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ABSTRACT The Bitcoin Lightning Network (LN) disrupts the scenario as a fast and scalable method to
make payment transactions off-chain, alongside the Bitcoin network, thereby reducing the on-chain burden.
Understanding the topology of the LN is crucial, not only because it is key to performance, but also for
ensuring its security and privacy guarantees. The topology of the LN affects, among others, the ability to
successfully route payments between nodes, its resilience (against both attacks and random failures), and
the privacy of payments. Existing research on LN topology focuses on studying the degree, betweenness,
and closeness as metrics that better describe the centrality of nodes. However, to the best of our knowledge,
previous studies do not encompass the network as a whole because of the limitation of using only the capacity
of channels as its principal property. The contributions of this study are two-fold. On the one hand, this paper
discusses the application of classic centrality metrics for evaluating the centrality in the LN. On the other
hand, we provide alternative metrics to evaluate centrality. Our approach extends the analysis by adding
metrics (strength, Opsahl, current-flow betweenness) and network properties (capacity, fee, balance, channel,
and pending Hashed Timelock Contracts (HTLCs)). Based on the results obtained using these metrics,
we provide an in-depth analysis of the metric that best defines the centrality of this network.

INDEX TERMS Bitcoin lightning network, blockchain, centrality metrics, multigraph, network topology,
node centrality, path restrictions, payment channel network.

I. INTRODUCTION
Blockchain-based cryptocurrencies address double-spending
problem by storing all transaction history in an immutable
ledger, blockchain, to account for ownership of each coin
or balance. Such an approach has its obvious scalability
problems pointed out from its beginning [7], [8] and multiple
solutions have been proposed. From all of them, two-layer
approaches are nowadays one of the most used ones. Such
solutions use an upper layer approach constructed over
blockchain-based technology. One of those proposals is the
Payment Channel Networks (PCN), a network that routes
payments between users, being the LN over Bitcoin, the most
used PCN at present.

Payment channels build PCN by linking pairs of users on
the network. An untrustedmechanism, used by the underlying
blockchain, allows establishing a channel that connects
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each pair of users. For instance, Bitcoin LN establishes
its channels using a funding transaction that locks channel
funds in a multisignature address controlled by both channel
members. Since network users may open multiple channels
with multiple users, the result is a P2P network of payment
channels. Furthermore, PCNs allow the interesting property
of payment atomic execution through multiple hops. Such
property allows routing a payment between users A and B
even if those users are not directly connected by a payment
channel. The only need is that both users are linked through
a payment path. The atomicity execution ensures that the
multihop payment, although conceptually performed by
multiple single payments between user pairs in the path,
cannot be partially executed so in case one of the payment
hops is executed the whole payments in the path will take
place.

Having such a vision of PCN, the natural question that
arises is to what extent the decentralization and untrusted
model tied to the base blockchain layer have been extended
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to those second layer proposals. To that end, measures on
the centralization of PCN, such as the Bitcoin LN, has
been published in multiple works [3], [11], [14], [17], [18],
[24], [25]. However, as we point out in Section VII, most of
those approaches do not capture the semantics of the PCN
itself and only provide the first-level analysis of standard
centrality measures of graph theory.

In this paper, we analyze different centrality measures of
the Bitcoin LN both from a theoretical and from a practical
point of view. We have chosen the Bitcoin LN to perform
our practical analysis, although our theoretical approach can
be applied to any PCN. We base our theoretical analysis on
the very basic properties of the LN such as channel, capacity,
balances, and fees. These properties can be directly identified
in other PCN over which our model can be also applied. Our
approach is novel in the sense that our analysis deepens into
the semantics of the network properties that are specific to a
PCN. Those related to channel capacity, channel balance, and
payment processing fee.

The main contributions of the paper are:
1) We provide a general model for the LN, that takes

into account not only the capacity of channels but also
balances, fees, and other policy parameters.

2) We discuss the semantics of applying classical cen-
trality metrics to evaluate the LN and explain how
can they be used to evaluate LN properties. We also
highlight important restrictions to take into account
when evaluating the centrality of PCN.

3) We provide additional metrics to evaluate the centrality
in the LN and explain why they are better suited for this
purpose.

4) We analyze the centrality in the LN over a period of
two years, using the model and semantics previously
described.

The paper is organized as follows. In Section II we describe
a model for the LN. This model is then used throughout the
rest of the paper to represent LN instances. Then, Section III
discusses the usage of classic centrality metrics to evaluate
the centrality in the LN, highlighting the risks and pitfalls
of doing so without taking into account the particularities
of this network. After that, Section IV examines the concept
of a path in the context of the LN and the consequences it
has when computing centrality metrics. After the discussions,
Section V summarizes the metrics we propose to use to
evaluate the centrality in the LN, and Section VI provides
the results of evaluating centrality over real LN snapshots.
Section VII surveys the existing related work and finally,
Section VIII presents the conclusions of the paper.

II. A MODEL FOR THE BITCOIN LN
Several literature papers (see Section VII for more details)
model Bitcoin LN via graph theory tools. However, all
the proposals reviewed are based mainly on very general
information about the channels, such as their mere existence
between two users and their capacity. But, they rule out other
more subtle information that greatly affects the flow ofmoney

TABLE 1. Summary of the model’s definition.

between users, such as: how both parts of the channel divide
the capacity of a channel (i.e., their balance in the channel),
or how the routing and HTLC apply the fees.

In this section, we propose a finer model to represent a
snapshot1 of the LN. We model the LN as two graphs G1 and
G2, together with two functions, fV and fE , that map elements
of one graph with elements of the other graph. G1 is an
undirected graph and G2 is a directed graph. The rationale
behind this decision is that there are properties of the channels
that are better modeled with an undirected graph, but other
properties are better represented with a directed one. Having
thus two graphs, allows us to create a rich representation of
the network. Moreover, this double representation allows us
to apply graph-theoretic metrics to measure the nodes of the
network in a significant way. Next, we describe the details
of the two graphs that represent the LN using the proposed
model, details summarized in Table 1.

Let G1 = (V1,E1) be an undirected graph, that contains
static channel information that can be extracted from the
blockchain.

Nodes vi ∈ V1 represent users of the LN identified by their
public keys. Edges eij ∈ E1 represent open channels between
those users. The outpoint (transaction identifier and output
index) that funds the channel uniquely identifies each edge.

The graphG1 may be a multigraph because many different
channels can be opened between a pair of nodes. Moreover,
the graph is indeed undirected, because the outpoint that
defines is a 2-out-of-2 multisig output, where none of the two

1We define a snapshot of the LN as the status of the payment channels that
conform the network at a given instant of time.
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public keys has any advantage nor privileged position, and
thus both participants have the same role in the relationship.

Edges encode channel information that can be extracted
from the funding transaction, e.g., the capacity of the channel.
We use the double subindex notation in an edge eij to indicate
the index of each incident vertex of the edge, that is, eij =
(vi, vj). Furthermore, since G1 is an undirected graph, eij =
eji = (vi, vj) = (vj, vi). Note that, since G1 is a multigraph,
we add an index to identify the multiple edges of the same
two nodes, e(ij)k = eijk . For simplicity, we omit this third
index from the notationwhenever it is not specifically needed.
We denote by cij the capacity of edge eij, with c(eij) = cij.
Let G2 = (V2,E2) be a directed graph, that contains

dynamic channel information that is reflected in off-chain
commitment transactions and P2P LN messages exchanged
between nodes.

