
Citation for published version

Gómez, A. [Alberto], Marco-Galindo, M.J. [María Jesús] & Minguillón, J. [Julià]
(2023). Evaluation of an intervention on activity planning in CS1. IEEE Revista
Iberoamericana de Tecnologías del Aprendizaje, 18(3), 287-294. doi: 10.1109/
RITA.2023.3302174

DOI
https://doi.org/10.1109/RITA.2023.3302174

Handle
http://hdl.handle.net/10609/151019

Document Version
This is the Accepted Manuscript version.
The version published on the UOC’s O2 Repository may differ from the
final published version.

Copyright
© 2023, IEEE

Enquiries
If you believe this document infringes copyright, please contact the UOC’s
O2 Repository administrators: repositori@uoc.edu

Universitat Oberta de Catalunya

https://doi.org/10.1007/11602897_36
mailto:repositori@uoc.edu
https://doi.org/10.1109/RITA.2023.3302174
http://hdl.handle.net/10609/151019

ID EDSP-RITA-07-2022-0001.R2 1

Abstract—A key factor in online learning is an instructional

design that ensures that students maintain an adequate and
constant learning pace throughout the course. This is especially
relevant when a fundamentally practical and progressive
learning approach is required, such as in introductory
programming courses. This article describes an intervention
conducted in a first-year subject of the Computer Engineering
degree called "Programming Fundamentals". This subject poses
many challenges related to the introduction of abstract concepts,
the completion of programming exercises in a specific language,
and the monitoring of the pace of proposed learning activities so
that students can achieve adequate learning. Based on academic
results from several semesters, it was decided to make an
intervention that modified the planning of learning activities to
maintain motivation and learning pace throughout the semester,
while reducing the time between completing the activities and
receiving feedback. An analysis of the results following the
change shows that more students complete the core activities,
with a decrease in dropouts from continuous assessment and an
increase in the number of students passing the course. Data
analysis has been validated using propensity score matching, a
method for evaluating interventions with a quasi-experimental
design.

Index Terms— CS1, activity planning, formative assessment,
intervention evaluation, performance analysis, Propensity Score
Matching.

I. INTRODUCTION
XPERIENCE demonstrates that learning to program is
difficult, and teaching programming is a challenge, as

evidenced by the extensive number of publications on the
subject, as described, for example, in [1], which analyzes 1666
studies on programming learning. Therefore, the literature
reflects a widespread agreement that learning to program is a
challenging process for most students at all levels.
Particularly, the dropout rate in introductory programming
courses at the university level is generally high, while success
rates are low [2]. Despite the extensive literature on the topic
and decades of experience and research, many questions

Alberto Gómez is with Universidad de Extremadura and with Universitat

Oberta de Catalunya (e-mail: agomezma@uoc.edu).
Maria-Jesús Marco-Galindo is with Universitat Oberta de Catalunya (e-

mail: mmarcog@uoc.edu).
Julià Minguillón is with Universitat Oberta de Catalunya (e-mail:

jminguillona@uoc.edu).
DOI (Digital Object Identifier) Pendiente

remain unanswered. Why is learning to program so difficult
for many students? What factors determine a student's success
in an introductory programming course? It appears that no
definitive factor predicts success [3], but it is clear that one of
the elements that positively influence learning effectiveness is
practical programming activities. There is a necessary and
indispensable combination of fundamental knowledge
(knowing) and practical knowledge (knowing how to apply).
The abstract aspects of algorithmic thinking must be put into
practice by coding in a specific programming language
through a well-designed laboratory activity strategy, allowing
students to work on them individually at first and then
progressively integrate them into larger projects [2].

From the student's perspective, many studies analyze which
content areas are more challenging and the cognitive load they
entail [4], as well as the most suitable teaching and learning
strategies to reduce such load [5], including individualized
feedback, which is crucial to receive at critical moments when
it can be most effective [6]. One of these critical moments is
the initial weeks of the course, during which close attention
should be paid to ensure that each student has a positive initial
experience, facilitating their learning and providing quick
assistance to those who show signs of disengagement, such as
not submitting the first assignment or not actively
participating in class [7]. Related to the aforementioned, it is
also important to study factors that positively influence
students' engagement in the subject, encouraging them to start
working on activities from the beginning and committing to
their learning without losing interest or decreasing their
dedication throughout the course. In this regard, the studies by
Kanaparan [8] regarding engagement in an introductory
programming course are relevant, expressed in terms of the
three indicators that determine it: effort, persistence, and
seeking support.

Setting specific short-term goals enhances student
motivation [9]. Therefore, assessment activities throughout the
course maintain consistent engagement with the materials,
while also serving as formative and summative evaluation
[10], [11]. In online learning environments, where
unfortunately dropout rates are high, the design of an activity
plan should aim to maintain student motivation, effort, and
participation [12].

