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Abstract 

This project aims to develop a set of software tools to generate and analyze 
the execution of high-performance computing (HPC) malleable applications.  

The software consists of two applications. The first application, the 
DMRTRACE is a library for recording traces in CSV format. It is designed to be 
integrated into the Barcelona Supercomputing Center’s (BSC) malleability 
library, the DMR. The second application, DMRTRACEPARSER, is a utility to 
convert the CSV trace files to PRV trace files, to analyse traces using Paraver, 
the standard analysis tool in the BSC for HPC performance analysis. 

The first part of this document explains the research and development process 
of the trace analysis tools. The second part is a step-by-step guide about how 
to use the developed tools to trace and analyze several HPC malleable 
applications. 

The software tools have been developed to be used in the BSC. So that they 
have been developed using BSC standard development tools, procedures, and 
methodologies. The applications developed are open source, programmed in 
C++, and tested and validated in the BSC’s supercomputing infrastructure, the 
MareNosendendtrum5. The source code is placed in the BSC’s GitLab 
repository. 
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1. Introduction 
 
This document is a memory of a master’s thesis of the studies of Master’s 
Degree in Computational Engineering and Mathematics. 
 
This master’s thesis has been developed in the speciality of High-Performance 
Computing (HPC) subject. It has been made in collaboration with the Barcelona 
Supercomputing Centre – Centro Nacional de Supercomputación (BSC-CNS).  
 
This project has aimed to develop a set of tools and guidelines to analyze the 
execution of HPC malleable applications. 
 
The memory contains the development process of the traceability tools and 
several examples of how to use them. Some basic concepts have also been 
included to start working with the BSC’s supercomputing infrastructure and the 
malleability library developed by the BSC’s research team, the DMR. 
 
This memory is complemented with the source code and binaries of the 
software applications developed during the master’s thesis. 
 
 
1.1. Context and justification of the master’s thesis 
 
HPC environments are very expensive infrastructures made up of thousands of 
computers interconnected to each other. These infrastructures are known as 
computer clusters. The clusters are usually composed of computers with the 
same characteristics. 
 
From the point of view of the cluster users, there are two types of nodes, login 
nodes and compute nodes. Users access the login nodes and launch 
computing jobs requesting a fixed number of compute nodes. 
 
Jobs are managed by job scheduling software which implements a determinate 
scheduling policy. In the most common way of working the scheduler reviews 
the job requirements and launches the job in the number of requested nodes 
when they are available, then the assigned nodes get locked in the job 
execution until it finishes. 
 
The explained way of working has several disadvantages: 
 

 Jobs execution must wait until the requested resources are available in 
the cluster. 

 A job cannot use more than the resources requested at starting even if 
there will be more resources available. 

 The scheduler blocks all the resources requested by a job until it finishes, 
even if the job does not need them anymore. 
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The ideal way of working would be to assign dynamic resources to a job 
execution to shorten the time that the job is waiting to be executed, to allow the 
use of more nodes when they are available, and to allow the liberate 
unnecessary nodes to leave them available to execute other jobs. 
 
To solve this problem the BSC’s Accelerator and Communications (AccelCom) 
team has developed a library that allows to ask for a range of resources instead 
of asking for a fixed number of resources. The library is the DMR library. 
 
In this context, the aim and justification of this master’s thesis is to develop a set 
of software tools to generate and analyze traces of malleable applications. 
 

 
1.2. Objectives of the master’s thesis 
 
The main objectives of this master’s thesis are the following: 
 

 Reviewing some technical concepts regarding high-performance 
computing and how to work with the BSC’s infrastructure. 

 Learning about how to work with the BSC’s malleability framework. 
 Developing a library integrated into DMR to generate malleability traces. 
 Developing a trace format converter to convert trace files to Paraver 

trace files. 
 Analyzing the traces of several applications to use them as a reference 

about how to use the trace tools for application analysis. 
 
 
1.3. Impact on the sustainability, ethic-social, and over the diversity 
 
The optimization of the use of high-performance computing infrastructures has 
an impact on the environment: 
 

 The thousands of computing nodes require large amounts of energy for 
power supply and cooling systems, which also transfer a lot of heat to the 
environment. 

 The optimization of the efficiency of the infrastructure can extend its life 
cycle and reduce the environmental impact. 

 Improving malleability techniques is translated into delivering more 
science by increasing supercomputers' productivity. 

 
Due to the nature of the applications executed in high-performance 
environments, the optimization of the execution times can also have an impact 
on the research activities and, indirectly, on society.  
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1.4. Methodology 
 
To achieve the objectives of this project the work has been divided into three 
phases. 
 
The first phase is a training phase to acquire the basic knowledge needed to 
work with the HPC infrastructure of the BSC and to be able to manage the 
execution and compilation of parallel applications: 
 

 Agreement of collaboration with the BSC-CNS to collaborate part-time 
with the BSC’s AccelCom team. To have access to the BSC’s HPC 
infrastructure and tools. 

 Reviewing the learning materials and work done on the subject “High-
Performance Computing” of the “Master’s Degree in Computational 
Engineering and Mathematics”. 

 Reading the book “Construya su Propio Supercomputador con 
Raspberry PI”, by Sergio Iserte et al., to get a wider scope of how a 
computer cluster and a job management system work. 

 Experiment with a docker virtual cluster to know how Slurm works and 
experiment with parallel applications based on OpenMP and MPI. 

 Accessing to the BSC supercomputer MareNostrum 5 and experiment 
with C++ source code compilation, job scheduling, and malleability. 

 
The second phase is the development of the trace utilities: 
 

 Experiment with the DMR library and review the source code to know 
how it works and the codification style. 

 Defining useful trace codes. 
 Defining the trace format and data. 
 Designing and developing the trace generation library, DMRTRACE. 
 Integrating the trace generation library in the DMR library and testing it. 
 Documenting the trace library. 
 Studying the analysis tool Paraver, and its trace file format. 
 Designing and developing a trace file format converter for Paraver. 
 Documenting the trace analysis application and file format converter. 

 
The third phase of the project is the application of the developed traceability 
applications for tracing and analyzing several real malleable applications: 
 

 Select several real malleable applications and study them. 
 Executing the applications in the BSC’s cluster and tracing them. 
 Exporting the recorded traces to Paraver. 
 Analyzing the execution by using Paraver. 
 Documenting the trace recording and the data analysis performed. 
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1.5. Project planning 
 
According to the methodology and tasks described, the project work can be 
divided into several milestones: 
 

 Training and project planning. 
 Trace generation library development. 
 Trace format converter development. 
 Tracing and analyzing several real applications. 
 Master’s thesis presentation. 

 
Each milestone has been divided into several subtasks. In the case of the 
development activities are the common software development tasks: 
 

 Playing with several mock-ups to help to design the application. 
 Application design. 
 Application programming. 
 Application testing and validation. 
 Application documentation. 

 
The project will be developed in about 50 weeks with a dedication of about 15 
hours per week. The total dedication to the project will be approximately 750 
hours. Figure 1 shows the project planning. 
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Figure 1.1 Project Planning. 



11   

 
To reach each project milestone, the following resources are available: 
 

 Online documentation. 
 Docker virtual cluster. 
 BSC intranet documents. 
 Access to the BSC’s cluster. 
 BSC’s example source code. 
 Software development tools, editors, compilers, etc. 

 
 
1.6. Summary of products delivered in this master’s thesis 
 
The products delivered in this master’s thesis will be two software applications 
and a step-by-step guideline for tracing and analyzing malleable applications: 
 

 The application DMRTRACE, a C++ library for generating traces. This 
library will be integrated into the current BSC’s malleability library DMR. 

 The application DMRTRACEPARSER, a C++ application for converting 
CSV trace files to the Paraver analysis tool trace format. 

 A set of examples of tracing and analysis of real malleable applications. 
 The master thesis itself is a step-by-step guide for executing, tracing, and 

analyzing malleable applications. 
 
 
1.7. Introduction to the rest of the master’s thesis memory chapters 
 
The next three sections will be dedicated to each one of the technical parts. 
 
Chapter 2 is a summary of the training phase of the project. This section 
explains the basic concepts of HPC, malleability, and the BSC’s cluster. 
 
Chapter 3 contains the documentation regarding the design and development of 
the trace recording application. 
 
Chapter 4 contains the documentation regarding the design and development of 
the trace conversion application. 
 
Chapter 5 shows how to trace and analyze several malleable applications. 
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2. Technical concepts 
 
This section reviews the technical concepts needed to start working with the 
BSC’s infrastructure and with malleable applications. This section does not 
include the revision of general high-performance computing concepts. 
 
 
2.1. BSC’s cluster architecture 
 
MareNostrum 5 is a pre-exascale EuroHPC supercomputer hosted at BSC-
CNS. The system is supplied by Bull SAS combining Bull Sequana XH3000 and 
Lenovo ThinkSystem architectures and it has a total peak computational power 
of 314PFlops. The system will provide 4 partitions with different technical 
characteristics that jointly can fulfill the requirements of any HPC user. 
 
The BSC’s cluster architecture MareNostrum 5 is described in detail in the 
following link: 
 

 https://www.bsc.es/marenostrum/marenostrum-5 
 

 

 
 
2.2. Access to the MareNostrum 5 login nodes 
 
The MareNostrum 5 has 3 login nodes: 
 

 glogin1.bsc.es 
 glogin2.bsc.es 
 glogin4.bsc.es 

 
The nodes glogin1 and gloging2 are public, however, the node gloging4 is only  
available from the computers logged into the BSC’s network. 
 
The login nodes glogin1 and glogin2 do not have access to computers out of 
the cluster. It means that all the operations regarding uploading or downloading 
files must be executed from the client machine. However, the node glogin4 is 
allowed to access external machines. 

Figure 2.1 MareNostrum 5. 
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The access to the login nodes can be done via SSH connection, for instance, 
from a console of a client machine by executing the following command: 
 

 ssh username@glogin1.bsc.es 
 

 
 

 
To examine the node architecture, the following command can be used: 
 

 lscpu. 
 

 
 

Figure 2.2 Login into MareNostrum5. 

Figure 2.3 Output of the command lscpu. 
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2.3. Running jobs in MareNostrum 5 
 
The job scheduler used in MareNostrum 5 is Slurm. Detailed information and 
quick references about slurm can be found at the following links: 
 

 https://www.bsc.es/supportkc/docs/MareNostrum5/slurm 
 https://slurm.schedmd.com/quickstart.html 
 https://slurm.schedmd.com/pdfs/summary.pdf 

 
Before starting an important point must be considered. Due to each node 
having 224 cores, all jobs requesting 224 or more cores will use all requested 
nodes in exclusive mode. 
 
To know the available queues for submit jobs, the following command can be 
executed: 
 

 bsc_queues 
 

 
 

 
The gp_bsccs is the default queue and allows users to enqueue large jobs or 
jobs that require a lot of resources. This queue is the most used by the research 
staff to summit jobs but the time to wait for the execution is usually long. Due to 
that, it is more useful for developing and testing tasks to use the gp_debug 
queue, even though this queue has some limitations in execution times and 
resources, the time to wait for the job execution is considerably lower. 
 
Another important topic to know to execute jobs in the supercomputing cluster is 
the job scheduler. As has been explained before, in the case of the 
MareNostrum 5 the job scheduler used is Slurm. 
 
Slurm has three main directives for submitting jobs: 
 

 sbatch, to summit jobs by using batch files. 
 srun, to summit jobs directly. 
 salloc, to summit jobs interactively. 