The set of nodes vi ∈ V2 represents public keys and is
the same set of nodes of G1, that is V2 = V1. The set of
edges eij ∈ E2 represents the current state of the channels
between those public keys. Each edge is uniquely identified
by the outpoint (transaction identifier and output index) that
funds the channel and the source node they refer to. The graph
G2 may be a multidigraph because many different channels
can be opened between a pair of nodes.2

Edges in E2 encode more detailed information about
the channel than data stored in the edges of E1. The
extraction of such information does not come from on-chain
transactions but the commitment transactions exchanged
from the LN nodes and also from the LN P2P messages that
the nodes broadcast. Regarding commitment transactions,
we can classify their outputs3 in two types, depending on
which of the two parties is the receiver. Therefore, we model
each pair of commitment transactions as two directed edges:
the edge eij = (vi, vj) from vi to vj will encode vi’s balance in
the channel and offered HTLCs and, reciprocally, the edge
eji = (vj, vi) from vj to vi will encode vj’s balance in the
channel and offered HTLCs. We denote by bij the balance of
edge eij, b(eij) = bij; and by hij the balance blocked in HTLC
of edge eij, h(eij) = hij.

Furthermore, edges in E2 also encode additional informa-
tion extracted from channel policies sent within the LN P2P
network, such as the fee that is charged to use the channel, fij,
measured in satoshis per byte, and the minimum amount of
satoshis that can be routed through that channel, mij.
Finally, we also define two functions, fV and fE, for map-

ping nodes and edges between G1 and G2. Let fV : V2→ V1
be a bijective function that maps nodes of the graph G2 with
nodes of the graph G1. Let fE : E2→ E1 be a noninjective
surjective function that maps the edges of graph G2 with the
edges of graph G1.

2Again, since G2 is a multidigraph, we add an index to identify multiple
edges of the same two nodes, e(ij)k = eijk . For simplicity, again, we omit
this third index from the notation whenever it is not specifically needed.

3Commitment transactions have four types of outputs which are: local
outputs, remote outputs, received HTLC, and offered HTLC.

FIGURE 1. The data model.

Note that, regarding the defined model for the LN
presented so far, the following restrictions must be preserved:

1) The set of nodes of both graphs is the same, that is,
V1 = V2. So fV is the identity function.

2) Each element e ∈ E2 is mapped to exactly one element
in E1 (derived from the function definition).
That is, for each eij = (vi, vj) ∈ E2 with fV (vi) = vi and
fV (vj) = vj, there exists one edge eij = (vi, vj) ∈ E1.

3) Each element e ∈ E1 is the image of exactly two
elements in E2.
That is, for each eij = (vi, vj) ∈ E1 with fV (vi) = vi and
fV (vj) = vj, there exists exactly two edges in E2, eij and
eji. Therefore, |E2| = 2 · |E1|.

4) Let eij = (vi, vj) and eji = (vj, vi) be the edges ofE2, the
balances and pending HTLC values must be consistent
with the total capacity channel, so it must hold that:

bij + hij + bji + hji = cij = cji. (1)

To sum up, Fig. 1 shows a toy example of an LN snapshot
with 3 nodes and 2 channels using the proposed model.

III. A DISCUSSION ON CLASSIC CENTRALITY METRICS
APPLIED TO LN NODES
In this section, we review different classical centrality
measures proposed in the field of graph theory. As well,
we analyze to what extent they preserve the centrality
meaning when they are computed over a graph that models
a payment network, like the LN.

A. SYMMETRIC GRAPHS
In his seminal paper laying the foundations of centrality
metrics in social networks [9], Freeman used the star graph
as a starting point to guide his exposition. In a star graph
(Fig. 2), intuition leaves no doubt as to which node is more
central. Furthermore, this node is not only the center point of
the star graph, but also the most central position imaginable
on any graph of a similar size order. But why is this node
central? It has three structural properties: it has the highest
degree (i.e., themost number of neighbors), it is in the shortest
paths between other nodes, and its distance to other nodes
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FIGURE 2. Basic star graph.

is minimal. These three properties are the basis of the three
most basic centrality metrics for nodes in networks: degree,
betweenness, and closeness centralities.

Given a graph of n nodes with adjacency matrix An×n =
[aij], where aij is a binary value denoting whether there exists
an edge between nodes vi and vj, degree centrality is defined
as the number of neighbors of a node:

CD(vi) = deg(vi) =
n∑
j=1

aij. (2)

The shortest path between two nodes is a path of the
shortest length. Let σst be the number of the shortest paths
between s and t; and σst (v) the number of those paths that
pass through v. Then, betweenness centrality is defined as the
fraction of the shortest paths between all pairs of nodes of the
graph that pass through v:

CB(v) =
∑

s6=v6=t∈V

σst (v)
σst

. (3)

The distance d between two nodes in a graph is the length
of the shortest path between them. Closeness centrality is
defined as the inverse of the sum of distances between one
node and all the other nodes of the graph:

CC (vi) =
1∑

j∈[1,n],j6=i d(vi, vj)
. (4)

But to what extent are these centrality metrics relevant
to evaluate nodes in the LN? Indeed, a node with a high
degree is a node with lots of channels, which provides it
with robustness (since it does not rely on a single or a few
channels to be able to operate in the network). Moreover,
a high degree also implies direct channels with more other
nodes in the network and thus independence. On the other
hand, a node with high betweenness is a node that is in the
middle of payments between other nodes, in case the shortest
path is used to choose payment routes. This allows it to have
some degree of control and information about those payments
(e.g., it knows the amount, HTLC values to estimate the
overall number of hops, can decline participation, can delay
payments), and also to obtain revenue from them in the form
of fees. Finally, a node with high closeness may benefit
from making payments with fewer hops, which may have

FIGURE 3. Weighted double star graph.

consequences on both the fees to pay and the privacy of its
payments.

B. SYMMETRIC WEIGHTED GRAPHS (CAPACITY)
However, these three basic metrics assume all channels
are equally important (have the same contribution) to the
importance of the node. Nonetheless, this is hardly the case:
lightning channels have a capacity, that limits the amount of
bitcoins a payment can move through them. For instance,
take as an example the weighted double star graph shown
in Fig. 3. To create it, one could just add v6 to the simple
star graph (Fig. 2) and connect it to v2, v3, v4 and v5; and
where channels’ capacity is represented as edge weights.
Now, one could argue that node v6 is more central than
node v1, since, although they both have exactly four channels
and are in the same structural position on the graph, node
v6 can make payments of a higher amount in all of its
channels.

Degree, betweenness, and closeness centralities have
also been defined to take into consideration edge weights.
Newman [20] and Barrat et al. [2] extends degree centrality
to consider weights, where the strength of a node is defined
as the sum of the weights of its connections (its incident
edges):

Cw
D(vi) = s(vi) =

n∑
j=1

aijwij. (5)

where wij is the weight of the edge between nodes vi and vj.
Brandes [5] and Newman [20] generalize the centralities

of betweenness and closeness for weighted graphs using the
sum of the weights of the edges of a path to define its length.
Therefore, the shortest path between two nodes is not the path
using the least number of hops, but the one that has the least
sum of weights, and distance between nodes is defined in
the same terms (i.e., the sum of weights of the edges in the
shortest paths between them):

Cw
B (v) =

∑
s6=v6=t∈V

σwst (v)
σwst

, (6)

Cw
C (v) =

1∑
u6=v∈V d

w(v, u)
(7)
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TABLE 2. Centrality metrics for the weighted double star graph.

where dw and σw are distance and number of the shortest
paths taking into account the sum of weights as the length
of paths.

