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Abstract—A key factor in online learning is an instructional 

design that ensures that students maintain an adequate and 
constant learning pace throughout the course. This is especially 
relevant when a fundamentally practical and progressive 
learning approach is required, such as in introductory 
programming courses. This article describes an intervention 
conducted in a first-year subject of the Computer Engineering 
degree called "Programming Fundamentals". This subject poses 
many challenges related to the introduction of abstract concepts, 
the completion of programming exercises in a specific language, 
and the monitoring of the pace of proposed learning activities so 
that students can achieve adequate learning. Based on academic 
results from several semesters, it was decided to make an 
intervention that modified the planning of learning activities to 
maintain motivation and learning pace throughout the semester, 
while reducing the time between completing the activities and 
receiving feedback. An analysis of the results following the 
change shows that more students complete the core activities, 
with a decrease in dropouts from continuous assessment and an 
increase in the number of students passing the course. Data 
analysis has been validated using propensity score matching, a 
method for evaluating interventions with a quasi-experimental 
design. 
 

Index Terms— CS1, activity planning, formative assessment, 
intervention evaluation, performance analysis, Propensity Score 
Matching.  
 

I. INTRODUCTION 
XPERIENCE demonstrates that learning to program is 
difficult, and teaching programming is a challenge, as 

evidenced by the extensive number of publications on the 
subject, as described, for example, in [1], which analyzes 1666 
studies on programming learning. Therefore, the literature 
reflects a widespread agreement that learning to program is a 
challenging process for most students at all levels. 
Particularly, the dropout rate in introductory programming 
courses at the university level is generally high, while success 
rates are low [2]. Despite the extensive literature on the topic 
and decades of experience and research, many questions 
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remain unanswered. Why is learning to program so difficult 
for many students? What factors determine a student's success 
in an introductory programming course? It appears that no 
definitive factor predicts success [3], but it is clear that one of 
the elements that positively influence learning effectiveness is 
practical programming activities. There is a necessary and 
indispensable combination of fundamental knowledge 
(knowing) and practical knowledge (knowing how to apply). 
The abstract aspects of algorithmic thinking must be put into 
practice by coding in a specific programming language 
through a well-designed laboratory activity strategy, allowing 
students to work on them individually at first and then 
progressively integrate them into larger projects [2]. 

From the student's perspective, many studies analyze which 
content areas are more challenging and the cognitive load they 
entail [4], as well as the most suitable teaching and learning 
strategies to reduce such load [5], including individualized 
feedback, which is crucial to receive at critical moments when 
it can be most effective [6]. One of these critical moments is 
the initial weeks of the course, during which close attention 
should be paid to ensure that each student has a positive initial 
experience, facilitating their learning and providing quick 
assistance to those who show signs of disengagement, such as 
not submitting the first assignment or not actively 
participating in class [7]. Related to the aforementioned, it is 
also important to study factors that positively influence 
students' engagement in the subject, encouraging them to start 
working on activities from the beginning and committing to 
their learning without losing interest or decreasing their 
dedication throughout the course. In this regard, the studies by 
Kanaparan [8] regarding engagement in an introductory 
programming course are relevant, expressed in terms of the 
three indicators that determine it: effort, persistence, and 
seeking support. 

Setting specific short-term goals enhances student 
motivation [9]. Therefore, assessment activities throughout the 
course maintain consistent engagement with the materials, 
while also serving as formative and summative evaluation 
[10], [11]. In online learning environments, where 
unfortunately dropout rates are high, the design of an activity 
plan should aim to maintain student motivation, effort, and 
participation [12]. 

In [13], a review of 32 studies is presented, describing 
interventions in introductory programming courses and 
assessing the most influential changes leading to 
improvements. These changes mainly consist of increasing 
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collaboration among students, modifying and contextualizing 
content, creating prerequisite courses, adjusting the grading 
system, and providing more tutoring. One of the main 
conclusions drawn by the authors of this review is that, in 
general, all interventions improve results when compared to 
traditional approaches, although there are no statistically 
significant differences in effectiveness between most of them. 