 
Extensive information about those directives can be obtained by consulting the 
manual pages of each of them. 
 
The most used way of submitting jobs is by using batch files. In the batch file, 
the job execution parametrization is defined. Multiple clauses can be used in the 
batch files to indicate Slurm the time and resources to use in the execution. 
 
A quick reference guide of sbatch files can be found in the following link: 

 
 https://slurm.schedmd.com/sbatch.html 

Figure 2.4 Queues available for the user. 
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For testing sbatch execution, a simple batch file can be created to execute the 
command hostname in two nodes: 
 

#!/bin/bash 
## launches two tasks in two nodes 
#SBATCH --time=00:01:00 
#SBATCH --job-name=hostname 
#SBATCH --error=error.%j.log 
#SBATCH --output=output.%j.log 
#SBATCH --nodes=2 
#SBATCH --ntasks=2 
#SBATCH --cpus-per-task=1 
#SBATCH --tasks-per-node=1 
#SBATCH --ntasks-per-socket=1 
#SBATCH --qos=debug 
export TIMEFORMAT=%R 
time srun hostname 
unset TIMEFORMAT 
srun echo $SLURM_JOB_NAME "-"  $SLURM_JOB_ID 

 
Saving those instructions, for instance, in a file called example.sbatch, can be 
executed in the following way: 
 

 sbatch example.batch 
 

 
 
The state of the execution can be known by using the squeue command, and 
also the result of the execution, by examining the output file configured in the 
sbatch file. 
 
In the following link, there are examples of how to execute different types of 
jobs in the MareNostrum 5: 
 

 https://www.bsc.es/supportkc/docs/MareNostrum5/slurm 
 
 

 
Figure 2.5 Example of sbatch execution in MareNostrum4. 
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2.4. Introduction to the malleability in HPC environments 
 
In an HPC environment, malleability is the capability of dynamically changing 
the resources assigned to the execution of a parallel application. 
 
The possibility of dynamically assigning resources to the execution of a parallel 
application provides several benefits: 
 

 Speeding up the job starting with a lower assigned number of resources 
before more HPC resources are available. 

 Possibility of releasing resources instead of finalizing the execution of a 
parallel job when other more priority jobs require resources. 

 Possibility of using more HPC resources to speed up a job execution 
when they are available. 

 Possibility of using more HPC resources to increase the throughput of a 
job execution when they are available. 

 Reaching a higher percentage of usability of the cluster when it is close 
to 100% of usability. 

 
The use of dynamic resources for job executions translates directly into a better 
utilization of the HPC resources. 
 
To use dynamic resources for job executions it is needed to communicate the 
job with the resource management system (RMS). The job communicates with 
the RMS to ask for resources and to know the real number of resources 
assigned. The RMS assigns resources to the job execution depending on the 
availability of them in the system. The job in execution must implement a 
reconfiguration mechanism capable of adapting the number of parallel tasks to 
the number of assigned resources in real time and continuing the execution 
without losing the work done. 
 
 
2.5. DMR library technical fundamentals 
 
The DMR library is the library developed by the BSC for implementing 
malleability in MareNostrum 5 by using slurm. In this section, the main features 
and basic technical aspects of the DMR are explained. The library is not 
explained in detail but just the basic concepts needed to understand its 
functionality. The DMR library is described in detail in several papers and 
documents published by the authors of the library. Several links are included at 
the end of this section to know in deep the technical details of the library. 
 
The library consists of a C/C++ application which can be called from a parallel 
application to work in a malleable way. The library implements the needed 
functions to provide a parallel application with the capability of communicating 
with the RMS to allow the reconfiguration of the assigned resources in real time. 
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From the point of view of the user, the library has two main objectives: 
 

 Allowing the expansion of a job execution when the RMS have more 
available resources for the execution. 

 Allowing the shrinking of a job execution when the RMS needs to recover 
resources for other jobs. 
 

The library provides a high level of abstraction allowing users to implement 
malleable applications without needing to understand technical aspects. 
 
The library is designed to implement the described functionalities in the 
supercomputing environment of the BSC. For this reason, the library is based 
on several technologies used in the BSC: 
 

 Slurm, a very common RMS in HPC environments. 
 MPI, the most used library for distributed memory parallelization. 
 Nanos++, a process control runtime developed by the BSC. 

 
The library communicates with Slurm via a public application development 
interface (API). It is a set of libraries for low-level application development. 
 
The DMR library uses a set of functions of the MPI library which allow to create 
and destroy child processes from a parent process..  
 
It is not an objective of this section to describe in detail the features of Slurm 
and MPI which can be found on the internet in multiple sites: 
 

 https://slurm.schedmd.com/documentation.html 
 https://www.open-mpi.org/ 
 https://pm.bsc.es/nanox 

 
The process used by the DMR library to manage the malleability of a parallel 
application can be summarized in the following steps: 
 

 Reconfiguration starting based on parameters supplied by the user. 
 New process creation based on the MPI’s function MPI_Comm_spanwn. 
 Application data redistribution based on MPI’s functions (MPI_Send, 

MPI_Recv, MPI_Scatter, MPI_Gather), or via some redistribution 
functions included in the DMR. 

 Reconfiguration, termination of active processes, reallocation of 
resources, and execution of new processes, via Nanos++. 
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The execution environment is shown in Figure 2.15 [1]: 
 

 
Figure 2.6 Execution environment of a malleability application using DMR. 

 
The library is designed to be used by users in a low-intrusive way. Users have 
only to add some source code lines in their applications and add a link to the 
DMR library to them. Then, transforming a fixed resources application into a 
malleable application becomes an easy task. 
 
The structure and an example of a basic program implementing malleability via 
DMR library is shown in Figure 2-16 [1]: 

 

 
Figure 2.7 A simple example of a malleable program. 

 
 
2.6. Installing DMR in MareNostrum 5 
 
To use the DMR library it is needed to install and configure several applications 
and dependencies in the user workspace. The complete procedure of the library 
installation is described in Confluence in a private space of the BSC’s staff. 
 
The installation and configuration procedure creates a folder with the DMR 
library, dependencies, and examples: 
 

 

 
Figure 2.8 DMR folder contents. 
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The DMR library is supplied with an example application, sleepOf, and it can be 
compiled by using a Makefile application by using the following commands: 
 

 cd $DMR_PATH/test-dmr-c/ 
 make 

 

 
Figure 2.9 DMR example application folder. 

 
The example application can be executed by using a sbatch file by using the 
sbatch command: 
 

 sbatch mnv_submission.sbatch 
 

 
Figure 2.10 DMR example execution output in MareNostrum 5. 

 
 
2.7. Summary of the technical concepts section 
 
In this section, it has been explained the technical concepts and the work done 
to be able to work with the BSC supercomputing infrastructure, the 
MareNostrum 5, and the virtual cluster, a useful tool for experimenting without a 
real cluster. They have also been explained the basic technical concepts under 
the DMR library, the malleability library of the BSC, 
 
This preliminary work is a useful guideline to get the basic technical knowledge 
about the BSC’s infrastructure. It is also a fundamental set of knowledge 
needed to start the design and development of the malleability trace recording 
and analysis applications. 
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3. Library for malleability trace generation  
 
This section is dedicated to the design and development of the library for 
malleability trace generation. 
 
 
3.1. Trace generation library requirements 
 
In this section, the design requirements of the library for trace generation are 
defined. The library must be able to generate traces in malleable applications 
and must be integrated into the BSC’s malleability library, DMR. 
 
There are other important requirements to consider regarding functionalities, 
codification, and application development standards. 
 
The set of requirements are the ones shown in Table 1. 
 

Requirements 
Must trace each malleability event of an application execution 
Trace files must be in CSV text format easy to read and exporting 
Only ASCII characters will be allowed in trace files 
Trace files must be generated in the folder where the application is executed 
The library must be Integrated within the BSC’s DMR library 
The development language must be C/C++ 
The library must be compiled as a shared library 
The library must be an opensource application 
The codification must follow standards, according to the DMR coding style 
Codification and commentaries must be in English 
The source code must be hosted in the BSC’s GitLab repository 
Provide documentation in English 

Table 1. Trace generation library requirements. 
 
 
3.2. Definition of events to be traced 
 
Traces must contain the right data to allow users to extract useful information 
about the execution process of a malleable application. To fulfil this requirement 
the adopted strategy will be recording execution events, such as data transfers, 
reconfigurations, active resources, etc. 
 
The list of the defined malleability events is shown in Table 2. 
 

Code Description 
0 Set up 
1 Start Initialization 
2 End Initialization 
3 Start to Receive 
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4 End Receive 
5 Start to Send 
6 End Send 
7 Start Reconfiguration 
8 End Reconfiguration 
9 Start Iteration 

10 End Iteration 
11 Start Finalization 
12 End Finalization 
13 Start Detaching 
14 End Detaching 

Table 2. Malleability events codification. 
 
The trace generation library must create a new record in the trace file each time 
one of the defined malleability events occurs. 
 
3.3. Definition of trace fields 
 
One of the most interesting analyses to perform over the data recorded will be 
execution times. By recording execution times, it will be possible to get metrics 
of performance and overhead. To calculate the execution times, the best 
strategy consists of recording the timestamps to each event to trace. 
 
Other important information to be recorded are the processes that generate the 
events and how the resources allocated for the application change along the 
execution. This information can be obtained by recording process 
identifications, ranks, and number of ranks when an event is generated. 
 
It is also important to record in traces the information about the infrastructure 
where a job has been executed, such as execution nodes and processors. 
 
The defined trace fields will be the ones shown in Table 3. 
 

Code Description 
Node Name Name of the node 
Node CPUs Number of CPUs in the node 

CPU Id The numeric identifier of the CPU 
Process Id The numeric identifier of the process 
Thread Id The numeric identifier of the thread 
DateTime Timestamp of the event, in DateTime format 

Time Timestamp of the event, in seconds 
Event The numeric identifier of the event 

Event Desc Text description of the event 
Rank Rank in which the event occurs 

Num Ranks Number of ranks in execution 
Iteration Iteration of the application in which the event occurs 

Table 3. Fields of malleability traces. 
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3.4. Trace generation library design 
 
The trace generation library must be designed according to the user 
requirements, the defined events to trace, and the defined trace fields. 
 
The library will have the following functionalities: 
 

 Enumeration and description of trace events. 
 Getting the identifiers of the node, cpu, process, and thread in execution 

where the event is generated. 
 Getting the identifier of the rank that generates an event. 
 Getting the iteration of the program where the event is generated. 
 Getting the number of ranks in execution when the event is generated. 
 Getting the timestamp when an event is generated. 
 Creating the trace with the defined fields. 
 Recording the trace in a trace file. 

 
From the user requirements, there are other important considerations regarding 
the type of application and development process: 
 

 The library must be integrated into the DMR library. 
 The library must be developed in C/C++. 
 The codification style must be according to the DMR codification style. 

 
Based on those considerations, the trace library has been designed to be 
integrated into the DMR library, and it will call a trace generation function each 
time a relevant event occurs: 
 
Two types of functions have been defined in the trace library. 
 

 Exported functions to be called from the DMR library. 
 Local functions to generate trace data. 

 
Some of the data needed for the traces are known from the DMR library, these 
data will be transferred to the trace functions. 
 
The following data can be transferred from the DMR library to the trace library: 
 

 The Rank that generates the event. 
 Number of ranks in execution. 
 Iteration where the event is generated. 