Getting back to our example (Fig. 3), node v6 has now a
higher weighted degree centrality (Cw

D) than node v1 (40 and
4, respectively). Yet a problem arises when applyingweighted
betweenness (Cw

B ) and closeness (C
w
C ) centralities to evaluate

the centrality of LN nodes. In their standard formulation,
weight is interpreted as the cost of using that edge, whereas
capacity is not the cost but the maximum amount that can
be transacted through the channel. As a consequence, both
betweenness and closeness centralities are higher for v1 than
for v6, since all shortest paths between other nodes always
pass through v1, and v1 has a lower distance to all other
nodes in the graph. To circumvent this problem, some authors
have used the multiplicative inverse of capacity as edges’
weight [18] when computing betweenness and closeness
centralities. With this definition, v6 has now more weighted
betweenness centrality than v1 (6 and 0, respectively); and
also higher weighted closeness (3.3 and 0.98, respectively),
as shown in Table 2.

Again, it is important to understand what these metrics
evaluate concerning LN nodes. Nodes with high weighted
degree centrality are nodes that have a lot of capacity to
operate within the network: they can potentially transact a
higher amount. However, in contrast with unweighted high
degree nodes, they will not always have strong robustness or
independence, since Cw

D does not capture how this weight is
distributed (i.e., it can be concentrated in a single channel).
Section III-B1 explains how can we incorporate both the
strength and the degree into the evaluation.

Note, also, that a node with high weighted betweenness
centrality is a node that is in the middle of payments
between other nodes that choose the shortest paths with
higher capacities as payment routes. We argue that this is a
very artificial use of the metric, that does not capture how
payment networks operate. On the one hand, the restriction
that only the path with the highest capacity (i.e., the lowest
cost using the inverse of the capacity as weight) is going to
be used does not make much sense in a payment network:
any channel that has enough balance is valid, and the best
path will be chosen based on other considerations such as
fees. Sections III-D and III-E2 will explain how to deal with
this. On the other hand, this does not take into account other
restrictions in the routes, covered in Section IV.
Analogously, weighted closeness is again not very useful

since it does not make sense to consider capacity as a cost or
distance between nodes. Sections III-D will explain another
approach that can better capture nodes’ closeness.

FIGURE 4. Example with two nodes with the same weight and strength.

1) WEIGHT AND STRENGTH
Node strength as defined in the previous section only takes
into account the total engagement of the node, yet obliterates
how is this involvement distributed across different connec-
tions. Therefore, although node strength is presented as a
generalization of node degree for weighted networks, it fails
to capture the original meaning of degree. Opsahl [22] et al.
proposed a different formulation to combine both degree and
strength:

Cwβ
D (vi) = deg(vi)(1−β) · s(vi)β = CD(vi)(1−β) · Cw

D(vi)
β .

(8)

This formulation depends on the parameter β to tune the
contribution of the number of connections and the strength of
the node into the centrality score: if β is 0, Cwβ

D is equal to the
node degree; if β is 1, Cwβ

D is the node strength as defined by
Newman; values of β between 0 and 1 provide higherCwβ

D for
nodes with a high degree, whereas values of β > 1 provide
higher Cwβ

D for nodes with a lower degree.
However, when evaluating the robustness of a node or

ability to make payments in the network, Cwβ
D still falls

short. For instance, if we take a graph like the one shown in
Fig. 4, nodes v1 and v6 have the same degree and strength.
Consequently, regardless of the β value chosen, Cwβ

D is
always the same for both nodes. However, intuitively node
v1 is better connected to the network, because of how its
strength is distributed across its connections. An attack (or
failure) of any of his channels would just affect 1/4 of
its capacity. On the contrary, a directed attack over the
v2v6 channel will strongly affect v6, making him lose most
of its capacity to operate with the network. A variant of the
Opsahl metric can take this into account:

Cwα
D (vi) =

n∑
j=1

aijwαij . (9)

This measure is indeed able to capture the differences
between v1 and v6 (Table 3).
Again, if α is 0, Cwα

D is equal to the node degree; if α is 1,
Cwα
D is the node strength as defined by Newman. For nodes

with the same strength and degree, values of α between 0 and
1 provide higher Cwα

D for nodes with strength equally divided
between channels, whereas values of α > 1 provide higher
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TABLE 3. Centrality metrics for the example graph (Fig. 4).

Cwα
D for nodes with strength concentrated in the same (or a

small number of) channels (cf. v1 and v6).

C. DIRECTED WEIGHTED GRAPHS (BALANCE)
All the metrics presented so far are computed over the
capacity of the nodes’ channels, and thus provide information
about the possible payments the node may be involved with.
Taking into account the model presented in the previous
section, all of them can be computed over graphG1. However,
they fail to capture another important detail of payment
networks, the current balances of nodes in the channel. That
is, at a certain instant of time, these measures do not take
into account how is the capacity of the channel distributed
between the two ends of the channel to evaluate its centrality.
If we consider, for instance, the network from Fig. 4, the
channel between v1 and v2 has a capacity of 10. However, the
ability of both nodes to operate within the network will not be
limited by this capacity, but by the balance that each of them
has at that moment. If all the capacity is on v2’s side, v1 will
not be able to make payments (or route outgoing payments)
through that channel, and thus its strength will be reduced
from 40 to 30 (assuming he has all the possible balance in the
other three channels).

Channel balances may be represented with a direct graph,
where the weight of the edges represents the balance the
source node has in a channel, which corresponds to graph
G2 of our model presented in the previous section. The sum
of the two edges (one in each direction) that represent a
channel is thus at most the capacity of that channel. Using
this representation, we can use the directed versions of the
metrics presented above to evaluate the centrality of a node.

Fig. 5 represents a possible distribution of balances for
the network shown in Fig. 3. The edges with a balance of
zero have not been drawn for readability. Most channels are
completely unbalanced, with all the capacity available in just
one direction. The exception is the channel between nodes
v2 and v6, whose capacity is split equally between both nodes.
Degree-based centrality metrics over directed graphs dis-

tinguish between outgoing and incoming edges. For instance,
indegree and outdegree (CD− and CD+ , respectively) take
into account the number of incoming or outgoing edges,
respectively; and strength is also computed separately for
incoming and outgoing edges. Metrics based on paths
consider only those paths that are valid considering the
direction of the edges.

Table 4 summarizes the centrality metrics for the directed
graph example shown in Fig. 5.

FIGURE 5. Directed double star graph.

TABLE 4. Centrality metrics for a directed weighted graph.

D. SYMMETRIC WEIGHTED GRAPHS (FEE)
As we have seen in Section III-B, weighted betweenness and
closeness centralities using capacity as weight are not able
to capture the importance of a node, because these metrics
are based on shortest paths and distances taking into account
channel capacity as a cost.

Instead, using channel fees asweight ismore representative
of what rational nodes may implement since fees are indeed
a cost of using the channel. Therefore, nodes with a high
weighted betweenness centrality with fees as the weight will
be in the middle of payments between other nodes that try to
optimize the cost of their payments by choosing the cheapest
routes. Moreover, nodes with a high weighted closeness
centrality with fees as weigh will be nodes that can make
payments with the lowest fees.

However, note that this approach, using a simple sym-
metric graph constructed by channels, has also a problem:
channels can only be used if they have enough capacity and
balance in the desired direction. Furthermore, dealing with
payments in the LN, additional restrictions also apply, as we
will explain in Section IV.

E. FLOW BASED CENTRALITY METRICS
One of the problems of using betweenness centrality as
defined in the previous section is that it is based on shortest
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paths. Even when considering weight, nodes that may offer
connectivity to the network, but that are not found in the
middle of these shortest paths are not considered to have any
influence.

Let’s consider again nodes v1 and v6 from 3 and note
that betweenness centrality (C1/w

B ) is 0 for v1 and 6 for
v6 (Table 2). These values may seem to indicate that node
v1 will never be in the middle of payments between other
nodes. However, in a payment channel network, this may
not be the case: with the information, we currently have
in the graph, payments of less than or equal to 1 would
have no reason to prefer to be routed through node v6 over
node v1. Flow-based centrality metrics allow overcoming this
limitation.