One of the challenges in analyzing the improvement 
achieved through an intervention is that it requires comparing 
results obtained in different semesters with different student 
populations. Generally, it is assumed that the characteristics of 
the student populations remain constant across the compared 
courses, although this may not necessarily be the case. In our 
case, we have used a quasi-experimental design to validate the 
comparison of data from four distinct semesters. 

This article extends the research presented and published at 
the CINAIC 2021 conference, which was selected for 
submission to IEEE-RITA [14]. In comparison to the original 
article, we expand the literature review and the analysis of the 
results and present the validation of the intervention using the 
quasi-experimental design method known as propensity score 
matching. 

This work is structured as follows: Section 2 describes the 
quasi-experimental design. Next, Section 3 provides a detailed 
description of the methodology employed, including the 
context, data used, and the measure used to evaluate the 
intervention. The subsequent section describes the initial 
situation and the intervention. Section 5 presents the main 
results obtained, along with their validation. The final section 
describes the main conclusions and outlines future research 
directions.  

 

II. INTERVENTION ANALYSIS 
To evaluate the effect of an intervention in a course, it is not 

sufficient to compare outcome indicators obtained by students 
in the semesters before and after the change, as these students 
belong to different populations. Directly comparing data from 
different semesters carries the risk of significant differences in 
student profiles in each semester, thus biasing the evaluation 
results due to significant differences in the datasets, not just 
the influence of the intervention itself. 

A. Quasi-experimental Design 
To directly compare results from multiple semesters, a 

randomized experiment should be conducted on the same 
population, with a control group that follows the previous 
curriculum and another group with the new activity 
distribution, randomly assigned each semester. 

In fields such as medicine, experimental design must always 
be randomized, where the control and experimental groups are 
formed following a strict methodology that ensures other 
factors do not influence the study, maintaining its validity 
[15]. In educational research, it is challenging and, in some 
cases, unethical to conduct randomized studies with control 
groups [16]. 

For cases where randomized trials cannot be conducted, 

quasi-experimental statistical techniques attempt to control, as 
much as possible, the influence of other variables besides the 
one being analyzed [17]. Quasi-experimental designs involve 
selecting similar elements from both data groups (the group 
experiencing the intervention and the group that does not) so 
that the two final samples being compared can be considered 
equivalent and similar to what would be obtained with a 
randomized experimental design. These methods aim to 
reduce potential bias caused by other confounding variables 
that affect individuals' assignment to one group or the other. 
When the assignment to groups is random, the effect of 
confounding factors is balanced, and bias becomes 
insignificant. 

B. Propensity Score Matching 
Among the most commonly used quasi-experimental 

techniques is the Propensity Score Matching (PSM) method 
[18], [19]. The propensity score (PS) of an observation is the 
probability or propensity of being part of the group that 
underwent the intervention, calculated based on the 
explanatory variables available. If two observations have the 
same values for the considered covariates, it is assumed that 
the probability of their participation in the intervention would 
be the same. By selecting one observation from the control 
group and another from the group that underwent the 
intervention, a similar result is obtained as if the observations 
had been randomly assigned. 

Typically, PS is calculated using a logistic regression 
model, with participation or non-participation in the 
intervention as the outcome and some variables in the model 
as predictors. Subsequently, the data is matched based on 
similar PS values from the two initial datasets, discarding 
elements that cannot be matched. Once the matched elements 
are obtained, the impact of the intervention can be analyzed as 
if the data were derived from a randomized study. The 
matching between the two groups can be performed according 
to various similarity criteria, resulting in different sets of 
matched data. 

This method has limitations since bias reduction may be 
partial if there are not enough significant explanatory variables 
or if too many observations are lost during matching, 
rendering the matched data no longer representative [20]. 
Therefore, it is important to verify after matching that too 
many observations have not been lost and that the 
characteristics of the intervention and control groups are 
balanced across most of the considered variables [21]. 