 
At this point, a design decision must be taken. One of the options is to use a 
unique function to create the traces and send the event to record as a 
parameter of the function, and another option is to create a different function for 
each type of event to record. Each option has pros and cons and generates 
different function prototypes. 
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Function prototype by using a unique function: 
 
generate_event ( EVENT_ID_1, rank, nranks, iteration ) 
. 
generate_event ( EVENT_ID_N, rank, nranks, iteration ) 
 

Function prototype by using multiple functions. 
 

generate_event_function_1 ( rank, nranks, iteration ) 
. 
generate_event_function_N ( rank, nranks, iteration ) 
 

After tasting the use of both approaches in a mock-up, the decision was to use 
a unique function and pass the event as a parameter. The final function 
definition will be the following one: 
 

int dmrtrace_write_event(event_t event, 
 int dmr_comm_rank, 
 int dmr_comm_size, 
 int dmr_it); 

 
The event definition enumeration will be the following: 
 

enum event_t 
{ 
    EVENT_SETUP = 0, 
    EVENT_INIT_START, 
    EVENT_INIT_END, 
    EVENT_RECV_START, 
    EVENT_RECV_END, 
    EVENT_SEND_START, 
    EVENT_SEND_END, 
    EVENT_RECONFIGURATION_START, 
    EVENT_RECONFIGURATION_END, 
    EVENT_ITERATION_START, 
    EVENT_ITERATION_END, 
    EVENT_FINALIZE_START, 
    EVENT_FINALIZE_END 
    EVENT_DETACHING_START 
    EVENT_DETACHING_END 
}; 
 
 

3.5. Programming environment and tools 
 
It is necessary to select a programming environment for the library 
development. The right selection can save a lot of development time. 
 
The application is a small library developed in C/C++ languages, with just a 
couple of files, and with a few numbers of functions. Based on those premises it 
will be possible to define a list of requirements for the development tools: 
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 C/C++ syntax highlighting. 
 C/C++ compilation and debugging. 
 Possibility of remote editing via SSH connection. 
 Multiplatform. 
 Open Source. 
 CMake tools. 

 
Several open-source code editors and integrated development environments 
have been reviewed and evaluated. The following ones have been selected for 
the final decision, all of them fulfil the requirements: 
 

 Visual Studio Code (https://code.visualstudio.com/) 
 CodeBlocks (https://www.codeblocks.org/) 
 Netbeans (https://netbeans.apache.org/front/main/) 
 Eclipse (https://eclipseide.org/) 

 
The selected development environment has been Visual Studio Code. It is a 
lightweight modern multiplatform and multilanguage source code editor. It 
includes compilation, debugging, and a lot of useful plugins. 
 
Some Visual Studio Code plugins have been used for the development: 
 

 Remote SSH. 
(https://marketplace.visualstudio.com/items?itemName=ms-vscode-
remote.remote-ssh) 

 C/C++ for Visual Studio Code. 
(https://marketplace.visualstudio.com/items?itemName=ms-
vscode.cpptools) 

 C/C++ Extension Pack. 
(https://marketplace.visualstudio.com/items?itemName=ms-
vscode.cpptools-extension-pack) 

 CMake for Visual Studio Code. 
(https://marketplace.visualstudio.com/items?itemName=twxs.cmake) 

 CMake Tools. 
(https://marketplace.visualstudio.com/items?itemName=ms-
vscode.cmake-tools) 

 VS Code Makefile Tools. 
(https://marketplace.visualstudio.com/items?itemName=ms-
vscode.makefile-tools) 

 VSCode C/C++ Runner. 
(https://marketplace.visualstudio.com/items?itemName=franneck94.c-
cpp-runner) 

 VS Makefile Tools. 
(https://marketplace.visualstudio.com/items?itemName=ms-
vscode.makefile-tools) 

 Doxygen Documentation Generation. 
(https://marketplace.visualstudio.com/items?itemName=cschlosser.doxd
ocgen) 
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Figure 3-1 shows an image of the development environment connected to the 
cluster. The left side shows some of the installed plugins. 
 

 
Figure 3.1 Selected source code development environment. 

 
 
3.6. Source code management 
 
The trace generation library will be a utility for tracing malleable applications. 
One of the requirements is to be useful for the BSC so the source code must be 
managed professionally following the standards of source code management. 
 
The source code is managed at BSC via a source code repository based on 
GitLab. The DMR library source code is stored and maintained in a GitLab 
repository, as shown in Figure 3-2. 
 

 
Figure 3.2 DMR library repository in GitLab 
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The best way to manage the source code for the trace generation library is to 
handle the code as a new branch of the DMR library. The new branch is called 
DMRTRACE and will contain the library source code. 
 

 
Figure 3.3 GitLab dmrtrace library repository. 

 
 
3.7. Codification guidelines 
 
Another important topic before developing the library source code is to decide 
the codification guidelines. 
 
Due to the trace library being part of the DMR library and the source code being 
used by the same users, it will be necessary to keep a uniform codification 
style. To meet this requirement, it is necessary to review the DMR library’s 
source code. After analyzing the DMR library’s codification style the following 
codification rules were adopted: 
 

 Snack case style, for function and variable names, where the name is a 
composition of lower-case words separated by underscores. It is a very 
usual codification style in C/C++ languages. 

 SCREAMING_SNAKE_CASE style, for constants and enumeration 
members. It is also a common codification style in C/C++ languages. 

 Doxygen-compatible commentaries. It will allow to generate automatic 
documentation of the library’s functions. 

 License explanation at the header of each file. 
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Some examples of the codification styles are shown in the following figures. 
 

 
Figure 3.4 Example of source code file header. 

 

 
Figure 3.5 Example of function codification and Doxygen documentation. 

 

 
Figure 3.6 Example of enumeration members codification. 
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3.8. Trace recording library development 
 
After the detailed definition of requirements and the development and source 
code management tools selection, all the prerequisites are accomplished to be 
able to start the library development. 
 
The library consists of a C/C++ source code file, “dmrtrace.cpp” with several 
functions and a C/C++ header file, “dmrtrace.h”. 
 
The unique function to call from the DMR library for recording traces is the 
“dmrtrace_write_event” function, for this reason, it is declared in the header file. 
It will allow to call the function from an external source code just including the 
header. The function is declared as “extern C” to keep compatibility with C and 
C++ compiled code. 
 
The declaration of the function “dmrtrace_write_event” is the following one. 
 

 
Figure 3.7 Declaration of the function for recording traces. 

 
 
3.9. Library mock-up 
 
For testing the trace recording function before linking it with the DMR library, the 
trace recording library includes a “main” program to write all the possible events 
in a file. The mock-up consists of compiling the source code as an executable 
instead of a library and executing it to test the functionality.  
 

 
Figure 3.8 Testing function for events recording. 

 
The library can be compiled as an executable executing the following 
command: 
 
g++ dmrtrace.cpp -o dmrtrace 
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Executing it on any Linux platform a CSV file is generated. It contains one trace 
line for each defined event. 
 
Figure 3-9 shows the compilation and execution of the executable application 
used as a mock-up. 
 

 
Figure 3.9 Compilation and execution of the mock-up. 

 
 
3.10. Library integration with DMR 
 
After developing and testing basic functionalities via a mock-up the trace 
generation library is ready to be integrated into the DMR library to test the 
complete functionality. 
 
First, it is necessary to define how to compile the source code to be compatible 
with the DMR library. The DMR library is usually compiled as a dynamic link 
library so that the trace library will be compiled in the same way. 
 
The Makefile included in the DMR project folder includes the information about 
how the DMR library is compiled. The rules to compile both libraries can be 
added in the Makefile, first the trace library and after the DMR library, including 
the trace library. 
 

 
Figure 3.10 Makefile for trace generation and DMR libraries compilation. 

 
It has added a rule and modified the compilation parameters to compile the 
trace library as a shared library with the DMR library. 
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The calls to the trace functions must be included inside the DMR library. It is 
one of the more difficult tasks of the project because it requires understanding 
how the DMR library works and how its source code is organised. 
 
Each time a malleable process calls the library to change the allocated 
resources for the application execution, some processes are destroyed, and 
new ones are created. This behaviour makes it difficult to keep the persistence 
of the trace variables between different malleability iterations.  
 
After examining the DMR library source code and experimenting with different 
mock-ups, it has been possible to integrate all the calls to the trace generation 
function in the DMR source code header file, the “dmr.h” file. In this way, it is 
not necessary to add extra source code to the malleable program, just by using 
the DMR library in the usual way the traces will generated automatically. 
 

 
Figure 3.11 Example of use of the trace generation function. 

 
3.11. Testing and validation 
 
The final task of the development process consists of testing and validating the 
trace generation by using it in a parallel malleable application. 
 
The example program included in the DMR library source code has been used 
to validate the traces. It is a simple program to understand how the malleability 
library works. The program launches an instruction “sleep()” in several nodes in 
parallel. The sleep time depends on the number of resources assigned. The 
resource reconfiguration is done via the macros defined in the DMR library. 
 
There is no need to modify the source code to generate traces, the code to do 
that is inside the DMR library macros. The code is transparent for the 
developer. However, it is necessary to link the trace library with the application 
in the same way that the DMR library is linked. 
 

 
Figure 3.12 Makefile for linking the trace library to the test application. 
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By executing the testing application, a CSV trace file is generated. The obtained 
file is used to evaluate the right behaviour of the trace generation library and to 
validate that the fields meet the fields defined in the requirements section. 
 

 
Figure 3.13 A portion of the trace file of the example application. 

 
For evaluating the right generation of the trace files, it is necessary to define 
some validation rules. The selected rules are listed in Table 4. 
 

Validation rules 
Trace fields must meet the definition 
Trace timestamps must be incremental 
All iterations must be traced, and the records must be incremental 
All ranks in execution must be traced 
For each event of type START must be an event of type END 
Iteration events must precede Reconfiguration events in the same iteration 
The change of the number of ranks must occur after Reconfiguration events 
Events Init and Finalize only will be in the Rank 0 

Table 4. Trace library validation rules. 
 
For evaluating the generated trace file, the Excel Viewer application has been 
used, it is a VSCode plugin for editing Excel spreadsheets. 
 

 
Figure 3.14 Excel Viewer, VSCode plugin. 

 
 Excel Viewer 

(https://marketplace.visualstudio.com/items?itemName=GrapeCity.gc-
excelviewer) 

 
For a detailed analysis of the trace file, Excel Viewer allows to load and apply 
multiple filters to the file. Via those filters, the application can show, for instance, 
only some types of traces, traces for selected ranks, iteration, processors, etc. 
Figure 3-15 shows several examples of filters. 
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Figure 3.15 Excel Viewer filters for Events visualization. 

 
Filters can be used to analyze traces, to check the validation rules. Figure 3-16 
shows the first Rank 0 events to validate that it follows the right sequence of 
events. 
 

 
Figure 3.16 Example of events in the first iterations of the Rank0. 

 
To validate the functionality of the trace library multiple analyses of the trace 
files were done. During the validation process, some issues were detected, and 
some improvements were applied. Several iterations were needed to get the 
right trace file format. 
 
As the trace file is in a standard text format, useful information can be extracted 
by using other applications. Office applications such as Excel, LibreOffice Calc, 
or Google Sheets can also be used. 
 
A plotting Python notebook has been developed to validate the coherence of 
the sequences of events in the trace files. It has been developed using Python 
and Jupyter notebook plugins for VSCode. 
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Figure 3.17 Python and Jupyter notebook plugins for VSCode. 