1) FLOW NETWORKS
Flow networks are used to model different problems, from
pipes moving water to electrical or information networks.

A flow network is a directed graph that has a nonnegative
capacity in each edge (c : V×V → R≥0). Nonexistent edges
are assumed to have a capacity of 0. A flow network has two
special nodes: a source s and a sink t .
A flow is defined in a flow network as a function that

assigns a real number f to each pair of nodes (f : V × V →
R≥0), such that:

1) for all u, v ∈ V , 0 ≤ f (u, v) ≤ c(u, v), and
2) for all u ∈ V − {s, t},

∑
v∈V f (v, u) =

∑
v∈V f (u, v).

That is, at each edge the flow f must be lower or equal
than the capacity c (capacity constraint), and the flow must
be preserved at each node except for the source and the sink
(flow conservation constraint).

The value |f | of a flow is:

|f | =
∑
v∈V

f (s, v)−
∑
v∈V

f (v, s). (10)

Given a flow network, a source, and a sink, themaximum-
flow problem consists in finding flow f of maximum
value |f |. Let f ′st be a flow of maximum value between nodes
s and t . Let f ′st (v) be a flow of maximum value between nodes
s and t passing through node v.

2) BETWEENNESS CENTRALITY BASED ON FLOW
Freeman [10] extended the betweenness centrality metric
based on flow, where a node is more central to the extent
where more flow between pairs of other nodes in the graph
depends on it. That is, to define the flow centrality of a node
v is through the amount of flow between any pair of nodes in
the graph that needs to pass through v divided by the sum
of the maximum flow values of any pair of nodes in the
graph:

CF (v) =

∑
s6=v6=t∈V |f

′
|st (v)∑

s6=v6=t∈V |f
′|st

. (11)

Table 5 shows the flow centrality measure for the example
graph from Fig. 3. In contrast with traditional between-
ness centrality measures based on weight and its inverse

TABLE 5. Flow based centrality for the weighted double star graph.

(Cw
B and C1/w

B , respectively), flow based betweenness cen-
trality (CF ) is able to capture the ability of nodes to be in the
middle of payment paths. Node v6 is more central than v1,
to the extent that payments between other pairs of nodes will
be able to be of a higher amount than payments through v1.
However, node v1 may still be in the middle of payments
between other nodes, given that it has a tenth of the CF of v6.
In contrast to C1/w

B , where the node is not considered to be
on the shortest paths and is therefore assigned a centrality
of 0).

Flow based betweenness centrality allows to measure the
importance of a node in a payment network to the extent it
is in the middle of payments between other pairs of nodes
(and therefore collect metadata about those payments and
potentially profit from them).

3) BETWEENNESS CENTRALITY BASED ON CURRENT FLOW
Brandes [6] proposes a centrality metric based on variations
of betweenness and closeness, but with a different model
in which information spreads efficiently similar to electrical
current. The proposed metric overcomes the limitations
related to execution times and space requirements that arise
with computing large networks. Regardless of the approaches
taken in flow betweenness, about including nongeodetic
paths in a node’s total score and measuring the amount of
flow that passes through a node, its pathsmust be optimized to
achieve their maximum value, and thus, solve real situations
in which information moves randomly.

A similar approach taken by Newman [21] measures
betweenness centrality based on random walks, same as
current-flow betweenness (CCF ) which measures the portion
of current flow that passes through a node v between all
possible node pairs in the network. The CCF of a node v can
be defined as the amount of current that flows through a node
averaged over all node pairs s and t . To be more specific,CCF
of a node v is the average of the current flow over all source-
target pairs:

CCF (v) =

∑
s6=t∈V IV

(st)

1
2n(n− 1)

. (12)

where IV (st) represents the current flow through a node v
between source s and target t and 1

2n(n− 1) is a normalizing
constant.

Table 6 shows the current flow centrality measure for
the example graph of Fig. 3. We compare again the
traditional betweenness measures based on weight and its
inverse, as well as, the flow betweenness. On the contrary,
to the previous metrics, current flow based betweenness
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TABLE 6. Current Flow based centrality for the weighted double star
graph.

centrality (CCF ) captures the flow that passes through a node
in the middle of payment paths. Similar to flow betweenness,
node v6 is more central than v1, therefore the flow of
payments between other pairs of nodes will be greater than
payments through v1. However, nodes v2 to v5 are even more
central than v1 because those nodes can process more flow
than node v1.

a: FLOW-BASED METRIC SELECTION
Luo [16] states that CF and CCF share a similar behavior
for measuring the frequency of a node v among a couple of
nodes s and t . However, these metrics differ in that CF bases
its calculation by comparing the maximum possible paths
containing node v. Furthermore, this metric can be described
as the proportion of the volume of flow that passes through
v when the flow reaches the maximum value [1]. However,
this metric might ignore paths that are central in the network
when they are not crossed by any unit of flow for pairs of
nodes s and t [15]. On the other hand, CCF measures the
frequency of a node v in a random-walk, a name that is also
given to this metric [6], [19], between nodes s and t when
calculating all paths existing between those nodes. Unlike
CCF , CF is not a realistic metric since it only considers a
small subset of possible paths between nodes. At the moment
when we consider the complexity of both metrics, CF can
be calculated in time O(m2n), instead, the complexity of
CCF isO((m+n)n2) using matrix methods. This comparison
indicates that the computation demand of CCF is comparable
to CF . Therefore, based on the aforementioned, we select
current-flow betweenness as a metric to obtain the frequency
of a node that occurs on a path.

IV. CONNECTIVITY IN THE SCOPE OF A PAYMENT
NETWORK
The edges between nodes and the paths that form those edges
define connectivity in classical graph theory. A path in a graph
is a sequence of incident edges such that neither vertices nor
edges are repeated. Although not introduced explicitly, the
paths are the basis of some of the centrality measures we have
reviewed in the previous section, such as betweenness and
closeness centrality.

However, such a basic definition of a path may not be
suitable in the scope of a payment network like the LN, since
not all paths defined in this simple manner are valid payment
routes in the modeled payment network. There exist some
additional restrictions for a path to be a valid payment route.

Therefore, to provide more accurate centrality measures
for the modeled LN, we redefine the concept of a path.

We define a payment path for an amount σ as a path with
the following restrictions:

1) There is enough balance in all the channels to fulfill the
payment.

2) The length of the path is smaller or equal to 20.
3) The number of existing HTLCs in each channel is less

than 14.
4) The policies of the nodes in the path are compatible.

a) There exists a set of timeouts for all HTLCs in
the path that fulfill the conditions on the nodes’
policies for all nodes in the path.

b) The amount of payment is higher than the
minimum (σ > min_htlc).

Note that the first restriction is a general restriction of
any payment network while the other ones are more specific
to the current LN implementation and are extracted from
its specifications. For restriction 2, we refer to BOLT 4
Section Packet-Structure. Instead, restrictions 3 and 4b refer
to BOLT 2 Sections Adding an HTLC-Rationale and The
open_channel Message respectively. Finally, for restric-
tion 4a, it refers to BOLTs 2 and 7 Sections cltv_expiry_delta
Selection and Recommendations for Routing respectively.

V. PROPOSED CENTRALITY MEASURES IN THE
SCOPE OF LN
Once reviewed all possible centrality measures that can be
directly computed on the graph that model the LN, either
the symmetric one G1 or the directed one G2,4 we now
propose and justify which of them are suitable to measure
the centrality of the nodes of the network and which is the
property that such centrality measure provides, in terms of
robustness/resilience or surveillance/control.