In [19], Harris provides an extensive literature review on 
the use of PSM in higher education, including a case study 
comparing test results based on the students' enrolled 
programs of study. As admission requirements and program 
characteristics differ, entrance grades, student profiles, or 
motivation can significantly influence the results, beyond the 
specific program of study. Directly comparing results without 
applying PSM would disregard these differentiating factors 
and may lead to incorrect conclusions. In [22], PSM is used to 
eliminate bias when a control group could not be randomly 
formed, and the scope of the results is always limited by the 
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potential confounding factors considered in the study. 
Various algorithms can be used to match observations with 

similar propensity scores. In this work, several commonly 
used algorithms were employed to compare the resulting 
matched datasets and select those that exhibited a greater 
degree of balance. Several R packages assist in the PSM 
process (e.g., MatchIt [23] or Matching [24]), as well as in 
result visualization and interpretation (e.g., Cobalt [25] or 
PSAgraphics [26]). In this analysis, MatchIt and Cobalt were 
primarily utilized. 

The matching algorithms used, according to the names used 
in the MatchIt package, are as follows: 

§ Exact Matching: Observations that have exactly the same 
values for all variables are matched. 

§ Subclassification: A predetermined number of disjoint 
classes is formed, where the distribution of covariates 
is as similar as possible. 

§ Nearest Neighbor Matching: The PS is used to match 
each observation from one group with the most similar 
value in the other group. The assignment is performed 
in order using a greedy algorithm, sometimes resulting 
in matching observations with very different values. An 
additional option, a caliper, can be used to ensure that 
the difference between matched values is smaller than a 
specified proportion of the standard deviation of the 
calculated distances. Additionally, this type of 
matching can be combined with exact matching for 
selected variables. 

§ Full Matching: As many disjoint classes as necessary are 
formed. Each class contains one observation from one 
of the two groups and as many observations from the 
other group as they match with the first observation. 

 

III. METHODOLOGY 
This section describes the scenario in which the proposed 

intervention was designed and implemented, according to the 
following methodology. 

The main change in the intervention consisted of dividing 
the continuous assessment activities into shorter segments and 
requiring them to be submitted every week, aiming for a more 
continuous work process and more frequent overall feedback, 
following what has been seen in the literature. 

A. Context 
The course "Fundamentals of Programming" is a mandatory 

course in the Bachelor's programs of Computer Science and of 
Telecommunication Technologies Engineering at the 
Universitat Oberta de Catalunya. It is also an elective course 
in some specialized master's programs and part of the 
university's open program. 

As a virtual university, it has a highly heterogeneous 
student body. However, all students take the course in the 
same manner and in the same virtual learning environment. 

In summary, 82.17% of the students are male, and the 
median age at the time of taking the course is 30 years (with 
the most popular age group being 31-40 years, followed by 

26-30 years). Most students simultaneously take two to three 
courses, a typical situation for part-time students. 

The activities are accompanied by the necessary resources 
to complete them: theoretical content on algorithmic thinking, 
examples, and instructions for coding in C, as well as a virtual 
machine with the Codelite development environment for 
programming. Once the deadline for a Continuous Assessment 
Activity (CAA) or a programming practice (PR) has passed, 
the solutions are published, and each student receives a grade 
for their exercise. The continuous assessment activities are 
graded using an alphabetical system: A (very good), B (good), 
C+ (sufficient), C- (low), D (very low), and N (not submitted). 
However, the final grade is numerical, according to the 
Spanish grading system. 

The course instructors use the virtual classroom's 
announcement board to communicate any issues related to the 
activities. Student questions, on the other hand, are shared and 
resolved through the classroom forum or via personal 
messages between the instructor and the student. The forum is 
a space where students are expected to participate by sharing 
their questions and collaboratively creating knowledge. For 
the practical part of the course, students have the support of 
the programming laboratory, where a laboratory instructor 
helps with programming environment issues and C code 
problems [27]. 

As an introductory programming course, it covers the basic 
principles of algorithmic thinking combined with 
programming practices in the C programming language. 
Continuous assessment is combined with three algorithmic 
design activities, two C programming practices, and a final in-
person exam. The three CAAs are optional, allowing students 
to decide how many and which ones they want to complete, 
knowing that each one contributes to the final grade. The two 
programming practices (PR1 and PR2) and the final exam 
(EX) are mandatory. 