In [13], a review of 32 studies is presented, describing
interventions in introductory programming courses and
assessing the most influential changes leading to
improvements. These changes mainly consist of increasing

Evaluation of an intervention on activity
planning in CS1

Alberto Gómez, Maria-Jesús Marco-Galindo, Julià Minguillón

E

ID EDSP-RITA-07-2022-0001.R2 2

collaboration among students, modifying and contextualizing
content, creating prerequisite courses, adjusting the grading
system, and providing more tutoring. One of the main
conclusions drawn by the authors of this review is that, in
general, all interventions improve results when compared to
traditional approaches, although there are no statistically
significant differences in effectiveness between most of them.

One of the challenges in analyzing the improvement
achieved through an intervention is that it requires comparing
results obtained in different semesters with different student
populations. Generally, it is assumed that the characteristics of
the student populations remain constant across the compared
courses, although this may not necessarily be the case. In our
case, we have used a quasi-experimental design to validate the
comparison of data from four distinct semesters.

This article extends the research presented and published at
the CINAIC 2021 conference, which was selected for
submission to IEEE-RITA [14]. In comparison to the original
article, we expand the literature review and the analysis of the
results and present the validation of the intervention using the
quasi-experimental design method known as propensity score
matching.

This work is structured as follows: Section 2 describes the
quasi-experimental design. Next, Section 3 provides a detailed
description of the methodology employed, including the
context, data used, and the measure used to evaluate the
intervention. The subsequent section describes the initial
situation and the intervention. Section 5 presents the main
results obtained, along with their validation. The final section
describes the main conclusions and outlines future research
directions.

II. INTERVENTION ANALYSIS
To evaluate the effect of an intervention in a course, it is not

sufficient to compare outcome indicators obtained by students
in the semesters before and after the change, as these students
belong to different populations. Directly comparing data from
different semesters carries the risk of significant differences in
student profiles in each semester, thus biasing the evaluation
results due to significant differences in the datasets, not just
the influence of the intervention itself.

A. Quasi-experimental Design
To directly compare results from multiple semesters, a

randomized experiment should be conducted on the same
population, with a control group that follows the previous
curriculum and another group with the new activity
distribution, randomly assigned each semester.

In fields such as medicine, experimental design must always
be randomized, where the control and experimental groups are
formed following a strict methodology that ensures other
factors do not influence the study, maintaining its validity
[15]. In educational research, it is challenging and, in some
cases, unethical to conduct randomized studies with control
groups [16].

For cases where randomized trials cannot be conducted,

quasi-experimental statistical techniques attempt to control, as
much as possible, the influence of other variables besides the
one being analyzed [17]. Quasi-experimental designs involve
selecting similar elements from both data groups (the group
experiencing the intervention and the group that does not) so
that the two final samples being compared can be considered
equivalent and similar to what would be obtained with a
randomized experimental design. These methods aim to
reduce potential bias caused by other confounding variables
that affect individuals' assignment to one group or the other.
When the assignment to groups is random, the effect of
confounding factors is balanced, and bias becomes
insignificant.

B. Propensity Score Matching
Among the most commonly used quasi-experimental

techniques is the Propensity Score Matching (PSM) method
[18], [19]. The propensity score (PS) of an observation is the
probability or propensity of being part of the group that
underwent the intervention, calculated based on the
explanatory variables available. If two observations have the
same values for the considered covariates, it is assumed that
the probability of their participation in the intervention would
be the same. By selecting one observation from the control
group and another from the group that underwent the
intervention, a similar result is obtained as if the observations
had been randomly assigned.

Typically, PS is calculated using a logistic regression
model, with participation or non-participation in the
intervention as the outcome and some variables in the model
as predictors. Subsequently, the data is matched based on
similar PS values from the two initial datasets, discarding
elements that cannot be matched. Once the matched elements
are obtained, the impact of the intervention can be analyzed as
if the data were derived from a randomized study. The
matching between the two groups can be performed according
to various similarity criteria, resulting in different sets of
matched data.

This method has limitations since bias reduction may be
partial if there are not enough significant explanatory variables
or if too many observations are lost during matching,
rendering the matched data no longer representative [20].
Therefore, it is important to verify after matching that too
many observations have not been lost and that the
characteristics of the intervention and control groups are
balanced across most of the considered variables [21].

In [19], Harris provides an extensive literature review on
the use of PSM in higher education, including a case study
comparing test results based on the students' enrolled
programs of study. As admission requirements and program
characteristics differ, entrance grades, student profiles, or
motivation can significantly influence the results, beyond the
specific program of study. Directly comparing results without
applying PSM would disregard these differentiating factors
and may lead to incorrect conclusions. In [22], PSM is used to
eliminate bias when a control group could not be randomly
formed, and the scope of the results is always limited by the

ID EDSP-RITA-07-2022-0001.R2 3

potential confounding factors considered in the study.
Various algorithms can be used to match observations with

similar propensity scores. In this work, several commonly
used algorithms were employed to compare the resulting
matched datasets and select those that exhibited a greater
degree of balance. Several R packages assist in the PSM
process (e.g., MatchIt [23] or Matching [24]), as well as in
result visualization and interpretation (e.g., Cobalt [25] or
PSAgraphics [26]). In this analysis, MatchIt and Cobalt were
primarily utilized.