Table 7 summarizes all the metrics considered in the mea-
sures presented in Section VI. The first column of the table
identifies the measure and the second one provides the exact
formula used to compute such metric. The third column
provides information about the graph over which the metric
is computed. Note that some metrics may have a different
meaning if computed on a symmetric (G1) or a directed (G2)
graph. The Weight column indicates which parameter of the
LN is selected as the weight for the calculation (in the case of
a weighted metric).

The Restrictions column indicates which restrictions have
been consideredwhen applying some specificmeasures. Note
that two clear sets appear when dealing with restrictions:
measures based on direct connectivity (degree) and measures
based on indirect connectivity (path). The restriction that we
have taken into account for direct connectivity is the existence
of the channel (so the corresponding edge in the graph)
and whether or not such a channel is enabled in the policy
information that the node broadcasts. Regarding measures
using path connectivity, we have applied the concept of
payment path defined in Section IV with the restrictions
indicated. Finally, the last column of the table provides a brief
description of the meaning of each measure.

4See Section II for the defined model
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TABLE 7. Summary of the proposed centrality metrics.

VI. MEASURING THE LN
The moment a pair of nodes open and, at some point,
close a payment channel, these two transactions are the
only ones added to the blockchain. In theory, the payer and
the payee can send an unlimited number of transactions
to each other without committing them to the blockchain.
A payer may send such transactions with the aid of the
global view of the PCN topology, which is the main input
for the routing algorithm that requires one to be aware of
the structure of the network. In consequence, each node has
to gather routing information through broadcasting messages

(channel_announcement and channel_update) through
the peer-to-peer network.

Although the transmitted messages contain information
such as channel capacity, fee, and signatures, they lack
to disclose the channel’s balance due to privacy reasons.
This factor could incur in that a payment may fail due to
the uncertainty that sufficient funds are available to route
a transaction. However, the payer may attempt to send a
payment a given number of times, in which one could be
successful. To avoid such a failure of insufficient funds,
especially on multihop payments, LN uses HTLC to ensure
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balance security. Similarly, in case of a stuck payment, HTLC
allows reverting it, by the expiration of the transaction time
locks. However, to process HTLC, the nodes involved in
payment must be online. Otherwise, funds locked could take
place for some time, or even, in theworst case, the funds could
be stolen by an adversary.

Based on the depiction of the LN model described in
Section II and the description of restrictions in Section IV,
we evaluate the results of the simulations obtained from the
implemented metrics explained in Section III. Altogether,
we analyze 12 metrics divided into 5 scopes (degree,
strength, Opsahl, betweenness, and closeness) as described
in Table 7. Likewise, based on their scope we apply
specific restrictions as are enabled channels (degree, strength,
and Opsahl) and valid payment path (betweenness and
closeness).

Our goal is to draw conclusions regarding the evolution
of the metrics over time, i.e., since its conceptualization,
we want to know if LN has been prone to be more or
less centralized. As well, since our approach makes use of
restrictions on paths, it makes us wonder whether or not their
use affects the results of the computations and if this is the
case, how much error is injected. On the other hand, from
the analysis of metrics as betweenness, we are interested to
know the degree of error injected if normal betweenness is
used, as well as if there are lots of differences between the
results of the different metrics based on the rank correlation
coefficient.

A. SNAPSHOTS, DATASET AND THE NETWORK
In order to makemultihop payments, LN clients need to know
the current state of the network, that is, which other nodes
there exist, what channels do they maintain, and what are
policies applicable to those channels. A snapshot of the LN
is a graph representing the current state of the network from
the point of view of a node.

Although a snapshot captures the composition of the
network, its scope does not cover the totality of channels
that might exist. The view of the network depends on
the information that a node collects, and probably private
channels between other pairs of nodes will not be reflected.
Therefore, our analysis is limited to public channels since
roughly 13.48% are private channels [13].

In this paper, we use a dataset of LN snapshots captured by
Elias Rohrer [23], [24]. The dataset contains snapshots of the
network every 6 hours, over a two-year period (from October
2018 to November 2020). For our analysis, we subsampled
the dataset and selected one weekly snapshot. We omitted
periods where data were corrupted. Moreover, whenever the
snapshot represents a disconnected graph, we restrict our
analysis to the biggest connected component (that always
contains more than 99% of the nodes of the network).
Table 8 summarizes the main properties of the selected
snapshots.

The first consideration to take into account is related
to the channels, which can be either enabled or disabled.

TABLE 8. Snapshots per month from Oct. 2018 to Nov. 2020.

FIGURE 6. Relationship between Pair of Nodes, Channels and Capacity.

We consider a channel to be disabled when either of the
policies of both nodes in the channel is set to disabled = True
or the whole policy is set to node_policy = null.

Fig. 6 shows the grouped distribution of the channels
between pairs of nodes based on their capacities for the
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FIGURE 7. Number of channels between each pair of nodes.

snapshot corresponding to Jul. 31, 2019. For instance,
Fig. 6(a) shows that there are 1.1 · 104 node pairs that created
channels with capacities between 105 and 5 · 105 satoshis,
of which 5.7 · 103 channels are disabled.
Even so, this range of channel capacities is not the one

with the highest accumulated capacity among the channels.
Fig. 6(b) shows that between 107 and 5 · 107 satoshis in
channel capacities, there is a cumulative capacity of 4.8 · 1010

of satoshis of which 5.8 · 109 satoshis are on disabled
channels. Of this grouped distribution, 16.7 · 109 satoshis are
the capacity setting that has the highest accumulated capacity
with an amount of 23.3 · 109 between 1,248 pairs of nodes.
Similarly, for that accumulated capacity, 2.3 · 109 remain
among 143 disabled channels. These properties shape the
LN topology that makes it peculiar, even more so, if we
consider restrictions in the computation of the centrality
metrics.

Another interesting property of the network is shown in
the last column of Table 8, where it shows the number
of pairs of nodes with more than one channel (multiple
channels [4]). Fig. 7 shows the results of the aforementioned
column, considering both the enabled and disabled channels
for the snapshot with the highest number of channels (Jul. 31,
2019). Note that a vast majority of node pairs share at least
one channel and a small percentage have two or more that
correspond to hub nodes on the LN.

B. THE EFFECTS OF RESTRICTIONS ON CENTRALITY
As we explained in Section IV, not all paths on the LN
graph can be used as payment paths. Therefore, additional
restrictions must be considered to ensure that a given path
can be used to make a payment on the LN. In this section,
we provide the results of our experiments by calculating
the centrality measures directly on the LN graph. Then,
we compare these results with the same metrics calculated
taking into account the restrictions on valid payment paths
and enabled channels. Due to space constraints, results from
one single snapshot (Sept. 4, 2019) are included. For the

TABLE 9. Parameters for the simulations.

remaining snapshots, similar results were obtained in the
analyzed graphs.

As shown in Table 9, we run two different simulations to
compute the centrality measures.

In the 1st simulation, two general restrictions are consid-
ered that remain throughout the 2nd simulation. On the one
hand, to be able to use a channel in a payment path, the
policies of both nodes in the channel must be configured
as enabled (restriction 0 in Table 9). On the other hand,
restriction 2 of Section IV indicates that payment paths
cannot have more than 20 hops. Therefore, we use the value
given in the LN specification for the routing protocol5 [13].
Note that both restrictions are deterministic and enforced by
standard LN payment protocols.

