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Abstract

Deep neural networks (DNNs) have revolutionised computer vision and artificial
intelligence applications. Nonetheless, their opaque nature, susceptibility to biases,
and challenges in explaining decisions have remained pressing concerns in the aca-
demic community. This research addresses these concerns by advancing techniques
that enrich both the performance and interpretability of convolutional neural net-
works (CNNs), a specific type of DNNs that have achieved remarkable results in
various computer vision tasks, such as image classification, object detection, and face
recognition. Specifically, the thesis proposes novel methods for informative sample
selection, uncertainty quantification, visual explanation, and explaining knowledge
distillation (KD).

Certain samples are informative, diverse, or representative, helping the model
learn more efficiently. Given the computational and time constraints often associated
with training DNNs, informative sample selection (ISS) becomes particularly pivotal.
However, implementing ISS is a non-trivial task, as it requires a robust metric for sam-
ple informativeness, a mechanism for optimising the selection process, and a way to
account for the dynamic importance of samples during the training cycle. Therefore,
we propose two novel ISS methods that leverage different informativeness measures:
reinforcement learning and uncertainty quantification. The first method integrates
a meta-learning approach with reinforcement learning to create an agent that filters
out samples that could contribute to model overfitting and bias, enhancing model
accuracy, robustness, and fairness. The second method uses Monte Carlo dropout
to estimate the uncertainty of samples and select the most informative ones for an-
notation, both at training and testing time; this method employs human-in-the-loop
approaches to reduce the labelling cost, enhance credibility, and improve the perfor-
mance of CNNs. We compare and contrast the proposed methods and demonstrate
their effectiveness on various classification tasks.

While the proposed methods for ISS can improve the efficiency and performance
of DNN models, they do not address the challenge of explainability, which is crucial
for designing responsible AI. Explainability refers to the ability of a DNN model to
provide transparent and interpretable reasons for its decisions, especially in response
to critical questions such as how a trained model concludes. However, the opaque na-
ture of DNN models makes explainability difficult, requiring further work to explain
the decision-making process. To address this, we propose two novel explainability
techniques that leverage different aspects of the feature maps: relevance and unique-
ness. The first visual explainability method, ADVISE, visualises and quantifies the
relevance of each unit of the feature map to provide better visual explanations. AD-
VISE uses adaptive bandwidth kernel density estimation to assign a relevance score
to each unit of the feature map for the predicted class and generates more explain-
able maps. However, existing visual explanation methods do not adequately capture
the nuanced differences between models or measure the extent of unique attributes
on each model (such as during knowledge distillation). Therefore, we further de-
velop a novel method, UniCAM, that provides precise and interpretable mechanisms
to quantify and visualise unique features, which can help to make the KD process
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explainable. UniCAM captures and visualises the unique attributes of Teacher and
Student models during KD and measures the knowledge learned during KD. Under-
standing such unique attributes is essential for model comparison, enhancement, and
knowledge transfer processes during knowledge distillation.

In summary, this research proposes a comprehensive set of methods, techniques,
and metrics for improving, mitigating, and explaining DNN models. The thesis eval-
uates the proposed methods on various image classification tasks, showing their effec-
tiveness in tackling the issues of bias and opacity. The research contributes to both
the academic community and practical applications.
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Resumen

Las redes neuronales profundas (DNN) han revolucionado la visión por computa-
dora y las aplicaciones de inteligencia artificial, pero su naturaleza opaca, suscepti-
bilidad a sesgos y desafíos para explicar sus decisiones siguen siendo preocupaciones
apremiantes en la comunidad académica. Esta investigación aborda estas preocu-
paciones mediante el avance de técnicas que mejoran tanto el rendimiento como la
interpretabilidad de las redes neuronales convolucionales (CNN), un tipo específico
de DNN que ha logrado resultados notables en diversas tareas de visión por computa-
dora, como la clasificación de imágenes, la detección de objetos y el reconocimiento
facial. Específicamente, la tesis propone métodos novedosos para la selección infor-
mativa de muestras, la cuantificación de la incertidumbre, la explicabilidad visual y
la explicabilidad en algoritmos de destilación del conocimiento (KD).

Ciertas muestras son particularmente informativas, diversas o representativas, lo
que ayuda al modelo a aprender de manera más eficiente. Dadas las limitaciones
computacionales y de tiempo asociadas a menudo con el entrenamiento de DNN, la
selección de muestras informativas (ISS) se vuelve particularmente fundamental. Sin
embargo, implementar ISS no es una tarea trivial, ya que requiere una métrica sól-
ida para la informatividad de la muestra, un mecanismo para optimizar el proceso
de selección y una forma de tener en cuenta la importancia dinámica de las mues-
tras durante el proceso de entrenamiento. En esta tesis doctoral, proponemos dos
métodos novedosos para ISS que aprovechan diferentes medidas de informatividad:
aprendizaje por refuerzo y cuantificación de la incertidumbre. El primer método
integra un enfoque de metaaprendizaje con aprendizaje por refuerzo para crear un
agente que filtre muestras que podrían contribuir al sobreajuste y al sesgo del modelo,
mejorando su precisión, solidez y equidad. El segundo método utiliza algoritmos de
Monte Carlo aplicados a las capas de DropOut para estimar la incertidumbre de las
muestras y seleccionar las más informativas para su anotación, tanto en el momento
del entrenamiento como en el de la inferencia. Este método introduce al anotador
humano en el proceso con el objetivo de reducir el costo de etiquetado, mejorar la
credibilidad y mejorar el rendimiento de las CNN. Comparamos y contrastamos los
métodos propuestos y demostramos su eficacia en diversas tareas de clasificación.

Si bien los métodos propuestos para ISS pueden mejorar la eficiencia y el rendimiento
de los modelos DNN, no abordan el desafío de la explicabilidad, que es crucial para
diseñar una IA responsable. La explicabilidad se refiere a la capacidad de un modelo
DNN de proporcionar razones transparentes e interpretables para sus decisiones, es-
pecialmente en respuesta a preguntas críticas como cómo un modelo entrenado llega
a una decisión. Sin embargo, la naturaleza opaca de los modelos DNN hace que la
explicabilidad sea una tarea difícil y requiere más trabajo para explicar el proceso
de toma de decisiones. Para abordar esto, proponemos dos técnicas novedosas de
explicabilidad que aprovechan diferentes aspectos de los mapas de características:
relevancia y singularidad. El primer método de explicabilidad visual, ADVISE, vi-
sualiza y cuantifica la relevancia de cada unidad del mapa de características para
proporcionar mejores explicaciones visuales. ADVISE utiliza una estimación de la
densidad de probabilidades mediante un kernel con ancho de banda adaptativo para
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asignar una puntuación de relevancia a cada unidad del mapa de características para
la clase predicha y genera mapas más explicables. Sin embargo, los métodos de expli-
cación visual existentes no capturan adecuadamente las diferencias especificas entre
los modelos ni miden el alcance de los atributos únicos en cada modelo (como durante
la destilación del conocimiento). En esta tesis, desarrollamos un método novedoso,
UniCAM, que proporciona mecanismos precisos e interpretables para cuantificar y vi-
sualizar características únicas, que pueden ayudar a que el proceso KD sea explicable.
UniCAM captura y visualiza los atributos únicos de los modelos de Profesor y Estu-
diante durante KD y mide el conocimiento aprendido durante KD. Comprender estos
atributos únicos es esencial para los procesos de comparación, mejora y transferencia
de conocimientos de modelos durante la destilación del conocimiento.

Esta investigación propone un conjunto integral de métodos, técnicas y métri-
cas para mejorar, mitigar y explicar los modelos DNN. La tesis evalúa los métodos
propuestos en diversas tareas de clasificación de imágenes, mostrando su eficacia para
abordar los problemas de sesgo y opacidad. La investigación contribuye tanto a la
comunidad académica como a las aplicaciones prácticas.
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Resum

Les xarxes neuronals profundes (DNN) han revolucionat la visió per computador
i les aplicacions d’intel·ligència artificial, però la seva naturalesa opaca, la seva sus-
ceptibilitat als biaixos i els reptes a l’hora d’explicar les seves decisions han continuat
sent preocupacions rellevants a la comunitat acadèmica. Aquesta investigació aborda
aquestes preocupacions avançant en tècniques que enriqueixen tant el rendiment com
la interpretabilitat de les xarxes neuronals convolucionals (CNN), un tipus específic
de DNN que han aconseguit resultats notables en diverses tasques de visió per com-
putador, com ara la classificació d’imatges, la detecció d’objectes i el reconeixement
facial. Concretament, la tesi proposa mètodes nous per a la selecció de mostres infor-
matives, quantificació de la incertesa, explicació visual i explicació de la destil·lació
del coneixement (KD).

Algunes mostres són particularment informatives, diverses o representatives, fet
que ajuda al model a aprendre de manera més eficient. Tenint en compte les lim-
itacions computacionals i de temps associades sovint a l’entrenament de DNN, la
selecció de mostres informatives (ISS) esdevé especialment fonamental. Tanmateix,
implementar ISS és una tasca no trivial, ja que requereix una mètrica sòlida per a
modelar la informació de la mostra, un mecanisme per optimitzar el procés de selecció
i una manera de tenir en compte la importància dinàmica de les mostres durant el
procés d’entrenament. Per tant, proposem dos mètodes nous per a l’ISS que aprofiten
diferents mesures d’informació: aprenentatge de reforç i quantificació de la incertesa.
El primer mètode integra un enfocament de metaaprenentatge amb l’aprenentatge
de reforç per crear un agent que filtra mostres que podrien contribuir a l’ajustament
excessiu i al biaix del model, millorant-ne la precisió, la robustesa i l’equitat. El
segon mètode utilitza simulació de Monte Carlo en les capes de DropOut per estimar
la incertesa de les mostres i seleccionar les més informatives per a l’anotació, tant
en el moment de l’entrenament com de la inferència. Aquest mètode utilitza enfoca-
ments humans-in-the-loop per reduir el cost de l’etiquetatge, millorar la credibilitat
i millorar el rendiment de les CNN. Comparem i contrastem els mètodes proposats i
demostrem la seva eficàcia en diferents tasques de classificació.

