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Abstract—This study unveils a mobile app-based indoor
positioning system (IPS) tailored for seamless museum nav-
igation. Leveraging smartphone inertial measurement unit
(IMU) sensors, it incorporates a pedestrian dead reckon-
ing (PDR) algorithm and a visible light positioning (VLP)
beacon-based angle of arrival (AoA) algorithm for precise
user positioning relative to smart light sources. In standalone
mode, the VLP AoA-based algorithm demonstrates reliability
with a mean error of 10.64 cm, while the PDR algorithm, oper-
ating independently, exhibits mean error of 3 m influenced
by environmental factors. Integration of both algorithms
proves crucial in mitigating cumulative errors. By updat-
ing PDR deviations with the precision provided by the VLP
AoA-based solution, the entire system minimizes its mean
error to 0.85 m. The user-friendly interface not only enriches
visitor experiences with contextual information but also
enables intuitive navigation without continuous internet
connectivity. This innovative solution caters to the criti-
cal demand for precise indoor navigation, particularly in
museum environments, fostering increased user acceptance
and utilization.

Index Terms— Android, angle of arrival (AoA), inertial measurement unit (IMU), smartphone, visible light positioning
(VLP).

I. INTRODUCTION

IN THE digital age, technological advancements have had a
profound impact on various aspects of our daily lives. These

innovations have revolutionized the way we interact with
the world, leading to improved efficiency in both work and
daily activities [1]. Museums and exhibition spaces have also
embraced these technological advancements, with a growing
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interest in implementing indoor positioning technologies in
recent years [2], [3].

Indoor positioning systems (IPSs) enable the localization
of people and objects within enclosed spaces using diverse
technologies. These systems find applications in indoor navi-
gation, security, and inventory management, among others [4],
[5], [6], [7].

Infrared technology relies on the emission and detection of
infrared signals to measure the distance between a transmitter
and a receiver. However, this technology has limited range and
can be susceptible to signal blockage by objects. A system
proposed in [8] utilizes four infrared LEDs and a quadrant
angular diversity aperture receiver (QADA), leveraging coding
techniques to determine the receiver’s position based on the
incidence points of the infrared transmitters. The system
exploits the geometrical characteristics of the setup, including
the polar angle and its relation to the receiver position, the
angle of incidence, and the aperture height. Another example
can be found in [9], where infrared beacons are employed
for dynamic and static measurements in a metal shelving
environment, simulating real retail and warehouse settings.

Ultrasonic sensor-based systems employ time-of-flight mea-
surements of ultrasonic signals to determine the distance
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between the transmitter and receiver. While these systems offer
accuracy, they can be influenced by interference from other
electronic devices and may encounter accuracy issues in noisy
environments.

Recent studies have explored these technologies further,
including the work described in [10] and [11]. The former
presents a 3-D ultrasonic local positioning system that utilizes
three independent systems to cover the entire workspace,
integrating the information with Kalman filters. The latter
introduces a positioning system that employs ultrasonic mea-
surements and inertial sensors to calculate the position of a
device. It also utilizes ultrasonic local positioning systems to
correct cumulative errors.

Conversely, visible light-based systems offer accurate local-
ization of users and their environment, making them a
promising option for indoor guidance systems. Visible light
positioning (VLP) systems have emerged as a promising
alternative for indoor positioning solutions. A comprehensive
investigation of visible light LED-based positioning technol-
ogy for indoor object localization is presented in [12]. This
study classifies and elaborates on relevant positioning algo-
rithms and designs, comparing the performance of LED-based
IPSs. Additionally, this article discusses advancements, chal-
lenges, and future research directions in VLP positioning
systems. Orientation estimation results from a local positioning
system based on PSD sensors and visible light emitted by
visible light trails are presented in [13].

Inertial measurement units (IMUs) enable the implemen-
tation of navigation by estimation or inertial navigation
principles. This approach involves estimating the position of
a target using data sensed by the IMU. When applied to
user navigation, it is known as human inertial navigation or
pedestrian dead reckoning (PDR).