In the 2nd simulation, we apply all restrictions defined
in Section IV in which multiple parameters are defined.
First of all, we set to 100k (105) satoshis the amount of
the payment in our simulation, so the minimum balance
needed in restriction 1 should be that value. Furthermore,
as indicated above, we consider the limit of 20 hops for
restriction 2. Regarding restriction 3, the LN specification
for opening a channel6 states that 483 is the limit for the
number of pending HTLCs. Even though, we set the value
of 14 as the limit for the number of HTLCs existing for
each channel. Moreover, through a seed, we generate pseudo-
random HTLCs, holding the same random generation for
both simulations. This process is executed for each channel
with its corresponding payment amounts and timeouts. The
former reduces the balance in the channel until, at most,
balance = 0. The latter increases for each channel the total
timeout up to the upper limit given by time_lock_delta, which
corresponds to the validation of restriction 4a. Finally, the
minimum HTLC needed in restriction 4b is fixed to σ = 105.

Note that, in addition to these parameters defined for
given restrictions, other values are needed in the payment
network for the simulations. In particular, the balance of
each node in the payment channel is required to decide
whether a payment can be forwarded through that channel.
Although for privacy reasons, channel balances are not
publicly available, it has been proven that it is possible to
learn channel balances executing any of the attacks already
described in the literature [12]. However, for ethical reasons,

5See:HopLimit - https://github.com/lightningnetwork/lnd/blob/40d63d5b
4e317a4acca2818f4d5257271d4ac2c7/routing/pathfind.go

6See: max_accepted_htlcs - https://github.com/lightningnetwork/
lightning-rfc/blob/master/02-peer-protocol.md
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we do not perform these attacks on the live network, so in
both simulations, we generate the channel balances through a
constant distribution, i.e., half the capacity is assigned to each
side of the channel.

Even though we use the parameters of the simulations as
a starting point to evaluate the network as a whole, we can
indeed tweak such values to create different scenarios and
therefore evaluate such a network to improve its payment
algorithm. For instance, we can use average payment amounts
expressed in satoshis for the restrictions 1 and 4b. We can
consider one satoshi as the minimum interval, which is
the default minimum HTLC given by the LN policy, and
105 satoshis as the maximum interval, since values above this
interval have the highest failure rate for the payment path.
This scenario can increase the number of nodes participating
in payments, but can also be reduced by the fees charged for
each hop in a payment path.

Similarly, we can obtain a varied engagement of the nodes
in the network using distributions other than the constant for
the balance, such as uniform, normal, exponential, or beta
distributions. Such diverse assignations of the balance may
describe a scenario closer to the network reality. Likewise,
for restriction 4a, we can draw a scenario in which the
timeouts increase on each pending HTLC. This modification
affects the availability of channels for a payment path since
it is constrained by time_lock_delta. These scenarios are an
option to have a deeper analysis focused on improving the
payments, but we limit the scope of our analysis.

In the next sections, we provide the results for each of the
metrics, showing the cumulative distribution function (CDF)
of the centrality values of all the nodes in the graph.
We split the results into two different measures, degree-based
measures and path-basedmeasures, indicating both results for
the 1st and the 2nd simulation.

1) DEGREE-BASED
Degree-based centrality measures are degree CD(vi), strength
Cw
D(vi), incoming strength Cw

D− (vi), outgoing strength
Cw
D+ (vi), Opsahl Cwα

D (vi), incoming Opsahl Cwα
D−(vi) and

outgoing Opsahl Cwα
D+ (vi) (see Table 7 for details). The

first three values can be measured over the modeled graph
G1 since such measures do not involve any edge direction
of the graph. However, for incoming and outgoing measures
of strength and Opsahl, G2 needs to be used. Note that
even when the pending HTLCs modify the channel balance,
we get the same results for degree-based measures in both
simulations. Since, although HTLCs reduce the capacity
of the channel, this reduction only applies to metrics that
consider incoming/outgoing values (balances), but not those
that do not consider it (capacity). Consequently, even though
the channel balance is essential at the time of payment, it is
irrelevant in case the channel is disabled.

Regarding Node Degree, Fig. 8 contains the values of this
metric that are the same for the 1st and 2nd simulations.
As well, taking into account restrictions makes the network
average degree goes down from 12.25 to 7.18, and themedian

FIGURE 8. CDF - node degree, CD(vi ).

FIGURE 9. CDF - strength Cw
D (vi ), incoming strength Cw

D−
(vi ), outgoing

strength Cw
D+

(vi ) in both simulations.

from 3.0 to 0.0. The average RMSE of node’s degree is
18.73. From the plot, we can observe that, when not taking
into account restrictions, almost 50% of nodes are well-
connected with 3 or more connections. However, such good
connectivity is reduced to 30% of nodes when restrictions are
considered. These differences are the result of a network with
lots of channels disabled with 29,882 out of 72,274 channels
which represent 41.34% disabled channels. As we review the
remainingmetrics, we will further explain this behavior in the
next paragraphs.

Differences between restricted and unrestricted mea-
sures are also prominent when analyzing Strength and
Opsahl metrics that derive from the capacity7 of the
channels. As shown in Fig. 9, average node strength has
a reduction of 16.64% (from 28.54 · 106 to 23.79 · 106

satoshis), and the median of 100% (from 972 · 103 to
0 satoshis). Also, in Fig. 10, the reduction on average
Opsahl centrality (for α = 0.5) is 26.26% (16.18 · 103

to 11.93 · 103 satoshis) and the median once again 100%
(1.67 · 103 to 0 satoshis). These differences are the result of
83.34% (TotalUnrestrictedCapacity = 84, 173, 823, 510 and
TotalRestrictedCapacity = 70, 158, 741, 106) of the overall
capacity is on enabled channels.

7Units are expressed in satoshis as such measurements are derived from
channel capacity.
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FIGURE 10. CDF - Opsahl Cwα
D (vi ), incoming Opsahl Cwα

D−
(vi ) and

outgoing Opsahl Cwα

D+
(vi ) in both simulations.

FIGURE 11. CDF - betweenness CB(v ), weighted betweenness Cw
B (v ),

weighted betweenness cap Cw
B (v )c and current flow betweenness CCF (v )

of both simulations.

FIGURE 12. CDF - closeness CC (vi ) and weighted closeness Cw
C (v ) in both

simulations.

2) PATH-BASED
Path-based centrality metrics are Betweenness CB(v),
Weighted betweenness Cw

B (v) and Cw
B (v)c, Flow-based

betweenness CF (v), Current-flow betweenness CCF (v),
Closeness CC (vi) and Weighted closeness Cw

C (v) (see Table 7
for details). Note that all those metrics are computed using
edge direction, so in our model definition and simulation they
are computed over G2. That means in the directed graph that
represents the networkwith its balances, fees, and the blocked
balance hij by the existing HTLCs. The total value hij for each
channel and its timeout is randomly set through a seed that
generates the same values for both simulations, which affects
the balance of each side in the payment channel.

Fig. 11 and 12 show the results of each simulation for
the betweenness and closeness centrality respectively with its
variations as described previously in Table 7. At the moment,
we compare the results of the metrics with weights for each

simulation. There is a fluctuation in the values according to
how the restrictions were used to compute the given metric.
For instance, on the average betweennessbetweennessbetweenness for 1st simulation,
the reduction is 22.70%, however, this percentage compared
with the 2st simulation is 14.52%.
Instead, the average weighted_betweennessweighted_betweennessweighted_betweenness has values

of 2.90% and 1.76% respectively, which shows a cer-
tain relationship given by the decrease in the balance
because of existing HTLCs. On the contrary, for the
average weighted_betweenness_capweighted_betweenness_capweighted_betweenness_cap which are 13.74% and
6.20% respectively, the aforementioned relationship does
not last since the centrality measure has to consider paths
with greater capacity to make a payment. Finally, the
current_flow_betweennesscurrent_flow_betweennesscurrent_flow_betweenness metric has an average of 12.17%
and 8.39% respectively, which when comparing its average
ratio withweigthted_betweennessweigthted_betweennessweigthted_betweennessmetric, its results (1.45 and
1.57 respectively) are similar. Based on these results and the
fact that betweenness indicates how much control has a node
over the network, the centrality should be measured by a
combination of factors such as: fee, capacity, and balance
instead of relying on a unique property of the channel.
Table 10 summarizes the values of both simulations for the
betweenness centrality.