 
Information and downloads for those plugins can be found in the following links: 
 

 Python (https://marketplace.visualstudio.com/items?itemName=ms-
python.python) 

 Jupyter (https://marketplace.visualstudio.com/items?itemName=ms-
toolsai.jupyter) 

 
The Jupyter Notebook can load the CSV trace file as well as filter and plot it by 
using Pandas, Matplotlib, and PyQ5, Python libraries. More information and 
downloads of those libraries can be found in the following links: 
 

 Pandas (https://pandas.pydata.org/) 
 Matplotlib (https://matplotlib.org/) 
 PyQ5 (https://pypi.org/project/PyQt5/) 

 
The notebook loads the CSV file and extracts information about the events of 
each rank executed in each iteration. The notebook can plot the sequence of 
events in the same or different plots, to get a visual representation of the event 
sequence. The visualization method used by Matplotlib and PyQT5 allows the 
application of zoom and scroll to the created plots, to visualize trace sequence 
details. 
 
The notebook creates several plots. The first plot is a general plot where all 
events and all ranks are present. It also includes a plot of resource evolution 
and the reconfiguration event of Rank 0, which is the most relevant event 
regarding resource allocation. An example is shown in Figure 3-18. 
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Figure 3.18 Plotting of all events of all ranks and resources allocated. 

 
Using zoom, specific details of the execution can be reviewed, for instance 
relation between the reconfiguration event and the allocated resources, and the 
relation between different events in the rank 0. 
 

    
Figure 3.19 Resource allocation and firsts Rank 0 events. 

 
From those plots, information useful to validate the traces can be obtained. For 
instance, to validate some sequences: 
 

 The change in the allocation of resources is synchronized with the final of 
the reconfiguration. 

 The iteration and the reconfiguration events are alternated. 
 The send and receive events are simultaneous but in different tasks. 
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Another plot obtained executing the notebook compares the send events of 
different ranks. This plot shows differences in the data transmission times 
between nodes. 
 

 
Figure 3.20 Plot of send events of different ranks. 

 
Another interesting plot is the comparison between the receive events of 
different ranks, it can be useful to find differences between data transmission 
and times between nodes. 
 

 
Figure 3.21 Plot of receive events of different ranks. 

 
By using the plots, information about several ranks can be compared. For 
instance, the send and receive communication times. 
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Figure 3.22 Detailed plot of the send and receive events. 

 
The test and validation process of the trace files can be summarized in the 
following steps: 
 

 Definition of validation rules. 
 Execution of a test application to generate trace files. 
 Trace file analysis via a CSV file visualization application. 
 Events timelines plotting and analysis. 

 
It is important to highlight that data analysis has been a tool for fine-tuning the 
trace generation application development. The data test and validation 
procedures have been executed several times over different versions of the 
library until the first version of the trace library has been released. 
 
 
3.12. License Agreement 
 
One important point is the selection of an appropriate license agreement for the 
trace generation library. 
 
One of the development requirements of the library is to be developed as an 
open-source application. This is the case for most of the applications developed 
by researchers at BSC. 
 
There are multiple license agreements for open-source projects, the GNU’s 
General Public License v3 (GPLv3) agreement is one of the most common 
agreements used and this is the selected to be applied to the development of 
the trace library. 
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To avoid future misunderstandings, the license agreement is included in the 
header of each source code file in the way that is shown in Figure 3.23. 
 

 
Figure 3.23 License agreement in the headers of the source code files. 

 
More information about the GPLv3 license agreement is available at the 
following link: 
 

 GPLv3 (https://www.gnu.org/licenses/gpl-3.0.html) 
 
 
3.13. Summary of the trace generation library section 
 
This section started defining the trace library requirements, the right 
development tools, and the codification guidelines. 
 
Afterwards, it has been explained how the trace library has been developed, 
some detailed information about its source code, and how it has been 
integrated inside the source code of the DMR library. 
 
Finally, it has been explained how the library has been tested via executing and 
tracing a simple malleable parallel application, and how the final validation has 
been done, analyzing in detail the traces recorded by using CSV analysis tools 
and data science tools based on Python. 
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4. Trace format converter for Paraver  
 
Paraver is the performance analysis tool of the BSC. This tool has been 
developed for several years by the BSC’s team and is the standard tool for 
parallel applications performance analysis. 
 
This section is focused on the development of a software utility for converting 
trace files from CSV format to PRV format, the Paraver trace format. The 
section contains the application requirements, the Paraver trace format, the 
process of application development, and the process of testing and validation of 
the Paraver trace files. 
 
 
4.1. Format converter utility requirements 
 
This section defines the list of requirements that the conversion utility must fulfil. 
The features required are, basically, the generation of PRV files from CSV files, 
and the possibility of merging several CSV files into a unique PRV file. 
 
Besides the basic functional requirements mentioned above, there are also 
other important requirements to consider regarding functionalities, codification, 
and application development standards. 
 
Table 5 shows the trace format converter requirements. 
 

Requirements 
Convert CSV DMRTRACE trace files to PRV Paraver trace files 
Merge several CSV files in a unique PRV file 
The PRV file must be visualized in Paraver by using easily identifiable colors 
The PRV file must respect the resource hierarchy of Paraver 
Detection of errors in the source CSV trace files at conversion time 
PRV files must be generated in the folder where the application is executed 
The development language must be C/C++ 
The utility must be multiplatform, compact, and without dependencies 
The utility must be an opensource application 
The codification must be according to the trace generation library 
Codification and commentaries must be in English 
The source code must be hosted in the BSC’s GitLab repository 
Provide documentation in English 

Table 5.Trace converter application requirements. 
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4.2. Paraver trace format 
 
This section is a summary of the Paraver trace format definition. All the 
information exposed in the section is extracted from the Paraver trace manual 
[3], which can be found at the following link: 
 

 Paraver trace format (https://tools.bsc.es/doc/1370.pdf) 
 
It is not the intention of this section to transcribe the Paraver trace manual, but 
just to summarize the key points. For this reason, some images of parts of the 
Paraver manual have been reproduced. 
 
The Paraver trace files are composed of two parts. The first part is the header 
of the file, which contains a readable text line with the description of the 
application execution, and the hierarchy of the resources involved in the 
execution. The second part is the trace body, which contains a list of readable 
text lines with information corresponding to states, events and communications 
generated during the execution of the application. 
 
Figure 4-1 shows a small portion of a trace file. 
 

 
Figure 4.1 Example of Paraver trace file format. 

 
The detailed header description is shown in Figure 4-2. 
 

 
Figure 4.2 Paraver trace file header description. 
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The Paraver trace body can contain three types of information. 
 

 States (1). 
 Events (2). 
 Communications (3). 

 
Each type has a different numeric identificatory and a different recording format 
in the body of the trace file. 
 
Figure 4-3 shows the State record description and format. 
 

 
Figure 4.3 State record description and format. 

 
The Event record description and format are shown in Figure 4-4. 
 

 

 
Figure 4.4 Event record description and format. 

 
The Communication record is not relevant for the format converter, for this 
reason, it is not going to be commented in this section. 
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It is also needed to take into consideration several important rules for the right 
trace file generation. 
 

 Ascending order of time, for states or events with the same timestamp. 
 Descending order for records of different types with the same timestamp, 

in the order, communications, events, and states. 
 
Finally, it is relevant to understand the object structure due to it will be a key 
point at the time of generating the header of the trace file. 
 
Figure 4-5 shows the object structure.  
 

 
Figure 4.5 Paraver object structure. 

 
It is important to highlight that the nodes and cpus are enumerated. It means 
that the nodes have incremental numbers, each different node has a new node 
ID and each cpu in the same or different node follows the same rule. 

 
 

4.3. Strategy for DMRTRACE event conversion to Paraver format 
 
Paraver trace files can contain states, events, and communications. So, the first 
design decision to take is to decide if the DMRTRACE events must be 
converted to Paraver events or if they must be converted to Paraver states. 
 
In the beginning seems more logical to convert DMRTRACE events to Paraver 
events due to it is a more direct conversion. Converting DMRTRACE events to 
Paraver states is quite more complex because it requires defining the states 
and converting the events to the starting and ending points of those states. 
However, Paraver represents graphically the states in a very clear way while 
the direct representation of the events is not so useful. 
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Figure 4-6 shows the direct event representation in Paraver. The event 
representation of Paraver consists of a set of green flags without relation. 
 

 
Figure 4.6 Direct representation of events in Paraver. 

 
Figure 4-7 shows the direct state representation in Paraver. The state 
representation of Paraver consists of a set of bars with and starting and ending 
point. Each different color corresponds to a different state. 
 

 
Figure 4.7 Direct representation of states in Paraver. 

 
Paraver has several options that allow users to create semantics from non-
semantic trace files and one of those options allows to create states from 
events. Using this option DMRTRACE events can be converted to Paraver trace 
events, and after, create Paraver states with a clear visualization and data 
analysis. 
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Figure 4-8 shows how to create Paraver states from events. As it is shown in 
the image, the conversion is done via the semantics properties of the window, 
by selecting in the thread field the value “Last Evt Val”. 
 

 
Figure 4.8 Paraver window property for creating states from events. 

 
Applying that event to state conversion rule the result is a composition of states 
and events, such as is shown in Figure 4-9. 
 

 
Figure 4.9 Representation of events converted to states in Paraver. 

 
It can be concluded that converting DMRTRACE events to Paraver trace events 
and converting the events to states by Paraver conversion rules at the analysis 
time is the best strategy. 
 
 
4.4. Trace conversion application design 
 
The application design is strongly conditioned by the requirements of being a 
compact application, free of dependencies, and multiplatform. Those 
requirements cannot be fulfilled by using a very high-level programming 
language such as Python which has powerful libraries for extracting and 
manipulating data from files, such Pandas. The use of Python and Pandas is 
not possible at this moment in MareNostrum 5 and even Python has some 
extensions to create standalone dependency-free applications, the results are 
big executable applications with large loading times and low performance. 



44   

 
To meet the compact, portable, free of dependency, small, and high-
performance applications there are diverse programming languages available, 
but to keep a unique programming language and development tools for all the 
deliverable applications of this project, the language selected has been C/C++. 
 
As the programming language, the programming tools, and the codification 
guidelines will be the same that were selected for the trace recording library 
development, it is not necessary to explain another time the tools selection 
procedure explained in sections 3.5, 3.6, and 3.7 of this document. 
 
There are several very good C/C++ libraries for extracting data from files and 
converting that data to different formats. At the time of designing the application 
has been evaluated several ones: 
 

 SQLite (https://sqlite.org/) 
 DuckDB (https://duckdb.org/) 
 DataFrame (https://github.com/hosseinmoein/DataFrame) 

 
SQLite and DuckDB are embedded relational databases with similar 
functionalities. The way of working with them in the development of the trace 
conversion application would be quite similar: 
 

 Loading CSV trace files and converting them into database tables. 
 Using SQL sentences to get the data needed to create the PRV file. 

 
Even though those libraries are easy to use with powerful features, it was 
decided not to use them due to the growth of the final application is not justified 
by the benefit of using them. So, it is preferable to dedicate more time to the 
application development and obtaining a more compact application. 
 
DataFrame follows a different approach, it works with frames like Pandas. This 
library requires a high learning curve. So, it is preferable to dedicate more time 
to the application development to obtaining a compact application. 
 
After evaluating the pros and cons of using C/C++ libraries to ease the data 
management in the application, it has been decided not to use an external 
library, and to develop the source code from scratch. 
 