The matching algorithms used, according to the names used
in the MatchIt package, are as follows:

§ Exact Matching: Observations that have exactly the same
values for all variables are matched.

§ Subclassification: A predetermined number of disjoint
classes is formed, where the distribution of covariates
is as similar as possible.

§ Nearest Neighbor Matching: The PS is used to match
each observation from one group with the most similar
value in the other group. The assignment is performed
in order using a greedy algorithm, sometimes resulting
in matching observations with very different values. An
additional option, a caliper, can be used to ensure that
the difference between matched values is smaller than a
specified proportion of the standard deviation of the
calculated distances. Additionally, this type of
matching can be combined with exact matching for
selected variables.

§ Full Matching: As many disjoint classes as necessary are
formed. Each class contains one observation from one
of the two groups and as many observations from the
other group as they match with the first observation.

III. METHODOLOGY
This section describes the scenario in which the proposed

intervention was designed and implemented, according to the
following methodology.

The main change in the intervention consisted of dividing
the continuous assessment activities into shorter segments and
requiring them to be submitted every week, aiming for a more
continuous work process and more frequent overall feedback,
following what has been seen in the literature.

A. Context
The course "Fundamentals of Programming" is a mandatory

course in the Bachelor's programs of Computer Science and of
Telecommunication Technologies Engineering at the
Universitat Oberta de Catalunya. It is also an elective course
in some specialized master's programs and part of the
university's open program.

As a virtual university, it has a highly heterogeneous
student body. However, all students take the course in the
same manner and in the same virtual learning environment.

In summary, 82.17% of the students are male, and the
median age at the time of taking the course is 30 years (with
the most popular age group being 31-40 years, followed by

26-30 years). Most students simultaneously take two to three
courses, a typical situation for part-time students.

The activities are accompanied by the necessary resources
to complete them: theoretical content on algorithmic thinking,
examples, and instructions for coding in C, as well as a virtual
machine with the Codelite development environment for
programming. Once the deadline for a Continuous Assessment
Activity (CAA) or a programming practice (PR) has passed,
the solutions are published, and each student receives a grade
for their exercise. The continuous assessment activities are
graded using an alphabetical system: A (very good), B (good),
C+ (sufficient), C- (low), D (very low), and N (not submitted).
However, the final grade is numerical, according to the
Spanish grading system.

The course instructors use the virtual classroom's
announcement board to communicate any issues related to the
activities. Student questions, on the other hand, are shared and
resolved through the classroom forum or via personal
messages between the instructor and the student. The forum is
a space where students are expected to participate by sharing
their questions and collaboratively creating knowledge. For
the practical part of the course, students have the support of
the programming laboratory, where a laboratory instructor
helps with programming environment issues and C code
problems [27].

As an introductory programming course, it covers the basic
principles of algorithmic thinking combined with
programming practices in the C programming language.
Continuous assessment is combined with three algorithmic
design activities, two C programming practices, and a final in-
person exam. The three CAAs are optional, allowing students
to decide how many and which ones they want to complete,
knowing that each one contributes to the final grade. The two
programming practices (PR1 and PR2) and the final exam
(EX) are mandatory.

B. Data Used
To analyze whether the changes introduced in this

intervention have reduced dropout rates and improved
academic performance, data from four semesters were
utilized: two prior to the modification of the activity plan (the
second semester of the 2016-17 academic year, 2016/2, and
the first semester of the 2017-18 academic year, 2017/1) and
two after the changes (the second semester of the 2017-18
academic year, 2017/2, and the first semester of the 2018-19
academic year, 2018/1). This allows for a comparison of an
entire course before and after the intervention. The data were
obtained from the institutional Learning Record Store [28],
resulting in a total of 1487 observations, with 721 prior to the
change and 766 after, where each observation represents a
student enrolled in one of the four analyzed semesters.

Each observation describes the profile and grades of a
student in a given semester. The main variables analyzed can
be grouped into three categories:

§ Sociodemographic profile: gender, age group.
§ Study profile: enrolled degree, admission pathway,

whether the student comes from vocational training or

ID EDSP-RITA-07-2022-0001.R2 4

university studies, number of courses taken in the
semester, number of semesters enrolled in the degree
program, and number of times the course has been
repeated.

§ Obtained grades: grades for each CAA, PR1, PR2, final
grade for the programming practices, and final grade
for continuous assessment.