Subsequently, we took a similar approach with closeness
metrics, as shown in Fig. 12, to determine how reachable is
a specific node. Along with whether it would be the most
central node in case it is located at a node distance from each
other. For the closenessclosenesscloseness, its average is 47.75% and 34.93%
respectively, which follows a similar explanation about its
marked difference due to the presence of existing HTLCs in
the channels. On the other hand, for theweighted_closenessweighted_closenessweighted_closeness,
the average is around 100% and 50% respectively, in which,
the results show almost a flat trend that could be due to the
presence of nodes with a large degree, i.e., a given number of
nodes are reachable quite easy. In any case and regardless of
the specific metric used, restrictions heavily affect the results.
This tendency determines that centrality has to be defined by
not only one metric but for a set of them considering more
than one property of the network. Table 11 summarizes the
values of both simulations for closeness centrality.

C. RELEVANCE OF NODES ACCORDING TO CENTRALITY
Once we review the results of the metrics as a whole, it is
appropriate to take a closer look at the most relevant nodes
from the snapshot of Sept. 4, 2019. In doing so, we intend
to find out how important some nodes on the network are
to carry out payments either by the number of channels
connecting them to the network or by the total capacity among
those channels. For our analysis, we select five nodes. Four
out of 5,897 nodes show high connectivity and Bitrefill Thor
and WalletOfSatoshi.com are the pair of nodes with the most
channels with 153 between them, none of which is disabled.
On the other hand, the node that opened the most channels is
1ML.com node ALPHA with 830 of which 400 are disabled.
However, LightningPowerUsers.com is the node that has the
most channels with 1,255 of which 473 are disabled. Finally,
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TABLE 10. Betweenness centrality for 1st and 2nd simulations.

TABLE 11. Closeness centrality for 1st and 2nd simulations.

TABLE 12. Comparison of Degree, Strength & Opsahl Metrics between simulations.

ACINQ is the node with the highest capital distributed among
its channels with 4.89 · 109 satoshis.

1) DEGREE-BASED
Table 12 shows, for the nodes mentioned above, the results
and their positions within the degree-based metrics among
the most relevant nodes. It is worth mentioning that these
results come from G1 where only the enabled channel
restriction is considered. LightningPowerUsers.com has the
highest degree, so it can be considered as the main hub8 in
the network. Instead, 1ML.com node ALPHA can be seen
as a beacon9 since it has the most open channels with other
nodes. Even though, its strength is the lowest compared to
the other four nodes. Also, ACINQ has the highest strength
among the nodes, which is one of the preferred metrics for
analyzing a weighted network. This result could mean that
this specific node has a high level of involvement in the
network, although its degree is not the highest. Due to the
greater number of channels connecting WalletOfSatoshi.com
and Bitrefill Thor , we can assume this pair of nodes is a
bridge.10 AlthoughWalletOfSatoshi.com has a higher degree,
it has a low strength compared to Bitrefill Thor . By analyzing
Opsahl, which combines degree and strength with a tune
parameter α = 0.5, once again LightningPowerUsers.com
has a relative importance in the network. Nevertheless, even

8Defined as a node that connects with many other nodes
9Defined as a node that handles information about the awareness of the

network topology.
10Defined as a pair of nodes that create a tie between nodes that would

otherwise be disabled to perform payments without a direct connection.

without the highest degree, ACINQ is the node with both
the highest strength and Opsahl. As a consequence, the
importance of a node is not only due to the number of
channels that connect it to its neighbors, but also due to its
participation in the network.

2) PATH-BASED
On the other hand, Table 13 compiles the results and their
positions within the path-based metrics for the same five
nodes. Thus, we analyze them through the betweenness met-
rics, with restrictions on the valid payment path mentioned
in Section IV. Overall, these metrics give us an idea of
the extent to which a node participates in the transactions
between other nodes. As well, it indicates that a node
could control the network since its income is proportional
to how central it is with respect to the payment route.
Again, LightningPowerUsers.com is the one with the highest
betweenness scores, the same as the degree metric. The
importance of this node lies not only in its numerous con-
nections but also in how it stands among its neighbors, which
makes it a broker.11 Although ACINQ generates the highest
fee income and has the greatest strength and Opsahl, it han-
dles less capital compared to LightningPowerUsers.com.
Besides, 1ML.com node ALPHA, which has a low
strength, its betweenness metrics results are quite higher
compared to the bridge nodes. The reason could be because
this node creates most of the channels that allow it to
connect with the network without making mostly payments.

11Defined as the node that connects dispersed nodes in order to obtain a
competitive advantage based on access to network information.
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TABLE 13. Comparison of Betweenness Metrics between simulations.

TABLE 14. Comparison of Closeness Metrics between simulations.

On the contrary, when we compare the bridge nodes,
the relevance of Bitrefill Thor decreases with respect
to WalletOfSatoshi.com. This fact is more evident on
the metric weighted_betweenness_cap, which means that
WalletOfSatoshi.com has a higher capital distributed among
its neighbors. As well, the revenue from fees charged by this
node is slightly higher, which could mean that this node could
be continuously chosen as a payment intermediary. Finally,
the current_flow_betweenness metric restates the behavior
seen so far. Nodes with a higher degree and betweenness,
especially with weighted_betweenness_cap, have a higher
probability to participate in payment routes, i.e., these nodes
withstand a higher traffic load than most of their neighbors.

Lastly, Table 14 contains very similar results between
the five nodes for the closeness metrics. Although, when
we analyze closeness values, the LightningPowerUsers.com
node keeps a higher centrality. It indicates that the node
is well connected at a short distance from the other nodes
and could efficiently distribute payments. Regarding the
weighted_closeness metric, the results of the five nodes are
the same, which means that each node applies the same
fee. Therefore, they can be used to route payments without
diminishing their centrality.

D. METRICS CORRELATION
The metrics that we propose are conceptually more suitable
for measuring centrality in payment networks. However,
these metrics have the drawback that they are computation-
ally more expensive to calculate. In consequence, we are
interested in observing the correlation between the metrics

that we propose and other simpler ones. Since, if the
correlation is high, then we can use the simplest ones as
a proxy as long as there are computational restrictions.
For that purpose, we use Spearman’s rank correlation to
determine the degree of association (strength and direction) of
a monotonic relationship between two metrics. The value of
the coefficient ranges from−1.00 to 1.00, depending on how
the two variables are related, for the strongest negative and
positive correlation, respectively. The sign of the coefficient
corresponds to the direction of the relationship, i.e., if it is
positive, one variable increases as the other tend to increase,
meanwhile, if it is negative, one variable decreases as the
other tends to increase.

For the first part of this analysis, we use the snapshot from
Sept. 4, 2019, to compare the results of the metrics from the
1st and 2nd simulations. In addition, we decided to show the
correlation coefficients of the metrics using a heat map, since
it helps to visualize the variance between multiple metrics,
show similarities between them as well as detect if there
is any correlation between them. In Fig. 13, whose results
are analogous to both simulations, there is a low-to-medium
relationship between the betweenness metrics, which remains
when compared to the degree metric. On the other hand,
there is a strong relationship between weighted_betweenness
and weighted_betweenness_cap metrics. In that case, the
coefficient value is the same (0.62) among the results
of both simulations, even though, in the 2nd simulation:
(1) the balance of the channels decreases because of the
existing HTLCs and (2) the restrictions applied in the
network.
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FIGURE 13. Similar metric correlation between 1st and 2 nd simulations.