The following application structure has been decided: 
 

 Define a struct with the fields of the CSV trace files. 
 Load each CSV file in a vector of structs. 
 Generate the PRV body converting each item in the vector to PRV 

format. 
 Recording relevant data for the PRV header during the CSV loading and 

format conversion. 
 Generate the PRV header with the data recorded. 
 Save the header and the body in a plain text PRV file. 
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Based on this design the most complex part of the application is converting 
each CSV trace line into a PRV trace line and recording the right data during 
the process to be able to generate the PRV file header. 
 
 
4.5. Data conversion rules definition 
 
It is necessary to define how the data for the PRV file, header, and body, will be 
generated from the data recorded in the CSV trace files. The definition of the 
conversion rules is part of the design of the format conversion application. 
 
The trace fields defined in previous sections have been used. 
 
#Paraver (header). This is a constant text at the beginning of the Paraver files. 
 
Date and time (header). The conversion application gets the date and time of 
the system at the time of executing the converter. 
 
Total trace time (header). The conversion application gets the lower and 
higher timestamps of all the trace files in merging and calculates the total trace 
time as the difference between those timestamps. The timestamp is converted 
to microseconds due to it is the default timescale of Paraver. 
 
Number of nodes and cpus per node (header). The conversion application 
enumerates the nodes present in all the trace files and assigns one cpu per 
node. The reason to do this assignment is that, even though each node has 
multiple cpus, at this moment, DMR uses only one cpu. 
 
Number of applications (header). It is the number of trace files to merge to 
create the Paraver trace file. 
 
Number of tasks and threads for application (header). The conversion 
application creates a list of ranks for each application (file). The list contains 
each rank present in the trace file and assigns to each rank a “1” thread of the 
total number of iterations recorded in the trace file, it depends on the conversion 
option selected when the application is executed.  
 
Cpu (Body). Even the right way to fill this field would be to enumerate the cpus 
of the application, the conversion application is forced to use the rank number in 
this field to get the right visualization in Paraver. 
 
Application (body). The conversion application enumerates the trace files to 
merge and uses those values in the application field. 
 
Task (body). The conversion application uses the rank of the trace record. 
 
Thread (body). The conversion application uses the iteration of the trace record 
of uses the value “1” depending on the execution parameters. 
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Timestamp (body). The conversion application gets the timestamp of the trace 
record and subtracts the lower timestamp of all the trace files. 
 
Event code (body). The conversion application uses the event of the trace 
record but assigns the same event code to the same types of events 
independently if they are of type START or END. The value assigned is always 
the value of the equivalent event of type END. 
 
Event value (body). The conversion application assigns to the events of the 
type start a hardcode value to get a nice visualization color in Paraver and 
assigns the value 0 to all the events of type END. With this assignment, Paraver 
can convert events to states and show a clear timeline visualization. 
 
The following example shows the header of the conversion of a unique trace 
file. It uses 8 nodes of 1 cpu and 1 application executing a maximum of 8 ranks 
during 17 iterations: 
 
#Paraver (2024/06/21 at 08:19):576862000:8(1,1,1,1,1,1,1,1):1:8(17:1,17:2,17:3,17:4,17:5,17:6,17:7,17:8) 
 

The following example shows several converted trace records. The first value 
(2) indicates that it is a record of type event, the second value (1) is the rank of 
the record, the third value (1) is the number of the trace file used to create the 
Paraver trace file, the fourth value (1) is also the rank, the fifth value is the 
iteration of the record, the sixth value is the incremental timestamp, the seventh 
value is the event of the record, and the last value indicates to Paraver if it is a 
record of an event of type START (value different of zero) or an event of type 
END (value equal to zero): 
 
2:1:1:1:4:132918000:4:1 
2:1:1:1:4:133289000:4:0 
 

 
4.6. Trace conversion application development 
 
The application has been developed in C/C++ following the application design 
explained in the application design section, and the development tools and 
codification rules have been the same ones used for developing the trace 
generation library. 
 
As was defined in the requirements section, the source code can be compiled 
on several platforms. A Makefile file is provided to compile the code in Linux 
and Windows to create a standalone small executable file. 
 

 
Figure 4.10 Makefile for compiling the trace conversion application. 
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The Makefile can create Windows and Linux executables by using make, in the 
following way: 
 

 make windows. 
 make linux. 

 
It creates the executable files “dmrtraceparser.exe” on Windows and 
“dmrtraceparser” on Linux. 
 
Figure 4-11 shows how to compile the source code of the application to create 
an executable on Windows and also on Linux. 
 

  
Figure 4.11 Trace converter application compilation on Windows. 

 
The Makefile generates and small executable application, with a size of just 
211kB on Windows and 108kB on Linux. The executable size meets the defined 
requirement of having and small, standalone multiplatform application. 
 
To execute the application, it is needed to call the executable file from the 
operating system console, adding as parameters the CSV files to convert and 
merge. 
 
Figure 4-12 shows how to execute the application merging and converting two 
CSV trace files on Windows and Linux. 
 

 

 
Figure 4.12 Execution of the conversion application on Windows and Linux. 

 
The program confirms the processed files and generates a unique PRV file 
whose name of the date and time of the computer when the file is created. 
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The converter can detect errors in the CSV source files at the time of format 
conversion. It is easy to test this feature by using a wrong CSV file as an input. 
 

 
Figure 4.13 Error detection in a wrong CSV input file. 

 
As it is shown, an error has been detected in line 3 of the trace file 
 
 
4.7. Trace conversion application test and validation 
 
This section explains the process of validation of the format conversion 
application. After the design and development of the application, it is needed to 
validate that the application meets the defined requirements. 
 
The key features and more difficult ones to validate are to perform the right 
format conversion and perform the right merge of several CSV trace files in a 
unique PRV trace file. 
 
The test and validation of those features is quite manual and requires a work 
procedure. The test and validation procedure will have the following steps: 
 

 Executing a traced application to get a CSV trace file. 
 Studying the generated trace file. Analyzing the number of nodes, 

number of reconfigurations, cpus per node, and number of ranks. 
 Executing the conversion application by using the CSV file as a source 

(dmrtraceparser.exe example1.csv). 
 Analyzing the header of the PRV output file and verifying that the time, 

resources, and application fields meet with the data in the CSV file. 
 Analyzing the body of the PRV output file and verifying that nodes, 

applications, tasks, threads, events, and values meet with the data in the 
CSV file. 

 Repeat the previous steps by using two input files for the format 
converter application (dmrtraceparser.exe example1.csv example2,csv). 

 Load the output files by Paraver, convert events to states, and verify that 
the program sequences meet with the sequences in the CSV trace files. 

 
Executing this validation sequence will be enough to consider that the 
conversion utility is ready to be used to convert any CSV trace file. 
 
The first step of validation is getting a CSV trace file from the execution of a 
traced malleable application and to analyze the recorded data. To analyze the 
data, it has been used the application Excel Viewer. It is a VSCode plugging 
already explained in the data trace generation development sections. 
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Figure 4-14 shows the number of nodes used during the execution of the DMR 
example application. The application has used four nodes. 

 

 
Figure 4.14 Number of nodes in the CSV file for test and validation. 

 
 
The number of cpus is always the same (224 in the case of MareNostrum 5). 
 

 
Figure 4.15 The number of processors is always the same for all nodes. 

 
Each rank is executed in a different node always in the cpu 0 of the nodes. 
 

 
Figure 4.16 The ranks are always executed in the cpu 0 of the nodes. 
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The total number of iterations in the trace is 17 (0-16). 
 

 
Figure 4.17 All the ranks create only one execution thread. 

 
There have been 1, 2, 4 and 8 ranks active at the same time. The number of 
ranks is always a power of 2. 
 

 
Figure 4.18 The number of different processes executing the Rank 0. 

 
The number of ranks changes each time that a reconfiguration with expand or 
shrink of resources has been performed. 
 

 
Figure 4.19 Number of ranks every time that an iteration starts. 

 
The PRV file is obtained by executing the conversion application using as input 
the CSV trace file. The next step consists of checking the PRV file key points. 
The execution of the trace conversion application is shown in Figure 4-20. 
 

 
Figure 4.20 Conversion of the testing CSV trace file to PRV format. 
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The first point to check is the PRV file’s header, to verify that all the fields have 
been generated in the right way. 
 

 

 
Figure 4.21 Header and first and last events of the generated PRV trace file. 

 
The first fields of the header are according to the header definition. The total 
time calculation in the header meets with the time stamp of the last register of 
the body, so those fields are right. 
 
The rest of the header is analyzed in the following way: 
 

 The number of nodes (8) and the number of cpus per processor (1), meet 
with the trace definitions done in previous sections for DMR traces. 

 The number of applications (8) meets the maximum number of ranks.  
 The number of tasks (8) meets with the maximum number of ranks. 
 The number of threads per task (17) meets with the number of iterations. 

 
From the analysis done, it can be concluded that the header of the PRV trace 
file is right. The final check will be to load the PRV trace file in Paraver and 
check the resources created. 
 
The next step is to analyze the content of the file’s body. Due to the body of the 
trace containing hundreds of lines, it cannot be analyzed line per line. The 
estimation of the coherence can be done following some rules: 
 

 All the lines must start with the value 2 because all registers are events.  
 The second value, the node, must meet with the rank of the trace record. 
 The third value, the application number, must be incremental from 1 to 

the number of files merged during the conversion and must meet with the 
header values. 

 The fourth value, the task, must meet with the rank of the trace record. 
 The fifth value, the thread, must be 1 or the iteration of the trace record, it 

depends on the application execution arguments. 
 The sixth value, the timestamp, must be incremental, from 0 to the 

application execution time. 
 The seventh value, the event, must meet with the equivalent event in the 

trace record but always with the value of the equivalent event of type 
END. 
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 The last value, the event value, must be different 0 for the events of the 
type START and 0 for the events of type END. In this way, Paraver will 
be able to convert events to states in the right way and assign a unique 
color. 

 
Figure 4-22 shows the correspondence of the event values between the CSV 
trace file and the PRV trace file by using some registers of both files. 
 

  
Figure 4.22 Comparison between registers of the CSV file and the PRV file. 

 
There is the following relevant information: 
 

 Line N of the trace file meets with line N+1 or the Paraver file. 
 The thread N in the Paraver file meets with the Iteration + 1 in the trace 

file. 
 Node id and tasks id in the Paraver file meet with rank + 1 in the trace file 
 In the Paraver trace file all event values correspond with events of type 

END. The events of type START and type END, are differentiated by the 
last field, the event value. 

 The timestamps of the registers of both files are the same, but in the 
case of the PRV trace file they start from a timestamp of 0. 

 
The next test to execute consists of merging two CSV trace files in a unique 
PRV trace file and repeating the validation procedures. To ease the process, 
the test can be done using two times the same CSV file. 
 

 
Figure 4.23 Merge of two CSV trace files in a unique PRV trace file. 

 
As it has been converted two times to the same file, the total time, and the 
number of nodes and cpus, in the header, must be the same as obtained when 
a unique file was converted. Where it is expected a change in the header is in 
the number of applications sections, due to it being defined that two files are 
considered different applications. 



53   

 

 
Figure 4.24 Paraver trace file header after merging two times the same file. 

 
The number of applications has been increased from 1 to 2, and the structure of 
the applications has been duplicated, as it was expected. 
 
The last test to do is to analyze the point of the PRV trace file when the two 
CSV trace files are joined. 
 