While numerous works are based on PDR, as mentioned
in [14] and [15], most cases require the use of an external IMU.
However, this work focuses on exclusive use of a smartphone.
A general equation for implementing a pedestrian inertial
navigation algorithm, regardless of how the device is held,
is presented in [16]. On the other hand, Li and Ning [17]
implement an algorithm dependent on the user’s position,
benefiting from device calibration using georeferenced maps.
An interesting approach to improve the accuracy of PDR is
studied in [18], where a particle filter is used.

This study focuses on determining the user’s position by
detecting a single smart light source through a mobile device’s
camera sensor. To achieve this, we profit the camera rolling
shutter working mode and the pinhole model, implementing a
VLP angle of arrival (AoA)-based algorithm for the detection
and identification of various smart lights. The goal is to obtain
the user’s position when recognized by the device, applying a
geometrical correction to refine the accuracy. However, in this
environment, user positioning is contingent upon detecting
a luminary. To overcome this limitation, we employ a PDR
algorithm that utilizes the device’s inertial sensors to estimate
the user’s position when a light source is undetected. The
integration of both algorithms ensures a seamless IPS solution.
In summary, this article encompasses the design, implemen-
tation, and evaluation of a mobile application incorporating

Fig. 1. Flow diagram of the mobile application.

these indoor positioning technologies. This application not
only determines the user’s position but also provides contex-
tual information about the environment, facilitating seamless
navigation within indoor spaces.

During this study, Section II is aimed to describe the work-
flow of the application. Then, the two algorithms that define
the solution are exposed as an in-depth analysis of the proposal
in Sections III and IV. Then, the results present the standalone
capabilities of both VLP AoA-based and PDR solutions, the
integration of the algorithms, and the user interface (covered
in Section V). Finally, the outcomes of the research as well
as the next steps are exposed in the conclusion (Section VI).

II. APPLICATION FOR INDOOR POSITIONING

The system proposed utilizes strategically placed intelligent
light fixtures within the space to emit encoded signals that are
detected by users’ mobile applications.

Users can download the mobile application on their devices
and use it as a receiver to capture the encoded signals from the
luminaries. VLP technology enables the mobile application to
determine the user’s real-time location using visible light as
the positioning source. By receiving the encoded signals from
the luminaries, the application can accurately determine the
user’s precise location.

To further enhance positioning accuracy, the system incor-
porates PDR, which utilizes the motion sensors of the user’s
mobile device to calculate the distance and direction of the
user’s movement within the museum, thereby providing more
precise location estimation.

Fig. 1 illustrates the flow diagram that governs the logic of
the mobile application.

1) The VLP beacon is the first component in the process.
This device emits a coded signal through visible light
modulation, with the information being an identifier of
the intelligent light fixture itself (which will be the same
as the ID field in the database). The signal is used to
identify the light fixture’s position in space.

2) The next component is the mobile device camera sensor.
This component captures the coded signal emitted by
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the VLP beacon. The mobile device’s camera is used
to obtain an image of the light signal using the rolling
shutter technique.

3) The digital signal processor or DSP is responsible for
decoding the signal obtained by the mobile device’s
camera. Decoding is the process of extracting the ID
from the encoded light signal.

4) Once the signal has been decoded, a beacon identifica-
tion is performed by comparing the parameters of the
coded signal with those stored in the database. If the
parameters match, the beacon is identified.

5) The database contains objects of type beacon with
parameters such as ID, position, and point of interest
(POI). The position of the beacon is used to calculate
the user’s position.

6) The positioning algorithm utilizes the position of the
identified beacon, the inclinations of the mobile device,
and its physical characteristics to calculate the user’s
position.

7) Finally, the calculated position information from the
positioning algorithm is used to update the user’s posi-
tion. This information can be displayed in the graphical
interface of the mobile device, such as the interactive
map. Additionally, contextual information based on the
POIs can be displayed, with accessible options and
multiple language choices.

III. IN-DEPTH: VLP AOA-BASED ALGORITHM FOR
POSITION CORRECTION

This section delves into an AoA-based algorithm aligned
with the pinhole principle, exploring the key components and
concepts that contribute to its effectiveness on implementing
a VLP solution. Sections III-A and III-B examine various
aspects of this algorithm to gain a comprehensive understand-
ing of its inner workings.

