate between classes. 
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   A)             B) 

     

Figure 24. Global SHAP summary plots for A) uninfected class and B) infected class. 

Features with larger absolute SHAP values for each class contribute more to predictions 
for that class compared to features with smaller absolute values. Apart from the 
magnitude of the value, it is interesting to evaluate the sign of the value. This SHAP 
values for a given feature can be positive or negative depending on how they influence 
the model's output.  

In the uninfected class, high values of intensity in histograms of red and green images 
make the model less likely to predict an instance as uninfected, as SHAP values are 
negative. In contrast, for the infected class the same features have positive SHAP 
values, suggesting that higher values of intensity in histograms of red and green images 
tend to increase the model's prediction probability of the infected class. In other words, 
higher values of intensity in histograms of red and green images are associated with a 
decreased likelihood of being uninfected and an increased likelihood of being infected. 
Negative values for uninfected and positive values for infected indicate contrasting 
impacts on the model's predictions, highlighting the discriminatory power of these 
features in distinguishing between classes. 

Apart from global SHAP, local SHAP force plots of 5 representative instances of both 
the uninfected and infected classes were visualized and are plotted in Figure 25 and 
Figure 26, respectively. 

 

Figure 25. Local SHAP of 5 instances from uninfected class. 
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Figure 26. Local SHAP of 5 instances from infected class. 

In the local SHAP force plots, the base value or expected value indicate the average 
model output over the training dataset, where the prediction would start without any 
influence from the features. Then, the prediction of the instance is pushed away from the 
base value by each feature depending on their SHAP value. The arrows show the 
contribution of each feature to the final prediction and the colour of the arrows indicate if 
the predictions are higher and are pushed towards infected class (red colour) or are 
pushed it lower towards uninfected class (blue colour). The final prediction of the model 
for the instance is showed by the end of the arrows.  

By comparing these force plots, it can be observed how different features influence the 
prediction for each class, understanding the decision-making process of the model and 
identifying key features that differentiate the classes. Again, comparing local SHAP force 
plots of five instances of both classes, histograms from red and green components were 
identified as the most significant features to push the predictions towards uninfected and 
infected classes.  

4.5.3 Interpretation of feature importance 
Interpretation of importance of features in a Random Forest classification model with 
both feature importances and SHAP values led to a clear conclusion:  histograms of red 
and green channels from RGB images capture and represent essential visual 
characteristics of the images to determine the presence of Plasmodium parasites.  

A histogram of an RGB image represents the distribution of pixel intensities across its 
red, green, and blue colour channels. The extracted histogram from RGB image include 
statistics such as mean, variance, skewness, and kurtosis for each colour channel. Thus, 
the histogram feature provides a summary of the colour distribution in the image, 
reflecting its colour composition and variations in intensity.  

Colour features, particularly the histogram features from red and green components of 
RGB images, are of significant importance to highlight visual cues that pathologists use 
to distinguish between uninfected and infected cells, allowing to obtain a reliable 
diagnose for the disease.  

The effectiveness of colour features in differentiating between infected and uninfected 
images can be attributed to the fact that parasites turn a violet colour during staining. 
Specifically, the red and green components are important, but not the blue, as when the 
three components of RGB images are separated, the parasite is only observable in the 
red and green channels, as shown in the example in Figure 20. 

While texture features are commonly used to describe spatial patterns of colour intensity 
(3), their importance in this study with a Random Forest model is not as pronounced as 
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that of colour features. However, entropy, homogeneity and dissimilarity are among the 
most significant texture features. 

Regarding the geometric features, no substantial differences in the shape of the entire 
RBCs were expected between infected and uninfected cells, as the shape and size of 
the cells were not typically affected by the parasite infection. Generally, morphologic 
features are not used to distinguish infected from uninfected cells but are applied to 
determine parasite species and life stage (11). 

4.6 Object detection model 

To evaluate the object detection model to automatically draw the bounding boxes 
around RBCs, some images are shown in Figure 27.  

 

 

 

Figure 27. Evaluation images of the object detection model. 

The object detection model provides good performance, as it can accurately detect and 
localize entire RBCs in images, without false positives (incorrectly detected objects, as 
other types of cells different from RBC), and without false negatives (entire RBCs that 
are missed).  