Tot i que els mètodes proposats per a ISS poden millorar l’eficiència i el rendiment
dels models DNN, no aborden el repte de l’explicabilitat, que és crucial per dissenyar
una IA responsable. L’explicabilitat es refereix a la capacitat d’un model DNN per
proporcionar argumentaris transparents i interpretables per a les seves decisions, es-
pecialment en resposta a preguntes crítiques com ara com un model entrenat arriba a
una decisió. Tanmateix, la naturalesa opaca dels models DNN fa que l’explicabilitat
sigui una tasca difícil, que requereix més treball per explicar el procés de presa de
decisions. Per solucionar-ho, proposem dues noves tècniques d’explicació que aprof-
iten diferents aspectes dels mapes de característiques: la rellevància i la singularitat.
El primer mètode d’explicació visual, ADVISE, visualitza i quantifica la rellevància
de cada unitat del mapa de característiques per oferir millors explicacions visuals.
ADVISE utilitza l’estimació de la densitat de probabilitat mitjançant kernels amb
amplada de banda adaptativa per assignar una puntuació de rellevància a cada unitat
del mapa de característiques per a la classe prevista i genera mapes més explicables.
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Tanmateix, els mètodes d’explicació visual existents no capturen adequadament les
diferències matisades entre models ni mesuren l’extensió dels atributs únics de cada
model (com els que es predueixen durant la destil·lació del coneixement). En aquesta
tesi, desenvolupem un nou mètode, UniCAM, que proporciona mecanismes precisos i
interpretables per quantificar i visualitzar característiques úniques, que poden ajudar
a fer que el procés KD sigui explicable. UniCAM captura i visualitza els atributs
únics dels models de professor i estudiant durant el KD i mesura el coneixement
après durant el KD. Entendre aquests atributs únics és essencial per als processos de
comparació, millora i transferència de coneixement de models durant la destil·lació
del coneixement.

En resum, aquesta investigació proposa un conjunt complet de mètodes, tècniques
i mètriques per millorar, mitigar i explicar els models DNN. La tesi avalua els mètodes
proposats en diferents tasques de classificació d’imatges, mostrant la seva eficàcia
per abordar els problemes de biaix i opacitat. La investigació contribueix tant a la
comunitat acadèmica com a aplicacions pràctiques.
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Chapter 1

Introduction

Convolutional Neural Networks (CNNs) have emerged as a dominant architecture in
deep learning, finding utility across various applications, including computer vision [1,
2] to natural language processing (NLP)1 [3, 4]. Despite their unprecedented success
in complex tasks, they present critical challenges related to model explainability.
CNNs are often difficult to interpret, as their internal structure consists of many layers
and nodes that perform nonlinear transformations on the input data. This makes
it hard to trace the reasoning behind their outputs and verify their reliability and
validity. This lack of transparency is a significant concern, especially when CNNs are
deployed in sensitive domains such as healthcare, autonomous vehicles, and criminal
justice, where the stakes are high, and accountability is crucial. Previous studies
highlight that the opacity inherent in deep neural networks underlines the necessity
for greater transparency [5, 6].

Building on the imperative for greater transparency and explainability, delving
into the specific challenges that undermine these objectives becomes crucial. Some
foundational challenges in transparency are data bias and decision uncertainty [7,
8]. The quality and volume of data influence the performance of CNNs and their
generalisability across different scenarios. Erroneous, redundant, or biased data can
skew the model’s learning process, resulting in overfitting, underfitting and opaque
decision-making [9]. For instance, biased data has been shown to produce discrimina-
tory results in applications as varied as facial recognition to criminal sentencing [10].
Therefore, carefully selecting unbiased and informative training samples is pivotal in
rendering CNNs more responsible and ethically aligned.

Expanding on the necessity for responsible data handling, transparency at the
data level becomes an essential component for responsible Artificial Intelligence (AI)
systems [8, 11]. Understanding the data utilised in the training of CNNs illuminates
how data influences both model behaviour and performance. Recent advancements in
interactive data explainability tools further facilitate more responsible and transpar-
ent AI [12, 13, 14]. Such tools provide critical insights into the intricate workings of
AI models, thus helping to minimise bias and enhance decision-making capabilities.

While mitigating data bias is a crucial step in addressing transparency, the issue
of uncertainty in CNNs presents an equally significant challenge requiring another at-
tention [15]. In complex decision-making scenarios, CNNs may produce outputs with

1In the context of Natural Language Processing (NLP), Convolutional Neural Networks typically
employ one-dimensional convolutional filters due to the one-dimensional nature of text data. In
contrast, in the image domain, CNNs use two-dimensional or three-dimensional convolutional filters
to effectively process the two-dimensional structure of images.
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high levels of uncertainty. Such uncertainty not only questions the reliability of these
models but also exposes them to ethical scrutiny. Strategies to quantify and manage
this uncertainty are another area for minimising bias and the risks associated with
ambiguous decisions. Therefore, addressing the uncertainty during decision-making
complements the drive towards AI systems that align with ethical and responsible
standards.

Beyond the focus on data-centric and uncertainty challenges, the focus transi-
tions to another critical aspect of responsible AI: transparency and interpretability in
decision-making [15]. While reducing bias and decision uncertainty lays the ground-
work for ethical AI, it does not suffice to fully understand the complexities of CNN-
based decisions. Transparency and interpretability refer to the ability to understand
how and why CNNs make their predictions. This involves analysing the input data,
the network architecture, and the output results. For example, one can examine which
features, regions, or channels of the input data are most relevant for the prediction,
how the network layers and filters process the data, and what kind of patterns or
knowledge the network learns from the data. This level of detail fosters trust, fa-
cilitates error identification, and offers domain-specific insights. Visual explanation
techniques such as gradient-based techniques [16], perturbation-based methods [17,
18], activation-based methods [19], and decomposition-based methods [20] have been
popular and contributed towards model transparency and interpretability. There-
fore, achieving high levels of transparency and interpretability remains essential for
ensuring the responsible deployment and societal acceptance of CNN-based systems.

Visual explanations are important for understanding the decision-making process
of CNNs, but they also face challenges, especially when applied to complex learning
paradigms such as Knowledge Distillation (KD). Despite the benefits of KD, there is
still a lack of understanding about how and why it improves performance and what
the student learned during KD. Existing visual explanation techniques often fail to
explain the nuanced interaction between Teacher and Student models during the
knowledge transfer process. The issue becomes even more complex when attempting
to understand how explicit features are learned during KD [21, 22].

This thesis aims to develop novel methodologies for enhancing deep neural net-
works’ performance, reliability, and explainability in computer vision applications.
We argue that the quality and trustworthiness of Deep Neural Networks (DNNs)
can be amplified by selecting informative and unbiased samples, rejecting uncertain
or ambiguous decisions, and proposing more accurate visual explanation techniques
to enhance interpretability during decision-making. To this end, we introduced new
techniques grounded in meta-learning for informative sample selection, active learning
based on model uncertainty estimation, visual explanation based on adaptive Kernel
Density Estimation (KDE), and novel visual explanation techniques and metrics to
explain the KD process. We evaluate the proposed methods on various datasets for
classification tasks in the computer vision domain and compare them with the ex-
isting baseline techniques. Finally, the thesis elaborates on the proposed methods’
implications, limitations, and future research directions.
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1.1 Problem Statement

CNNs have profoundly impacted the field of computer vision, enabling unprecedented
performance on a range of complex tasks. However, as these models become integral
components in critical applications like healthcare, autonomous vehicles, and public
safety, their opaque nature raises substantial ethical and practical concerns. Despite
their achievements, CNNs grapple with challenges that severely limit their trans-
parency, reliability, and societal acceptance. Specifically, these challenges encompass:

• Data Quality: The quality and quantity of labelled datasets are crucial for the
success of computer vision models. However, many challenges limit the avail-
ability and diversity of data for various applications. Data can be noisy, unbal-
anced, or unrepresentative, directly affecting the model’s performance, fairness,
and generalisation. These issues can also propagate or exacerbate existing hu-
man biases. Moreover, due to the limited expertise and cost required for reliable
manual annotations, most vision datasets are relatively small in scale compared
to common benchmarks like ImageNet. Many datasets also lack varied repre-
sentations across different demographics, ethnicities, and imaging equipment,
which can restrict real-world applicability. To overcome these challenges, alter-
native training methods such as transfer learning, zero/few-shot learning, and
knowledge distillation offer potential solutions to mitigate the impact of limited
dataset size. Additionally, active learning techniques can optimise the annota-
tion process by selectively identifying the most useful and ambiguous samples
for labelling, and incorporating uncertainty estimation into the sample selection
process can further improve model performance on underrepresented classes.

• Model Uncertainty: CNNs often produce a singular output without quanti-
fying the level of uncertainty or confidence associated with that decision. This
omission is problematic, especially in critical applications with high stakes, such
as medical diagnostics or autonomous navigation. The absence of uncertainty
metrics can result in overconfident decisions that might not reflect the model’s
true reliability, complicating risk assessment and decision-making processes.

• Model Explainability: CNNs often lack the ability to provide intuitive and
meaningful explanations for their outputs, reducing their transparency and ac-
countability. Lack of explainability compromises accountability, making it dif-
ficult to measure the model’s confidence in its decisions or to ascertain its in-
tended uses and limitations.