Typically, users hold the mobile device in their hands, facing
upward and aligned with its direction. This specific orientation
of the device is referred to as the natural position, as illustrated
in Fig. 2(a). When the user is positioned directly beneath
the initial position of the luminary shadow in the natural
position, the point calculated according to the AoA algorithm
is (0, 0). Nevertheless, this natural position might be changed
with slight inclinations of the device. As shown in Fig. 2(b),
this inclinations change the relative position of the emitter
while is detected by the receiver, producing a positioning error.
Furthermore, when the user moves within the coverage area
of the luminary, this relative position introduces errors added
to the produced by the inclinations of the device.

A. Pinhole Model for AoA Calculation
Fig. 3 shows the pinhole model diagram for the mobile

device, which is discrete image sensors with n × m pixels.
(Xw, Yw, Zw) are the coordinates of the world reference
system, (X R, YR, Z R) are the coordinates in the mobile device
reference system, and (Xr , Yr , Zr ) are the coordinates of the
camera referred to the world reference system. The impact
point on the smartphone is represented as (xi , yi ), where the

Fig. 2. (a) Natural position. (b) Device inclined.

Fig. 3. Pinhole model diagram with the smartphone.

focal distance of the optics (device’s camera) is represented as
f , and the optic center is represented as (Cx ,Cy). The rotation
and translation matrices that relate the two reference systems,
the world reference and the device reference, are denoted as
R and T , respectively.

Furthermore, the relationship between the 3-D coordinates
of the emitter (Xe, Ye, Ze) and the 2-D coordinates of the point
of impact on the mobile device (xi , yi ) is defined as follows:sxi

syi
s

 =

 f 0 Cx
0 f Cy
0 0 1


︸ ︷︷ ︸

A

r11 r12 r13
r21 r22 r23
r31 r32 r33


︸ ︷︷ ︸

R

Xe − Xr
Ye − Yr
Ze − Zr

 (1)

where s is the projection scale factor, f is the device’s sensor
focal length, (Cx ,Cy) are the coordinates of its optical center,
A is the 3 × 3 device parameters’ matrix, and R is the 3 ×

3 rotation matrix (device orientation).
The values of the matrices A and R and the height of the

smart light (emitter) Ze and of the device Zr are assumed
to be known. Therefore, the receiver position (Xr , Yr , Zr ) is
obtained asXr

Yr
Zr

 = −R−1A−1

xi
yi
1

 s +

Xe
Ye
Ze

 . (2)
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If the vector q is defined as

q =

q1
q2
q3

 = −R−1A−1

xi
yi
1

 (3)

and the value of the scaling factor s

s =
Zr − Ze

q3
(4)

receiver position is obtained asXr
Yr
Zr

 = qs +

Xe
Ye
Ze

 . (5)

In conclusion, knowing all the values of (5), the position of
the user can be obtained despite the disturbances in the orien-
tation angle of the device. That is, the position of the device
is corrected in such a way that it does not affect the position
obtained from the user.

B. Parameters of the Device
As shown in (1), the equations are directly related with the

mobile device parameters, such as the intrinsic matrix A and
the extrinsic matrix R.

1) Intrinsic Matrix A: The coordinates of the optical center of
the camera are obtained through the geometry of the device,
which relate the size of the pixel d × d , with the rows w
and columns h of the images it captures the sensor. Assume
that the optical center coincides with the geometric center of
the sensor, as will be assumed here (acknowledging a slight
error). Thus,

Cx = d
w

2
, Cy = d

h
2
. (6)

Knowing the values of the coordinates of the optical center
of the device (Cx and Cy) and the focal length ( f ), the matrix
A can be written as

A =

 f 0 d w2
0 f d h

2
0 0 1

 . (7)

2) Extrinsic Matrix R: The rotation matrix or extrinsic matrix
R is obtained by rotating the Euler angles, which are defined,
thanks to the device sensors, as: RX (φ) for the roll, RY (θ) for
pitch, and RZ (ψ) for azimuth

RX (φ) =

1 0 0
0 cosφ − sinφ
0 sinφ cosφ

 (8)

RY (θ) =

 cos θ 0 sin θ
0 1 0

− sin θ 0 cos θ

 (9)

RZ (ψ) =

cosψ − sinψ 0
sinψ cosψ 0

0 0 1

 . (10)

The rotation matrix R is obtained by multiplying the rota-
tions of the Euler angles around the axes [obtained in (8)–(10)]

R = RZ (ψ)RY (θ)RX (φ) . (11)

Fig. 4. Impact point projection of the smart light in the smartphone.