B. Data Used 
To analyze whether the changes introduced in this 

intervention have reduced dropout rates and improved 
academic performance, data from four semesters were 
utilized: two prior to the modification of the activity plan (the 
second semester of the 2016-17 academic year, 2016/2, and 
the first semester of the 2017-18 academic year, 2017/1) and 
two after the changes (the second semester of the 2017-18 
academic year, 2017/2, and the first semester of the 2018-19 
academic year, 2018/1). This allows for a comparison of an 
entire course before and after the intervention. The data were 
obtained from the institutional Learning Record Store [28], 
resulting in a total of 1487 observations, with 721 prior to the 
change and 766 after, where each observation represents a 
student enrolled in one of the four analyzed semesters. 

Each observation describes the profile and grades of a 
student in a given semester. The main variables analyzed can 
be grouped into three categories: 

§ Sociodemographic profile: gender, age group. 
§ Study profile: enrolled degree, admission pathway, 

whether the student comes from vocational training or 
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university studies, number of courses taken in the 
semester, number of semesters enrolled in the degree 
program, and number of times the course has been 
repeated. 

§ Obtained grades: grades for each CAA, PR1, PR2, final 
grade for the programming practices, and final grade 
for continuous assessment. 

C. Evaluation Measures 
The main objective of the analysis is to determine if the 

implemented changes have positively influenced student 
performance by reducing high dropout rates in the course. The 
instructional design and evaluation model are comparable in 
both cases until the delivery of the first programming practice 
PR1. From that point onward, after a significant portion of the 
semester has elapsed, there are some changes in the 
consideration of PR2 and minor modifications to the syllabus. 

Passing the course is primarily determined by successfully 
completing PR1. The delivery of the first programming 
practice (PR1) is one of the clearest indicators of a student's 
final performance in the course. Among those who submit 
PR1, 83.4% pass the programming practices, and 93.3% pass 
continuous assessment. Only 21% of those who do not submit 
the first programming practice pass the continuous assessment 
of the course (although they cannot pass the course since PR1 
is a requirement). 

Therefore, the analysis focuses on how the implemented 
changes have influenced the submission rates of PR1. 
 

IV. INTERVENTION FRAMEWORK 
This section provides a detailed description of the starting 

point and the fundamental changes introduced by the 
intervention. 

A. Starting Point 
With the activity plan described in the context, the number 

of students who dropped out of the course was quite high, and 
the final performance was low, always around 30%. These 
results are typical and in line with the literature [29], [30], 
[31], and they were already accepted as normal for an 
introductory programming course, especially in a fully online 
teaching environment. Analyzing the students' activity in 
detail over several semesters, it was observed that the main 
problem was dropout during the first few weeks of the 
semester. This dropout was attributed to various factors 
inherent to learning programming: 

§ Programming has a steep initial learning curve. 
Understanding the fundamental abstract concepts of 
algorithmic thinking, which are the basis of 
programming, can be challenging at the beginning. As 
a result, many students become lost from the start and, 
unable to solve the initial simpler activities, end up 
dropping the course. 

§ Programming learning is cumulative, so if a student fails 
to understand an initial concept and complete the first 
activities, it becomes difficult for them to continue with 

subsequent concepts and activities. 
§ In an online learning environment, learning is structured 

through continuous assessment activities proposed to 
students throughout the semester. These activities 
determine the pace of work for students through study 
and practice. Additionally, feedback received from 
these activities provides guidance for overcoming 
difficulties and progressing further. If the pace is not 
maintained, it is easy to give up. 

Inspired by the success of previous changes made in 
mathematics courses within the program, which managed to 
reverse this trend [32], an intervention was planned for the 
2017-2018 academic year to smoothen the learning curve and 
establish a more continuous work rhythm. The main goal was 
to reduce dropout rates and increase the number of students 
who could successfully complete the course. 

B. Description of the Intervention 
In this intervention, there were no changes to the course 

objectives, teaching resources, syllabus, or expected learning 
outcomes. The teaching staff also remained the same. 

The redesign of the instructional model focused on making 
substantial changes to the number and format of the 
continuous assessment activities proposed to students 
throughout the semester. 