These challenges pose significant barriers to adopting and accepting CNNs in various
domains that impact end-users, such as healthcare, education, finance, or security.
Therefore, there is a need for developing techniques that can improve and interpret
model transparency at various levels of the CNNs. One technique that can address
these challenges and enhance model transparency at various levels of the CNNs is ex-
plainable artificial intelligence (XAI). XAI can help developers identify and overcome
the bottlenecks of DNN architectures, such as data quality, model complexity, or de-
cision uncertainty. XAI can also provide insights into the input data, the network



4 Chapter 1. Introduction

architecture, and the output results, which can foster trust, facilitate error identifi-
cation, and offer domain-specific knowledge.

1.2 Research Objectives

The main objective of this work is to address the challenges hampering the trans-
parency, reliability, and efficacy of CNNs. Achieving these objectives will facilitate
the responsible adoption of CNNs for end-users, domain experts, developers and
policymakers. To this end, the research is committed to advancing techniques that
improve both the performance and interpretability of CNNs. Specifically, the research
objectives are as follows:

• To develop robust sample selection methodologies that enhance both the perfor-
mance and generalisability of CNNs. This will entail devising algorithms capa-
ble of selecting informative samples pivotal for optimising the model’s training
and testing phases.

• To integrate uncertainty quantification approaches into CNNs decision making
through adaptive sample selection. These techniques will focus on identifying
and filtering out ambiguous or uncertain samples, thereby revealing the model’s
uncertainty and using experts’ opinions to enhance its reliability.

• To introduce a novel method for explaining the decisions of convolutional neu-
ral networks (CNNs) in image classification tasks, which can generate visual
explanations that highlight the most important features, regions, or channels of
the input image for the prediction and assign a relevance score to each unit of
the feature maps.

• To develop comparative visual explanation tools customised for KD paradigms
that aim to compare and contrast the teacher and student models, providing
detailed insights into the knowledge transfer process.

• To propose robust metrics for evaluating the efficacy of visual explanation tech-
niques and the efficiency of KD processes within CNNs. These metrics aim to
quantitatively assess the quality of visual explanations and the effectiveness of
knowledge transfer between teacher and student models.

1.3 Thesis Contributions

This thesis aims to contribute to XAI in computer vision and machine learning,
specifically focusing on CNNs. It addresses key challenges in data quality, model un-
certainty, and explainability of CNNs and KD. The research objectives identify and
tackle gaps in current scholarly literature and practical applications, offering novel
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solutions for enhancing transparency, reliability, and interpretability of CNNs. Com-
bining novel algorithms, evaluation metrics, and empirical studies sets the groundwork
for new model performance and interpretability benchmarks.

• We propose a sample selection mechanism that employs meta-learning via re-
inforcement learning to optimise CNN performance. This approach filters out
samples that could contribute to model overfitting and bias. Our empirical
results demonstrate that this method enhances model performance in various
image classification tasks, leading to increased model accuracy and robustness.

• We propose a sample selection technique that incorporates Monte Carlo dropout
to the CNN training and filters samples with higher uncertainty during evalu-
ation. We extend this technique to design an active learning framework that
forwards the uncertain samples for expert labelling. We demonstrate the ef-
fectiveness of this technique on various classification tasks, showing that it can
reduce the labelling cost, enhance credibility, and improve the model’s perfor-
mance.

• We introduce ADaptive VISual Explanation (ADVISE), a novel explainability
technique that employs adaptive bandwidth kernel density estimation to quan-
tify the relevance of each unit in the feature map. This method is designed to
offer more precise visual explanations by allocating a relevance score to each
unit of the feature map based on the predicted class.

• We introduce Unique Class Activation Mapping (UniCAM), a novel visual ex-
planation approach explicitly designed to explain and visualise the features
distilled during the KD process. This technique seeks to provide an in-depth
explanation of the foundational mechanisms in KD, delivering both visual and
quantitative perspectives on the features learned during the KD process.

• We propose novel metrics to quantify visual explanations and to measure the
similarities and relevance of features acquired during the KD process.

1.4 Thesis Outline

The principal objective of this thesis is to develop methodologies that contribute
to the explainability of deep neural networks (DNNs) for computer vision applica-
tions. Specifically, the research concentrates on enhancing the performance of CNNs,
quantifying the decision uncertainty of CNNs, and proposing more precise visual ex-
planations that reveal the input-output relationship and highlight the most important
features, regions, or channels of the input for the prediction. To evaluate the effec-
tiveness of the proposed methodologies, the thesis also proposes evaluation protocols
for explainability, which include quantitative metrics, qualitative analysis, and user
studies.

Chapter 1 provides a concise yet comprehensive introduction to the urgent need
for responsible and transparent AI. It elaborates on the significance of designing
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deep neural networks that are not only efficient but also ethical, accountable, and
transparent. Key concepts such as responsible AI, ethical AI, and transparent AI are
introduced to establish the framework for the subsequent discourse.

Chapter 2 (see chapter 2 for details) provides an in-depth analysis of cutting-edge
research focused on improving the transparency and interpretability of AI systems.
This chapter reviews recent works on techniques for sample selection and uncertainty
in decision-making, as well as techniques for Explainable AI (XAI).

Chapter 3 (see chapter 3 for details) focuses on mitigating data bias by employing
meta-learning techniques. This chapter proposes a novel methodology for selecting
informative samples while avoiding those that may lead to model overfitting and bias,
thereby contributing to the responsible use of AI.

Chapter 4 (see chapter 4 for details) elaborates on methodologies that allow a
CNN to refrain from making a decision when it is uncertain. Techniques for incor-
porating uncertainty into the decision-making process are discussed in detail. Ex-
planations for the origins of the uncertainty, utilising existing XAI methods, are also
provided.

Chapter 5 (see chapter 5 for details) introduces and investigates novel visual
explanation techniques for explaining the internal decision-making processes of CNNs.
The focus is primarily on generating visual explanations that humans can easily
interpret, thereby enhancing the model’s transparency.

Chapter 6 (see chapter 6 for details) proposes a novel visual explanation and
metrics to interpret the process KD. The limitations of existing methods for explaining
KD are discussed and solutions are proposed.

Chapter 7 (see chapter 7 for details) discuss the methodologies proposed in
previous chapters, offering a comparative analysis with existing solutions. It also
outlines the implications of this work for future research, particularly the avenues it
opens for developing more ethical and transparent AI systems. Ethical considerations
and the impact of these methods on the broader domain of AI and computer vision
are also discussed.

Chapter 8 (see chapter 8 for details)provides an overview of the academic publi-
cations and scholarly contributions during this PhD study. It describes the methods
used and the findings obtained.
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Chapter 2

Literature Review

The field of computer vision has benefited greatly from the advancement of Convolu-
tional Neural Networks (CNNs), which have enabled the accomplishment of tasks that
were previously regarded as too challenging or impractical. However, as CNNs have
become increasingly sophisticated, numerous challenges have emerged, notably in
the areas of data scarcity and quality, model explainability and interpretability. This
chapter provides a comprehensive overview of the related research studies categorising
and examining these challenges, along with their approach to address the challenges.
Furthermore, it aims to identify the relevant theories, methods, applications and
gaps in the existing research, develop a theoretical framework and methodology for
the research, and show how the research addresses a gap. This chapter is organised
into three main sections: (1) informative sample selection (2) visual explainability
methods, and (3) explaining knowledge distillation techniques.

2.1 Informative Sample Selection

The quality, diversity, and reliability of the data used to train a machine learning
model, a Deep Neural Network, can significantly impact the model’s performance,
robustness, fairness, and generalisability. However, obtaining high-quality and cor-
rectly labelled data is costly and challenging. Moreover, some data samples may be
more informative or representative than others, while some may be outliers, redun-
dant, imbalanced, incomplete, or biased [23, 24, 25, 26].

Sample selection techniques generally rely on the principles of statistical learning,
optimisation, and information theory. At the core, these methods aim to identify data
instances that contribute the most to the performance of the model, which is often
quantified using statistical measures like entropy, mutual information, or Bayesian
uncertainty [27, 28]. In light of these theoretical foundations, researchers have de-
veloped various strategies to evaluate the relevance of samples using the commonly
employed techniques such as uncertainty-based methods [26], active learning [29], and
reinforcement learning [30].

Angelova et al. [31] proposed data pruning mechanism cleaning samples with noise.
An initial classifier is trained using the complete training set D. Following this, the
posterior probabilities P for the labels of each sample are computed. The pruning
process aims to filter out noisy or hard-to-classify samples and which was formally
represented as:

D′ = {x ∈ D : I(x, P (x)) = True} (2.1)
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Here, I(x, P (x)) serves as an inclusion condition, defined as:

I(x, P (x)) =
{

True if P (x) ≥ threshold
False otherwise

(2.2)

This inclusion condition helps determine which samples are retained in the pruned
dataset D′. While this method effectively removes samples that are presumably noisy,
it may inadvertently discard samples that could be valuable for training the classifier.
It may also introduce bias into the remaining dataset D′ and exhibits sensitivity to
the choice of initial parameters, such as the model and the threshold employed for
pruning.

Lapedriza et al. [24] investigated the significance of individual training examples
by assessing their influence on a classifier’s performance. They proposed a methodol-
ogy to rank examples based on how much their absence affects the model’s accuracy.
This involved comparing the model’s accuracy with the entire dataset against its
accuracy after retraining without a specific example. To create a more efficient train-
ing subset that achieves superior accuracy, the proposed method prioritises examples
whose removal results in a substantial decrease in accuracy. However, this approach
has some challenges. Firstly, it necessitates repeated model training during selection,
rendering it computationally demanding. Secondly, defining a universally applicable
value function and determining the optimal parameters (subset size, initial classifier)
could be challenging, as they can significantly influence the example selection process
and the initial state of the classifier

In [32, 33], the authors propose new sample selection techniques leveraging classi-
fication uncertainty. Sensoy et al. [32] aim to enhance model robustness by highlight-
ing samples near class boundaries. Song et al. [33] proposed a technique to adjust
mini-batches based on recent prediction uncertainty. However, these approaches face
challenges in creating or selecting auxiliary datasets to represent out-of-distribution
samples, particularly in high-dimensional spaces like images.

