
Open University of Catalonia (UOC) Master’s Degree in Data Science

MASTER’S THESIS

Area: M2.879 - TFM - Area 2 - Aula 1

Reinforcement Learning in Autonomous Vehicles with

Limited Input

—————————————————————————–

Author: Raül Villalba Rodŕıguez

Tutor: Raúl Parada Medina

Professor: Ismael Benito Altamirano

—————————————————————————–

Tarragona, January 9, 2024

Credits/Copyright

A page with the specification of credits/copyright for the project (either application on one

side and documentation on the other, or unified), as well as the use of third-party trademarks,

products or services (including source code). If a person other than the author collaborated on

the project, their identity and what they did must be explicitly stated.

Below is the most common case, but it can be modified for any other alternative:

Attribution-NonCommercial-NoDerivs 3.0 Spain (CC BY-NC-ND 3.0 ES)

3.0 Spain of CreativeCommons.

i

https://creativecommons.org/licenses/by-nc-nd/3.0/es/

ii

FINAL PROJECT RECORD

Title of the project: Reinforcement Learning in Autonomous Vehicles with
Limited Input

Author’s name: Raül Villalba Rodŕıguez

Collaborating teacher’s name: Raúl Parada Medina

PRA’s name: Ismael Benito Altamirano

Delivery date (mm/yyyy): 01/2024

Degree or program: Data Science Master’s degree

Final Project area: M2.879 - TFM - Area 2 - Aula 1

Language of the project: English

Keywords Automotive, Autonomous driving, Advanced Driver As-
sistance Systems (ADAS), Level L5 Autonomy, Rein-
forcement Learning, HD maps.

iii

iv

Dedication/Quote

A la famı́lia, por siempre estar ah́ı.

v

vi

Abstract

The automotive industry is currently undergoing two simultaneous revolutions: electrifica-

tion and autonomy. In recent years, various regulations that apply to all manufacturers have

mandated the incorporation of advanced driver assistance systems (ADAS) into their vehicles.

Manufacturers are already delving into the development of Level L3 autonomous functions

that can be homologated. Additionally, numerous institutions and companies are pushing the

boundaries, aiming to create prototypes that achieve Level L5 autonomy, enabling fully au-

tonomous driving.

Within the scope of this project, we will delve into the cutting-edge developments in this

field. Our objective is to implement and train a model utilizing reinforcement learning, and

subsequently, compare its performance with other models. To ensure safety throughout the

process, the training will be carried out within simulated environments. However, our ultimate

goal is to seamlessly integrate the trained model into a real-world vehicle.

Keywords: Automotive, Autonomous driving, Advanced Driver Assistance Systems (ADAS),

Level L5 Autonomy, Reinforcement Learning, HD maps.

vii

viii

Resumen

La industria de la automoción está experimentando actualmente dos revoluciones en paralelo:

la electrificación y la autonomı́a. En los últimos años, diversas regulaciones que aplican a

todos los fabricantes han introducido la obligación de incorporar diferentes sistemas avanza-

dos de asistencia a la conducción (ADAS, por sus siglas en inglés), las cuales los fabricantes

están explorando, y algunas de estas funciones ya cumplen con los requisitos para obtener la

homologación de nivel L3 de autonomı́a. Además, numerosas instituciones y empresas están

explorando ir más allá, buscando desarrollar prototipos que alcancen el nivel L5 de autonomı́a,

que representa la conducción autónoma total.

En este proyecto, se analizará el estado del arte, con el objetivo de implementar y entrenar un

modelo utilizando aprendizaje por refuerzo y luego compararlo con otros tipos de modelos. Por

razones evidentes de seguridad, el entrenamiento se llevará a cabo en entornos de simulación.

No obstante, nuestra meta final es integrar el modelo entrenado en un veh́ıculo real.

Palabras clave: Automoción, Conducción autónoma, Advanced Driver Assistance Systems

(ADAS), Nivel L5 de autonomia, Aprendizaje por refuerzo, Mapas de alta definición.

ix

x

Contents

Abstract vii

Resumen ix

Table of Contents xi

List of Figures xv

1 Introduction 3

1.1 Proposal description and motivation . 3

1.2 Goals . 4

1.3 Sustainability, diversity and ethics . 4

1.4 Methodology and planning . 5

2 State of the art 7

2.1 Autonomous driving . 7

2.1.1 Perception . 7

2.1.2 Planning . 8

2.1.3 Action . 9

2.2 Reinforcement learning for autonomous driving 9

2.2.1 Simulators . 9

2.2.2 Models . 10

3 Base system 11

3.1 AV system . 11

3.1.1 ROS . 11

3.1.2 RViz . 12

3.1.3 Software structure . 12

xi

xii CONTENTS

4 What to replace 15

4.1 First approach: replace only path planning . 15

4.2 Second approach: replace path planning and LVP MPC 15

5 How to interconnect 17

5.1 ROS communication . 17

5.2 CARLA . 19

6 Implementation 21

6.1 First ideas . 21

6.1.1 Bézier curves . 21

6.1.2 Curvature . 21

6.1.3 Velocity . 22

6.1.4 RL model and its output . 22

6.2 RL model . 22

6.3 First approach . 23

6.3.1 Reason to discard . 26

6.4 Second approach . 26

6.4.1 Accelerate . 26

6.4.2 Brake . 27

6.4.3 Right turn . 27

6.4.4 Left turn . 27

6.5 State space . 27

6.5.1 HD Maps . 28

6.6 Reward system . 30

6.6.1 First ideas . 30

6.6.2 Final reward system . 30

6.6.3 Going out of the road identification . 31

6.6.4 Correct/incorrect lane identification . 32

6.7 Code . 32

7 Testing 33

7.1 Parameters . 33

7.2 Testing with the first approach (Using trajectories and LVP MPC) 33

7.2.1 Testing at maximum frequency of actuation 37

7.3 Testing with the second approach (Using throttle, brake and steering angle in-

structions) . 39

CONTENTS xiii

7.4 Carbon emissions . 42

7.4.1 Training session without using CARLA 42

7.4.2 Training session using CARLA . 44

7.4.3 Difference of using CARLA or not . 46

8 Conclusions 47

8.1 Behavior . 47

8.2 Main challenges . 47

9 Further work 49

9.1 Training and implementation . 49

9.2 Adaptation to the real vehicle . 50

Bibliography 50

xiv CONTENTS

List of Figures

1.1 Gantt diagram . 5

3.1 Existing AV model Software structure. Source: Author’s elaboration 12

5.1 Existing AV model. Simulation ROS communication. Source: Generated using

ROS package rqt graph . 17

5.2 First approach. Simulation ROS communication. Source: Generated using ROS

package rqt graph . 18

5.3 Second approach. Simulation ROS communication. Source: Generated using

ROS package rqt graph . 19

5.4 Simulation ROS communication with CARLA integrated. Source: Generated

using ROS package rqt graph . 20

6.1 Turning trajectory. Source: Author’s elaboration 24

6.2 Right turn Bézier curve points generation. Source: Author’s elaboration 25

6.3 Left turn Bézier curve points generation. Source: Author’s elaboration 26

6.4 Road sectorization. Source: ASAM OpenDRIVE 28

6.5 Road sector localization. Source: ASAM OpenDRIVE 29

6.6 Intersection. Lane identification. Source: ASAM OpenDRIVE 29

7.1 Reward evolution of four training experiments. Source: Author’s elaboration . . 34

7.2 Reward evolution of five training experiments. Source: Author’s elaboration . . 35

7.3 Reward evolution of three training experiments. Source: Author’s elaboration . 37

7.4 Training with: learning rate: 0.001, num. layers: 4, num. neurons: 512, mem.

size: 3000, eps. decay: 0.995, upd. freq.: 5, sync. freq.: 50. Source: Author’s

elaboration . 38

7.5 Reward evolution of two training experiments. Source: Author’s elaboration . . 39

7.6 Reward evolution of four training experiments. Source: Author’s elaboration . . 40

xv

https://www.asam.net/standards/detail/opendrive/
https://www.asam.net/standards/detail/opendrive/
https://www.asam.net/standards/detail/opendrive/