3) Impact Point: The impact point (xi , yi ) is determined in
the application, thanks to a circle detection algorithm. This
algorithm recognizes circular shapes and obtains the position
of the center of the smart light in the captured image and its
radius. These values are related to the device parameters so
that the optical center coincides with the center of impact.

Fig. 4 depicts the parameters related with the mobile
device’s image after a smart light is recognized. The impact
point in rows and columns (w′

i , h′

i ) is the one obtained by the
sensor, the red grid illustrates the pixels matrix of the device,
the pixel size is d × d , the number of rows is w, and the
number of columns is h. On the other hand, the smart light
projection detected is illustrated on the screen in green.

To obtain the impact point (xi , yi ), measured in mm, the
following equation is used. This equation relates the informa-
tion obtained through the camera sensor by using the values of
the pixel size d × d , the number of rows w and the number of
columns h, and the impact point in rows and columns (w′

i , h′

i ).
The outcome of the equation is to obtain the impact point in
mm and use it in (1), as illustrated in Fig. 3{

xi = d ·
(
w − w′

i
)

yi = d ·
(
h − h′

i
)
.

(12)

4) Receiver Height and Emitter Position: The height of the
receiver Zr corresponds to the distance between the center of
the device and the ground. In order to generalize this value,
this value is selected as a constant for the experiments.

The position of the emitter (Xe, Ye, Ze) is obtained after the
light source has been identified, by using the content parsed
from the database (as shown in Fig. 1). As in the deployment
of the intelligent lighting network, the bulbs are arranged in
known positions, when the application determines if one bulb
or another has been detected, its position is also known.

C. Modeling the Correction Algorithm on Android
Platforms

The application utilizes Kotlin programming language to
implement corrections in positioning measurements based on
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AoA and the pinhole model. The device parameters are
defined, including the number of columns and rows of the
photograph, pixel size, and focal length. These parameters are
used to construct the intrinsic matrix A.

To obtain the Euler angles, two methods provided by the
Android API, namely, getRotationMatrix and getOrientation,
are utilized. These methods make use of the accelerometer and
magnetometer sensors to calculate the angles. The output of
getOrientation is an array of three elements representing the
azimuth, pitch, and roll angles.

Next, the rotation matrix R is derived using the obtained
Euler angles. The rotation matrix is calculated based
on azimuth, pitch, and roll rotations using trigonometric
functions.

The impact point on the device is encoded as a vector, and
the receiver position is defined as another vector. By comput-
ing the inverse of R and A matrices and multiplying them
with the impact vector, a new vector q is obtained. The scale
factor s is calculated based on the difference in Z -coordinates
between the receiver and emitter positions. Finally, the receiver
position is computed using the pinhole model for a single
emitter.

IV. IN-DEPTH: PDR-BASED ALGORITHM FOR
POSITION ESTIMATION

In this work, improvements are proposed in obtaining the
user’s position, giving a solution to the losses in the location
due to the absence of luminaries captured when the user
moves. In this case, the device’s inertial sensors (IMU) are
used to estimate the user’s position by analyzing their gait
(PDR).

Following the study of numerous authors [14], [15], [16],
a general equation of the PDR algorithm is formulated in order
to provide an estimate in the changes of the user’s position.
In this case, the following equation can be written:{

Xk = Xk−1 + Lk−1,k · sin
(
ψk−1,k

)
Yk = Yk−1 + Lk−1,k · cos

(
ψk−1,k

) (13)

where X and Y are the easting and northing coordinates
(referring to georeferenced systems), L is the step length, ψ
is the direction of the user during a step, and k denotes the
index of the user step.