While the aforementioned approaches offer valuable contributions to the field of
sample selection, they also come with certain limitations. For instance, data pruning
methods may introduce bias, overlook potentially informative samples or neglect sam-
ples that are informative yet challenging to classify. We proposed two novel methods
to address these limitations and enhance the sample selection process: reinforce-
ment learning (RL) using a meta-learning strategy and uncertainty quantification
with active learning. Meta learning offers a dynamic framework for sample selection,
enabling the model to evolve its selection strategy based on real-time feedback. In
addition, uncertainty quantification and active learning could also serve as a powerful
mechanism for sample selection.
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2.1.1 Meta-learning

Meta-learning has found wide applicability in domains such as computer vision [34,
35] and natural language processing [36, 37], especially in applications that benefit
from few-shot learning capabilities [38, 39]. The core idea is to train a model on many
tasks, enabling it to quickly adapt to new, unseen tasks with minimal fine-tuning.
The model, thus, not only learns the specifics of each task but also captures a higher
level of abstraction that facilitates cross-task adaptability. This has particularly pro-
found implications for informative training sample selection in DNNs, offering ways to
dynamically adjust to the changing landscape of data distributions and complexities.

Building on the promising benefits of RL-based meta-learning approaches and
DNNs, many studies have emerged, focused on improving both training efficiency
and model performance [25, 26, 29, 30, 40, 41]. Advancements in bio-inspired al-
gorithms and reinforcement learning have led to proposing variety of methods for
dynamic sample selection, further solidifying the utility of meta-learning in the do-
main. Chen et al. [42], for instance, employed a RL-based transfer learning strategy
to seamlessly adapt deep learning models to new tasks. Similarly, other approaches
have utilised RL to automate curriculum design [43], improve adversarial learning for
image production [44], and develop dynamic querying and labelling strategies [45].

Meta-learning typically employs a two-level training process. At the higher level,
the meta-learner M updates its parameters Θ based on the performance P of the
base learner B across multiple tasks T :

Θnew = Θold + α∇P (B(T ; Φ); Θ) (2.3)

where Φ denotes the task-specific parameters for the base learner, α is the learning
rate for meta-learning, and ∇ represents the gradient. This gradient provides the
direction in which the task-specific loss function LT increases most rapidly with re-
spect to Φ. At the task level, the base learner updates its parameters Φ based on the
task-specific loss L:

Φnew = Φold − β∇L(T ; Φ) (2.4)

Meta-learning, which enables learning samples for multiple tasks, can be a valuable
technique for informative sample selection. It can help a DNN model learn to dis-
tinguish between informative and non-informative samples, which can help overcome
the challenges of informative sample selection. However, despite the advancements in
RL-based meta-learning for optimising various aspects of DNNs, the specific challenge
of training sample selection remains inadequately addressed. Current techniques of
sample selection often rely on static metrics or thresholds, which can introduce bias,
lead to overfitting, or miss out on informative samples crucial for model performance.
This absence of a dynamic, adaptive approach to sample selection has left a noticeable
gap in the literature, underscoring the need for a more robust strategy.

In this context, the emerging synergy between RL-based meta-learning and DNNs
presents a timely opportunity to revolutionise various facets of machine learning, one
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of which is sample selection. Meta-learning, with its intrinsic adaptability to diverse
tasks and data types, offers the potential to dynamically and intelligently manage the
sample selection process. When coupled with the real-time decision-making capabil-
ities of RL, this approach holds a promising path to mitigate the common challenges
like bias and overfitting. Thus, an RL-based meta-learning framework could pave the
way for more adaptive and effective sample selection strategies in DNNs, setting the
stage for more robust and reliable models

2.1.2 Uncertainty quantification

Deep neural networks are increasingly used to make decisions in various domains,
some of which have high stakes for human lives. These domains require high accuracy
and robustness from the models, as well as a clear indication of the confidence level
of their predictions. For example, in medical diagnosis, self-driving cars, and natural
disaster management, the consequences of wrong predictions can be catastrophic.
Therefore, it is crucial to provide these systems with a way of estimating uncertainty
in their predictions so that practitioners can make more reliable and safe decisions.

Uncertainty can be broadly categorised into two: epistemic (model uncertainty),
and aleatoric (data uncertainty) [46, 47]. Epistemic uncertainty is caused by the im-
perfect model itself. It reflects the lack of knowledge about the data and can therefore
be an important cue for identifying whether we see an already known concept, or not.
In other words, epistemic uncertainty can be reduced as we acquire more training
examples. In contrast, aleatoric uncertainty arises from the inherent randomness or
noise within the data, such as measurement errors or natural variations.

Quantifying uncertainty, an important problem in many domains, has inspired
various novel techniques such as Bayesian neural networks (BNNs), Monte Carlo
dropout, and ensemble methods [48, 49, 50]. These techniques enhance the perfor-
mance and reliability of machine learning models in various domains where data could
be scarce or noisy. Moreover, they can provide useful information for tasks that re-
quire high reliability, such as medical diagnosis or autonomous navigation. However,
implementing various uncertainty methods such as BNNs [48] are often impractical for
real-time applications, as they require a large amount of memory and computation.

Epistemic uncertainty arises from our lack of knowledge about the model predic-
tion. In the Bayesian approach, epistemic uncertainty is captured by the posterior
distribution over the model parameters, which reflects our updated beliefs after ob-
serving the data. Let D = {X,Y } = {(xi, yi)}Ni=1 represent the dataset, where
xi ∈ RD are the inputs and yi ∈ {1, ..., C} are the corresponding classes, with C
denoting the total number of classes. The objective is to optimise the parameters, Θ,
of the function y = fΘ(x) to produce the desired output.
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The Bayesian approach defines a model likelihood as p(y|x,Θ), which is a softmax
likelihood for classification tasks:

p(y = c|x,Θ) = exp(f c(x))∑
c′ exp(f c′(x)) , (2.5)

where p(y = c|x,Θ) is the probability of the output y being class c given the input x
and the model parameters Θ, f c(x) is the the function to produce the desired output
of the class c given the input x, and

∑
c′ exp(f c′(x)) is the normalisation factor that

ensures the probabilities sum up to one over all possible classes. Given the observed
data, we can update our beliefs about the model parameters using the posterior
distribution, which is obtained by applying Bayes’ theorem:

p(Θ|X,Y ) = p(Y |X,Θ)p(Θ)
p(Y |X) . (2.6)

where Θ is the set of model parameters, X is the matrix of input features, and Y is
the vector of output labels.

However, computing the posterior predictive distribution p(Θ|X,Y ) is often in-
tractable for complex models and large datasets. Various approximation methods
such as variational inference (VI), Markov chain Monte Carlo (MCMC), and Monte
Carlo (MC) dropout have been proposed to estimate posterior predictive distribution.

Variational inference tries to find a tractable distribution q(Θ) approximating the
true posterior p(Θ|X,Y ) using the metric of Kullback-Leibler (KL) divergence [51].
The KL divergence measures how much information is lost using q(Θ) instead of the
true posterior p(Θ|X,Y ). The main objective is to optimise the variational parameters
and minimise the KL divergence, which is equivalent to maximising the evidence lower
bound (ELBO) [52], formulated as:

ELBO(q) = Eq[log p(X,Y,Θ)]− Eq[log q(Θ)], (2.7)

The primary advantages of VI lie in its scalability and suitability for large datasets.
However, VI often necessitates assumptions about the posterior’s form and may un-
derestimate the model’s uncertainty.

MCMC is another method to approximate the posterior predictive distribution. It
generates a random sample sequence that follows the posterior distribution p(Θ|X,Y ).
The samples can be used to calculate the mean, variance, or other posterior statistics.
The main idea of MCMC is to build a Markov chain that converges to p(Θ|X,Y ) as
its stationary distribution. This means that the longer we run the chain, the closer
the distribution of the states will be to p(Θ|X,Y ).

The Markov chain is defined by a transition kernel K(ω, ω′), which gives the
probability of moving from state ω to state ω′ in one step. The transition kernel must
satisfy this equation for any pair of states ω and ω′:

p(ω|X,Y )K(ω, ω′) = p(ω′|X,Y )K(ω′, ω) (2.8)
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where p(ω|X,Y ) is the probability of the state ω given the data X and Y , and K(ω′|ω)
is the probability of moving from ω to ω′. Note that each state ω is a possible value of
the model parameters Θ. After the Markov chain reaches convergence, we can collect
samples {ω(1), ω(2), . . . , ω(N)} from the chain and use them to estimate quantities of
interest from the posterior distribution, such as:

Mean ≈ 1
N

N∑
i=1

ω(i) Variance ≈ 1
N − 1

N∑
i=1

(ω(i) − ω̄)2 (2.9)

where N is the number of samples, and ω̄ is the sample mean. MCMC is a powerful
method for estimating complex and multimodal distributions, but it also has some
drawbacks. It can be computationally expensive and time-consuming, especially for
large datasets and high-dimensional problems. It also requires checking the conver-
gence and mixing of the samples, and choosing appropriate proposal distributions or
transition kernels.