C. Evaluation Measures
The main objective of the analysis is to determine if the

implemented changes have positively influenced student
performance by reducing high dropout rates in the course. The
instructional design and evaluation model are comparable in
both cases until the delivery of the first programming practice
PR1. From that point onward, after a significant portion of the
semester has elapsed, there are some changes in the
consideration of PR2 and minor modifications to the syllabus.

Passing the course is primarily determined by successfully
completing PR1. The delivery of the first programming
practice (PR1) is one of the clearest indicators of a student's
final performance in the course. Among those who submit
PR1, 83.4% pass the programming practices, and 93.3% pass
continuous assessment. Only 21% of those who do not submit
the first programming practice pass the continuous assessment
of the course (although they cannot pass the course since PR1
is a requirement).

Therefore, the analysis focuses on how the implemented
changes have influenced the submission rates of PR1.

IV. INTERVENTION FRAMEWORK
This section provides a detailed description of the starting

point and the fundamental changes introduced by the
intervention.

A. Starting Point
With the activity plan described in the context, the number

of students who dropped out of the course was quite high, and
the final performance was low, always around 30%. These
results are typical and in line with the literature [29], [30],
[31], and they were already accepted as normal for an
introductory programming course, especially in a fully online
teaching environment. Analyzing the students' activity in
detail over several semesters, it was observed that the main
problem was dropout during the first few weeks of the
semester. This dropout was attributed to various factors
inherent to learning programming:

§ Programming has a steep initial learning curve.
Understanding the fundamental abstract concepts of
algorithmic thinking, which are the basis of
programming, can be challenging at the beginning. As
a result, many students become lost from the start and,
unable to solve the initial simpler activities, end up
dropping the course.

§ Programming learning is cumulative, so if a student fails
to understand an initial concept and complete the first
activities, it becomes difficult for them to continue with

subsequent concepts and activities.
§ In an online learning environment, learning is structured

through continuous assessment activities proposed to
students throughout the semester. These activities
determine the pace of work for students through study
and practice. Additionally, feedback received from
these activities provides guidance for overcoming
difficulties and progressing further. If the pace is not
maintained, it is easy to give up.

Inspired by the success of previous changes made in
mathematics courses within the program, which managed to
reverse this trend [32], an intervention was planned for the
2017-2018 academic year to smoothen the learning curve and
establish a more continuous work rhythm. The main goal was
to reduce dropout rates and increase the number of students
who could successfully complete the course.

B. Description of the Intervention
In this intervention, there were no changes to the course

objectives, teaching resources, syllabus, or expected learning
outcomes. The teaching staff also remained the same.

The redesign of the instructional model focused on making
substantial changes to the number and format of the
continuous assessment activities proposed to students
throughout the semester.

The aim was to establish a more continuous work rhythm
for students, increase their motivation and desire to program,
and help them become accustomed to the work dynamics from
the beginning of the semester. Based on the principle that
programming is learned by programming, the continuous
assessment activities were reinforced and restructured in
several aspects:

§ Shorter activities, each focusing on a single fundamental
concept.

§ More frequent activities, with one activity per week.
§ All activities, both the Continuous Assessment Activities

(CAAs) and the programming practices (PRs), are
linked together through a common context (a practical
case).

§ Each student receives feedback on every activity.
The change in the activity plan mainly involved dividing

each previous CAA into multiple shorter CAAs to increase the
frequency of submissions. The type of problems remained
exactly the same; only the exercises were reorganized into
three blocks with multiple submissions. CAA1 was divided
into 4 (the new CAA1 to CAA4), CAA2 into 4 (the new
CAA5 to CAA8), and CAA3 was split into 2 (the new CAA9
and CAA10).

With this new plan, submissions became weekly, and
students received feedback every week with the publication of
the solution and general comments for the whole group.
Individual evaluation and grading by the instructor were
maintained at three points during the semester, after each
block, i.e., right after the fourth, eighth, and tenth activities
(CAA4, CAA8, and CAA10) respectively.

The new continuous assessment model consists of a
sequence of short, weekly activities, each containing a single

ID EDSP-RITA-07-2022-0001.R2 5

exercise that combines theory (algorithmic design) and
practice (C programming). Specifically, a total of ten
continuous assessment activities are proposed, which are
combined with the completion of two mandatory
comprehensive programming exercises that integrate all
course content (PR1 and PR2). More specifically, the
sequence of activities is as follows:

§ CAA1: Exercise to work on basic data types.
§ CAA2: Exercise on expressions with basic types.
§ CAA3: Exercise to practice the conditional structure.
§ CAA4: Exercise on the use of iterative structures.
§ CAA5: Exercise requiring the use of tuples.
§ CAA6: Exercise on actions and functions (modularity).
§ CAA7: Exercise requiring parameter passing.
§ CAA8: Exercise requiring the use of tables.
§ PR1: Integration practice that encompasses all learned

content in a more extensive C programming project.
§ CAA9: Exercise introducing a simple abstract data type:

stack, queue, or list.
§ CAA10: Exercise to practice operations with stacks,

queues, and lists.
§ PR2: Adding an abstract data type structure to the PR1

project.
Both the two programming exercises (PRs) and the final in-

person exam (EX) remained unchanged.
The weekly tests or activities are aligned with the

programming practices and are part of the same context
(practical case), so the weekly programming exercises are later
used in part of the programming practices. This simplifies the
understanding of the context of the programming practices and
facilitates their resolution. Although continuous assessment is
optional, these programming practices are mandatory, and it is
also necessary to pass them to pass the course. Table I
summarizes the evaluation model.