7.7 Training with: learning rate: 0.0005, num. layers: 6, num. neurons: 512, mem.

size: 3000, eps. decay: 0.995, upd. freq.: 4, sync. freq.: 50. Source: Author’s

elaboration . 41

7.8 Training with: learning rate: 0.0005, num. layers: 6, num. neurons: 512, mem.

size: 50000, eps. decay: 0.995, upd. freq.: 4, sync. freq.: 50. Source: Author’s

elaboration . 42

7.9 Execution time for the first training session. Source: Author’s elaboration 42

7.10 First training session. Monitoring start. Source: Author’s elaboration 43

7.11 First training session. Monitoring end. Source: Author’s elaboration 43

7.12 Execution time for the second training session. Source: Author’s elaboration . . 44

7.13 Second training session. Monitoring start. Source: Author’s elaboration 45

7.14 Second training session. Monitoring end. Source: Author’s elaboration 45

2 LIST OF FIGURES

Chapter 1

Introduction

1.1 Proposal description and motivation

The prospect of autonomous vehicles revolutionizing the future of transportation is a compelling

vision. It has been estimated that these advanced vehicles could potentially save 10 million

lives per decade on a global scale (1). Such a statistic is nothing short of staggering, given

that traffic accidents remain a leading cause of fatalities worldwide. While achieving complete

autonomy in vehicles is undoubtedly a big challenge, it is precisely this profound potential for

life-saving impact that makes the journey to full autonomy unquestionably worth the effort.

As we navigate this complex journey towards fully autonomous vehicles, it is crucial to

recognize that the benefits extend not only to saving lives but also to minimizing congestion,

reducing emissions, and enhancing mobility for individuals with disabilities or limited access to

transportation.

Technically, an autonomous vehicle needs the same main parts as a human needs to drive:

The capacity to perceive the environment (perception), formulate decisions regarding actions to

be taken (decision-making or planning), and subsequently execute those chosen actions (action).

In terms of perception, autonomous vehicles use advanced object detection algorithms that

carefully examine data from various sensors placed strategically on the vehicle. This complex

system helps the vehicle understand its surroundings accurately.

Regarding action, the vehicle’s capability to turn plans into real moves, like steering and

using the pedals, relies on a good grasp of how the vehicle behaves. This means turning what

it wants to do into actual actions, ensuring safe and efficient navigation.

3

4 Introduction

While the areas of perception and action continually evolve and can indeed be optimized

further, the biggest challenge for autonomous vehicles are decision-making and planning. This

complex process includes analyzing lots of data, predicting changing conditions, and deciding

on a series of actions for safety, following traffic rules, comfort and efficiency.

In essence, while advancements in perception and action are crucial, the core strength of

autonomous vehicles is their ability to handle complex planning and make quick decisions, re-

sembling the judgment of human drivers. This aspect represents the main challenge to achieving

fully autonomous vehicles.

Therefore, this project will center its efforts on delving deep into the potential of lever-

aging reinforcement learning techniques during the crucial planning phase, aiming to enhance

decision-making processes.

1.2 Goals

• To understand an existing AV system and finding the replaceable modules.

• To develop a reinforcement learning model suitable for autonomous driving, minimizing

the model’s input.

1.3 Sustainability, diversity and ethics

Autonomous driving and Advanced Driver Assistance Systems (ADAS) aim to enhance road

safety. However, from a sustainability perspective, the development of sophisticated artificial

intelligence models and the simulation of real-world environments require significant computa-

tional resources. This often involves the extensive use of GPUs over prolonged periods, resulting

in substantial electrical energy consumption and subsequent carbon emissions, contributing sig-

nificantly to the overall carbon footprint.

The real-world testing and validation of these trained models further escalate energy con-

sumption. Testing and validation are crucial to ensure the safety of the models, so there are

limitations in reducing this energy usage. Nevertheless, optimizing the training phase becomes

pivotal in reducing the overall carbon footprint of the process.

1.4. Methodology and planning 5

In this project, the carbon emissions generated by the training and simulation will be

measured, trying to find metrics for its impact.

1.4 Methodology and planning

Initially, a review of the current state of the art will be conducted, encompassing both in the

domain of autonomous driving and the specific application of reinforcement learning within the

autonomous driving context.

Simultaneously, particular emphasis will be placed on the critical aspect of defining the

states in the context of reinforcement learning. The definition of states plays an integral role

in shaping the learning process of the autonomous system. Hence, it is key to define a proper

state representation that the reinforcement learning agent will encounter during its training

and operational phases.

The next step involves selecting the appropriate model. Various models will be tested, con-

cluding with the training and parameter tuning of the chosen model.

Once the initial version of the model is prepared, the memory of the project will be written.

In the meantime, potential improvements to the model can be explored and executed.

Figure 1.1: Gantt diagram

6 Introduction

Chapter 2

State of the art

2.1 Autonomous driving

Within the domain of autonomous vehicles, just as a human driver relies on a set of funda-

mental components to navigate the road, self-driving vehicles also depend on those essential

elements. They must have the ability to perceive their surroundings (perception), make calcu-

lated decisions about their next moves (decision-making or planning), and efficiently translate

those choices into tangible actions (action). These three elements can also be decomposed into

more precise characteristics:

2.1.1 Perception

Autonomous vehicles use various sensors, including LiDAR, radar, cameras, and ultrasonic

sensors to perceive their surroundings. Advances in sensor technology have greatly improved

perception capabilities.

• LiDAR: LiDAR sensors emit laser pulses and measure the time it takes for the light to

bounce back. Algorithms process this data to create a 3D point cloud of the vehicle’s

surroundings, allowing the car to detect objects and obstacles with high precision.

• Radar: Radar sensors use radio waves to detect objects and their velocities. Signal

processing algorithms are used to filter and analyze radar data to identify objects and

track their movements.

• Cameras: Vision-based perception is vital for recognizing objects and interpreting traf-

fic signs and signals. Convolutional Neural Networks (CNNs) and other deep learning

algorithms are used for tasks like object detection, image segmentation, and optical flow

estimation.

7

8 State of the art

• Ultrasonic Sensors: These sensors are used for short-range perception and parking

assistance. They work by emitting sound waves and measuring the time it takes for the

sound to bounce back. Algorithms process this data to detect nearby objects.

Each of these sensors, along with their respective algorithms, may have noise and errors

(covariance). In order to minimize such covariance, sensor fusion (or data fusion) algorithms

are applied. This technique combines data from various sensors (e.g., Lidar, radar, cameras) to

improve the accuracy and reliability of perception. Kalman filters and more advanced methods

like the Extended Kalman Filter (EKF) and Unscented Kalman Filter (UKF) are used for

sensor fusion.

2.1.2 Planning

• Localization and Mapping: High-Definition maps, GPS, and simultaneous localization

and mapping (SLAM) techniques are crucial for autonomous vehicles to understand their

location within the environment.

– HD (High-Definition) Maps: HD maps provide a highly detailed and precise

representation of the environment. They typically include information about lane

boundaries, road curvature, traffic signs, traffic signals, lane changes, and other road

attributes. HD maps are created through a combination of surveying techniques,

GPS data, and data from sensors on autonomous vehicles. These maps serve as a

reference for the vehicle’s position and help it make decisions, especially in complex

urban environments.

– SLAM (Simultaneous Localization and Mapping) Maps: SLAM is a tech-

nique used to build and update maps of an environment in real-time while also

tracking the vehicle’s position within that map. SLAM is particularly useful in

scenarios where there are no existing HD maps, such as off-road or dynamic envi-

ronments. SLAM systems use a combination of sensors, such as Lidar, cameras, and

IMUs (Inertial Measurement Units), to continuously update the map and determine

the vehicle’s location.

• Decision-making and Planning: Path planning algorithms and controllers are respon-

sible for making driving decisions, such as navigating obstacles and staying within lanes.

These are the most common approaches:

– Rule-Based Systems: Many autonomous vehicles use rule-based decision systems,

where predefined rules are applied to make driving decisions. These rules cover

2.2. Reinforcement learning for autonomous driving 9

standard traffic regulations and common driving behaviors. However, these systems

can be limited in handling complex and unforeseen situations.