To solve the challenges of MCMC in DNN, Monte Carlo dropout (MC dropout)
was introduced, and it uses dropout as a regularisation term to compute the prediction
uncertainty [53]. It applies dropout at inference time to compute the uncertainty of
the predictions. Dropout is a method that randomly sets some weights of a neural
network to zero during training to prevent overfitting. MC dropout uses dropout as
a way of sampling from a distribution over the weights, which creates a distribution
over the outputs. MC dropout is given by:

p(Y |X,D) ≈ 1
T

T∑
t=1

p(Y |X,Θt) (2.10)

where p(Y |X,D) is the posterior predictive distribution of the output Y given the
input X and the data D, Θt is the is the set of weights for the tth dropout sample,
and T is the number of iterations. MC dropout is easy to implement and scalable,
but it requires choosing appropriate dropout rates and the number of samples.

While epistemic uncertainty reflects the lack of knowledge about the true model
prediction, aleatoric uncertainty captures the inherent randomness or variability in
the data. Aleatoric uncertainty can be estimated using probabilistic models that
model the distribution of possible outcomes given the input variables. For instance,
heteroscedastic regression models can account for the noise that depends on the input,
thereby providing a more refined measure of uncertainty [54]. Addressing aleatoric
uncertainty is important for assessing the risk and robustness of machine learning
models and designing optimal decision strategies that balance expected reward and
uncertainty. This is especially relevant in fields like robotics or clinical research, where
sensor noise or patient variability can affect the model’s performance and safety.

Uncertainty quantification is useful for many reasons. It can improve the perfor-
mance, reliability, and safety of a DNN model. It can also help the decision-makers
to know the possible outcomes and risks, prevent bias and overconfidence, and sup-
port better decision-making. In chapter 4, we will demonstrate how active learning



2.1. Informative Sample Selection 13

benefits from uncertainty estimation, as it enables the model to select informative
samples for labelling and achieve faster and more effective training.

2.1.3 Active learning

Active learning (AL) emerges as a paradigm in machine learning that tackles the
challenge of limited labelled data. Unlike traditional supervised learning methods
which rely on large, pre-labelled datasets, AL focuses on achieving high-performance
models with fewer labelled samples. It achieves this by interactively querying a user
or an annotation source to label the most informative data points for learning.

AL approaches can be categorised through multiple lenses depending on the spe-
cific focus or application. Settles et al. [55] classify AL approaches based on the level
of interaction between the learner and the oracle (the entity providing labels or feed-
back). They distinguish three primary strategies: membership query synthesis [56],
stream-based selective sampling [57], and pool-based sampling [58]. Another com-
monly used criterion centres on query strategy, where methods are broadly grouped
into uncertainty-based, diversity-based, and model-change-based categories [58, 59].
These two strategies are not mutually exclusive, but rather complementary. The level
of interaction determines how the learner obtains the labels or feedback from the or-
acle, while the sample selection focuses what criterion the learner uses to select the
most informative data points to query the oracle. Depending on the specific problem
and setting, different combinations of these strategies can be used to achieve effective
and efficient AL approaches.

In the membership query synthesis scenario [57, 60], the active learner generates
its instances from the input space and queries the oracle for the true labels. This
strategy allows the learner to explore the regions of the input space that are most
relevant or informative for the learning task rather than relying on existing data.
For example, if the task is to classify images of animals, the learner could create
a synthetic image of a hybrid animal and ask the oracle what kind of animal it is.
Membership query synthesis can be useful when the existing data is scarce, noisy, or
unrepresentative of the true distribution. However, a major drawback of this scenario
is that it can artificially generate instances that are impossible to reasonably label or
do not reflect the real-world data distribution.

In stream-based selective sampling, the active learner receives a stream of in-
stances from the input space and decides whether to query the oracle for the true
labels [61]. This strategy allows the learner to filter out the instances that are easy
or redundant for the learning task and only focus on the difficult or informative ones.
For instance, in surveillance videos, if the task is to detect faces in videos, the learner
could ignore the streams that clearly contain or do not contain faces and only query
the oracle to label the ones that are occluded or blurred. Stream-based selective sam-
pling can be useful when the data is generated continuously or online, and labelling
all instances is not feasible. However, a drawback of this scenario is that it requires
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a fast and reliable oracle response, which may not be available in some domains or
applications.

The pool-based sampling strategy is a commonly used active learning strategy
where the model can access a large pool of unlabelled instances from the input space
and select a subset to query the oracle for their labels [62]. This strategy allows the
learner to choose the most informative or diverse instances for the learning task rather
than selecting them randomly or sequentially. For example, if the task is to segment
objects in images, the learner could select images that contain different types or
shapes of objects and avoid images that are empty or cluttered. Pool-based sampling
can be useful when the data is available in advance, but labelling all instances is too
costly or time-consuming. However, a drawback of this scenario is that it requires a
large amount of unlabelled data, which may not be easy to obtain in some domains
or applications.

The AL approaches based on query strategies mainly aim to optimise the trade-off
between exploration and exploitation when querying the oracle. These techniques can
often be combined with the aforementioned strategies to enhance the efficiency of the
learning system. In uncertainty-based methods [63, 64], the learner queries the oracle
for the most uncertain instances, thereby attempting to refine the model’s decision
boundaries. Diversity based [65, 66, 67] methods focus on selecting samples that cover
a broad range of feature space, ensuring a representative understanding of the data
distribution. Model change [68, 69] approaches prioritise samples that would cause
a significant alteration in the current model, optimising for more rapid convergence
to a robust model. These sample selection techniques serve as underlying methods
that can be employed in conjunction with membership query synthesis, stream-based
selective sampling, or pool-based sampling to tailor the active learning process to
specific requirements and constraints.

Recently, uncertainty-based query strategies with significant contributions from
Bayesian Neural Networks (BNNs) and Monte Carlo dropout have gained popular-
ity [49, 53]. Many uncertainty-based query strategies are derived from pool-based AL
techniques and use different methods to estimate uncertainty, such as:

• Entropy [70, 71]: This measures the amount of information contained in a
probability distribution. A high entropy indicates a high level of uncertainty.
For a discrete distribution y, the entropy is defined as

H(y) = −
∑
i

p(yi) log p(yi), (2.11)

where p(yi) denotes the model’s predicted probability for each class yi.
• Margin [72, 73]: This measures the difference between the the most likely class
y1 and the second most likely class y2 predicted by the model. A low margin
indicates a high level of uncertainty. Formally,

M(x) = p(y1|x)− p(y2|x), (2.12)
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where p(y1|x) and p(y2|x) refer to the model’s predicted probabilities for the
first and second most likely classes, respectively.

• Least Confidence [74]: This measures the confidence of the model in its most
likely prediction yi. A low confidence in the most likely prediction indicates a
high level of uncertainty. The confidence is measured by maxi p(yi|x), and the
uncertainty is defined as:

LC(x) = 1−max
i
p(yi|x), (2.13)

where maxi p(yi|x) refers to the maximum predicted probability across all
classes.

• Bayesian Active Learning by Disagreement (BALD) [75]: This measures
the mutual information between the model’s predictions and its parameters. A
high mutual information indicates a high level of uncertainty. For a probabilistic
model with parameters Θ and a data point x, the BALD score is defined as

B(x) = H(EΘ[p(y|x,Θ)])− EΘ[H(p(y|x,Θ))] (2.14)

where H is the entropy function and E is the expectation operator.
• Monte Carlo dropout [63]: This uses dropout at both training and testing

stages to obtain stochastic predictions from the model. A high variance of the
predictions indicates a high level of uncertainty. For a model with dropout rate
p and a data point x, the MC Dropout score is defined as

MCD(x) = 1
T

T∑
t=1

ft(x)2 −
(

1
T

T∑
t=1

ft(x)
)2

(2.15)

where ft(x) is the prediction of the model with dropout mask t and T is the
number of stochastic forward passes (iterations).

• Generative Adversarial Active Learning [76]: Here, a generative model
G is trained alongside the main predictive model PM . The generative model
generates samples x′, and the predictive model’s uncertainty on these samples
is measured using

U(x′) = 1−max
i
p(yi|x′;PM), (2.16)

where maxi p(yi|x′;PM) represents the maximum predicted probability when
input x′ is fed into model PM . A high discrepancy between the model’s pre-
dictions on real and synthetic data indicates a high level of uncertainty.

Uncertainty-based active learning offers robust mechanisms to measure the informa-
tiveness and diversity of samples, thereby allowing for efficient labelling efforts [63].
However, the computational cost of uncertainty estimation in deep models, partic-
ularly using Bayesian methods, poses challenges for scalability in large-scale appli-
cations [46]. Furthermore, the fidelity of uncertainty measures often depends on the
approximation function, which may not always accurately capture the true model un-
certainty. Despite these challenges, the potential for optimising data collection while
ensuring high model performance makes uncertainty-based active learning an active
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area of research. Ongoing work aims to address these issues by developing scalable
algorithms, more accurate uncertainty measures, and novel techniques for balancing
exploration and exploitation in the learning process.

Diversity-based query strategies aim to select data points that are diverse or
representative of the unlabelled data distribution. The intuition is that by covering
different regions of the feature space, the model can learn more generalise patterns
and avoid overfitting to a specific subset of data. Some of the techniques used to
estimate diversity are:

• Cluster-based [77]: This technique partitions the unlabelled data into clusters
and selects one or more data points from each cluster. The clustering algorithm
can be based on different criteria, such as distance, density, or graph structure.

• Density-weighted [78]: This technique assigns a weight to each data point
based on its local density, often calculated via a kernel function, which is esti-
mated by the number of neighbours within a certain feature space. The weight
reflects the representatives of the data point, and the technique selects data
points with high weights.