In terms of the continuous assessment grade, the CAAs

account for 40% and the PRs for 60%. This grade is combined
with the exam grade according to the following percentages:
70% continuous assessment grade and 30% exam grade. If the
CAAs are not completed, the final grade is calculated
according to the following formula: 40% for the practical
grade and 60% for the exam grade.

V. RESULTS
The intervention shows a clear improvement in the

percentage of students who submit the first programming
practice (PR1). The percentage of students who submit PR1
has increased in the semesters following the intervention, from
48.13% to 60.70%.

The intervention also shows a significant increase in the
percentage of students who pass the course and a noticeable
decrease in the percentage of non-submissions in continuous
assessment.

Figures 1 and 2 illustrate the evolution of student grades in
the different continuous assessment activities leading up to the
submission of PR1 before and after the intervention. The two
colors indicate whether the student submitted PR1 or not
(green and brown, respectively). It can be observed that the
number of dropouts (non-submissions, N) increases as the
semester progresses. With the original activity plan, there is a
large group of students who do not submit the first CAA and
do not submit any subsequent activities. In the case of the new
plan, this number is lower, and it can also be observed that
some students who initially receive low grades in the early
submissions manage to catch up and pass the remaining CAAs
and submit the programming practice.

Figure 1. Relationship between programming practice grades and continuous
assessment if PR1 is presented in previous semesters before the intervention.

Figure 2. Relationship between programming practice grades and continuous
assessment if PR1 is presented in subsequent semesters after the intervention.

Both graphs also show the general trend of maintaining
grades at similar levels from one activity to the next: students
who start with grades of A or B tend to stay in the same range.
However, students who start with poor results tend to drop out
at a high rate.

It can be observed that the number of students who do not
submit CCA1 before the change is twice the number of those
who do not submit CCA4 after the intervention. These

ID EDSP-RITA-07-2022-0001.R2 6

submissions correspond to the same week of the course. There
is still a difference, although smaller, when comparing the
submission of CCA2 before with CCA8 in the subsequent
semesters.

Table II shows the breakdown of grades obtained by

students before and after the intervention. An increase in
passing grades can be observed, especially in the Good (B)
and Excellent (A) categories. Moreover, there is a significant
decrease in non-submissions (N). The change in the activity
plan also seems to have improved the final grades of the
programming practices, increasing the number of passing
grades.

Figure 3. Relationship between programming practice grades and continuous

assessment if PR1 is presented in the semesters prior to the intervention.

Figure 4. Relationship between programming practice grades and continuous
assessment if PR1 is presented in the semesters following the intervention.

Figures 3 and 4 present two heatmaps derived from the data

before and after the intervention, respectively, relating the
grades of the practices and the continuous assessment if PR1
was submitted. The high correlation between passing or failing
both components can be observed in both cases.

However, in the semesters prior to the changes in the

activity plan, there is a significant group of students who pass
the continuous assessment with low grades (C+, C-) but fail
the programming practices (D). In the semesters following the
intervention, this group is much smaller.

Based on the results and the interpretation, it is possible to
consider the implications that this analysis may have for the
future of the course. On one hand, it seems reasonable to think
that increasing the number of activities smooths the initial
learning curve and establishes a more continuous work
rhythm, encouraging student participation in the course from
the beginning. These two factors increase the likelihood of
passing the course and also lead to better results. As shown in
Table III, the course performance significantly improved in
the semesters following the intervention.

The perception collected through a survey conducted during

the first semester of the intervention also largely indicates a
positive evaluation by students. They argue that learning
gradually but consistently is better than doing it all at once in
an intermittent manner. Some students explain that at first,
seeing so many scheduled activities intimidated them, and this
schedule even caused them stress. However, as they started
submitting the first few activities, they became accustomed to
the dynamics and realized the benefits. In the new proposal,
they also see areas for improvement, such as receiving the
grade and feedback for each activity earlier, without having to
wait for each block to finish.

However, despite the positive results, it is important to
consider that the intervention has also involved a significant
increase in workload for the instructors, especially due to the
additional time required for corrections and the complexity of
preparing interconnected continuous assessment activities
related to the same context as the programming practices.
Additionally, for some students, keeping up with a weekly
activity rhythm is challenging, especially if they are
simultaneously taking other courses with a similar approach.
Although students did not perceive an increased workload but
rather a more gradual distribution throughout the semester, it
would be interesting to assess the impact of this intervention
on other concurrent courses. Since the 2021-2022 academic
year, the assessment load has been softened by automating the
correction of some activities.