For the last part of this analysis, and as mentioned above,
the snapshot set used in our study covers data for the
span of a couple of years. These data allow us to obtain
a wide range of information to analyze. We compared the
results of the 1st simulation between three snapshots since
Oct. 2018, with a lapse of one year between the other two
snapshots. Thus, we can infer, based on the results shown in
Fig. 14, that the degree metric keeps a constant correlation
with the metrics of betweenness, weighted_betweenness
(capacity and fee), and current_flow_betweenness. For
instance, on 2018 the strength of association of degree
metric against these four betweenness metrics was 0.22,
0.21, 0.20, and 0.29 respectively, as well in 2020 the
results kept slightly similar values 0.23, 0.23, 0.21, and 0.30
respectively.

Similarly, among these same four metrics hold a strong
correlation compared with the remaining metrics. In fact,
comparing the results between 2019 and 2020 shows that
the relationship strengthens over time. For instance, in 2019,
the relationship between betweenness and the metrics of
weighted betweenness (fee and capacity) and current flow
betweenness is 0.31, 0.35, and 0.17, respectively. The results
of the same metrics increased for 2020 with values of 0.41,
0.44, and 0.26, respectively. Although, when we compare
both weighted betweenness metrics (fee and capacity), these
metrics keep an even stronger correlation, the highest value
being 0.67 for them in 2020. As the LN structure adjusts
over time, the correlation comparison between snapshots
gradually decreases for the betweenness and closeness
metrics. For instance, in the case of weighted betweenness
(fee and capacity) in Oct. 2018 they maintained a degree
of relationship between 0.51 and 0.46, respectively. By Oct.
2020 it was reduced to −0.04 and −0.11, respectively.

FIGURE 14. The correlation of metrics over a span of two years
Oct. 2018 - 2020.

Based on these results, the main conclusion could emerge
to explain the correlation of the centrality metrics. For a
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TABLE 15. LN graph and metrics.

given pair of metrics, the correlation values between different
snapshots vary more than five percentage points from each
other. However, these metrics can provide insight into the
evolution and behavior of the network. This conclusion lies in
its lack of dependence between one and the other metric, but
they are also necessary because they do not have redundant
information.

VII. RELATED WORK
Our work builds on prior research to expand the analysis
of centrality measures, and thus, to get a deeper grasp of
the semantics of Bitcoin LN properties. The period over
which these works took place goes from as long as the
one performed in [3] to a more concise one as in [25].
Additionally, research as [14], [17], [18], [25] modeled LN,
through graph theory tools, from a general point of view

by getting together basic data of channels such as: channel
existence among users and its payment capacity. Regarding
to the model used to depict LN, research [3], [11], [14], [18],
[24], [25] represent the network as an undirected weighted
graph. The weighted property employed on the analysis
was the capacity, considering that funds on channels have
an unknown distribution and channels’ direction changes
constantly. Table 15 outlines some studies that expose the
network topology with their characteristics and attributes
as well as some metrics. However, these proposals dismiss
meaningful properties of the network related to channel
capacity, the balance of each node that shares a channel and
fees used for payment processing. From the set of proposals
mentioned above, the model on [3] is the only one that depicts
the graph as a multigraph, i.e., this model considers the
probability that nodes may have multiple channels between

VOLUME 10, 2022 55485



L. E. Oleas-Chávez et al.: Apples and Oranges: On How to Measure Node Centrality in Payment Channel Networks

them. On top of that, [24] describes LN’s topology on its
simplest representation as a graph with nodes and channels
without considering either weight or direction.

Based on these premises, we collect snapshots for a lapse of
two years to evaluate the evolution of the network concerning
centrality measures. As part of our research, we propose
to model LN through G1

12 and G2
13 graphs. Each one

encompasses the whole information of the network without
leaving aside network characteristics that are essential at
the time to comprehend the payment flow between buyers,
sellers, and intermediate hops. Therefore, modeling of both
multigraphs has to preserve the restrictions defined in
Section II, since each one allows us to analyze this payment
network in different contexts. Specifically, G1 handles
information related to LN properties such as: multiple
channels between a pair of nodes that might or not be enabled
to perform payments, and payment capacity. Similarly, G2,
besides those LN properties of G1, handles information of
channels such as balance, balance blocked in HTLC, and
channel policies (fees and minimum payment amounts routed
by the channel).

On the other hand, most researches provide highlights
about the centrality measures such as degree [14], [17],
[24], betweenness [11], [14], [24], [25] and closeness [11],
[14], [25]. Also, some approaches [3], [17], [24] state the
LN structure is best characterized by a centralized network,
which is compatible with a core-periphery network [14].
In addition, each proposal attempts to determine the centrality
metric that best defines this payment network, beyond the
usual measures. For instance, [14] uses a core-periphery
structure, [3] focuses on estimating the income by traffic
volume and number of failed payments, [24] finds out the
average maximum flow and the expected payment success
ratio, and [18] determines the average local efficiency among
all nodes. Nonetheless, they lack emphasis on LN properties
that define more precisely the flow of satoshis between users,
based on the fees that modify the payment capacity of the
channel.

To the best of our knowledge, no proposal captures the
relevant details of payment networks, since the reviewed
works do not consider the distribution of balance, fees,
blocked balance on HTLC, the minimum payment amount,
and channel availability. These approaches only consider
the channel capacity that may be involved with payment to
evaluate its centrality.

VIII. CONCLUSION
In this paper, we study node centrality in the network of
channels of the LN. To do so, we first provide a model
for the network that incorporates many properties (such as
balances, disabled channels, or fees) and restrictions (such as
payment path lengths or minimum payment values) omitted
in previous studies. We justify why these properties are

12Undirected weighted multigraph with static channel information
13Directed weighted multigraph with dynamic channel information

relevant for studying centrality, and we propose a set of
metrics to evaluate the node centrality in the context of
payment channel networks. Finally, we use the proposed
model and metrics to study the centrality of the LN for a
period of two years.

Our results show that there are significant differences in
the centrality values when these additional properties and
restrictions are taken into account. Overall, the error injected
into path-based metrics ranges from 1.14 to 12.82 percentage
points. Although, for the weighted_closeness metric, its devi-
ation is 50 percentage points due to a sizable reduction in the
number of channels. On the other hand, when comparing nor-
mal betweenness against the other betweenness variations,
the error injected by the first one is greater than the rest of the
results. For instance, there are 7.04 (weighted_betweenness)
and 0.64 (weighted_betweenness_cap) percentage points of
difference with normal betweenness.

Some of the metrics we propose to use are computationally
expensive to compute. Therefore, we also studied the
correlation between different metrics to analyze if some
metrics can be used as proxies for others. In our simulations,
we found that the betweenness metrics hold a low-to-
medium relationship, which is held when compared to the
degree metric. Although, the strongest relationship belongs
to weighted_betweenness and weighted_betweenness_cap.
In contrast, throughout a couple of years of study, the degree
metric holds a constant correlation with the betweenness
metrics. But these same betweenness metrics have a strong
correlation with each other, which gets stronger over time.
Based on the different results, we can state that the
computationally simple metrics can be used as intermediaries
for the calculation of complex ones.

Finally, we can draw as the main conclusion that to provide
a global understanding of the centrality in LN, we must
consider most of the results of the metrics. We cannot rely
on a single metric to define the centrality of the nodes,
however, it is advisable to take the degree metric as a starting
point. From there, we can analyze the network based on
restrictions, its properties (fee, balance, existing HTLC, and
enabled channels), or a combination of both.
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