On the other hand, model-change-based query strategies aim to select data points
that cause the most change in the model parameters or predictions. The intuition is
that the model can learn more effectively and efficiently by choosing data points that
have a large impact on the model. Some of the techniques used to estimate model
change are:

• Expected gradient length [79]: This technique measures the expected length
of the gradient vector of the loss function with respect to the model parameters,
given a data point and its possible labels. The technique selects data points
with large expected gradient lengths, assuming they will induce a large update
on the model parameters.

• Expected error reduction [80]: This approach measures the expected reduc-
tion in the generalisation error of the model, given a data point and its possible
labels. The technique selects data points that have large expected error re-
ductions, assuming that they will improve the model performance on unseen
data.

• Expected information gain [81, 82]: This measures the expected informa-
tion gain about the model parameters, given a data point and its possible labels.
The information gain between the posterior and prior distributions of the pa-
rameters is quantified using Kullback-Leibler divergence. The technique selects
data points that have large expected information gains, assuming that they will
reduce the uncertainty about the model parameters.

• Model disagreement [83]: In a multi-model context, this technique measures
the disagreement among multiple models trained on different subsets of labelled
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data, given a data point and its possible labels. Different metrics, such as
vote entropy, average Kullback-Leibler divergence, or variance, can measure the
disagreement. The technique selects data points that have high disagreement
scores, assuming that they will resolve the conflicts among the models.

In addition to the query strategies and the levels of interaction, another aspect
of active learning is using Query-by-Committee (QBC), a general framework where
the learner consists of a committee of models that vote on the labels of the instances.
The learner queries the oracle for the instances with the highest disagreement among
the committee members, as they are likely to be informative and reduce the learner’s
uncertainty. The QBC can be applied to any of the sample selection criteria and
the levels of interaction, depending on how the committee of models is formed and
how their disagreement is measured. For example, QBC can be used in stream-based
selective sampling by receiving a stream of instances and querying the oracle for the
ones with the highest disagreement among the committee members [61]. QBC is a
powerful and flexible framework that can capture different aspects of informativeness
and diversity in active learning.

Uncertainty sampling is a powerful tool for selecting the most informative samples
to label and train a deep neural network in active learning and improve the model’s
performance with a small labelled training set. It can also be used to design a DNN
model that will say “I do not know” when it faces uncertain or out-of-distribution
samples and reduces the risk of biased decisions. We demonstrate how uncertainty-
based active learning can help enhance the performance of DNN models in real-world
applications that face challenges such as data scarcity and lack of expert annotators.
Furthermore, we employ existing visual explanation tools to inspect the sources of
model uncertainty and suggest mechanisms to reduce such uncertainties, thereby
contributing to more responsible and explainable AI practices.

2.2 Visual Explainability

While mitigating data bias through adaptive sample selection and estimating uncer-
tainty are instrumental in creating responsible AI models, it does not fully unveil
the opaque nature of the models. Explainability in Artificial Intelligence is growing
rapidly as a critical dimension to making the decision-making process of Deep Neu-
ral Networks transparent, ethical, and accountable. Various methodologies, ranging
from local interpretable model-agnostic explanations to natural language justifica-
tions, have been proposed to decode the complex operations of these networks. How-
ever, our focus within this vast terrain of options is Visual Explainability in CNN
architectures. This approach leverages visual cues and representations to intuitively
explain the model’s decision-making process, thereby simplifying complex mecha-
nisms into simple and easier to understand. This notion aligns well with our research
objective of optimising the model’s performance and making its decisions more inter-
pretable to a broader audience.
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Visual explainability techniques play a crucial role in interpreting the internal
decision-making processes of CNNs. This approach encompasses pinpointing relevant
regions in input images, generating descriptive natural language captions, synthesis-
ing exemplary images, or visualising internal model states. Visual explainability can
be systematically classified into four primary categories [84]: feature visualisation,
class activation mapping, perturbation analysis, and integrated gradients. Each cate-
gory represents a distinct technique that aims to explain the model’s decision-making
process.

2.2.1 Feature visualisation

Feature visualisation serves as a main technique of visual explainability, primarily
focused on decoding the learned features or patterns within a CNN [84, 85, 86, 87].
Feature visualisation involves generating synthetic images that maximally activate
specific neurons or layers in the network. The method generally employs gradient
ascent to modify an input image in such a way that it maximally activates a chosen
neuron or layer in the network. Feature visualisation methods are formulated as an
optimisation problem as follows:

max
I

Al,n(I) + λR(I) (2.17)

where Al,n(I) represents the activation of the n-th neuron in layer l for the image
I, and R(I) is a regularisation term controlled by λ to enforce image smoothness
or other desired properties. The optimisation iteratively updates the image I using
gradient ascent to increase Al,n(I).

The advantages of feature visualisation lie in its power to offer rich insights into
the internal representations that CNNs acquire during their training. This method
can unveil the level of abstraction and the types of features that a model perceives
as significant. However, there are notable drawbacks as well. Among them is the
difficulty in interpreting the synthetic images generated, especially when dealing with
complex CNN architectures with multiple layers and neurons. The images may be rich
in information but overwhelming or ambiguous to the human, making it challenging
to drive meaningful and understandable insights.

2.2.2 Integrated gradients

Integrated Gradients (IGs) are gradient-based methods for visual explainability that
aims to explain the model’s prediction to each input feature [19]. They achieve this
by gradually transforming the baseline input into the actual image. Throughout this
transformation, IGs track how much each part of the image influences the model’s
prediction. This allows IGs to assign importance scores to different image regions,
highlighting the features that most significantly contribute to the final decision.
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IGs have several advantages over other gradient-based methods. First, IGs satisfy
two desirable properties for attribution methods: sensitivity and implementation in-
variance [19]. Sensitivity means that if a feature does not affect the model’s output,
its attribution should be zero. Implementation invariance means that if two models
have functionally equivalent outputs, their attributions should be identical. Second,
IGs can be applied to any differentiable model without modifying the model’s archi-
tecture or training process. Third, IGs can quantify the contribution of each feature
in the input to the model’s prediction, which can help identify relevant and irrelevant
features.

However, IGs also have some drawbacks that limit their applicability and inter-
pretability. First, IGs are computationally expensive, requiring multiple gradients for
each pixel value (or feature) in the image. Second, IGs suffer from gradient satura-
tion, meaning features with high activation values may have low gradients and thus
low attributions. This can lead to misleading or incomplete explanations, especially
for models with nonlinear activations like ReLU. Third, IGs depend on the choice
of the baseline input, which can affect the quality and consistency of the attribu-
tions [88]. There is no clear guidance on selecting an appropriate baseline input for
a given model or task.

2.2.3 Class activation mapping (CAM)

Class Activation Mapping (CAM) is commonly used technique in visual explainabil-
ity that seeks to identify the discriminative regions within an image, contributing
significantly to the prediction of a particular class [89, 90, 91, 92, 93, 94]. In formal
terms, the core operation in CAM involves computing the class-specific importance
for each spatial location in an image and is often represented as:

CAM =
∑
k

wk ×Ak (2.18)

where Ak represents the activation map at a particular location and wk is the cor-
responding weight. The weights are then obtained through various attention mecha-
nisms, and a ReLU operation is typically applied to filter out negative activations.

Multiple advancements in CAM techniques have been developed over the years.
Grad-CAM [90] refines CAM by incorporating class-specific gradients. Grad-CAM++ [91]
and Score-CAM [92] extend this by employing a weighted combination of positive par-
tial derivatives and eliminating gradient dependence, respectively. Layer-CAM [93]
and Zoom-CAM [94] introduce nuanced methods to improve granularity and small-
object discernibility. The main difference between these methods is how they compute
the weights wk.

Grad-CAM [90] is a generalisation of CAM [89] that can be applied to any CNN,
regardless of its architecture or the presence of a global average pooling layer. Grad-
CAM computes the weights wk as the global average of the gradients of the class
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score with respect to the activation maps:

wk = 1
Z

∑
i,j

∂yc
∂Ak,i,j

(2.19)

where yc is the score for class c, Ak,i,j is the activation of unit k at spatial location
(i, j), and Z is a normalising constant. Grad-CAM then applies a ReLU operation to
filter out negative activations.

Grad-CAM++ [91] is an extension of Grad-CAM that incorporates higher-order
partial derivatives and weights each pixel contribution based on its relative impor-
tance. Grad-CAM++ computes the weights wk as:

wk =
∑
i,j

αk,i,j
∂yc

∂Ak,i,j
(2.20)

where αk,i,j is a weight coefficient that depends on the first and second derivatives of
yc with respect to Ak,i,j . Grad-CAM++ also applies a ReLU operation to filter out
negative activations.

Score-CAM [92] is another extension of CAM that eliminates the dependence
on gradients and uses the activation map values directly. Score-CAM computes the
weights wk as:

wk = Score(Ak)∑
k′ Score(Ak′) (2.21)

where Ak represents the activation map for channel k in the final convolutional layer,
Amaskedk refers to a mask derived from the original activation map (Ak), Score(Amaskedk )
denotes the class score obtained after applying the mask (Amaskedk ) to the network
and calculating the output for the target class. The summation in the denomina-
tor considers the class scores obtained using masks derived from all activation map
channels (k′).

Layer-CAM [93] and Zoom-CAM [94] are two recent methods that improve the
quality and granularity of CAM, especially for small objects. They both use the
same formula as Grad-CAM to compute a class activation map, but they introduce
novel techniques to select or enhance the activation maps. Layer-CAM defines a layer
selection criterion based on the class-specific activation entropy, which measures the
uncertainty of the activation distribution and then it selects the layer with the lowest
entropy as the optimal one for CAM. Zoom-CAM introduces a zooming operation
that magnifies the activation maps by a factor of s before applying CAM as follows:

Zoom-CAM = ReLU(
∑
k

wk × ZoomAFk, s)) (2.22)

where Zoom(Ak, s) is the zoomed activation map obtained by bilinear interpolation.
The main difference between Layer-CAM and Zoom-CAM is that Layer-CAM focuses
on selecting the best activation layer for CAM, while Zoom-CAM focuses on enhanc-
ing the activation maps by zooming. Both techniques can improve the quality and
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granularity of CAM compared to previous methods.