Sections IV-A–IV-C define the way that each parameter
of (13) is calculated through the application.

A. Step Detection
The parameter k of the general equation (13) refers to the

event produced in each user step. That is, each time the user
takes a step, there is a new sample in the equation.

The device’s inertial sensors are used to capture the user’s
movements. Specifically, the accelerometer is used to analyze
the movement of the device when the user is walking and
looking at the device at the same time (desired situation in
the project application). In this condition, the smartphone is
held in the natural position; therefore, the device will go up
and down (oscillatory movement) as it moves forward. This
produces a sinusoidal signal on the z-axis of the device, and
the maximums represent each step k.

Fig. 5. Signal obtained from the accelerometer in the coordinate axes.

In Fig. 5, the signals obtained from the accelerometer are
shown with respect to the three coordinate axes when a
user walks under the described conditions. The value of the
signal on the z-axis has its mean value around the value of
the acceleration due to gravity on the surface of the Earth
g = 9.8 m/s2.

If the module of the three signals is obtained, the total
variations produced by the device in the same signal can
be represented. To extract the maximum value of the signal,
a threshold value is set from which it is decided whether a step
has occurred or not. It should be noted that, as documented
in various implementations of PDR algorithms such as [15]
and [16], this threshold directly depends on the way the user
walks and different positions of the device. In this sense,
a threshold of 11.2 m/s2 has been established as a general
value for most users based on the results obtained in these
works.

On the other hand, it can be seen that due to the existing
noise produced by the sensitivity of the sensor, there might be
false positives in the detection of the maximums. To mitigate
this effect, it is decided to perform a low-pass filter with
infinite impulse response that guarantees an approximation to
the desired sinusoidal signal. The used equation for such filter
is presented in the following equation:

y [i] = y [i − 1] + α (x [i] − y [i − 1]) (14)

where i is the current instant, i −1 is the previous instant, y is
the output signal, x is the input signal, and α is the smoothing
factor.

The value of the smoothing factor is obtained by the
relationship between the time constant τ (in terms of low-pass
filtering RC circuits), the sampling time Ts , and the cutoff
frequency fc that is selected to implement the filter

τ =
1

2π fc
→ α =

Ts

τ + Ts
. (15)

These equations are proposed to filter the absolute value of
the accelerometer signal. To do this, the necessary parameters
are selected in order to obtain the value of α.

Mobile device sensors can work at different sampling fre-
quencies, but in the case at hand, fs = 100 Hz is selected,
which results in Ts = 10 ms. On the other hand, the cutoff
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Fig. 6. Absolute value of the signal obtained from the accelerometer
with low-pass filtering, step detection threshold, and steps detected.

frequency is fixed at fc = 15 Hz (based on the empirical study
by Wang et al. [16] and validated on this work). With these
data, it is obtained that α = 0.4851.

Once this filter has been implemented, the signal shown in
Fig. 6 is obtained, where a decrease in the number of false
positives is shown (detection of steps above the threshold
without being a maximum).

B. Step Length
The step length is directly related to the general PDR

equation (13), where Lk−1,k represents the step length at each
update of the algorithm. The subscript nomenclature k − 1, k,
therefore, refers to the distance between the occurrence of the
previous event (k − 1, previous detected step) and the current
event (k, current detected step).

To determine the step length, there are several approaches
that can be found in the literature. For the scenario presented
on this work, it can be a constant value since there are no
significant accumulative errors due to the beacons distance,
or can be calculated as an average value from the error
obtained between two beacons. On both situations, this value
will be fixed during the position calculation of the PDR
equation, so this value can be named as L.

C. Heading Determination
The heading determination is the parameter that is used to

define the direction and trajectory followed by the user.
This parameter relies on the coordinates system of the

device with respect the Earth coordinates system. The value
that is used in this work is obtained directly from the device,
which provides the azimuth using the rotation matrix and
the inertial sensors. The usage of this heading determina-
tion is presented in the official documentation of Android
devices [19].