– Reinforcement Learning (RL): RL has gained popularity in decision-making for

autonomous cars. Agents learn optimal driving policies through trial and error in

simulated environments.

– Imitation Learning: Imitation learning is used to mimic human driving behav-

ior. Algorithms are trained on human driving data to imitate the decision-making

process. This approach helps vehicles handle real-world scenarios effectively.

– Behavior Planning: Behavior planning involves high-level decision-making, where

the vehicle decides how to navigate, merge, or overtake other vehicles. Techniques

such as finite state machines (FSMs) and decision trees have been used for behavior

planning.

2.1.3 Action

Once a decision has to be executed, different pedal and steering wheel commands are sent,

taking into account the vehicle’s dynamics and other vehicle particularities.

2.2 Reinforcement learning for autonomous driving

Reinforcement learning is a subset of machine learning where agents learn to make sequential

decisions by interacting with an environment. In the context of autonomous driving, RL can

be used for various tasks:

• End-to-End Driving Control: Using RL to directly learn driving policies, bypassing

the need for traditional rule-based systems.

• Trajectory Planning: RL algorithms can plan optimal trajectories in dynamic envi-

ronments.

• Behavior Prediction: Predicting the behavior of other road users is crucial for decision-

making.

2.2.1 Simulators

An essential aspect to keep in mind is that training autonomous vehicles in actual on-road

situations is not viable, as it poses significant safety risks. Instead, self-driving cars undergo

10 State of the art

training within a controlled and risk-free simulator environment.

Some examples of simulators are:

• CARLA (Car Learning to Act): An open-source simulator developed by Intel and

used for training autonomous driving agents. CARLA provides a realistic urban environ-

ment for testing various scenarios.

• AirSim: Developed by Microsoft, AirSim is an open-source simulator for training au-

tonomous systems. It offers a wide range of environments, including urban, rural, and

industrial settings.

• Gazebo: Gazebo is a widely used open-source robotics simulator that can be adapted

for autonomous vehicle training. It provides realistic physics and sensor simulation.

• MATLAB/Simulink: MATLAB provides simulation tools that can be used for training

and testing autonomous vehicle control algorithms.

• DriveConstellation: Developed by NVIDIA, DriveConstellation is a cloud-based simu-

lator that uses powerful GPUs to test self-driving car algorithms and perception systems.

2.2.2 Models

2.2.2.1 Partially Observable Markov Decision Process (POMDP)

A Partially Observable Markov Decision Process is a framework that extends Markov Decision

Processes to handle situations where decision-makers have incomplete and noisy observations,

making it a valuable tool in solving complex decision-making problems in uncertain environ-

ments.

2.2.2.2 Deep Q-learning

Deep Q-Network (2) is a reinforcement learning algorithm that combines Q-Learning with deep

neural networks to let RL work for complex, high-dimensional environments, where the number

of states cannot be managed with a table.

Chapter 3

Base system

3.1 AV system

An existing Autonomous Vehicle (AV) model will be used as a base for this project. This

chapter will detail the model’s structure and components. The implementation of this AV

relies on the Robot Operating System (ROS).

3.1.1 ROS

The Robot Operating System (ROS) is a robust, open-source middleware framework designed

explicitly for robotics. Functioning as a comprehensive toolset and communication infrastruc-

ture, ROS enables the development, coordination, and management of complex robotic systems.

At its core, ROS offers a modular architecture that facilitates the creation of intercon-

nected software components called nodes. These nodes execute specific tasks, from sensor data

processing to high-level decision-making algorithms, and communicate consistently through a

publisher-subscriber messaging system (the elements where the data is published are called

”topics”) or via services.

One of ROS’s fundamental strengths lies in its abstraction of hardware complexities. It

provides a standardized interface for interfacing with various sensors, actuators, and hardware

components.

Moreover, ROS thrives on an expansive and engaged community of developers and re-

searchers who contribute to its continual evolution. This collaborative ecosystem encourages

the sharing of code, libraries, and best practices, accelerating innovation and advancements in

11

https://www.ros.org/

12 Base system

robotics technology.

3.1.2 RViz

RViz is a powerful 3D visualization tool within the Robot Operating System (ROS) framework.

It offers a graphical interface to visualize and interact with various data generated by robots,

including sensor data, robot models, trajectories, and more. This tool helps developers and

users in comprehending and debugging the behavior of robotic systems through an intuitive

and customizable visual representation.

In this project, it is used to visualize both the map and the position of the ego vehicle within

that map.

3.1.3 Software structure

Figure 3.1: Existing AV model Software structure. Source: Author’s elaboration

3.1. AV system 13

As shown in Figure 3.1, the model is composed of four different software modules: Local-

ization, mapping, planning and control.

3.1.3.1 Localization

The localization module provides a solution to the positioning of the vehicle based on GNSS

(Global Navigation Satellite System). The Kalman filter algorithm provides position stability

by minimizing jumps in position that can occur during direct reading of GNSS data. To do so,

it uses an IMU (inertial measurement unit).

For this project, this module will be executed on simulation, meaning that the global position

of the vehicle will be directly simulated.

3.1.3.2 Mapping

The global position of the vehicle is sent to the mapping module. The map server transforms

the global position into different Cartesian coordinate systems referenced to the OpenDrive

map that has been configured. In addition, the map server can be queried to obtain different

information such as road signs, road geometry, etc.

Another important component within the mapping module is the route planner. The route

planner receives the current vehicle state and the target destination. It analyses the map along

with the input data and chose the best route of roads and lanes to reach the target destination.

The best route is the shortest path in terms of distance.

The vehicle state estimator has the objective of providing the position, orientation, acceler-

ations, etc. of the ego vehicle as reliable as possible. On the real-world environment, this data

is gathered directly from the vehicle’s CAN (corrected with the IMU). For this project, it will

be the result of the simulation.

3.1.3.3 Planning

The planning module has two main components, the decision or behaviour planner and the

trajectory planner. The behaviour planner filters the objects received by the perception system

evaluating those that can influence the current route of the ego vehicle. Taking into account

the traffic signals and the surrounding vehicles and VRUs, the behaviour planner controls the

trajectory planner. The trajectory planner generates and discretizes splines for position and

14 Base system

velocity profiles. Following several cost functions and restrictions, it searches for the best

trajectory.

3.1.3.4 Control

The control module is divided into two components. The high-level control that receives the

current state of the ego vehicle and the trajectory and calculates the action commands necessary

to carry out such trajectory. Then comes the low-level control that receives these actuation

commands and adapts them to the specific platform being controlled. The high-level controller

is based on a linear parameter varying MPC (model predictive control) plus Stanley formulas

for slow velocities. On the other hand, the low level controller implements PIDs and lookup

tables.

Chapter 4

What to replace

The aim of this project is to replace only the decision-making modules, while preserving the

rest of the system’s components, so that it could be easily integrated on the current car setup.

The following approaches have been studied:

4.1 First approach: replace only path planning

The first approach was to only replace the path planning component. It means that the new

component should take as input the vehicle state estimation, the suggested route from the route

planner and the perception results, and generating a trajectory as output for the LVP MPC.

In a first loop, for the shake of simplicity, the route and the perception obstacles were not

considered as input, meaning that the input was only the vehicle state.

4.2 Second approach: replace path planning and LVP

MPC

On the second approach, both the path planning and the LVP MPC components were sub-

stituted by the new component. It means that the new component takes as input the vehicle

state, and returns as output an acceleration value and a steering angle, which are sent to the

low level controller.

15

16 What to replace

Chapter 5

How to interconnect

5.1 ROS communication

Figure 5.1: Existing AV model. Simulation ROS communication. Source: Generated using

ROS package rqt graph

In the figure 5.1 the ROS communication graph is represented. Circular elements denote the

nodes, while squared elements represent the topics.

For the first approach, the nodes that have to be replaced are ’trajectory planner’ and ’be-

havior planner ros’. The new node (carEnv) subscribes to the ’vehicle state’ topic and provides

’inertial waypoints’ as output. The next figure shows the resulting communication graph for

the first approach:

17

18 How to interconnect

Figure 5.2: First approach. Simulation ROS communication. Source: Generated using ROS

package rqt graph

For the second approach, the node ’control’ (which contains the LVP MPC) is also sub-

stituted by the new node ’carEnv’. Therefore, the node ’carEnv’ is the node in charge of

publishing messages on the topic ’kia niro control/mpc input’.