The aim was to establish a more continuous work rhythm 
for students, increase their motivation and desire to program, 
and help them become accustomed to the work dynamics from 
the beginning of the semester. Based on the principle that 
programming is learned by programming, the continuous 
assessment activities were reinforced and restructured in 
several aspects: 

§ Shorter activities, each focusing on a single fundamental 
concept. 

§ More frequent activities, with one activity per week. 
§ All activities, both the Continuous Assessment Activities 

(CAAs) and the programming practices (PRs), are 
linked together through a common context (a practical 
case). 

§ Each student receives feedback on every activity. 
The change in the activity plan mainly involved dividing 

each previous CAA into multiple shorter CAAs to increase the 
frequency of submissions. The type of problems remained 
exactly the same; only the exercises were reorganized into 
three blocks with multiple submissions. CAA1 was divided 
into 4 (the new CAA1 to CAA4), CAA2 into 4 (the new 
CAA5 to CAA8), and CAA3 was split into 2 (the new CAA9 
and CAA10). 

With this new plan, submissions became weekly, and 
students received feedback every week with the publication of 
the solution and general comments for the whole group. 
Individual evaluation and grading by the instructor were 
maintained at three points during the semester, after each 
block, i.e., right after the fourth, eighth, and tenth activities 
(CAA4, CAA8, and CAA10) respectively. 

The new continuous assessment model consists of a 
sequence of short, weekly activities, each containing a single 
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exercise that combines theory (algorithmic design) and 
practice (C programming). Specifically, a total of ten 
continuous assessment activities are proposed, which are 
combined with the completion of two mandatory 
comprehensive programming exercises that integrate all 
course content (PR1 and PR2). More specifically, the 
sequence of activities is as follows: 

§ CAA1: Exercise to work on basic data types. 
§ CAA2: Exercise on expressions with basic types. 
§ CAA3: Exercise to practice the conditional structure. 
§ CAA4: Exercise on the use of iterative structures. 
§ CAA5: Exercise requiring the use of tuples. 
§ CAA6: Exercise on actions and functions (modularity). 
§ CAA7: Exercise requiring parameter passing. 
§ CAA8: Exercise requiring the use of tables. 
§ PR1: Integration practice that encompasses all learned 

content in a more extensive C programming project. 
§ CAA9: Exercise introducing a simple abstract data type: 

stack, queue, or list. 
§ CAA10: Exercise to practice operations with stacks, 

queues, and lists. 
§ PR2: Adding an abstract data type structure to the PR1 

project. 
Both the two programming exercises (PRs) and the final in-

person exam (EX) remained unchanged. 
The weekly tests or activities are aligned with the 

programming practices and are part of the same context 
(practical case), so the weekly programming exercises are later 
used in part of the programming practices. This simplifies the 
understanding of the context of the programming practices and 
facilitates their resolution. Although continuous assessment is 
optional, these programming practices are mandatory, and it is 
also necessary to pass them to pass the course. Table I 
summarizes the evaluation model. 

 
In terms of the continuous assessment grade, the CAAs 

account for 40% and the PRs for 60%. This grade is combined 
with the exam grade according to the following percentages: 
70% continuous assessment grade and 30% exam grade. If the 
CAAs are not completed, the final grade is calculated 
according to the following formula: 40% for the practical 
grade and 60% for the exam grade. 
 

V. RESULTS 
The intervention shows a clear improvement in the 

percentage of students who submit the first programming 
practice (PR1). The percentage of students who submit PR1 
has increased in the semesters following the intervention, from 
48.13% to 60.70%. 

The intervention also shows a significant increase in the 
percentage of students who pass the course and a noticeable 
decrease in the percentage of non-submissions in continuous 
assessment. 

Figures 1 and 2 illustrate the evolution of student grades in 
the different continuous assessment activities leading up to the 
submission of PR1 before and after the intervention. The two 
colors indicate whether the student submitted PR1 or not 
(green and brown, respectively). It can be observed that the 
number of dropouts (non-submissions, N) increases as the 
semester progresses. With the original activity plan, there is a 
large group of students who do not submit the first CAA and 
do not submit any subsequent activities. In the case of the new 
plan, this number is lower, and it can also be observed that 
some students who initially receive low grades in the early 
submissions manage to catch up and pass the remaining CAAs 
and submit the programming practice. 
 