 
Figure 4.25 Point of the PRV trace file where two CSV trace files are joined. 

 
The next step consists of loading the PRV trace files in Paraver and executing 
several visualization operations. Paraver detects if a trace file has a wrong 
format and aborts the file loading process. 
 

 
Figure 4.26. Paraver error message loading a wrong trace file. 
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The first test is to load the PRV trace file obtained by converting a unique CSV 
trace file, creating a visualization window, and showing the events. 

 

 
Figure 4.27 Generated trace file loaded in Paraver. 

 
Paraver has uploaded the trace file without errors and the distribution of the 
events is coherent with the traces recorded. 
 
The next step is generating the states by using the semantics of Paraver. 
 

 
Figure 4.28 Events converted to states in Paraver. 

 
To analyze the resulting traces, they must be divided into several sections. 
 

 
Figure 4.29 Timeline of the instance execution divided in sections. 
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Figure 4-29 shows different regions of the timeline of the execution of an 
isolated instance of the application. The yellow sections are computation 
periods, and the red and the green periods are communications for sending and 
receiving computing results and data to compute, respectively. The light blue 
periods are periods, where send and receive communications, occur 
simultaneously but in different processes. The description of each section is the 
following: 
 

1. The application starts with 8 nodes. The nodes compute the data and 
perform a reconfiguration. After the reconfiguration, the computing nodes 
send the results. 

2. After the reconfiguration, only 1 node continues assigned to the 
application. The node receives the data to compute, performs the 
computation, and after, performs a reconfiguration. After processing the 
reconfiguration, the node sends the results. 

3. After the reconfiguration, 2 nodes are assigned to the application. The 
nodes receive the data to compute, perform the computation, and after, 
perform a reconfiguration. After processing the reconfiguration, the 
nodes send the results. 

4. After the reconfiguration, 4 nodes are assigned to the application. The 
nodes receive the data to compute, perform the computation, and after, 
perform a reconfiguration. After processing the reconfiguration, the 
nodes send the results. 

5. After the reconfiguration, 8 nodes are assigned to the application. The 
nodes receive the data to compute, perform the computation, and after, 
perform a reconfiguration. After processing the reconfiguration, the 
nodes send the results. 

6. The execution repeats the explained cycle several times. 
 

The final validation steps consist of testing the creation of Paraver trace files by 
merging two CSV trace files. To perform the tests easily, it has been used two 
times the same trace file. The result expected is just a duplication of the 
applications with a repetition of the timelines of the events and states. 
 

 
Figure 4.30 Paraver trace file from two trace files. 
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Figure 4.31 Paraver file from two trace files converted to states. 

 
The conversion of two CSV trace files to a unique PRV trace file seems to be 
right, and Paraver can upload the resultant trace file without errors and create 
the states from the trace events. 
 
After the battery of tests done over the output files generated by the trace 
converting application, it can be concluded that the application runs fine and 
converts the CSV trace files to PRV trace files in the right way. 
 
To close the test and validation section, it should be noted that the final 
validation of the trace conversion application will be done when it is used to 
trace real malleable applications in the last part of this master thesis. 
 
4.8. Trace converter command line arguments 
 
The trace converter is a command line application. It can be executed with 
different types of arguments: 
 

 dmrtraceparser [--iters] [--noiters] [filename.csv] [foldername] 
 
Each argument has a different effect on the behaviour of the conversion 
application: 
 

 --iters. The field “iteration” of each DMRTRACE record is used to fill the 
field “thread” of each Paraver trace record. 

 --noiters. The field “thread” of each Paraver trace record is always “1”. It 
does not allow Paraver to show simultaneous states in different threads. 

 [filename.csv]. One or several trace files to convert to Paraver. 
 [foldername]. If a folder name is used, the trace converter merges and 

converts all the CSV files inside the folder into a unique Paraver file. 
 If the arguments –iters and –noiters are not used, the trace converter 

uses a counter of reconfigurations. 
 If files or folders are not specified, the converter merges and converts all 

the CSV files inside the execution folder. 
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To ease the use of the converter a common practice consists of creating script 
files to call the converter using the right arguments. 
 
The usual way of using the conversion application is not to use the command 
line arguments –iters and –noiters. In this way, the converter creates Paraver 
trace files where the thread field is a counter of reconfigurations. This 
conversion strategy allows Paraver the simultaneous state visualization without 
creating too many threads to visualize. 
 
The using of the argument –iters with trace files with many iterations, can cause 
a collapse in Paraver. It is due to excessive thread to visualize. 
 
The using of the argument –noiters, causes the impossibility of visualizing 
simultaneous states in Paraver. It is due to the thread identifier of all the events 
is the same and equal to “1”. 
 
 
4.9. License Agreement 
 
The trace converting application is an open-source software application that 
complements the malleability trace generation library. For this reason, the 
license agreement adopted is GPLv3, the same adopted for the trace 
generation library and other software applications developed at the BSC. 
 
To avoid future misunderstandings, the license agreement is included in the 
header of each source code file of the application. 
 
More information about the GPLv3 license agreement is available at the 
following link. 
 

 GPLv3 (https://www.gnu.org/licenses/gpl-3.0.html) 
 
 
4.10. Summary of the trace converter application section 
 
This section started by explaining how the Paraver trace file format is defined 
and with the definition of the trace format converter application requirements. 
Afterwards, the application design and the application development were 
explained in detail. 
 
Finally, it was explained how the application has been tested and validated by 
using a trace file from the execution of a simple malleable parallel application, 
generating a Paraver trace file, comparing the content of both files and finally 
loading the resulting trace file into Paraver and executing several visualization 
operations. 
 
As it has been explained at the final of the test and validation section the 
application will be fully validated when is used to study several real applications 
in the last part of this document. 
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5.  Study of several malleable applications 
 
In this section, the trace library and the trace conversion application will be used 
to study the behaviour of several malleable parallel applications. First, a 
common study procedure will be defined, and after that, the procedure will be 
applied in the study of several applications. 
 
The main goals of this section are, to show how to apply the traceability library 
to record relevant events of a malleable application, how to convert the DMR 
traces to the Paraver trace format, and how to use Paraver for monitoring the 
application execution and extract some relevant metrics. 
 
 
5.1. Application study procedure 
 
The first step for the study is defining a common procedure valid for the study of 
any application. The goal is to have a set of basic steps useful to study the 
behaviour of any malleable application. 
 
The defined procedure is shown in Table 6. 
 

Application Study Procedure 
Making the application malleable, according to the DMR procedures 
Defining a policy of resource reconfiguration 
Launching the application 
Getting the DMR trace files generated during the execution of the application 
Converting the generated DMR trace files into a Paraver trace file 
Opening Paraver and load the trace 
Creating a visualization window 
Activating the event flag visualisation in the window 
Select the last event val in the thread field in the semantics properties window 
Select the level task in the window properties 
Visual analysis of the application 
Creating a new histogram from the visualisation window 
Setting the appropriate histogram visualisation options 
Setting the appropriate trace objects to get different levels of detail of metrics 
Statistical analysis of the application 

Table 6. Malleable application study procedure. 
 
To test the applications, it is necessary to define a resource reconfiguration 
policy. There are several ways of testing a malleable application: 
 

 Launching a unique instance of the application and changing the 
available resources to force the application to change its resources, 
when a reconfiguration is performed. 
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 Launching multiple instances of the application and forcing them to share 

the available resources. 
 
To select a reconfiguration policy, it is necessary to modify a source code file 
and recompile it. To ease the task of defining the policy from scratch, there are 
several pre-defined policies in the source code. So that, it is possible to select 
one of the predefined policies just by commenting and uncommenting source 
code and recompiling it. 
 
The test of the applications is going to be performed using a unique instance 
and selecting the policy that expands the resources from 1 to 8 in powers of 2 
and shrinks them from 8 to 1. 
 
The source code of this policy is placed in a slurm subfolder of the DMR folder 
installation folder of the user: 
 

 ~/dmr/slurm-spawn/src/plugins/select/linear/select-linear.c 
 
The code that must be selected and recompiled is shown in Figure 5-1. 
 

 
Figure 5.1 Reconfiguration policy step up to 8. 

 
The code of the policies TALP, RAMDOM and PhD must be commented to 
avoid being compiled. 
 
This source code file has a link in the DMR folder, and the code can be 
compiled by executing the Makefile, also used to compile the DMR library and 
the DMRTRACE library. 
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5.2. Paraver procedures for application studies 
 
This section is a revision of common Paraver procedures, to avoid overloading 
the study of different applications with redundant information.  Some basic 
procedures, such as loading a trace or converting events to states, have been 
explained in previous sections, this section will be a short remembering of those 
procedures and some other useful ones. 
 
To study the job execution by using Paraver, it is necessary to convert the trace 
into the Paraver trace file format. The DMRTRACEPARSER application does 
this operation in different ways, one of them is passing the trace files as 
arguments of the application. 
 

 dmrtraceparser.exe file1.csv file2.csv …  fileN.csv 
 
A trace file can be opened in Paraver by using the menu file. 
 

 
Figure 5.2 Opening a trace file in Paraver. 

 
A timeline window can be created by clicking over an icon. After that, the event 
flags can be activated by using the window contextual menu. 
 

 
Figure 5.3 Opening a timeline window and activating the event flags. 
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For the right visualization, t is needed to convert the events to states. It can be 
done by using the properties of the timeline window, in the semantics section by 
selecting the option “Last Evt Val” in the thread field. The result will be the 
visualization of the timeline of the states of the application. 
 

 
Figure 5.4 States of the job timeline. 

 
By default, the visualization window is loaded showing information at thread 
level and in a time scale of microseconds. Microseconds is too much resolution 
for measuring times in malleable applications, so that is more useful working 
with milliseconds by changing the property “time unit” in the window properties. 
 

 
Figure 5.5 Visualization of the time scale in milliseconds. 

 
At the thread level, Paraver shows in the Y axis, the application, the rank, and 
the thread, and in the X axis, the time. The application level is always 1 
because the trace corresponds with the execution of just one instance of the 
application. The task level corresponds with the ranks, from 1 to 8, changing 
after each reconfiguration, following the previously selected resource availability 
policy. The thread level corresponds with the iteration where there are 
reconfigurations, and therefore send and receive communications. 
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Paraver shows in red (value 5) the send communications, in yellow (value 7) the 
computing time, in green (value 9) the receive communications, and in orange 
(value 13) the detaching process. The DMRTRACEPARSER application puts 
the codes of these colors in the event value field of each register of the 
generated Paraver trace files. 
 
Paraver allows users to change the visualization level. The level can be 
changed from thread to task, application, cpu, and others. Those levels of 
visualization hide part of the information but give clearer information when lower 
levels of visualization show too much information. 
 

 
Figure 5.6 Visualization of the job execution by using the task level. 

 
The visualization window allows operations of filtering, zooming and scrolling, to 
examine trace details, and activating the info panel, by using the context menu, 
is possible to get times of states by double-clicking over them. By using those 
features is also possible to analyze in detail part of the trace. 
 
Additionally, Paraver allows the extraction of statistics of the traces. It is 
possible to create a statistics view by clicking over the icon “new histogram” and 
selecting a timeline window. 
 

 
Figure 5.7 Creation of a histogram window for statistics. 
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After creating a new histogram, some adjustments in the screen and the 
properties window must be done. It can visualize the percentages of 
computation times (state 7), and communications (states 5 and 9). Some basic 
adjustments can be made to improve and customize data visualization: 
 

 Activating the lens icon in the histogram screen, to change the 
visualization from color histogram to color and data histogram. 