A. Validation of the Analysis with PSM
In order for these pre- and post-intervention indicators to be

truly comparable, we need to ensure that the populations in
both periods are similar.

PSM (Propensity Score Matching) analysis has been used to
match the pre- and post-intervention data. After matching the
data, it was checked whether a significant amount of data was

ID EDSP-RITA-07-2022-0001.R2 7

discarded to determine if a sufficiently representative subset of
the original data was retained. Additionally, it was verified
that the distribution of the variables considered remained
balanced in both sets.

Tests were performed using different matching algorithms
(Exact Matching, Subclassification, Nearest Neighbor
Matching with and without caliper, and Full Matching),
although the results were not valid for some of them. For
example, with the Exact Matching algorithm, the perfect
balance was achieved in all variables, but over half of the
observations were lost because only observations in each set
that had identical values in all variables were matched. In
other matching algorithms, students from groups that were
underrepresented, such as women or students from minority
study programs, were discarded, as was the case with the
Nearest Neighbor Matching algorithm without a caliper. In
these cases, the matched dataset became unbalanced and lost
generality.

The results were satisfactory with few data losses (only 7
cases discarded) and balanced final variables in the Nearest
Neighbor Matching algorithms with calipers of 0.1 and 0.2
(the most used values), as well as with the Full Matching
algorithm, which provided the best results. These are the most
commonly used matching algorithms and are described in the
literature on PSM [21].

The Full Matching algorithm returned a larger set of
matched data without imbalances in the covariates. A detailed
analysis of the results shows that only 7 observations were
discarded, and balance is adequate in all covariates. Figure 5
shows that the distribution of matched PS (Propensity Scores)
in the pre- and post-intervention datasets using the Full
Matching algorithm is similar. The unmatched observations
(at the top of the figure) correspond to cases whose propensity
scores fall outside the common range.

Figure 5. Distribution of PS with Full Matching algorithm.

Figure 6 allows a comparison of the histograms of the

propensity scores. The distributions are very similar before
and after matching (only a few elements were discarded), as
well as in the control group and the post-intervention group.

Therefore, the matching process appears to be appropriate
because it retains almost all the original data, and there are no
noticeable differences in the characteristics of the pre-
intervention and post-intervention student populations, as
demonstrated by the covariate balance analysis.

All the considered covariates are balanced after matching,
as can be seen in Figure 7, which compares the balance before
and after matching of sociodemographic and educational
profile covariates. A detailed analysis of the data verifies that
all covariates and their interactions remain balanced.

With fairly balanced results and a low number of discarded
observations in several matching algorithms, it can be inferred
that the student profiles in the pre-intervention and post-
intervention datasets were quite similar. Therefore, the
analysis conducted in the previous section on performance and
follow-up is appropriate. Using this data, several logistic
regression models were presented and analyzed in [33] to
quantify the influence of the intervention on improving the
rate of submissions of the first programming practice.

Figure 6. Histogram of PS with Full Matching algorithm.

Figure 7. Covariate balance with Full Matching algorithm.

VI. CONCLUSIONS
In summary, what is most relevant for completing the

mandatory activity (and consequently passing the course) is

ID EDSP-RITA-07-2022-0001.R2 8

that students engage with the course from the beginning by
completing the continuous assessment activities. In this way,
the most effective support occurs in the early weeks of the
course: on one hand, by providing feedback as soon as
possible to help and encourage students to progress to the next
activities, and on the other hand, by identifying students who
do not submit the initial activities and offering them the
support they need to get started as soon as possible.

This improvement is aligned with the findings presented in
the research literature on computer science education.
Increasing feedback improves results and reduces student
attrition. With more frequent activity submissions, students
receive group feedback more often through general comments
from the instructor and the published solution for each
activity. This way, students who submit activities on time
receive information about their progress every week and can
seek help if needed. The change in the activity schedule also
helps students maintain a more continuous, constant, and
progressive work rhythm, which smooths the learning curve
and improves the final performance. As a trade-off, it requires
better time management because there are submissions every
week.

Based on the results of this research, future work involves
designing, implementing, and evaluating another intervention
that enhances more individualized feedback and support for
students in the initial activities, with the aim of recovering
students at risk of dropping out or failing the course as soon as
possible.

Finally, from a methodological perspective, it is important
to use quasi-experimental techniques like PSM to correct for
potential biases resulting from the comparison of potentially
different populations.

ACKNOWLEDGMENT
The authors would like to thank the Editorial Committee of

CINAIC 2021 for inviting them to publish the article in the
VAEP-RITA journal. This research was partially funded by
project 2021SGR01412 STEAM University Learning
Research Group from the Generalitat de Catalunya.