The messages published on the topic ’kia niro control/mpc input’ have the following struc-

ture:

• left steer angle command, of type float, which is the steering angle in radians.

• acceleration command, of type float, acceleration in m/s²

• brake deceleration command, deceleration in m/s²

Acceleration and deceleration commands are separated in case that an AV needs to apply

both (e.g. holding on hill to avoid roll-back during start).

The next figure shows the resulting communication graph for the second approach:

5.2. CARLA 19

Figure 5.3: Second approach. Simulation ROS communication. Source: Generated using ROS

package rqt graph

5.2 CARLA

The initial plan involved utilizing the CARLA simulator to train the model. CARLA offers

collision and lane invasion events, which were intended for integration into the reward system.

However, the final implementation no longer incorporates these events, making CARLA un-

necessary for training purposes. Nevertheless, CARLA serves the purpose of providing a visual

representation of the entire process.

To integrate CARLA into the complete pipeline, the CARLA ROS bridge (3) is utilized.

CARLA ROS bridge enables the possibility of communicating CARLA with ROS, and vice

versa. The information from the CARLA server is translated to ROS topics and the messages

sent between nodes in ROS get translated to commands to be applied in CARLA.

The next figure represents the ROS communication with CARLA integrated:

20 How to interconnect

Figure 5.4: Simulation ROS communication with CARLA integrated. Source: Generated using

ROS package rqt graph

As shown on Figure 5.4, the vehicle state topic, ’vehicle state’, is taken by the node

’carla set ego vehicle pose’, which communicates with the CARLA server, modifying the ego

vehicle pose on CARLA.

Chapter 6

Implementation

6.1 First ideas

The input for the linear parameter varying model predictive control (LVP MPC) is a ROS

custom message, with the following fields:

• waypointList, which is an array of geometry msgs/Pose2D.

• curvatureList, which is an array of floats.

• velocityList, which is an array of floats.

Therefore, the input for the LVP MPC is a discretized trajectory. The first idea was to get

splines, specifically, cubic Bézier curves (4) as output.

6.1.1 Bézier curves

The cubic Bézier curves are represented as follows:

B(t) = (1− t)3P0 + 3t(1− t)2P1 + 3t2(1− t)P2 + t3P3, t ∈ [0, 1]

For discretization, since a ROS message of type geometry msgs/Pose2D is composed by

(x, y, θ), the Bézier curves for x and y have to be computed individually, and the value of θ

has to be computed individually, as θ = arctan2(x− x0, y − y0), where (x0, y0) is the previous

point.

6.1.2 Curvature

The curvature of a Bézier curve is given by:

21

22 Implementation

k(t) =
dx ∗ ddy − ddx ∗ dy√
(dx ∗ dx+ dy ∗ dy)3

Where dx, dy, dxx, dyy are the first and second derivatives (respectively), of the x and y

Bézier curves at point t ∈ [0, 1]

6.1.3 Velocity

The velocity list was the result of applying a linear acceleration.

6.1.4 RL model and its output

In order to be able to generate the defined trajectories, the output should be composed by: P1,

P2, P3 and acceleration. As the points are in R2, the reinforcement learning model’s output

should be an array of seven real numbers. For having rational numbers as output, the action

space should be continuous, meaning that the model has to be a policy based reinforcement

learning method. Considering the dimension of the input considered for the model, 15 numbers

(it will be explained in following chapters), the chances of training successfully a model with

such big action space are so small that this approach was discarded.

Finally, the selected reinforcement learning model is Deep Q-Network (DQN).

6.2 RL model

The Deep Q-Network (DQN) represents a significant leap in reinforcement learning by merg-

ing the capabilities of deep neural networks with the foundational principles of Q-learning, a

classical algorithm in reinforcement learning. At its essence, DQN aims to approximate the

Q-function, a critical element in reinforcement learning that estimates the cumulative future

rewards an agent expects by taking specific actions in particular states within an environment.

One of its biggest strengths is its ability to handle high-dimensional state spaces, en-

abling the learning process directly from raw, unprocessed data—such as pixel values from im-

ages—without the need for manual feature extraction. By leveraging deep neural networks, es-

pecially convolutional neural networks (CNNs) for their prowess in visual data processing, DQN

navigates complex environments that would overwhelm conventional Q-learning approaches due

to the vast number of possible states and actions.

6.3. First approach 23

The architecture of a DQN typically comprises multiple layers of neurons, often CNN layers

followed by fully connected layers, facilitating the approximation of the Q-function. Train-

ing DQN involves iteratively updating the network’s parameters to minimize the discrepancy

between predicted and target Q-values for various state-action pairs encountered during explo-

ration.

However, two fundamental strategies set DQN apart and contribute significantly to its suc-

cess: experience replay and the use of target networks. Experience replay involves storing the

agent’s experiences (comprising state, action, reward, and next state transitions) in a replay

memory buffer. During training, these experiences are randomly sampled, breaking temporal

correlations and allowing for more efficient learning from past experiences. This technique sig-

nificantly improves sample efficiency, stabilizes learning, and promotes better exploration.

Additionally, DQN employs the concept of target networks, which entails the creation of two

neural network instances: the primary network and the target network. The target network is

a copy of the primary network that maintains fixed Q-value targets for a certain period before

periodically updating its parameters. This approach helps stabilize the learning process by pro-

viding more consistent and less volatile Q-value estimates, preventing divergence or oscillation

during training.

In summary, the Deep Q-Network (DQN) represents a groundbreaking fusion of Q-learning

with deep neural networks, enabling efficient learning in high-dimensional state spaces. By

incorporating techniques like experience replay and target networks, DQN achieves remarkable

stability, sample efficiency, and the capacity to handle complex environments, making it a

foundational model in the domain of deep reinforcement learning.

6.3 First approach

Once the idea of generating splines as output was dismissed, an alternative approach was re-

quired. Considering that the model’s output needs to be a single integer value, and that the

LVP MPC requires a trajectory as input, the following strategy was adopted:

We consider four possible actions:

• Accelerate: A positive longitudinal acceleration is applied.

• Brake: A negative longitudinal acceleration is applied.

24 Implementation

• Turn right: A 90º steering angle is applied.

• Turn left: A -90º steering angle is applied.

In order to translate these actions to trajectories, the following strategy was adopted:

For breaking and acceleration actions, the trajectory is straight in both cases. From the

’vehicle state’ message, the position (x, y) and the heading angle of the ego vehicle are available.

A distance d is added to the current point, so that the point p′ = p + d will be the end of the

trajectory. For representing a cubic Bézier curve, four points are needed: P0, P1, P2 and P3. P0

is the starting point p, and P3 is the ending point p′. In order to get P1 and P2, d/4 and d/2

are added respectively to P0. I.e., P1 = P0 + d/4 and P2 = P0 + d/2. Since the working real

space is R2, it is needed to decompose the increment d into its x and y components. In other

words, a translation of distance d is applied into the direction θ, the heading angle. Hence, the

general representation of the points is:

Pi = (P0x +
d cos θ

j
, P0y +

d sin θ

j
),∀(i, j) ∈ {(1, 4), (2, 2), (3, 1)}

For turning actions, the points needed are as shown on the following Figure:

Figure 6.1: Turning trajectory. Source: Author’s elaboration

If the white left bottom point is considered as P0, and the white right top point as P3, the

figure represents a turn right action. In that case, the red point is P1 and the blue point is P2.

Alternatively, if the white right top point is considered as P0, the blue point would be P1, the

red point would be P2 and the white left bottom point would be P3.

For the right turn, the points would be computed iteratively as follows:

P1 = (P0x +
d cos θ

2
, P0y +

d sin θ

2
)

6.3. First approach 25

P3 = (P0x + d cos (θ − π

4
), P0y + d sin (θ − π

4
))

P2 = (P3x +
d cos (θ + π

2
)

2
, P3y +

d sin d(θ + π
2
)

2
)

Basically, to get P1 what is needed to do is to increment d
2
as did for the straight trajectories.