 Activating or deactivating colors. 
 Selecting a horizontal or vertical view. 
 Showing or hiding empty columns, to show or hide all the possible states, 

even these states won’t be in the trace file. 
 Enabling or disabling header colors, to show or hide the color 

representation of all possible states. Those colors are the same ones 
used in the timeline visualization window. 

 Enabling or disabling totals, to show or hide the overall statistics of the 
selected objects. 

 Change the statistics configuration in the property window, for instance to 
percentage of time. 

 
After configuring the histogram view in the right way, the statistics windows 
show useful information to make an objective evaluation of a job execution. 
 
A useful information to determine the efficiency of the execution of an 
application can be the percentage of time dedicated to computation and 
communications. 
 

 
Figure 5.8 Statistics window in Paraver. 
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5.3. Basic study of the sleepOf application 
 
The sleepOf application is the application that comes with the DMR library. The 
application executes a sleep function in multiple ranks. The sleep function 
suspends the execution of instructions in each rank for some seconds. 
 
The application executes multiple iterations and after each iteration checks if 
must reconfigure its resources. The sleep time depends on the number of 
resources assigned to the application. The sleep time is defined in the function 
compute of the application. 

 

 
Figure 5.9 Function compute of the sleepOf application. 

 
The sleep duration will be a constant (16) divided by the number of ranks of the 
application. The computation time depends on the number of resources. 
 
The first step to studying the application is submitting a job. The job is submitted 
via a sbatch file: 
 

 sbatch mnv_submission.sbatch 
 
The job will end after a predefined number of iterations will be completed. 
 
After the job execution, a CSV trace file is generated. It contains all the events 
created during the execution of the job. The CSV trace file is converted to a 
Paraver trace file by using the DMRTRACEPARSER application, to be loaded 
in Paraver. Figure 5-10 shows the thread and task views of the sleepOf 
application execution in Paraver. 
 

 
Figure 5.10 Thread and Task views of the sleepOf application. 
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The thread and the task views can show a complete cycle of reconfigurations 
from 1 to 8 resources. The comparation of both visualizations allows to decide 
the more useful view. 
 

 
Figure 5.11 Reconfigurations cycle from 1 to 8 resources in the thread view. 

 
Changing to the tasks view, the information is compacted at task level. Paraver 
creates new states and colors to represent the processes executed in the same 
rank at the same time but in different threads. 
 

 
Figure 5.12 Reconfigurations cycle from 1 to 8 resources in task view. 

 
After comparing the threads and the task view, it seems easier to use the task 
view, even is a compacted view with less information. 
 
In the task view, Paraver has created a new state, state 14, represented in light 
blue, which is the composition of the states sending and receiving processed 
simultaneously in the same rank but in different threads. 
 



66   

The complete cycle of reconfigurations from 1 to 8 resources contains several 
reconfigurations. Following the resource availability policy, the application 
expands its resources in powers of 2 from 1 to 8 resources. After a complete 
cycle, the application shrinks its resources to 1 to repeat the cycle. The has 
been divided into several sections to be explained: 
 

1. Computation with 8 resources has finished, all the ranks send results to 
rank 0 and rank 0 sends data to compute to itself. 

2. Rank 0 computes. 
3. Reconfiguration, rank 0 sends results to itself and sends data to compute 

to ranks 0 and 1. 
4. Ranks 0 and 1 compute. 
5. Reconfiguration, ranks 0 and 1 send results to rank 0 and rank 0 sends 

data to compute to ranks 0 to 3. 
6. Ranks 0 to 3 compute. 
7. Reconfiguration,, ranks 0 to 3 send results to rank 0 and rank 0 sends 

data to compute to rank 0 to 7. 
8. Ranks 0 to 7 compute. 
9. Reconfiguration, ranks 0 to 7 send results to rank 0 and rank 0 sends 

data to compute to itself, starting a new cycle of reconfigurations. 
 

One of the analyses to make over the sleepOf application consists of checking 
the computing time. It should depend on the number of resources allocated for 
the application. The computing time must follow the formula ct = 16 / nr, where 
ct is the computing time and nr is the number of resources.  
 
The computation time can be obtained from the task visualization window by 
activating the info panel and double-clicking over the different compute states 
(yellow). Paraver will show the state time in the info panel. 
 
The following window shows the different execution times of each different 
states of the application sleepOf. 

 
Figure 5.13 Computation times depend on resources. 
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Figure 5-13 shows that the computation times are proportional to the assigned 
resources. The computation time changes from 16 seconds, when just one 
resource is used by the application, to 2 seconds, when 8 resources are used. 
 
Reviewing the job execution timeline, there is an important difference between 
the time necessary to receive data in the ranks 0 and 1 against the needed time 
to receive data in the rest of the ranks. In the case of rank 0 the difference also 
exists in the time to send data. 
 

 
Figure 5.14 Unbalanced communication times. 

 
To find an explanation for that difference, the source code of the sleepOf 
application has been reviewed and a possible improvement has been identified. 
The functions recv_shrink() and send_expand() use synchronous 
communications which could cause rank 0 and rank 1 to wait until they finish. 
To confirm this hypothesis, a change in communications has been made, the 
synchronous communications have been changed by asynchronously. 
 

 
Figure 5.15 Parallelization of communications. 

 
After applying the changes in the source code, recompiling the application, and 
executing it, the traces can be uploaded in Paraver to review if the changes in 
the source code have produced changes in the communications times. 
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Communication times can be easily compared by visual analysis. 
 

 
Figure 5.16 Synchronous versus asynchronous states. 

 
The visual comparison shows improvements in the rank 1 data transfers, 
receiving data for computing. The rest of the ranks are also improved when they 
send results. However, there are no improvements in the rank 0 data transfers, 
which causes the overall performance of the application to be the same. With 
the new approach, the time previously dedicated by the ranks for sending 
results (red) has been used to waiting for detaching (orange). 
 

 
Figure 5.17 Statistics of the synchronous and asynchronous applications. 
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The histogram windows ease the comparison of both applications. By using 
statistics, more objective conclusions can be extracted: 
 

 The percentage of computation time is quite similar for both applications. 
 The percentage of time sending results (state 5) is very high in the 

synchronous application, however, the detaching time is less significant. 
 The percentage of communications for results sending (state 5) is low in 

the asynchronous application, however, the detaching time is very 
significant. 

 
The sleepOf application may be improved to get better communications and 
detaching times, however, the objective of this section is not to improve the 
applications under study but just showing the utility of the traceability tools and 
how to use them. For this reason, no more improvements and tests of the 
sleepOf application will be part of this project but may be of a future work. 
 

 
5.4. Study of the Jacobi application 
 
The Jacobi application is one of the first applications converted into a malleable 
application by using the DMR library. The application solves equation systems 
using a numeric method based on the parallel Jacobi algorithm, distributing the 
data and computation in multiple nodes. The application iterates until reaching a 
predefined error value. 
 
Depending on the selected error value, the application can execute thousands 
or even millions of iterations, until reaching the stop condition. The malleable 
version of the Jacobi algorithm allows users to select the number of iterations to 
check for a reconfiguration of resources. 
 
The following image shows the main part of the function compute(), the main 
computational operation executed for each rank. 
 

 
Figure 5.18. Main operations of the Jacobi algorithm. 
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The following image shows the compute() function wrapped by the DMR 
macros to make the algorithm malleable. The function DMR_Inhibit_iter() allows 
the application user to decide the number of iterations to execute between each 
reconfiguration process. 
 

 
Figure 5.19 Part of the Jacobi malleable algorithm. 

 
The first step to studying the application is submitting a job. The job is submitted 
via a sbatch file: 
 

 sbatch mnv_submission.sbatch 
 
After the job execution, a CSV trace file is generated. It contains all the events 
created during the execution of the job. The CSV trace file is converted to a 
Paraver trace file by using the DMRTRACEPARSER application, to be loaded 
in Paraver. Figure 5-20 shows the thread and task views of the Jacobi 
application execution in Paraver. 
 

 
Figure 5.20 Thread and Task views of the Jacobi application. 
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The thread and task view can show a complete cycle of reconfigurations, from 1 
to 8 resources. The comparison of both visualizations allows to decide on the 
more useful view. 
 

 
Figure 5.21 Reconfigurations cycle from 1 to 8 resources in the thread view. 

 
Changing to the tasks view, the information is compacted at the task level. 
Paraver creates new states and colors to represent the processes executed in 
the same rank, at the same time, but in different threads. 
 

 
Figure 5.22. Reconfigurations cycle from 1 to 8 resources in task view. 

 
After comparing the threads and the task view, it seems easier to use the task 
view, even is a compacted view with less information. 
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The complete cycle of reconfigurations from 1 to 8 resources contains several 
reconfigurations. Following the resource availability policy, the application 
expands its resources in powers of 2 from 1 to 8 resources. After a complete 
cycle, the application shrinks its resources to 1 to repeat the cycle. The has 
been divided into several sections to be explained. 
 

1. Computation with 8 resources has finished, all the ranks send results to 
rank 0 and rank 0 sends data to compute to itself. 

2. Rank 0 computes. 
3. Reconfiguration, rank 0 sends results to itself and sends data to compute 

to ranks 0 and 1. 
4. Ranks 0 and 1 compute. 
5. Reconfiguration, ranks 0 and 1 send results to rank 0 and rank 0 sends 

data to compute to ranks 0 to 3. 
6. Ranks 0 to 3 compute. 
7. Reconfiguration,, ranks 0 to 3 send results to rank 0 and rank 0 sends 

data to compute to rank 0 to 7. 
8. Ranks 0 to 7 compute. 
9. Reconfiguration, ranks 0 to 7 send results to rank 0 and rank 0 sends 

data to compute to itself, starting a new cycle of reconfigurations. 
 

In the task view, Paraver has created a new state, state 14, represented in light 
blue, which is the composition of the states sending and receiving processed 
simultaneously in the same rank but in different threads. The sending and 
receiving processes can be observed in detail in the thread and the task views, 
by applying object filtering and zooming over the visualization window. 
 

 
Figure 5.23. Simultaneous send and receive communications. 
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With a first visual analysis of a complete cycle of reconfigurations, some flags 
seem to be alone after detaching processes. Those flags seem not to have a 
relation with any state. The way to analyze those flags is to know their 
timestamps and review the trace file to know what events have generated them. 
 

 
Figure 5.24 Analysis of events without state. 

 
Locating the events in the trace file and analyzing them, was determined that 
the events 14 (end of detaching) were recorded two times in the trace file. 
Those events are recorded at several points in the function DMR_Detach(). 
 

 
Figure 5.25 DMR_Detach function traceability. 

 
After examining the source code, no explanation was found at the trace 
recording level, so that, the question was transferred to the DMR development 
team, who found and solved the problem in the DMR library. 
 
Analyzing in detail the computing states, it was discovered that the computation 
times of the iteration were very short and in between of different iterations, there 
were some milliseconds not assigned to traceability states. 

 

 
Figure 5.26 Indeterminate times between computations. 
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After analyzing the possible causes, it was determined that those times 
corresponded to the trace recording times in the macro DMR_COMPUTE(). 
 

 
Figure 5.27 Macro DMR_COMPUTE overloaded by trace recording. 