Despite their effectiveness in revealing how a CNN makes class-based predictions,
CAM methods including Grad-CAM and its variants have limitations. These ap-
proaches primarily focus on individual activations, potentially neglecting the complex
interactions between features. To address these shortcomings, we propose a novel ex-
plainability method, ADVISE [95] presented in chapter 5, which leverages activation
map values directly and incorporates feature relevance, aiming to provide a more
comprehensive understanding of the factors influencing CNN predictions.

2.2.4 Perturbation analysis

Perturbation analysis takes a different approach to visual explainability, focusing on
manipulating the input and examining the subsequent changes in model predictions.
Unlike CAMs techniques that offer insights based on the internal workings of a neural
network, perturbation analysis is more concerned with external validation, aiming
to explain the model’s decision-making process through alterations in input data.
Within this framework of external validation, several techniques have been proposed
to create perturbations and measure their impact.

There are several ways to create these changes (perturbations) in the image. One
commonly employed technique is called occlusion [85, 87, 96]. Perturbation works
by covering parts of the image with a mask, like blurring a section. We then ob-
serve how much the model’s prediction changes when that area is hidden. This helps
us understand which parts of the image are most important for the model’s deci-
sion.Other techniques include LIME [97], meaningful perturbation [17], and real-time
saliency [98, 99, 100]. These methods use different ways to change the image and
measure the impact, giving us various perspectives on what’s important in the image
for the model.

LIME simplifies the complex model locally by creating a basic model around each
image. It then compares the original model’s prediction on a masked image with the
prediction from this simpler model on the masked image. Meaningful Perturbation
instead focuses on finding the best mask (hiding parts of the image) that maximally
changes the model’s prediction, considering limitations like mask size and smooth-
ness. Real-time saliency methods take a different approach by training another neural
network to predict the best mask that minimises the difference between the original
and masked image predictions.

Perturbation analysis is a powerful tool to understand how a model focuses on spe-
cific areas or features in an image. It provides more detailed explanations compared
to CAM family visual explanation techniques, which offer a more general perspec-
tive. However, this method can be time-consuming because it requires creating and
testing many altered versions of the image. In addition, its effectiveness depends on
the chosen method for modifying the image, which can impact its reliability across
various scenarios.
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While all the above explanation techniques for CNNs provide valuable insights,
they have several limitations. A key limitation lies in their inability to quantify the
importance of each unit within the activation maps. This hinders understanding how
individual units contribute to the final model decision. To address this limitation, we
propose ADVISE [95] (chapter 5), a method that quantifies the contribution of each
unit, offering better model explainability. Furthermore, existing methods struggle
to explain the Knowledge Distillation (KD) process, failing to explain which specific
features the student model learns during KD.

2.3 Explaining Knowledge Distillation

Knowledge distillation (KD) is a technique that trains a student neural network by
transferring knowledge from a trained teacher network. It has attracted considerable
interest as a model compression technique, enabling the development of smaller and
more efficient models while preserving performance [101, 102, 103, 104, 105, 106]. KD
trains the student with the training data and the knowledge from the teacher model,
which improves student performance [105, 107, 108, 109]. KD has shown its effec-
tiveness in various domains, such as language models [110], image captioning [111],
semantic segmentation [112], and object detection [113].

While there has been significant research on KD, few efforts have been made to
explain the KD process. Raed et al. [114] proposed a framework to improve neu-
ral network interpretability through KD. Lee et al. [115] introduced an interpretable
knowledge transfer method using principal component analysis and graph neural net-
works. Seunghyun et al. [116] developed a graph-based KD technique with a multi-
head attention network. Cheng et al. [21] applied information theory to explain the
effectiveness of KD. Xue et al. [22] proposed KDExplainer, a task-oriented model, to
explain KD. However, these techniques don’t explain the distilled features explicitly
and don’t quantify their contribution for the prediction. To address these limitations
and enhance the transparency of KD, we introduce UniCAM (Chapter 6), a method
specifically designed to explain the features learned through distillation.
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Chapter 3

Improving Image Classification with Meta-learning and
Sample Selection using Reinforcement Learning

Deep Neural Networks (DNNs) are powerful models that can learn from extensive
datasets, but not every sample in these datasets are equally useful for effective train-
ing. Some samples may be redundant, out of distribution, or noisy, thus undermining
the model’s performance and reliability. On the other hand, some samples are more
informative, diverse, or representative, thus helping the model to learn more effi-
ciently. Informative Sample Selection (ISS) is a strategic approach that enhances
learning by prioritising the most impactfull samples, especially when computational
and time constraints are involved in training DNNs. The ISS is not just about fil-
tering data; it is an indispensable part the DNN training process to improves the
performance by prioritising the most informative samples.

The ISS has many advantages for DNN training, such as reducing the training
time and cost, improving generalisation and robustness. However, ISS also poses
many challenges, such as how to measure the informativeness of samples, how to
balance the exploration and exploitation of data, and adapt the selection criteria as
the model learns. Existing ISS methods often rely on heuristic rules or predefined
metrics that may not capture the dynamic and complex nature of informativeness [26,
30, 32, 33].

Implementing ISS within deep learning frameworks presents a multifaceted chal-
lenges. It requires a robust method to assess the value of each sample and a flexible
strategy to continuously refine the selection process as the model’s training progresses.
A sample that may seem peripheral at the beginning of the training may become es-
sential as the model training progress. To cope with this complexity, we need an
approach that can dynamically learn informativeness of samples rather than just ap-
plying a static filtering algorithm. Such an approach should be able to adapt the
learning process itself based on the feedback and experience from each iteration of
the same task or different tasks. This ability to adapt the selection process to the feed-
backs and performance allows us to formulate the challenges as meta-learning [117],
a technique that teaches models how to learn more effectively across various tasks by
adjusting the learning parameters and strategies.

Meta-learning is a machine learning technique that learns how to learn from data
and has achieved remarkable improvements in model performance across a range
of challenging applications: from the complexities of image classification [29, 118],
hyperspectral image classification [119] to the dynamic challenges of activity recogni-
tion [120]. These advances underscore the potential of meta-learning to address the



24 Chapter 3. Improving Image Classification with Meta-learning and Sample
Selection using Reinforcement Learning

ISS challenges. Incorporating feedback and learned experiences to the ISS will help
the model to prioritise the data that will effectively optimise their learning perfor-
mance.

This chapter introduces a novel meta-learning based ISS algorithm that integrates
RL into DNN training processes. Our goal is to create an ISS agent that learns from
its experience and the DNN’s feedback during each training iteration. This agent
strategically selects samples to enhance DNN performance and prevent overfitting
and bias. The “ISS agent” refers to this sample selection algorithm, formulated
as a sequential decision-making problem. We particularly focus on Convolutional
Neural Networks (CNNs), a powerful type of DNN for image classification tasks.
Through interaction with the CNN and the dataset, the ISS agent learns to select
the most informative samples for each iteration based on its accumulated experience.
By incorporating RL, the ISS agent gains flexibility and adaptability as the CNN
classifier learns and the informativeness of samples changes through time. The agent
can leverage knowledge gained from previous experiences to quickly and efficiently
adapt its sampling strategy for each sample over time. This results in improved
generalisation and robustness compared to traditional statistical ISS methods.

We evaluate the proposed method on three image classification benchmark datasets:
CIFAR-10 [121], MNIST [122], and Fashion-MNIST [123]. We compare it with
an equivalent CNN model trained using classical methods (entire training dataset,
stochastic gradient descent or variants). Classical training doesn’t leverage the ISS
agent to select informative samples, which can enhance the model’s learning effective-
ness and generalisability. Importantly, while tested on image classification, the ISS
algorithm is versatile and applicable to various tasks with small modifications.

3.1 Proposed Method

We consider a meta-learning setting where we have access to a classification task with
a set of classes C and a dataset D = {xj , yj}Nj=1, where xj is the input feature vector
and yj ∈ C is the corresponding label. We assume the samples are drawn from a task-
specific distribution. Our goal is to train a an ISS agent that can select informative
samples from the pool of candidates for the classification task and use informative
samples to fine-tune or train a CNN and achieve better performance on the training
(Dtrain) and test (Dtest) sets. The ISS agent utilises Q-learning to determine the
value of actions within specific states throughout the model’s training process. This
allows it to continuously learn and adjust its sample selection strategy, prioritising
informative samples that benefit both the current iteration and future ones based on
current outcomes and past observations.

The proposed method (see Figure 3.1) consists of four main components: the
CNN, the ISS agent (RL), the original dataset, and the new dataset.
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Figure 3.1: Architecture of the proposed method: CNN model, the ISS agent using Q-
learning, an original dataset, and informative dataset.

• The CNN: A DNN that takes an input image and gives a probability distri-
bution over the class prediction. In our setting, initially the CNN is trained
on the entire dataset for few epochs. The CNN contains standard layers such
as convolutional layers with ReLU activation, dropout for regularisation, max-
pooling for feature dimension reduction, fully connected layers with ReLU, and
a SoftMax layer for classification.

• The ISS agent: This module employs Q-learning, a model-free reinforcement
learning algorithm, to learn the informativeness of data samples. The ISS agent
receives predictions from the CNN as its input state and decides on actions that
aim to retain or discard samples based on the reward feedback. The reward
measures the contribution of each sample to the model’s performance.