In the PDR equation (13), this parameter is called ψk−1,k .
It refers to the angle that the previous direction makes with
respect to the current direction. Since the device is assumed to
be aligned with respect to the reference system, it can be said
that this angle depends only on the current direction of the
user. That is, the desired steering angle satisfies ψk−1,k = ψk .

TABLE I
MOBILE DEVICE SPECIFICATIONS

With all the parameters obtained, the PDR equation is
rewritten as {

Xk = Xk−1 + L · sinψk

Yk = Yk−1 + L · cosψk .
(16)

V. RESULTS

The VLP-PDR mobile application-based IPS was specifi-
cally conceptualized for the development of a comprehensive
guidance and routing application, meticulously tailored for
Android devices. The experiments examining the VLP
AoA-based corrections are conducted in the laboratory,
whereas the rest took place at the Museo de Guadalajara,
Guadalajara, Spain. The aim of this section is to demonstrate
a real-world use case of indoor positioning in museums,
enhancing the user’s experience.

The mobile device used for the experiments is a Samsung
Galaxy Tab S3 (SM-T820). It is equipped with the hardware
presented in Table I. The AoA-based algorithm uses the front
camera and the IMU, whereas the PDR-based algorithm uses
only the IMU.

A. VLP AoA-Based Algorithm Results
The setup for these experiments involves highly precise

measurements, conducted using a Leica MS60 (multistation
or total station), from now on TS, and a GRZ101 tracking
prism [20], assumed as the ground truth. On the other hand,
the real-world measurements obtained with the mobile device
and the VLP AoA-based algorithm. The TS offers a precision
of ∼ 2 mm over distance ranges of 1.5–10 000 m, surpassing
the expected centimeter-level measurements of this work.

Fig. 7 depicts the test environment for the conducted mea-
surements. Fig. 7(a) displays the total station used to measure
the ground truth (highlighted in green) in relation to the
smart light (highlighted in blue), and in Fig. 7(b), the device
employed for measurements with the tracking prism is shown
(highlighted in blue), securely attached.

Hence, the TS measurements serve as the ground truth. The
steps for the testing scenario setup are as follows.

1) Obtain the TS coordinates in the chosen reference sys-
tem, with reference to the Earth’s North for (x, y, z)
measurements. In this case, x is referred as easting and
y as northing.

2) Measure the 3-D coordinates of the focus center in the
chosen coordinate system.
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Fig. 7. Setup environment. (a) Total station and light source in the
setup. (b) Mobile device with tracking prism attached.

3) Place the prism on the mobile device.
4) Measure the receiver’s static position, testing the

algorithm’s performance under different angles, com-
paring results with the ground truth. This process
results in 80 measurements considering users’ typical
hand gestures: orientation angle (azimuth) every 90◦

within [−90◦, 180◦
], elevation angle (pitch) every 4◦

within [0◦, 12◦
], and inclination angle (roll) every

4◦ within [−8◦, 8◦
].

The results from the static test for different positional angles
are depicted in Fig. 8. The point cloud formed by blue circles
represents the ground truth, measured by the TS from the
tracking prism placed at the device. The point cloud formed
by red crosses is the receiver’s measured position, obtained
by the mobile device. The black diamond represents the smart
light (emitter) that is placed on a known position in the ceiling.
This position is obtained with the TS, placed in Xe = −2.35 m
and Ye = 1.93 m. The TS device is placed at (0, 0). Note: the
mobile device is not placed under the smart light. The height
of the smart light on the ceiling (Ze = 2.80 m) and the mobile
device (Zr = 1.20 m) is known.

Significant dispersion arises from errors originating from
the rotation matrix and orientation matrix acquired through
the Android API, primarily influenced by the hardware spec-
ifications of the device.

The maximum error [max(Ed)], average error [µ(Ed)], vari-
ance [σ 2(Ed)], and standard deviation [σ(Ed)] are calculated
using the Euclidean distance (d) for the orientation, inclina-
tion, and elevation angles. The error is obtained by using each
value of the point cloud with respect to its correspondence
from the ground truth.