To get P3 an increment of distance d is needed but within a 45º degrees rotation. Finally, to

get P2, an increment of d
2
to the point P3 is required, within a 90º rotation (to the opposite

direction to the rotation applied to get P3).

Graphically:

Figure 6.2: Right turn Bézier curve points generation. Source: Author’s elaboration

For the left turn, the logic is the same but the rotation angles are the opposite:

P1 = (P0x +
d cos θ

2
, P0y +

d sin θ

2
)

P3 = (P0x + d cos (θ +
π

4
), P0y + d sin (θ +

π

4
))

P2 = (P3x +
d cos (θ − π

2
)

2
, P3y +

d sin d(θ − π
2
)

2
)

Graphically:

26 Implementation

Figure 6.3: Left turn Bézier curve points generation. Source: Author’s elaboration

6.3.1 Reason to discard

As explained, the generated output with this approach was a trajectory, which was sent to

the LVP MPC, who computed the throttle, brake and steering angle needed to follow such

trajectory. In reinforcement learning, it is needed to quantify how ”good or bad” an action is,

meaning that an evaluation of the result of applying an action is required. With this approach,

if the effects a certain action has on the system are to be noticed, the frequency of intervention

(how fast an action is taken) needs to be low, so that the system has time to apply the action,

and once it has been applied, the results could be evaluated. In an autonomous driving system,

the actuation frequency is critical. For example, driving at 50 kph, a latency of 500 ms implies

that the vehicle is moving almost 7m without control. At the testing section, this will be

analyzed in depth with examples.

6.4 Second approach

On the second approach, the LVP MPC is not used. In that case, instead of publishing trajecto-

ries, what is needed to be published are the throttle, brake and steering angle instructions. As

defined on section 5.1, the message ’kia niro control/mpc input’ is composed by three different

fields: ’left steer angle command’, ’acceleration command’ and ’brake deceleration command’.

Considering that, the different actions have been defined as:

6.4.1 Accelerate

• left steer angle command = 0

6.5. State space 27

• acceleration command = 2

• brake deceleration command = 0

6.4.2 Brake

• left steer angle command = 0

• acceleration command = 0

• brake deceleration command = 2

6.4.3 Right turn

• left steer angle command = −π/2

• acceleration command = 0

• brake deceleration command = 0

6.4.4 Left turn

• left steer angle command = π/2

• acceleration command = 0

• brake deceleration command = 0

Note that the trajectories defined on the first approach are still implemented and published

on this second approach. They are used for visualization, so that it is easier to understand

the behavior of the vehicle. The LVP MPC is not used, so the trajectories are not used for

anything else than visualization.

6.5 State space

The state space is defined by the ’vehicle state’ message. The ’vehicle state’ defines the ego

vehicle position within an HD map, its speed and accelerations:

• x, coordinate x on the map

• y, coordinate y on the map

28 Implementation

• z, coordinate z on the map

• heading, heading of the vehicle

• k, curvature of the lane at the current position

• track id, road sector (road id)

• s, longitudinal position within the road sector

• lane id, lane index within the road sector

• velocity, module of the speed

• longitudinal velocity, longitudinal speed

• lateral velocity, lateral speed

• angular velocity, angular speed

• acceleration, module of the acceleration

• longitudinal acceleration, longitudinal acceleration

• lateral acceleration, lateral acceleration

6.5.1 HD Maps

The ASAM (Association for Standardisation of Automation and Measuring Systems) Open-

DRIVE format (5) defines the HD maps used within this project.

At the Figure 6.4 it is shown how a road is split into different sectors. Each one of those

sectors has its own ’road id’ (identified as ’track id’ on the ROS messages).

Figure 6.4: Road sectorization. Source: ASAM OpenDRIVE

https://www.asam.net/standards/detail/opendrive/

6.5. State space 29

When the ego vehicle is in one of those sections, it is located within the sector with the

parameters s (longitudinal position) and t (lateral position), as represented in Figure 5.4.

Figure 6.5: Road sector localization. Source: ASAM OpenDRIVE

Finally, it is important to mention the lane identification system. For each sector, the right

lanes have negative id. The center most lanes have the index 1 or -1 depending on the side,

the second line has index 2 or -2, and so on. The orientation of the lane is identified by the

parameter s. The sector starts at s = 0, and increases its value towards the orientation of the

road sector.

Figure 6.6: Intersection. Lane identification. Source: ASAM OpenDRIVE

https://www.asam.net/standards/detail/opendrive/
https://www.asam.net/standards/detail/opendrive/

30 Implementation

One important aspect to mention, is that the ego vehicle can be at more than one sector at

once, for example, at an intersection, as shown at Figure 6.6.

6.6 Reward system

6.6.1 First ideas

The initial plan involved utilizing CARLA’s collision and lane invasion events. Every time there

is a collision, the episode ends with a high negative reward, while lane invasions would yield a

negative reward for the corresponding action. However, after conducting tests, this approach

was discarded for several reasons.

The reasons for discarding using the CARLA events are: Given that the training only in-

volves the ego vehicle without interactions with other vehicles, the only possible source of crash

is the ego vehicle going out of the track, so being able to identify if the car goes out of the track

has the same meaning as a collision event, in fact, going out of the road is more restrictive,

which implies a homogeneous treatment of the events.

On the other hand, the challenge with the lane invasion event lies in its limited capability

to discern whether the car has transitioned from the correct lane to an incorrect one or vice

versa. It means that if the training is done with this event rewarding negatively, the car would

learn that once it has crossed to the incorrect lane, it is preferable to remain there rather than

returning to the correct lane.

Moreover, apart from these concerns, utilizing CARLA simulations demands high GPU

usage, which is no longer essential for the training process. By eliminating their use in training,

there is a significant reduction in energy consumption during the training phase.

6.6.2 Final reward system

• If the ego vehicle goes outside the road, reward = -100, and end of episode.

• If the ego vehicle stays stopped for more than 200 iterations, reward = -50, and end of

episode. (Negative reward, but half the penalty than crashing)

• If speed lower than 1 km/h, reward = -3.

• If the ego vehicle drives on an incorrect lane, reward = -4. (More penalty than driving

slowly)

6.6. Reward system 31

• If the ego vehicle drives on the correct lane, but close to the edge, reward = -2. (Penalty,

but not so big as low speed or driving on an incorrect lane)

• If the ego vehicle drives on the correct lane, reward = (speed / offset) / 5, where offset is

the distance to the center of the lane. To avoid extremely big values, the offset is limited

by 0.1.

Concurrent rewards are added. For example, stopping on an incorrect lane has a penalty of 7

points.

Two key points on the reward system are: how to identify if the ego vehicle goes outside

the road, and how to determine if the ego vehicle is driving on a correct lane.

6.6.3 Going out of the road identification

In order to identify whether the ego vehicle is on track or not, the ROS topic ’ego vehicle conversions’

is used. As shown at Figure 5.3, the topic ’ego vehicle conversions’ is published by the node

’map server ros’, which gets the ego vehicle’s GPS position, and publishes ROS messages with

the following structure:

• geo coordinate, of custom type GeoCoordinate, which are the geographical coordinates.

• gps velocity, of type float, which is the velocity according to the GPS.

• inertial coordinate, of custom type InertialCoordinate, which are the coordinates with

respect to the map.

• inertial heading, of type float, which is the heading with respect to the map orientation.

• lane coordinates, a list of elements of custom type LaneCoordinate, which is the informa-

tion regarding the road sector, or ’road id’ as defined in section 6.5.1.

• fixed inertial height, of type float, which is the height with respect to the map.

The important part of this message is the element ’lane coordinates’. In this part of the

message, all the sectors where the ego vehicle is located are identified. If this list is empty, it

means that the ego vehicle is not in any road sector, hence, the ego vehicle is out of track.

32 Implementation

6.6.4 Correct/incorrect lane identification

The best way to identify if the lane the ego vehicle is driving is the correct one would have

been to obtain the lane heading and compare it with the vehicle’s heading. Unfortunately, such

information is unavailable. Attempts were made to extract this heading information from the

map data, with unsuccessful results. Consequently, the final solution is as follows:

As previously mentioned, on the topic ’ego vehicle conversions’, it is available the informa-

tion regarding the road sectors where the ego vehicle is located. Such information is represented

in a list of elements of type LaneCoordinate. The type LaneCoordinate has the following fields:

• track id, of type integer, the road sector. (As explained in section 6.5.1.)