REFERENCES
[1] A. Luxton-Reilly et al., “Introductory programming: A systematic

literature review,” Annu. Conf. Innov. Technol. Comput. Sci. Educ.
ITiCSE, pp. 55–106, Jul. 2018, doi: 10.1145/3293881.3295779.

[2] C. Watson and F. W. B. Li, “Failure Rates in Introductory
Programming Revisited,” in Proceedings of the 2014 Conference on
Innovation in Computer Science Education, in ITiCSE ’14. New
York, NY, USA: Association for Computing Machinery, 2014, pp.
39–44. doi: 10.1145/2591708.2591749.

[3] A. S. Carter, C. D. Hundhausen, and O. Adesope, “Blending measures
of programming and social behavior into predictive models of student
achievement in early computing courses,” ACM Trans. Comput. Educ.
TOCE, vol. 17, no. 3, pp. 1–20, 2017.

[4] J. Sorva, Visual program simulation in introductory programming
education. Aalto University, 2012.

[5] R. Hoda and P. Andreae, “It’s not them, it’s us! Why computer
science fails to impress many first years,” in Proceedings of the
Sixteenth Australasian Computing Education Conference-Volume 148,
2014, pp. 159–162.

[6] C. Ott, A. Robins, and K. Shephard, “Translating principles of
effective feedback for students into the CS1 context,” ACM Trans.
Comput. Educ. TOCE, vol. 16, no. 1, pp. 1–27, 2016.

[7] L. Porter and D. Zingaro, “Importance of early performance in CS1:
two conflicting assessment stories,” in Proceedings of the 45th ACM
technical symposium on Computer science education, 2014.

[8] G. Kanaparan, R. Cullen, and D. D. Mason, “Self-Efficacy and
Engagement as Predictors of Student Programming Performance.,” in
PACIS, 2013, p. 282.

[9] D. Bueno, Neurociencia para educadores, 3rd ed. Octaedro, 2017.
[10] J. Biggs and C. Tang, Teaching for Quality Learning at University,

4th ed. SRHE and Open University Press, 2003.
[11] B. E. Vaessen, A. van den Beemt, G. van de Watering, L. W. van

Meeuwen, L. Lemmens, and P. den Brok, “Students’ perception of
frequent assessments and its relation to motivation and grades in a
statistics course: a pilot study,” Assess. Eval. High. Educ., vol. 42, no.
6, pp. 872–886, 2017, doi: 10.1080/02602938.2016.1204532.

[12] A. Sangra, “Decálogo para la mejora de la docencia online: propuestas
para educar en contextos presenciales discontinuos,” Decál. Para
Mejora Docencia Online, pp. 1–215, 2020.

[13] A. Vihavainen, J. Airaksinen, and C. Watson, “A Systematic Review
of Approaches for Teaching Introductory Programming and Their
Influence on Success,” in Proceedings of the 10th Annual Conference
on International Computing Education Research, in ICER ’14. New
York, NY, USA: ACM, 2014, pp. 19–26. doi:
10.1145/2632320.2632349.

[14] M.-J. Marco-Galindo and J. Minguillón, “La evaluación formativa
como factor decisivo en el aprendizaje online. Intervención en una
asignatura inicial de programación,” in Actas del VI Congreso
Internacional sobre Aprendizaje, Innovación y Cooperación (CINAIC
2021), 2021, pp. 677–681.

[15] G. Cousin, Researching Learning in Higher Education: An
Introduction to Contemporary Methods and Approaches. in SEDA
Series. Taylor & Francis, 2009. [Online]. Available:
https://books.google.es/books?id=I3WQAgAAQBAJ

[16] A. J. Ko and S. A. Fincher, “A Study Design Process,” in The
Cambridge Handbook of Computing Education Research, Cambridge
University Press, 2019, pp. 81–101. doi:
10.1017/9781108654555.005.

[17] M. M. Arias, “Lectura crítica en pequeñas dosis Índices de
propensión. El deseo de parecerse al ensayo clínico,” Rev Pediatr Aten
Primaria, vol. 17, pp. 87–90, 2015.

[18] C. Ramirez Ovalle, “Sobre la Técnica de Puntajes de Propensión
(Propensity Score Matching) y sus usos en la investigación en
Educación,” Educ. Cienc., vol. 4, no. 43, pp. 81–89, 2015.

[19] H. D. Harris, “Propensity score matching in higher education
assessment,” Masters Theses, May 2015, [Online]. Available:
https://commons.lib.jmu.edu/master201019/55

[20] S. Guo, M. Fraser, and Q. Chen, “Propensity score analysis: Recent
debate and discussion,” J. Soc. Soc. Work Res., vol. 11, no. 3, pp.
463–482, Sep. 2020, doi:
10.1086/711393/ASSET/IMAGES/LARGE/FG1.JPEG.