 
Figure 1. Relationship between programming practice grades and continuous 
assessment if PR1 is presented in previous semesters before the intervention. 

 

 
Figure 2. Relationship between programming practice grades and continuous 
assessment if PR1 is presented in subsequent semesters after the intervention. 
 

Both graphs also show the general trend of maintaining 
grades at similar levels from one activity to the next: students 
who start with grades of A or B tend to stay in the same range. 
However, students who start with poor results tend to drop out 
at a high rate. 

It can be observed that the number of students who do not 
submit CCA1 before the change is twice the number of those 
who do not submit CCA4 after the intervention. These 
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submissions correspond to the same week of the course. There 
is still a difference, although smaller, when comparing the 
submission of CCA2 before with CCA8 in the subsequent 
semesters. 

 
 
Table II shows the breakdown of grades obtained by 

students before and after the intervention. An increase in 
passing grades can be observed, especially in the Good (B) 
and Excellent (A) categories. Moreover, there is a significant 
decrease in non-submissions (N). The change in the activity 
plan also seems to have improved the final grades of the 
programming practices, increasing the number of passing 
grades. 

 

 
Figure 3. Relationship between programming practice grades and continuous 

assessment if PR1 is presented in the semesters prior to the intervention. 
 

 
Figure 4. Relationship between programming practice grades and continuous 
assessment if PR1 is presented in the semesters following the intervention. 
 
Figures 3 and 4 present two heatmaps derived from the data 

before and after the intervention, respectively, relating the 
grades of the practices and the continuous assessment if PR1 
was submitted. The high correlation between passing or failing 
both components can be observed in both cases. 

However, in the semesters prior to the changes in the 

activity plan, there is a significant group of students who pass 
the continuous assessment with low grades (C+, C-) but fail 
the programming practices (D). In the semesters following the 
intervention, this group is much smaller. 

Based on the results and the interpretation, it is possible to 
consider the implications that this analysis may have for the 
future of the course. On one hand, it seems reasonable to think 
that increasing the number of activities smooths the initial 
learning curve and establishes a more continuous work 
rhythm, encouraging student participation in the course from 
the beginning. These two factors increase the likelihood of 
passing the course and also lead to better results. As shown in 
Table III, the course performance significantly improved in 
the semesters following the intervention. 
 

 
The perception collected through a survey conducted during 

the first semester of the intervention also largely indicates a 
positive evaluation by students. They argue that learning 
gradually but consistently is better than doing it all at once in 
an intermittent manner. Some students explain that at first, 
seeing so many scheduled activities intimidated them, and this 
schedule even caused them stress. However, as they started 
submitting the first few activities, they became accustomed to 
the dynamics and realized the benefits. In the new proposal, 
they also see areas for improvement, such as receiving the 
grade and feedback for each activity earlier, without having to 
wait for each block to finish. 

However, despite the positive results, it is important to 
consider that the intervention has also involved a significant 
increase in workload for the instructors, especially due to the 
additional time required for corrections and the complexity of 
preparing interconnected continuous assessment activities 
related to the same context as the programming practices. 
Additionally, for some students, keeping up with a weekly 
activity rhythm is challenging, especially if they are 
simultaneously taking other courses with a similar approach. 
Although students did not perceive an increased workload but 
rather a more gradual distribution throughout the semester, it 
would be interesting to assess the impact of this intervention 
on other concurrent courses. Since the 2021-2022 academic 
year, the assessment load has been softened by automating the 
correction of some activities. 

A. Validation of the Analysis with PSM 
In order for these pre- and post-intervention indicators to be 

truly comparable, we need to ensure that the populations in 
both periods are similar. 

PSM (Propensity Score Matching) analysis has been used to 
match the pre- and post-intervention data. After matching the 
data, it was checked whether a significant amount of data was 
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discarded to determine if a sufficiently representative subset of 
the original data was retained. Additionally, it was verified 
that the distribution of the variables considered remained 
balanced in both sets. 