• lane id, of type integer, the lane id. (As explained in section 6.5.1.)

• s, of type float, the lane longitudinal coordinate. (As explained in section 6.5.1.)

• t, of type float, the lane lateral coordinate. (As explained in section 6.5.1.)

• offset, of type float, the offset from the center of the lane.

• h, of type float, the height regarding the map.

With this information, it is possible to determine whether the ego vehicle is positioned

within a correct or incorrect lane. Considering the car cannot drive in reverse mode:

The previous ’s’ value is stored. If the current ’s’ value is greater than the previous ’s’ value,

it means that the ego vehicle is driving following the orientation shown in Figure 6.5, thus, the

correct lanes have negative id. Consequently, if the ’lane id’ value is negative, the ego vehicle is

driving in a correct lane, otherwise, it is driving in an incorrect lane. Alternatively, if the value

of ’s’ decreases, the correct lanes have positive id, so the value of ’lane id’ should be positive

to indicate that the ego vehicle is located in a correct lane.

It is also important to remark that the ’offset’ value is used to determine whether the ego

vehicle is close to the road edge or not. It is considered that if the value of the field ’offset’ is

greater than 1, the ego vehicle is too close to the road edge, and it gets a negative reward, as

previously explained.

6.7 Code

The code can be found on the next link: Code

https://github.com/raulvillalba/tfm

Chapter 7

Testing

7.1 Parameters

The implementation has different parameters that can be tuned to improve the model behavior.

• Number of layers of the neural network.

• Number of neurons per layer on the neural network.

• Learning rate.

• Buffer size.

• Gamma value for Bellman’s equation.

• Epsilon decay.

• Number of episodes used to fill the buffer before training.

• Neural network update frequency.

• Neural network synchronization frequency.

7.2 Testing with the first approach (Using trajectories

and LVP MPC)

All test experiments conducted with this configuration were performed using initial reward

systems. The negative reward when the vehicle is close to the edge was not implemented, and

various approaches to the reward system were explored. A direct comparison with the final

33

34 Testing

reward system is not viable due to disparities. The rewards allocated for each action differ, and

the frequency of actuation is lower, resulting in a reduced total reward dimension in absolute

value.

On the following video, it is shown the execution of the training with this approach: Training

execution.

On the following figures, it is shown the reward evolution of some training experiments

using the first approach. In blue is represented the actual total reward per episode, in orange,

the average of the last 100 episodes, and in red, the reward threshold goal. When the average

reward reaches the reward threshold goal, the training ends.

The following training experiments have been done with a duration of 500 episodes.

(a) Training 1 (b) Training 2

(c) Training 3 (d) Training 4

Figure 7.1: Reward evolution of four training experiments. Source: Author’s elaboration

https://youtu.be/yjDhbVQGmX0
https://youtu.be/yjDhbVQGmX0

7.2. Testing with the first approach (Using trajectories and LVP MPC) 35

(e) Training 5 (f) Training 6

(g) Training 7 (h) Training 8

(e) Training 9

Figure 7.2: Reward evolution of five training experiments. Source: Author’s elaboration

36 Testing

The parameters for those training experiments are as follows:

• Training 1: learning rate: 0.01, num. layers: 2, num. neurons: 32, mem. size: 5000, eps.

decay: 0.995, upd. freq.: 20, sync. freq.: 50

• Training 2: learning rate: 0.01, num. layers: 2, num. neurons: 16, mem. size: 10000,

eps. decay: 0.995, upd. freq.: 20, sync. freq.: 50

• Training 3: learning rate: 0.01, num. layers: 2, num. neurons: 32, mem. size: 10000,

eps. decay: 0.995, upd. freq.: 20, sync. freq.: 50

• Training 4: learning rate: 0.01, num. layers: 2, num. neurons: 16, mem. size: 2000, eps.

decay: 0.995, upd. freq.: 20, sync. freq.: 50

• Training 5: learning rate: 0.01, num. layers: 2, num. neurons: 32, mem. size: 2000, eps.

decay: 0.995, upd. freq.: 20, sync. freq.:50

• Training 6: learning rate: 0.01, num. layers: 2, num. neurons: 64, mem. size: 2000, eps.

decay: 0.995, upd. freq.: 20, sync. freq.: 50

• Training 7: learning rate: 0.01, num. layers: 2, num. neurons: 16, mem. size: 50000,

eps. decay: 0.995, upd. freq.: 20, sync. freq.: 50

• Training 8: learning rate: 0.01, num. layers: 2, num. neurons: 32, mem. size: 50000,

eps. decay: 0.995, upd. freq.: 20, sync. freq.: 50

• Training 9: learning rate: 0.01, num. layers: 2, num. neurons: 64, mem. size: 50000,

eps. decay: 0.995, upd. freq.: 20, sync. freq.: 50

As it is shown on the previous figures, there is not a clear learning evolution. It seems there

is a total reward value that the agent cannot surpass. After checking the trained agents, it

was found that the stability point found by the training process is actually going out of the

track as fast as possible. The agent decides that it is better to assume the negative reward

of going out of the track, than drive and eventually increase the total negative reward. After

some evaluations, it was noticed the following behavior: When the agent decides to follow a

turning trajectory, it takes some time to start actually turning. It would be needed to wait

for the whole trajectory to be followed before starting the next action. This arises two main

problems: Firstly, depending on the speed, it would take a different amount of time to finish

the whole trajectory, meaning that the frequency of actuation should be variable depending on

the speed of the ego vehicle, and secondly, as stated on the section 6.3.1, the latency induced

7.2. Testing with the first approach (Using trajectories and LVP MPC) 37

by this approach cannot be assumed by an autonomous vehicle.

On the following video, 10 runs of an agent trained with this approach are shown (training

represented on Figure 7.6): Trained with first approach agent.

7.2.1 Testing at maximum frequency of actuation

The following testing experiments were conducted without introducing latency after each ac-

tion. The reward system is the result of the testing from prior experiments, resulting in almost

the final reward system. It was the final reward system without using the notion of ”too close

to the edge” and without limiting the maximum reward (given that division by the offset might

yield a significantly large result when the offset approaches zero).

For the experiments with these modifications, stability at around 400 episodes of training

on the maximum reward was detected, therefore, the training was limited to 400 episodes.

(a) Training 10 (b) Training 11

(c) Training 12

Figure 7.3: Reward evolution of three training experiments. Source: Author’s elaboration

https://youtu.be/nlZN1Z7KiSY

38 Testing

The parameters for those training experiments are as follows:

• Training 10: learning rate: 0.01, num. layers: 4, num. neurons: 16, mem. size: 3000,

eps. decay: 0.995, upd. freq.: 5, sync. freq.: 50

• Training 11: learning rate: 0.01, num. layers: 4, num. neurons: 32, mem. size: 3000,

eps. decay: 0.995, upd. freq.: 5, sync. freq.: 50

• Training 12: learning rate: 0.01, num. layers: 4, num. neurons: 64, mem. size: 3000,

eps. decay: 0.995, upd. freq.: 5, sync. freq.: 50

These training experiments yield into a new behavior on the agent. It learned that the best

option is to drive straight, trying to increase the speed at maximum. On the following video,

a trained agent behavior is shown: Second trained with first approach agent.

Finally, by changing the learning rate and increasing significantly the number of neurons,

these results were achieved:

Figure 7.4: Training with: learning rate: 0.001, num. layers: 4, num. neurons: 512, mem. size:

3000, eps. decay: 0.995, upd. freq.: 5, sync. freq.: 50. Source: Author’s elaboration

On the following video, the behavior of this agent is shown, which tries to stay on the lane:

Trained with first approach best agent.

https://youtu.be/gnTNCLboOYw
https://youtu.be/rSzj_piniik

7.3. Testing with the second approach (Using throttle, brake and steering angle
instructions) 39

7.3 Testing with the second approach (Using throttle,

brake and steering angle instructions)

The following training experiments were executed using the second approach, where instead of

using the LVP MPC to compute the acceleration and steering wheel angle, those values are

sent directly to the low level controller.