 
Those times were just some milliseconds, but in algorithms with very short 
computation times, and a big number of iterations, the recording times 
represent a big overhead. For this reason, it was decided to record the 
ITERATION_START and ITERATION_END events not in each iteration but in 
the ones where a reconfiguration is performed. 
 
Another strange behaviour observed during the visual analysis of a complete 
reconfiguration cycle of Jacobi was the incoherence between the data transfer 
times between the ranks 0 and 1 in comparison with the rest of the ranks. This 
behaviour was also found in the study of the sleepOf application. 
 

 
Figure 5.28 Unbalanced data transfer times in Jacobi. 

 
As was done in the sleepOf application analysis, the source code of the Jacobi 
application has been reviewed. A possible improvement has been identified in 
the functions recv_shrink() and send_expand(). The improvement consists of 
changing the synchronous communications to asynchronous communications 
and trying to reduce waiting times to perform data transfers in parallel. 
 

 
Figure 5.29 Parallelization of the function send_expand() in Jacobi. 
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Communication times can be easily compared by visual analysis. 
 

 
Figure 5.30 Synchronous and asynchronous data transfers. 

 
The visual comparison does not show any improvement in the data transfers 
with the parallelization, but it seems that it has affected in some way the 
computing times. 
 
The computing times can be analyzed in more detail by the visualization 
windows. Double-clicking over the computation states, of each trace, the 
computation times can be obtained. 
 

 
Figure 5.31. Synchronous versus asynchronous computing times. 
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The visual comparison shows improvements in the computing times when 
parallel communications are used. The statistic view can be used to obtain 
more detailed information. 
 

 
Figure 5.32 Synchronous versus asynchronous computing statistics. 

 
The statistics view shows a clear reduction of the computation times (event 7) 
but also a time increment in the detaching times (13). The rest of the states in 
both applications are very similar without notable changes. There are no 
apparent reasons for those results, the parallel data transfers seem not to have 
a relation with the computation times. It is not possible to explain those results 
without reviewing in deep the Jacobi algorithm and its traceability. As a deep 
study of the Jacobi application is out of the scope of this project, it may be done 
in future works. 
 
The last study of the Jacobi application consists of analyzing the behaviour of 
the execution of multiple instances simultaneously sharing and resources. To 
execute multiple instances at the same time, is necessary to change the 
resource management policy, enabling the PhD policy in the file “slurm-linear.c”, 
disabling the rest of the policies and recompiling the DMR library. 
 

 
Figure 5.33 Resources policy for multiple instance execution. 

 
It is also necessary to define how to share the resources, it is done via the DMR 
macro DMR_Set_parameters(), which allows to define how to share resources 
between different instances. Figure 5.33 shows the configuration for the test. 



77   

 

 
Figure 5.34 Resource sharing configuration via DMR macro. 

 
Multiple instances in parallel can be executed by including a loop in the sbatch 
file “submission.sbatch”, for example, they can be executed 4 instances. 
 

 
Figure 5.35 Execution of multiple Jacobi instances in parallel. 

 
After the changes, the job can be submitted via the previously used sbatch file. 
 

 sbatch mnv_submission.sbatch 
 
The execution of multiple instances in parallel in the same job generates 
multiple trace files, in this case 4 trace files. 
 

 
Figure 5.36 Trace files of 4 instances in parallel. 

 
DMRTRACEPARSER can merge multiple trace files to generate a unique 
Paraver trace file, in several ways, for instance, passing the files as arguments. 
 

 dmrtraceparser.exe dmrtrace-2.csv dmrtrace-3.csv dmrtrace-4.csv 
dmrtrace-5.csv 

 
After the Paraver trace file is generated, it can be opened in Paraver. Figure 
5.35 shows the thread and task view of the multiple instances. 

 
Figure 5.37 Thread and task view of execution of multiple instances of Jacobi. 
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The best view to analyze the execution of the application is the task view. The 
view can be divided into sections for the execution analysis. 

 
Figure 5.38. Job execution divided into sections. 

 
The different sections in Figure 5.36 show 4 instances running in parallel and 
sharing 8 resources. The explanation for each section is the following: 
 

1. Instance 1 starts with 8 resources. 
2. After the first reconfiguration, instance 1 shrinks to 2 resources and 

instance 2 starts with 6 resources. 
3. After the second reconfiguration, instance 2 shrinks to 2 resources and 

instance 3 starts with 4 resources. 
4. After the third reconfiguration, instance 3 shrinks to 2 resources and 

instance 4 starts with 6 resources. 
5. When instance 1 finishes, instance 2 expands to 4 resources. 
6. When the instance 2 finishes, the instances 3 and 4 expand to 4 

resources. 
7. When instance 3 finishes, instance 4 expands to 8 resources and 

computes until finishing. 
 
The explained sequence meets with the expected behaviour and the results 
obtained allow understanding and validation of how DMR manages sharing 
resources between different instances. 
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Finally, it is possible to view the statistics of the execution of each instance. 
 

 
Figure 5.39. Statistics of simultaneous execution of multiple instances. 

 
 
5.5. Summary of the study of several malleable applications 
 
In this section, traceability tools for malleable applications have been used to 
study several malleable applications. Common procedures have been defined, 
and traceability tools have been applied to study several malleable applications. 
 
Visual and statistical study techniques have been applied to analyze the traces 
of the applications under study. Several issues have been identified and some 
improvements have been tested. Some of the tested improvements have 
obtained successful results, but implementing other improvements will require a 
deeper study of the application source code. 
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6. Conclusions and future work 
 
When this project was defined, three main objectives were defined: 
 

 Reviewing technical concepts regarding high-performance computing 
and knowing the BSC’s malleability framework. 

 Developing a library to provide the BSC’s malleability framework with 
traceability capabilities. 

 Developing a software tool for trace analysis. 
 
The project workload was distributed in a percentage relation of about 30% of 
research in the HPC, especially in the dynamic resources management area, 
and about 60% of software engineering, especially in visual traceability analysis 
tools. It was mainly a software and data analysis engineering project. 
 
Due to the project being developed within the framework of collaboration with 
the BSC, the project requirements have been evolving during the development 
process, always with the aim of creating a useful deliverable work. 
 
The first part of the project was dedicated to the research activities needed to 
acquire the knowledge necessary for the trace library development. It was 
knowledge about HPC, malleability, programming methodologies, tools, etc. 
 
After the development of the trace library and after starting the development of 
the trace analysis tools, when the first traces were analyzed, and when the real 
potential of the application was known, it was decided to change the course of 
the project to get a more useful deliverable for the BSC. 
 
It was decided to abandon the development of the software for trace analysis 
and focus on developing a tool to be able to convert the traces into the format of 
the standard HPC analysis tool of the BSC, the Paraver application, and use 
Paraver to study several malleable applications already available at the BSC. 
 
After that decision to change the project requirements, the project workload was 
changed notably. The last part of the project changed from the development of 
a visual analysis software application to a format conversion software utility.  
 
The new project specifications required growing up considerably in the research 
activity. It was necessary to investigate how to use Paraver, how the Paraver 
traces are defined, how to convert malleable traces to Paraver traces, and, for 
the application analysis, how those malleable applications work. 
 
After finishing the project, the main activities developed have been the following 
ones: 
 

 Reviewing technical concepts regarding high-performance computing 
and knowing the BSC’s malleability framework. 
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 Developing a library to provide the BSC’s malleability framework with 
traceability capabilities. 

 Developing a software tool for converting malleability trace files to 
Paraver format. 

 Study the traces of the execution of several malleable applications. 
 Project management and documentation. 

 
The total time dedicated to the project has been about 800 hours, and the 
workload distribution is more or less the shown in Table 7. 
 

Technical concepts % Type 
Basics HPC (clusters, slurm, OpenMP, MPI) 5% Research 
Basics BSC (MareNostrum, Confluence, GitLab) 5% Research 
Basics Malleability and DMR 5% Research 

 
Trace recording library development % Type 

Development procedures and tools 5% Research 
Trace recording library development and test 10% Development 

 
Trace converter development % Type 

Paraver functionalities 5% Research 
Paraver trace files 5% Research 
Trace format converter development 15% Development 

 
Application analysis % Type 

Application study general procedures definition 5% Research 
SleepOf application understanding and analysis 5% Research 
Jacobi application understanding and analysis 10% Research 

 
Summary of management activities % Type 

Documentation 20% Management 
Project management 5% Management 

Table 7. Workload distribution of the project. 
 
The workload distribution shows that even though this project started as a 
software engineering project, it finally became a research project with a 
dedication of about 50% research, 25% development and 25% management 
and documentation. 
 
The main goals of the project have been reached. At the final of the project, a 
trace generation library, a trace converter utility, and some trace analysis 
procedures and examples are available, allowing to trace the execution of 
malleable applications. 
 
Even though the malleability traceability tools are already functional, there is 
future work to do in this area. Malleability is an important technology for the 
improvement of the performance of HPC infrastructures, and it is an active 



82   

project at BSC. So far, only some algorithms have been updated and tested to 
work in a malleable way, and a lot of algorithms are still pending on being 
malleable. It will be important future work on the malleability project and 
consequently will imply future work on the traceability project. 
 
Some future improvements of the malleability traceability could be the following: 
 

 Recording more types of events. 
 Tracing communications between ranks. 
 Traceability at thread level on the user side. 
 Mixing malleability traceability with HPC traceability. 
 Real-time traceability monitoring. 
 Alternative approaches to show iterations in Paraver. 
 Direct generation of PRV files during the job execution. 
 Configuration files for different types of analysis by using Paraver. 
 Automatic analysis and reporting generation. 
 Definition of procedures for analysis and validation of algorithms. 

 
As it has been explained the malleability traceability can be an important 
complementary project for the malleability project at the BSC. Traceability will 
help to analyse and validate the malleability project results, easing continuous 
improvement. 
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7. Glossary 
 
BSC. Barcelona Supercomputing Center. 
CNS. Centro Nacional de Supercomputación. 
COMPILATION. Process to create an executable from source code. 
CSV. Comma Separated Values, plain text file format. 
C/C++. High-performance multi-propose and HPC programming language. 
DMR. Dynamic Management Resources, malleability library of the BSC. 
DMRTRACE. Malleability trace library. 
DMRTRACEPARSER. Program to convert CSV to PRV files. 
EVENT. Action that occurs during program execution. 
GIT. Distributed version control system. 
GITLAB. Web-based GIT repository. 
HPC. High Performance Computing. 
JACOBI. An iterative method to solve systems of equations. 
JOB. Unit of work to submit to a cluster for its execution. 
JUPYTER NOTEBOOK. Python interactive computing environment. 
LINK. Combination of compiled files in a unique executable or library. 
MAKEFILE. The file contains instructions to compile and link. 
MALLEBILITY. Ability to adjust resources for job executions in HPC. 
MARENOSTRUM5. Name of the HPC cluster of the BSC. 
MPI. Message passing interface, used for the communication process in HPC. 
NANOS++. A process control runtime developed by the BSC. 
OPENMP. Open Multi-Processing API for shared memory multiprocessing. 
PARAVER. HPC application execution analysis tool developed by the BSC. 
PYTHON. High-level multi-propose and scientific programming language. 
PRV. Paraver trace file extension. 
SLEEPOF. Programming for testing malleability developed by the BSC. 
SLURM. Job scheduler for HPC environments. 
QUEUE. List of HPC jobs waiting to be processed. 
STATE. Status of execution of a job in a concrete time. 
TRACE. A set of job execution events is recorded in a file. 
VSCODE. Multi-language source code editor based on plugins. 
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