Tests were performed using different matching algorithms 
(Exact Matching, Subclassification, Nearest Neighbor 
Matching with and without caliper, and Full Matching), 
although the results were not valid for some of them. For 
example, with the Exact Matching algorithm, the perfect 
balance was achieved in all variables, but over half of the 
observations were lost because only observations in each set 
that had identical values in all variables were matched. In 
other matching algorithms, students from groups that were 
underrepresented, such as women or students from minority 
study programs, were discarded, as was the case with the 
Nearest Neighbor Matching algorithm without a caliper. In 
these cases, the matched dataset became unbalanced and lost 
generality. 

The results were satisfactory with few data losses (only 7 
cases discarded) and balanced final variables in the Nearest 
Neighbor Matching algorithms with calipers of 0.1 and 0.2 
(the most used values), as well as with the Full Matching 
algorithm, which provided the best results. These are the most 
commonly used matching algorithms and are described in the 
literature on PSM [21]. 

The Full Matching algorithm returned a larger set of 
matched data without imbalances in the covariates. A detailed 
analysis of the results shows that only 7 observations were 
discarded, and balance is adequate in all covariates. Figure 5 
shows that the distribution of matched PS (Propensity Scores) 
in the pre- and post-intervention datasets using the Full 
Matching algorithm is similar. The unmatched observations 
(at the top of the figure) correspond to cases whose propensity 
scores fall outside the common range. 

 
Figure 5. Distribution of PS with Full Matching algorithm. 

 
Figure 6 allows a comparison of the histograms of the 

propensity scores. The distributions are very similar before 
and after matching (only a few elements were discarded), as 
well as in the control group and the post-intervention group. 

Therefore, the matching process appears to be appropriate 
because it retains almost all the original data, and there are no 
noticeable differences in the characteristics of the pre-
intervention and post-intervention student populations, as 
demonstrated by the covariate balance analysis. 

All the considered covariates are balanced after matching, 
as can be seen in Figure 7, which compares the balance before 
and after matching of sociodemographic and educational 
profile covariates. A detailed analysis of the data verifies that 
all covariates and their interactions remain balanced. 

With fairly balanced results and a low number of discarded 
observations in several matching algorithms, it can be inferred 
that the student profiles in the pre-intervention and post-
intervention datasets were quite similar. Therefore, the 
analysis conducted in the previous section on performance and 
follow-up is appropriate. Using this data, several logistic 
regression models were presented and analyzed in [33] to 
quantify the influence of the intervention on improving the 
rate of submissions of the first programming practice. 

 
Figure 6. Histogram of PS with Full Matching algorithm. 

 

 
Figure 7. Covariate balance with Full Matching algorithm. 

 

VI. CONCLUSIONS 
In summary, what is most relevant for completing the 

mandatory activity (and consequently passing the course) is 
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that students engage with the course from the beginning by 
completing the continuous assessment activities. In this way, 
the most effective support occurs in the early weeks of the 
course: on one hand, by providing feedback as soon as 
possible to help and encourage students to progress to the next 
activities, and on the other hand, by identifying students who 
do not submit the initial activities and offering them the 
support they need to get started as soon as possible. 

This improvement is aligned with the findings presented in 
the research literature on computer science education. 
Increasing feedback improves results and reduces student 
attrition. With more frequent activity submissions, students 
receive group feedback more often through general comments 
from the instructor and the published solution for each 
activity. This way, students who submit activities on time 
receive information about their progress every week and can 
seek help if needed. The change in the activity schedule also 
helps students maintain a more continuous, constant, and 
progressive work rhythm, which smooths the learning curve 
and improves the final performance. As a trade-off, it requires 
better time management because there are submissions every 
week. 

Based on the results of this research, future work involves 
designing, implementing, and evaluating another intervention 
that enhances more individualized feedback and support for 
students in the initial activities, with the aim of recovering 
students at risk of dropping out or failing the course as soon as 
possible. 

Finally, from a methodological perspective, it is important 
to use quasi-experimental techniques like PSM to correct for 
potential biases resulting from the comparison of potentially 
different populations. 
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