Table II presents a consolidation of such error calculations,
highlighting the worst case for each experiment, based on
the measurements shown in Fig. 8. Notably, the mean error
obtained while changing the angles is 10.64 cm, demonstrat-
ing the precision achieved while using the VLP AoA-based
algorithm. This highlights the reliability and accuracy of the
approach under the experimental setup conditions.

The horizontal distance between mobile device and beacon,
so-called coverage area, is measured as 1.2 m (radius) in the
experimental tests. The coverage area is directly related with

Fig. 8. VLP AoA-based algorithm on different azimuth, considering ele-
vations, and inclinations. (a) Azimuth 0◦. (b) Azimuth −90◦. (c) Azimuth
90◦. (d) Azimuth 180◦.

TABLE II
AOA-BASED ALGORITHM ERRORS CONSOLIDATION

the field of view of the receiver (mobile device). On the other
hand, the difference in errors comes from how accurately we
pinpoint the center of the focus image. Even in this difference
in distances, the central point is not expected to show big
changes. Also, the mistake made in figuring out the IMU
angles is bigger than the one made in finding the focus image
centroid. Hence, we can ignore this smaller error.

B. PDR-Based Algorithm Results
The following experiment is conducted to assess the efficacy

of the PDR algorithm in the indoor environment selected.
Fig. 9 shows an example of a route obtained while using

PDR algorithm. The red dots observed in Fig. 9 represent the
detected steps, and the green arrow is the route provided to
be followed by the user, not assumed as ground truth since it
is an estimated route.

Analyzing the graphical results, while the PDR algorithm
effectively provides a route within an indoor environment, it is
not immune to certain limitations. The accumulated errors
associated with step detection and heading determination
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Fig. 9. PDR-based algorithm result (Route 1).

lead to slight deviations from the expected route, particu-
larly noticeable during user turns. These deviations, although
present, do not exceed 3 m, which is an acceptable range for
leisure indoor navigation purposes, such as the museum use
case.

Additionally, it is essential to note that the performance
of the PDR algorithm is influenced by environmental factors
within the indoor setting. The presence of metals in the
environment poses a particular challenge, as the IMU relies on
the magnetometer for orientation calculations. Consequently,
the interference caused by metallic elements can lead to
inaccuracies in the determination of the user’s orientation,
thereby impacting the overall reliability of the PDR system.
Understanding the impact of environmental variables on the
algorithm’s functionality is critical for devising effective strate-
gies to mitigate potential errors and enhance the algorithm’s
robustness in diverse indoor environments. This is the case to
perform an integration with the VLP solution.

C. VLP-PDR Integration Results
The experiments in this section aim to demonstrate the

efficacy of integrating both algorithms into a unified solution.
The implementation of the AoA-correction algorithm reduces
errors resulting from device inclinations. Additionally, the
integration of this solution with the PDR algorithm effectively
mitigates cumulative errors associated with the environment,
particularly during navigation around smart lights.

Fig. 10 illustrates the integration of both algorithms. The
red dots represent the detected PDR steps, while the black
diamonds denote the AoA detections. The blue circles indicate
the locations of the strategically positioned light sources on the
ceiling. The green arrow represents the route to be followed
by the user. The data source is the same as that obtained in
Section V-B, but calculated with the smart lights powered on.
Notably, the distinct alignment of the AoA detection attests
to the precision of the algorithm in recalibrating the user’s
position relative to the physical location of the light sources,
resulting in minor deviations in the positioning route.

Comparatively, when examining the results in Fig. 9, the
integrated methodology demonstrates a more organic and

Fig. 10. Integration of the AoA and PDR algorithms (Route 1).

Fig. 11. Integration of the AoA and PDR algorithms (Route 2).

accurate route, particularly notable in contrast to the cumu-
lative error. By updating the position using the VLP solution,
the cumulative error associated with the PDR algorithm is
alleviated.

A secondary instance of this approach is depicted in Fig. 11,
employing the same color coding as the preceding illustra-
tion. Under these circumstances, it becomes apparent that the
cumulative error generated by the PDR algorithm increases
with greater distances between two light sources, as indicated
between beacons 1 and 2. Consequently, the recommended
approach for deployment involves striking a balance between
the costs associated with the number of beacons and the
requisite precision for the solution.