Object detection of cells in microscopy images of malaria blood samples presents special 
challenges, as they have variations in illumination from the microscope, in cell shape, 
density, and colour from differences in sample preparation, as well as objects of 
uncertain class even for experts (15). Thus, to check robustness of the model it could be 
interesting to use new images with a variety of conditions, such as more patients’ 
samples, different lighting, or complex backgrounds, as images densely populated with 
cells, which can result in confusing overlapping of boxes (32).   
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5 Conclusions 
The manual annotation process requires significant human effort and is time-consuming. 
However, it is sometimes indispensable as it is essential for effectively training and 
validating models, achieving reliable results in automating the analysis of blood samples 
obtained from microscopes to diagnose malaria. 

The segmentation of RBCs using the novel Segment Anything Model on malaria images 
was tested, yielding remarkable results. By selecting the mask with the highest score 
using the multimask option, a segmentation efficiency of 98.3% was achieved. Accurate 
extraction of cells is crucial for the subsequent classification model. 

Several factors have been identified as causes of improper segmentation, including the 
location of the parasite at the periphery of the cell, cells with non-uniform colour (e.g., a 
whiter centre), and the proximity of cells to each other in images with high cell density. 

A total of 80 colour, texture, and geometric features were extracted to train a machine 
learning model using a Random Forest algorithm after an undersampling process to 
address the highly imbalanced dataset. The model demonstrated excellent performance 
in classifying images into uninfected and infected classes, achieving 99.5% accuracy 
and a 99.2% F1 score. 

Regarding feature importance, colour features were significantly more important than 
geometric and texture features in the Random Forest model's classification of infected 
and uninfected RBCs. Specifically, the histogram features from red and green 
components of RGB images are the most important features to differentiate both types 
of RBCs, as when the three components of RGB images are separated, the parasite is 
only observable in the red and green channels but not in the blue channel. The low 
importance of geometric features was expected, as the shape and size of infected and 
uninfected cells are generally not affected by parasite infection. 

Finally, to completely automatise the diagnose, a model object detection was trained with 
the manual annotations previously obtained and results showed good performance.  

Therefore, all the objectives set were carried out with satisfactory results. The sample 
analysis follows a three-step pipeline: detection, segmentation and classification. This 
multi-step approach would ensure that each cell is identified, its boundaries delineated 
and its characteristics correctly classified, obtaining an accurate malaria diagnosis by 
artificial intelligence. Furthermore, each step can be optimized independently, ensuring 
better overall performance. 

Regarding the retrospective planning, only one notable deviation was made. Although it 
was not planned at the beginning of the project, the additional training of an object 
detection model was included to automate the cell detection process.  

This work exemplifies how digital imaging technology, coupled with AI algorithms, is a 
promising tool for the diagnosis management of this important global health. It reduces 
the need for manual microscopy and improves the diagnostic accuracy of malaria, having 
a notable positive impact on the Sustainable Development Goals (SDGs) of Industry, 
Innovation, and Infrastructure, as well as Good Health and Well-being. 

5.1 Future work 

As future possibilities, it would be interesting to obtain patient samples’ images from 
various laboratories, with different imaging equipments and sample preparation 
protocols. This could affect the visual appearance of images and, as consequence, the 
final performance of the model.  
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Although segmentation with SAM showed good performance, it would be necessary to 
properly segment the totality of cells. Morphological operations could be applied to 
improve the quality of binary masks. These techniques could remove small objects, fill 
small holes, detaching connected objects, etc., and enhance segmentation results. 

Another interesting thing to explore would be the use of a model based on morphological 
characteristics to describe parasites inside the cells to know the specie identification of 
the parasite, as different species of parasites require different treatments. For example, 
P. falciparum is often more severe, which can lead to complications like cerebral malaria, 
severe anaemia and multi-organ failure. Also, this specie can be resistant to some 
antimalarial drugs. P. vivax and P. ovale form hypnozoites, a dormant phase in the liver 
that can cause relapses. Rapid identification of the specie is critical for immediate and 
specific treatment.  

Likewise, identifying the stage of the parasite in the patient (e.g., ring, trophozoite, 
schizont or gametocyte), can provide information about the severity of the infection and 
the patient's prognosis, as late-stage parasites in the blood are associated with severe 
forms of malaria. The stage is also important for the treatment, as different antimalarial 
drugs target different stages of the parasite and antimalarial drug resistance can vary 
depending on the stage of the parasite. 

Additionally, fully automating the detection and implementing a Graphical User Interface 
(GUI) would significantly enhance usability for healthcare professionals and avoid the 
need to understand coding practices or to be heavily trained in microscopic analysis. 
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6 Glossary 
annotation: label parts of an image to categorize different interesting elements within 

the image. This is often used in machine learning to train algorithms. 

bounding boxes: rectangular boxes drawn around objects in an image to identify them. 
They are a common method for image annotation.  

classical machine learning: set of algorithms used to make predictions in data which 
are categorized into supervised learning and unsupervised learning.  