[21] H. Harris and S. J. Horst, “A brief guide to decisions at each step of
the propensity score matching process,” Pract. Assess. Res. Eval., vol.
21, no. 4, 2016.

[22] L. A. Lim et al., “What changes, and for whom? A study of the impact
of learning analytics-based process feedback in a large course,” Learn.
Instr., 2019, doi: 10.1016/j.learninstruc.2019.04.003.

[23] D. E. Ho, K. Imai, G. King, and E. A. Stuart, “MatchIt:
Nonparametric Preprocessing for Parametric Causal Inference,” J.
Stat. Softw., vol. 42, no. 8, pp. 1–28, 2011.

[24] J. S. Sekhon, “Multivariate and Propensity Score Matching The
Matching package for R,” J. Stat. Softw., vol. 10, no. 2, 2008.

[25] N. Greifer, cobalt: Covariate Balance Tables and Plots. 2020.
[Online]. Available: https://cran.r-project.org/package=cobalt

[26] J. E. Helmreich and R. M. Pruzek, “PSAgraphics: An R package to
support propensity score analysis,” J. Stat. Softw., vol. 29, no. 6, pp.
1–23, 2009, doi: 10.18637/jss.v029.i06.

[27] M. J. Marco Galindo and J. Prieto Blázquez, “Necesidades específicas
para la docencias de programación en un entorno virtual,” Actas
JENUI, pp. 5–12, 2002.

[28] J. Minguillón, J. Conesa, M. E. Rodríguez, and F. Santanach,
“Learning Analytics in Practice: Providing E-Learning Researchers
and Practitioners with Activity Data,” in Frontiers of Cyberlearning,
Springer, 2018, pp. 145–167.

ID EDSP-RITA-07-2022-0001.R2 9

[29] A. V. Robins, “Novice Programmers and Introductory Programming,”
in The Cambridge Handbook of Computing Education Research, S. A.
Fincher and A. V. Robins, Eds., in Cambridge Handbooks in
Psychology. Cambridge University Press, 2019, pp. 327–376. doi:
10.1017/9781108654555.013.

[30] A. Luxton-Reilly, “Learning to Program is Easy,” in Proceedings of
the 2016 ACM Conference on Innovation and Technology in
Computer Science Education, New York, NY, USA: Association for
Computing Machinery, 2016, pp. 284–289. doi:
10.1145/2899415.2899432.

[31] G. Bain and I. Barnes, “Why Is programming so hard to learn?,” in
ITICSE 2014 - Proceedings of the 2014 Innovation and Technology in
Computer Science Education Conference, Association for Computing
Machinery, 2014, p. 356. doi: 10.1145/2591708.2602675.

[32] T. Sancho-Vinuesa, R. Masià, M. Fuertes-Alpiste, and N. Molas-
Castells, “Exploring the effectiveness of continuous activity with
automatic feedback in online calculus,” Comput. Appl. Eng. Educ.,
vol. 26, no. 1, pp. 62–74, 2018.

[33] A. Gómez, M. J. Marco-Galindo, J. Minguillón, and J. Escayola-
Mansilla, “Análisis de la mejora de los resultados de una asignatura
inicial de programación tras cambiar la planificación de actividades,”
in Actas de las Jornadas sobre Enseñanza Universitaria de la
Informática (JENUI), 2021, pp. 83–90.

Alberto Gómez holds a Bachelor's degree in Computer Science from the
Universitat Politècnica de Catalunya (UPC). He obtained a Master's degree in
Data Science from the Universitat Oberta de Catalunya (UOC). As a professor
at the University of Extremadura, he teaches programming courses primarily.
He has participated in and led various educational innovation projects related
to new methodologies, learning analytics, and teaching programming. He is a
member of AENUI (Association of University Teachers of Computer
Science), where he received the 2019 Award for Teaching Quality and
Innovation.

Maria-Jesús Marco Galindo holds a Bachelor's degree in Computer Science
from the Universitat Politècnica de Catalunya (UPC). She earned a Ph.D. in
Education and ICT from the Universitat Oberta de Catalunya (UOC). Since
1999, she has been a professor at UOC, where she conducts research within
the STEAM University Learning Research Group (EduSTEAM), focusing on
teaching programming and transversal competencies in virtual environments.
She is a member of AENUI (Association of University Teachers of Computer
Science), where she received the 2023 Award for Teaching Quality and
Innovation.

Julià Minguillón holds a Ph.D. in Computer Engineering from the Universitat
Autònoma de Barcelona (UAB). Since 2001, he has been a professor at UOC,
where he conducts research within the EduSTEAM group on topics related to
student analysis in virtual environments, learning analytics, and the use of
interactive data visualizations to support teachers and students.

	DEF_Caratula_Article_Postprint_en + copyright publisher.pdf
	IEEE-RITA-CINAIC_english_FINAL VERSION.pdf