Actually, just by changing the approach, a significant improvement on the behavior of the

agents is noticed. On the following video, the execution of the same agent as the one on the

last video is shown, using the same weights, but changing the approach: Same agent, using

second approach.

The following testing executions were done using the second approach. The final system

reward was decided during this testing phase: It was observed that the agent failed to rectify

its trajectory before transitioning into an incorrect lane. In an attempt to address this issue,

it was applied the negative reward when the ego vehicle approached too close to the edge of

a correct lane. This adjustment made the agent to correct its trajectory sooner, minimizing

unnecessary lane changes.

(a) Training 1 (b) Training 2

Figure 7.5: Reward evolution of two training experiments. Source: Author’s elaboration

https://youtu.be/Ah0rz4kHrpo
https://youtu.be/Ah0rz4kHrpo

40 Testing

(c) Training 3 (d) Training 4

(e) Training 5 (f) Training 6

Figure 7.6: Reward evolution of four training experiments. Source: Author’s elaboration

The parameters for those training experiments are as follows:

• Training 1: learning rate: 0.01, num. layers: 6, num. neurons: 256, mem. size: 3000,

eps. decay: 0.995, upd. freq.: 5, sync. freq.: 50

• Training 2: learning rate: 0.01, num. layers: 6, num. neurons: 512, mem. size: 3000,

eps. decay: 0.995, upd. freq.: 5, sync. freq.: 50

• Training 3: learning rate: 0.001, num. layers: 6, num. neurons: 256, mem. size: 3000,

eps. decay: 0.995, upd. freq.: 5, sync. freq.: 50

• Training 4: learning rate: 0.001, num. layers: 6, num. neurons: 512, mem. size: 3000,

eps. decay: 0.995, upd. freq.: 5, sync. freq.: 50

7.3. Testing with the second approach (Using throttle, brake and steering angle
instructions) 41

• Training 5: learning rate: 0.0005, num. layers: 6, num. neurons: 256, mem. size: 3000,

eps. decay: 0.995, upd. freq.: 5, sync. freq.: 50

• Training 6: learning rate: 0.0005, num. layers: 6, num. neurons: 512, mem. size: 3000,

eps. decay: 0.995, upd. freq.: 5, sync. freq.: 50

After these runs, it was observed that there was room for improvement by increasing the

number of episodes. Consequently, the number of episodes was raised to 10k. This adjustment

resulted in reaching the target of achieving a mean of 1000 points over the last 100 episodes in

just over 1200 episodes.

Figure 7.7: Training with: learning rate: 0.0005, num. layers: 6, num. neurons: 512, mem.

size: 3000, eps. decay: 0.995, upd. freq.: 4, sync. freq.: 50. Source: Author’s elaboration

Once the target of achieving a mean of 1000 points over the last 100 episodes was achieved,

it was decided to explore the limits of the agent, by increasing the target to 10k. The final

results led to a maximum mean reward on the last 100 episodes bigger than 2000 points.

42 Testing

Figure 7.8: Training with: learning rate: 0.0005, num. layers: 6, num. neurons: 512, mem.

size: 50000, eps. decay: 0.995, upd. freq.: 4, sync. freq.: 50. Source: Author’s elaboration

On the following video, it is shown the behavior of the final trained agent: Best agent

7.4 Carbon emissions

To perform a CO2 emissions evaluation, two different training sessions were conducted to mea-

sure their energy consumption. Both sessions involved training using the latest configuration.

The first session was executed without launching CARLA, while the second session ran con-

currently with the CARLA simulator. Both sessions consisted in 500 episodes.

7.4.1 Training session without using CARLA

Figure 7.9: Execution time for the first training session. Source: Author’s elaboration

As can be seen in the Figure 7.9, the execution time for the first training session, was 21536

seconds, which are 5 hours and 59 minutes.

 https://youtu.be/LLLh-Hu6lu0

7.4. Carbon emissions 43

Figure 7.10: First training session. Monitoring start. Source: Author’s elaboration

Figure 7.11: First training session. Monitoring end. Source: Author’s elaboration

44 Testing

On the Figures 7.10 and 7.11 are shown the start and the end of the energy consumption

monitoring. On the Figure 7.11 can be seen when the training sessions ended, just by checking

the energy power demanded on the GPU. During the training, the power on the GPU was

around 47 W, and once it finished, the power went down to the range of 27-30 W. The total

energy consumption during the training session was 0.646 kWh.

The execution has taken place in Tarragona. The most recent data available from the

Catalan government on the equivalence of CO2 and kWh is from the 3rd of May 2023, which

gives a ratio of 273 g CO2eq/kWh. Considering such value, the total carbon footprint of the

training session is 0.173 Kg CO2 eq.

7.4.2 Training session using CARLA

Figure 7.12: Execution time for the second training session. Source: Author’s elaboration

As shown on Figure 7.12, the second training session was faster, finishing the 500 episodes in

15576 seconds, or 4 hours and 20 minutes.

It is important to note that the duration of the training sessions are different because they

depend on the total time each episode takes. For example, one the first training session, maybe

the agent was able to not go out of the track while driving at a slow speed, making the episodes

taking so long, or maybe the reason for such difference is that in the second training session, the

agent decided to go out of the track fast in many episodes, making the total time significantly

smaller.

On the following figure, the initial and final power required by the different components

involved on the execution, and the total energy consumption of the training session are repre-

sented.

https://canviclimatic.gencat.cat/es/actua/factors_demissio_associats_a_lenergia/index.html#:~:text=Mix%20el%C3%A8ctrico%20a%C3%B1o%202021%3A%20259%20gCO2eq%2FkWh

7.4. Carbon emissions 45

Figure 7.13: Second training session. Monitoring start. Source: Author’s elaboration

Figure 7.14: Second training session. Monitoring end. Source: Author’s elaboration

46 Testing

As shown on the Figures 7.13 and 7.14 the power required by the RAM and the CPU are

the same as in the training session without using CARLA, on the other hand, the power con-

sumption on the GPU has almost doubled from 47 to 90 W, as it could be expected.

The total training session energy consumption was 0.65 kWh, which is slightly higher than

the energy consumption on the session without using CARLA. Applying the same equivalence,

the carbon footprint of the training session using CARLA was 0.177 Kg CO2 eq.

7.4.3 Difference of using CARLA or not

On the previous sections it has been shown the carbon footprint of two different training ses-

sions. The total values of CO2 cannot be generalized. In order to give an actual ratio, it is

better to give the value per time. In that case:

• Without using CARLA: 0.173 Kg CO2 eq. / 5h59min = 0.4912 g CO2 eq. / min

• Using CARLA: 0.177 Kg CO2 eq. / 4h20min = 0.6825 g CO2 eq. / min

Which leads to a 28% energy savings for the trainings conducted without CARLA.

Chapter 8

Conclusions

8.1 Behavior

It is very important to contextualize the environment in which the agents have been trained.

The agent only receives information about its relative position with respect to a map, along

with current speed and accelerations. No visual inputs such as images or point clouds are

provided to the agent during training. Additionally, CARLA waypoints are not utilized in the

training phase.

Considering these limitations, the erratic behavior of the agent becomes clearer. It strug-

gles to correct its course until it is too close to the road’s edge, which results in a less smooth

performance. Instead of maintaining a consistent, centered trajectory, it often accelerates to its

maximum speed (which is limitated) and only corrects its heading when it is about to depart

from the track. This behavior is expected due to the absence of information about desired

lane positions (waypoints) during training. The reward strategy prioritized greater rewards for

better centering by the agent, yet it appears to have no effect during the training phase.

To address this erratic behavior, incorporating visual inputs could be highly beneficial.

Introducing a front camera with a lane detector or using raw images could assist the agent in

overcoming this challenge.

8.2 Main challenges

Considering that the agent manages to go straight (with the already stated limitations), dealing

with curves seems to be a bigger challenge for the agent.