In conclusion, Figs.10 and 11 show that the accumulated
errors from the PDR algorithm are reset during the moments
when the VLP AoA-based algorithm is employed. Specifically,
the mean errors concerning the path to follow (in green) are on
the order of 0.85 m, providing a performance that is valid for
the museum’s context. Finally, a comparative table is provided,
contrasting similar works from the state-of-the-art and our
results. Table III presents comparative results for: 1) VLP
algorithms; 2) PDR algorithms; and 3) integrated algorithms.

D. User Interface
To facilitate visitor navigation and contextual informa-

tion retrieval within the museum, an intuitive user interface
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TABLE III
STATE-OF-THE-ART COMPARISON

Fig. 12. (a) Interactive map and (b) POI information.

integrates with the mobile application. The accompanying
database stores exhibition details, images, and historical infor-
mation in English and Spanish. A user-friendly interface is
vital for enhancing visitor satisfaction, emphasizing usabil-
ity, accessibility, and visual appeal. Clear design and direct
database downloading during the initial setup optimize the
user’s experience, enabling intuitive navigation without the
need for continuous Internet connectivity.

Fig. 12(a) illustrates the appearance of the interactive map
as seen by the user. Here, the current position of the visitor
is presented as a red circle, along with the nearby POIs rep-
resented by blue information icons. These POIs are displayed
based on proximity, meaning that they are obtained as the user
approaches these elements. This functionality is designed to
allow users to navigate freely through the museum. Fig. 12(b)
shows the relevant information obtained from the POI while
pressing on it. The information contains additional descriptions
from the ones provided within the museum as well as an
audio-guide fragment. Both information sources are shared in
English or Spanish, depending on the smartphone’s language.

Fig. 13(a) and (b) depicts real-world scenarios within the
museum, demonstrating the practical usage of the application.
Users are shown interacting with museum exhibits, holding
their devices in front of a piece. The mobile screen showcases
the information obtained through the POIs that appear nearby
the user’s position. As shown, it matches with the pieces.

Finally, here is an accompanying video that illustrates the
experimental setup and results discussed in this article. The
video can be accessed at: https://youtu.be/4Co6H1KluV4.

Fig. 13. (a) and (b) Real-world scenario within the museum exhibition.

VI. CONCLUSION

The research outcomes reveal significant insights into
the performance and applicability of the VLP-PDR mobile
application-based IPS in a real-world scenario, particularly
within the context of a museum environment. The experiments
conducted demonstrate the capabilities and limitations of the
VLP AoA-based algorithm, the PDR-based algorithm, and the
integration of these two techniques, as well as the effectiveness
of the designed user interface.

The VLP AoA-based algorithm consistently demonstrated
precision within 10 cm, as evidenced by the experiments
conducted in both controlled laboratory settings and the actual
museum environment.

Similarly, the PDR-based algorithm showcased its efficacy
in providing reliable indoor positioning guidance, with minor
deviations from the expected route, showcasing mean errors of
3 m, predominantly influenced by environmental factors such
as the presence of metallic elements.

The integration of the VLP AoA-based algorithm with
the PDR algorithm exhibited a significant enhancement in the
system’s accuracy and reliability. The recalibration of the
user’s position in relation to the physical locations of the smart
lights effectively mitigated cumulative errors, resulting in a
more natural and precise route for the users with a mean error
of 0.85 m in the experiments conducted.

Furthermore, the intuitive user interface design contributed
to the overall user experience, allowing visitors to navigate the
museum effortlessly and access contextual information about
different exhibitions.

Future research directions involve integrating advanced
machine learning techniques for enhanced accuracy, incor-
porating augmented reality elements for increased user
immersion, and implementing gamification and personal-
ized recommendation systems for improved user engagement.
Enhancements to the PDR component include dynamic step
detection thresholds, adjustable step lengths, and dynamic
user orientation updates, based on Kalman or particle filtering
principle. Additionally, integrating a mechanism to detect the
device’s held height could further enhance the precision of
the positioning system based on the AoA-based algorithm,
optimizing its performance within museum settings.
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