GPU: Graphic Processing Unit. A piece of hardware in a computer designed for parallel 
processing. They are optimal for training machine learning models, as they can 
handle the large-scale matrix operations required. 

image features: distinctive characteristics extracted from images that capture important 
information about their content. They are used in image classification tasks to 
feed into machine learning classifiers to learn discriminative patterns for different 
classes. Some commonly used types of image features are colour features, 
texture features and geometric features.  

imbalanced dataset: dataset where the distribution of classes is heavily skewed, with 
one class more frequent than others.  

mask: binary image that extracts specific regions of images. Each pixel is assigned 
either a value of 0 (black) for the background or 1 (white) for the region of interest. 

plasmodium parasite: microorganism which cause malaria through the bite of infected 
female Anopheles mosquitoes. The most common species that can infect 
humans are P. falciparum, P. vivax, P. ovale, P. malariae and P. knowlesi. It has 
a complex life cycle with multiple stages that alternates between the mosquito 
vector and the human host. 

peripheral blood smear: laboratory test that consist of spreading a drop of a patient 
blood onto a slide, staining it and examine it under a microscope.  

random forest: supervised learning algorithm used in machine learning for classification 
and regression tasks based on decision trees. During the training phase, the 
algorithm learns from a dataset, which consists of features and their 
corresponding class labels.  

red blood cells (RBCs): also known as erythrocytes, are the most abundant type of 
cells in the blood. In malaria patients, they are infected by parasites.  

SHAP values: From SHapley Additive exPlanations, are a method based on cooperative 
game theory to explain the output of any machine learning. They help understand 
how each feature influences the machine learning model's output and identify 
relevant features.  

segmentation: process of dividing an image into multiple regions that share similar 
characteristics, allowing the isolation of objects of interest from the background 
in an image.  

supervised learning: type of machine learning where an algorithm is trained on a 
labelled dataset to predict the output for new data. For classification, the output 
variable is a category, whereas for regression, the output variable is a continuous 
value.  

undersampling: resampling technique than consist of decreasing the number of 
instances in the majority class in an imbalanced dataset by randomly removing 
samples.   
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8 Appendix 

8.1 Segmentation efficiency 

Good performance in segmentation of RBCs was obtained with SAM. Nevertheless, 
some images were discarded for various reasons. On the one hand, 12 images out of a 
total of 8.750 were eliminated as their incorrect segmentation resulted in a mistaken 
label. The discarded images are shown in Figure S1. Typically, these images shared the 
characteristic of the parasite being in the outermost part of the cell, with two cases where 
the parasite belonged to an adjacent cell. Despite this, 99.9% of the images were 
segmented accurately without affecting the class labels. 

segmented 

 
original 

Figure S1. Discarded images after segmentation due to due to changes in class labels. 

 

On the other hand, a total of 137 images were also discarded due to incorrect masks. In 
general, these images are characterized by belonging to areas with high cell density or 
non-uniform cell coloration. Examples of discarded images are presented in Figure S2.  

 

Figure S2. Some examples of discarded images after segmentation due to incorrect masks. 

8.2 Binary images optimization 

Binary images are needed to calculate geometrical features such as area, perimeter, 
circularity and eccentricity. In order to obtain these binary images from grayscale images, 
thresholding was applied. Therefore, selecting an appropriate threshold value is 
essential to separate infected and uninfected RBCs from the background but this value 
could vary depending on factors such as light and cell staining.  

To obtain fully binarized RBCs, the threshold value was optimized in infected RBCs by 
visually checking binary images generated when applying threshold values of 128, 90, 
80, 70 and 60. The value of 128 is commonly used as starting point because it represents 
the mid-range intensity value for an 8-bit grayscale image, where pixel intensities range 
from 0 (black) to 255 (white). Results presented in Figure S3 indicate that the optimal 
threshold value to binarize infected RBC images was 60, as in other cases, the parasite 
was considered as background due to its dark colour.  
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Figure S3. Optimization of the threshold value to obtain binary images. Values of 128, 
90, 80, 70 and 60 were tested.  

8.3 Missclassified images in the classification model 

 

 

 

Original 
RGB 

images 
 

   

Binary 
images 

128 

   

90 

   

80 

   

70 

   

60 

   

A) 

     

B) 

     

     

Figure S4. Missclassified images obtained in the Random Forest 
classification model. A) False negatives, B) False positives 