47

48 Conclusions

As it has been mentioned on section 6.5.1, on an OpenScenario map, an intersection is

defined by different road sectors, depending on the different options that are available for the

traffic. For instance, a T intersection, where a vehicle have two options: continue driving

straight, or turning. In that case, such intersection would have two different road sectors, or as

they have been defined, ’road id’. When the agent enters into an intersection, an algorithm to

decide which ’road id’ is the correct one should be implemented to ensure the correct perfor-

mance. Such algorithm has not been implemented during this project.

Since the agent is able to turn to fix its trajectory and maintain its trajectory within the

road limits inside a road sector, the road sector change is the main challenge found. A possible

solution would be to decide beforehand the route the agent has to follow, in which case the

correct road sectors would be identified, transforming the ’road id’ selection algorithm to just

a checking process: either it is in the correct ’road id’ or not.

Chapter 9

Further work

9.1 Training and implementation

As it has been concluded, additional inputs are necessary to make the agent able to learn.

Initially, the project aimed to assess its performance with minimal inputs, which has proven

inadequate. Consequently, further efforts suggest integrating visual inputs together alongside

the already defined inputs, in order to help the agent to better understand its surroundings.

As it has not been implemented yet, a ’goal’ selection is mandatory in an autonomous ve-

hicle. It is crucial to know where the vehicle has to go. As mentioned in the previous section,

alongside integrating the ’goal’ selection, or destination, it will be necessary to incorporate a

’route’ identification. Once the current location and the destination are defined, an algorithm

that decides the best route (and identifies the ’road id’ sectors which the vehicle has to follow)

should be implemented.

Algorithm 1 Route identification

Data: Current location, Destination, OpenScenario map

Result: List of ’road id’, where the vehicle should drive

Best route from current location to destination (List of Coordinates) is identified as ’Route’

for ’road id’ in map do

if road section with such ’road id’ has coordinates in ’Route’ then
Append ’road id’ to output list

end

end

49

50 Further work

It is also important to note that the training has been conducted without the presence of

any other agent in the environment. Introducing traffic would enable the agent to learn how

to navigate unexpected situations and interact with other entities.

In addition, incorporating traffic rules such as signal recognition and interpretation of traffic

lights is necessary. Currently, the agent’s objective is to drive at its maximum speed within

road limits. However, it does not adhere to any traffic signs or lights, which should be addressed

and implemented in subsequent iterations.

9.2 Adaptation to the real vehicle

The final step should be the introduction of the trained model into the real vehicle. For doing

so, the system is already adapted using the ROS communication. If the model training had

been successful using the specified inputs, the adaptation to the real vehicle would have been

straightforward. However, since it is possible that achieving optimal performance might require

incorporating visual inputs, an extra adaptation process will be needed since the simulation

images are not identical to the real-world camera inputs. Therefore, an extra layer will be

necessary to adapt the inputs from the real world to the inputs the model was trained on.

Bibliography

[1] J. Fleetwood, “Public health, ethics, and autonomous vehicles.,” Am J Public Health.,

2017. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5343691/pdf/AJPH.2016.

303628.pdf.

[2] L. Ruiz Dern, “Deep q-networks. pid 00275573,” UOC, 2021.

[3] “Carla ros bridge.” https://carla.readthedocs.io/projects/ros-bridge/en/

latest/.

[4] J. Choi et al., “Path planning based on bezier curve for autonomous ground vehi-

cles,” 2008. https://users.soe.ucsc.edu/~elkaim/Documents/camera_WCECS2008_

IEEE_ICIAR_58.pdf.

[5] “Open drive scenario.” https://www.asam.net/standards/detail/opendrive/.

[6] M. Bojarski et al., “End to end learning for self-driving cars,” 2016. https://arxiv.org/

abs/1604.07316.

[7] J. Dinneweth et al., “Multi-agent reinforcement learning for autonomous vehicles: a survey.

auton. intell. syst. 2, 27,” 2022. https://doi.org/10.1007/s43684-022-00045-z.

[8] A. La Fortelle, “Reinforcement learning for autonomous vehicles: A survey (arxiv, 2019),”

[9] B. Ben Elallid et al., “A comprehensive survey on the application of deep and rein-

forcement learning approaches in autonomous driving,” Journal of King Saud Univer-

sity - Computer and Information Sciences, vol. 34, no. 9, pp. 7366–7390, 2022. https:

//www.sciencedirect.com/science/article/pii/S1319157822000970.

[10] “Self-driving cars with convolutional neural networks (cnn).” https://neptune.

ai/blog/self-driving-cars-with-convolutional-neural-networks-cnn. Accessed:

22/10/2023.

51

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5343691/pdf/AJPH.2016.303628.pdf
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5343691/pdf/AJPH.2016.303628.pdf
https://carla.readthedocs.io/projects/ros-bridge/en/latest/
https://carla.readthedocs.io/projects/ros-bridge/en/latest/
https://users.soe.ucsc.edu/~elkaim/Documents/camera_WCECS2008_IEEE_ICIAR_58.pdf
https://users.soe.ucsc.edu/~elkaim/Documents/camera_WCECS2008_IEEE_ICIAR_58.pdf
https://www.asam.net/standards/detail/opendrive/
https://arxiv.org/abs/1604.07316
https://arxiv.org/abs/1604.07316
https://doi.org/10.1007/s43684-022-00045-z
https://www.sciencedirect.com/science/article/pii/S1319157822000970
https://www.sciencedirect.com/science/article/pii/S1319157822000970
https://neptune.ai/blog/self-driving-cars-with-convolutional-neural-networks-cnn
https://neptune.ai/blog/self-driving-cars-with-convolutional-neural-networks-cnn

52 BIBLIOGRAPHY

[11] A. HongIl and J. Jae-il, “Decision-making system for lane change using deep reinforcement

learning in connected and automated driving,” Electronics, vol. 8, no. 5, 2019. https:

//www.mdpi.com/2079-9292/8/5/543.

[12] B. Kiran et al., “Deep reinforcement learning for autonomous driving: A survey,” 2021.

https://arxiv.org/abs/2002.00444.

[13] S. Yan Ho, “Reinforcement learning for self-driving cars,” 2018. https://dr.ntu.edu.

sg/handle/10356/74098.

[14] W. Jiawei et al., “Multi-agent graph reinforcement learning for connected auto-

mated driving,” 07 2020. https://www.researchgate.net/publication/342788148_

Multi-agent_Graph_Reinforcement_Learning_for_Connected_Automated_Driving.

https://www.mdpi.com/2079-9292/8/5/543
https://www.mdpi.com/2079-9292/8/5/543
https://arxiv.org/abs/2002.00444
https://dr.ntu.edu.sg/handle/10356/74098
https://dr.ntu.edu.sg/handle/10356/74098
https://www.researchgate.net/publication/342788148_Multi-agent_Graph_Reinforcement_Learning_for_Connected_Automated_Driving
https://www.researchgate.net/publication/342788148_Multi-agent_Graph_Reinforcement_Learning_for_Connected_Automated_Driving

	Abstract
	Resumen
	Table of Contents
	List of Figures
	Introduction
	Proposal description and motivation
	Goals
	Sustainability, diversity and ethics
	Methodology and planning

	State of the art
	Autonomous driving
	Perception
	Planning
	Action

	Reinforcement learning for autonomous driving
	Simulators
	Models

	Base system
	AV system
	ROS
	RViz
	Software structure

	What to replace
	First approach: replace only path planning
	Second approach: replace path planning and LVP MPC

	How to interconnect
	ROS communication
	CARLA

	Implementation
	First ideas
	Bézier curves
	Curvature
	Velocity
	RL model and its output

	RL model
	First approach
	Reason to discard

	Second approach
	Accelerate
	Brake
	Right turn
	Left turn

	State space
	HD Maps

	Reward system
	First ideas
	Final reward system
	Going out of the road identification
	Correct/incorrect lane identification

	Code

	Testing
	Parameters
	Testing with the first approach (Using trajectories and LVP MPC)
	Testing at maximum frequency of actuation

	Testing with the second approach (Using throttle, brake and steering angle instructions)
	Carbon emissions
	Training session without using CARLA
	Training session using CARLA
	Difference of using CARLA or not

	Conclusions
	Behavior
	Main challenges

	Further work
	Training and implementation
	Adaptation to the real vehicle

	Bibliography