• The original dataset: The original dataset D is a dataset which contains in-
formative and non-informative samples from which the model begins its train-
ing.

• The new dataset: This is a new dataset D̂ created by the ISS agent and
selected from D. This dataset is expected to be more efficient for training
the CNN, leading to improved performance and generalisation capabilities for
fine-tuning or training the model.

Furthermore, the proposed method has three phases: initial training, meta-
learning, and fine-tuning. These phases form a complete learning cycle that drives
the model to achieve better performance in image classification tasks.
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3.1.1 Initial training

The initial training phase is a preliminary stage where both the CNN model and
the ISS agent are trained on the entire dataset for a few epochs to establish baseline
performance and learn the fundamental features and characteristics of the classes.
Simultaneously, the ISS agent, which is responsible for the Informative Sample Selec-
tion (ISS) algorithm, also begins to initialise its parameters. However, at this point,
the ISS agent does not engage in sample selection, allowing the CNN model to develop
a broad understanding of the data. This initial training helps mitigate the risk of the
model being too influenced by the initial decisions of the ISS agent, which may not
be fully informed.

To train the CNN model, we use cross-entropy loss as the learning objective and
stochastic gradient descent as the optimisation method. To train the ISS agent, we
use Q-learning as the learning algorithm and a random reward function as the learning
objective. This pre-training equips both the CNN model and the ISS agent with the
essential knowledge about the dataset and class distributions, preparing them for the
next epochs.

3.1.2 Meta-learning

At the core of this work, the concept of meta-learning is to equip the CNN model
with the ability to adapt rapidly with the informativeness for the target task and to
design a model that can generalise well. To quickly adapt to the task and the dataset,
we first train the CNN model fϕ and the ISS agent πψ on D for k epochs, where ϕ
and ψ are the parameters of the CNN model and the ISS agent, respectively.

For the rest of the n− k epochs, we perform the meta-learning, where we set the
CNN model to evaluation mode and evaluate the pool of candidates D. The results
of the evaluation prediction are used as the state by the ISS agent. The ISS agent
uses Markov Decision Process (MDP) to update its parameters and learn to select or
reject each sample based on improving the CNN model’s performance and the quality
of selecting or rejecting each sample.

Q-learning learns the value of an action in a particular state, and selects the
action that maximises the expected future reward. The state of the ISS agent is a
vector of predictions for each sample in D, such as TP , FP , TN , and FN . The
action is a binary vector A = {1, 0} where 1 indicates the sample is selected and 0
indicates rejected. The reward is the improvement of the CNN model’s performance
after fine-tuning or training on the selected samples.



3.1. Proposed Method 27

ISS agent

The ISS agent is responsible for learning how to select the informative samples from
the pool of candidates D during each iteration. It learns informativeness from the
prediction output of the CNN model on D and learns a policy to maximise its reward
depending on the actions taken on each state.

The ISS agent is trained using MDP [124] and updates the Q-table based on the
expected reward. The MDP is represented by a tuple M = (S,A,R, P, γ), where S
is the set of states, A is the set of actions, R is the reward function, P (s′|s, a) is the
probability of transitioning from state s to state s′ using action a ∈ A, and γ ∈ [0, 1)
is a discount factor. The discount factor γ is a hyper-parameter that helps adjust the
significance of long-term or immediate rewards, with high values favouring long-term
rewards and low values favouring immediate rewards.

The ISS agent learns to select and reject samples and stores the Q-values for
each state-action pair, and updates the Q-table according to the MDP. During each
iteration, the ISS agent learns a policy by comparing the quality of past actions and
immediate rewards using the Bellman equation as follows:

Qt(s, a)← Qt−1(s, a) + α[r + γmax
a′∈A

Q(s′, a′)−Qt−1(s, a)] (3.1)

where α is the learning rate, r is the immediate reward, and Qt−1(s, a) and Q(s′, a′)
represent the Q-values for the action taken to the previous and new states, respec-
tively. The Q-learning algorithm iterates over all possible state-action pairs and is
formulated as follows:

• State: The state is represented by a vector of pairs of the true label and the
predicted label for each sample in D, as (yj , fϕ(xj)). The state is represented
as follows:

s = [(y1, fϕ(x1)), (y2, fϕ(x2)), ..., (yM , fϕ(xM ))] (3.2)

• Action: The action is represented by a binary vector that indicates which
samples are selected or rejected. The action is sampled as follows:

a = πψ(a|s) (3.3)

where πψ(a|s) ∈ {1, 0} is the ISS agent that determines which actions to take
given a state.

• Reward: The reward is defined as a combination of the improvement of the
CNN model’s performance after fine-tuning or training on the selected samples,
and the quality of selecting or rejecting each sample, based on the true label
and the predicted label. The reward is computed as follows:

r = ∆L(ϕ) + λQ(a, y, ŷ) (3.4)

where ∆L(ϕ) is the difference between the loss of the CNN model before and
after fine-tuning or training on the selected samples, λ is a hyper-parameter that
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controls the trade-off between performance improvement and selection quality,
and Q(a, y, ŷ) is a function that measures the quality of selecting or rejecting
each sample based on the following:

Q(a, y, ŷ) =


+1 if a = 1 and y = ŷ
−1 if a = 1 and y ̸= ŷ
+1 if a = 0 and y ̸= ŷ
−2 if a = 0 and y = ŷ

(3.5)

where a is the action, y is the true label, and ŷ is the predicted label for the
sample. The positive-value reward indicates that the selected sample was suc-
cessfully classified, or that the rejected sample was classified incorrectly. The
negative-value reward indicates that the selected sample was classified incor-
rectly, or that the rejected sample was classified correctly. We slightly increase
the negative reward when the agent rejects a correctly classified sample to avoid
discarding informative samples. The reward values can be adjusted based on
the associated risk to FP and FN so as to preserve more informative samples.

• Exploration rate: The exploration rate is a parameter that controls the trade-
off between exploration and exploitation in the Q-learning algorithm. Explo-
ration means selecting a random action, while exploitation means selecting the
action with the highest Q-value. The ISS agent selects a random action with
probability ϵ, and selects the action with the highest Q-value with probability
1 − ϵ. The value of ϵ belongs to (0, 1], where a value close to 1 indicates that
the ISS agent will rely more on exploitation than exploration.

• State transition: Once the informative samples have been selected and added
to the temporary training data, the CNN model is fine-tuned or trained using
the new dataset. The trained or fine-tuned CNN is then set in evaluation mode
in the next iteration of the meta-learning phase.

• Episode: The episode e for a given iteration ends when all the training samples
in the training set have been fed to the agent. At the end of the episode, the
Q-table and the policy network are updated using the Q-learning algorithm and
the reward function. This completes one iteration of the learning cycle.

The ISS agent can be seen as a meta-learner that learns to select informative samples
for any given iteration. It can adapt to different learning dynamics, and select samples
that are not only informative for the current iteration, but also for future iterations.

3.1.3 Fine-Tuning

During the fine-tuning phase, the CNN model is fine-tuned or trained on the new
dataset. The fine-tuning phase follows the same steps as the meta-learning phase,
except that the CNN model is switched to training mode and trained on the new
dataset, and no Q-table update is performed. Then the fine-tuned CNN model is
then evaluated on the test set, and it is switched to evaluation mode to enter meta-
learning phase for the next iteration.
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The CNN model is a Convolutional Neural Network (CNN) that takes an input
feature vector and outputs a probability distribution over the classes. The parameters
of the CNN model are initialised randomly, and updated by using gradient descent
methods, which take a gradient step in the direction that minimises the loss function.
We use cross-entropy loss, which measures the difference between the true label dis-
tribution and the predicted label distribution, and penalises incorrect predictions as
follows:

L(ϕ) = −
M∑
j=1

yj log p(yj |xj , ϕ)

where yj is the true label and p(yj |xj , ϕ) is the predicted probability of the label for
the sample xj , and M is the number of samples.

3.2 Experiments

In this section, we explain the results from various experimental setups designed to
evaluate the proposed meta-learning framework for ISS, offering a balance between
computational efficiency and generalisation ability across various datasets.

3.2.1 Experimental setup

We used PyTorch [125] to implement the CNN model and trained the pipeline on an
NVIDIA GeForce RTX 3060 GPU. We employed a cross-entropy loss and stochastic
gradient descent optimiser for the training process of the CNN model. The initial
learning rates and momentum were set to 0.001 and 0.9, respectively. The learning
rate was decayed by a factor of 0.1 every five epochs using the StepLR scheduler.
Training was conducted with a mini-batch size of B = 32 for 25 epochs. We evaluated
the performance of the model using Precision, Recall, F1− score, and Error− rate
(see Eq. 3.6).

Precision = TP

TP + FP
, Recall = TP

TP + FN
,

F1− score = 2× Precision×Recall
Precision+Recall

,

Error − rate = FP + FN

TP + TN + FP + FN
. (3.6)

3.2.2 Dataset

We conducted experiments on three publicly available image classification datasets:
CIFAR-10, MNIST, and Fashion-MNIST. These datasets are widely used and serve
as standard benchmarks for evaluating the performance of various machine learning
algorithms in computer vision.
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• CIFAR-10: This dataset consists of 60,000 colour images of size 32 × 32 pixels,
divided into ten classes, with 6,000 images per class. The dataset is split into a
training set of 50,000 images and a test set of 10,000 images.

• MNIST: This dataset is a collection of 70,000 grayscale images of handwritten
digits from 0 to 9, each size 28 × 28 pixels. The dataset is split into a training
set of 60,000 images and a test set of 10,000 images.

• Fashion-MNIST: The Fashion MNIST dataset is a large, freely available fash-
ion image database commonly used for training and testing various classification
models. It comprises 70,000 grayscale images of size 28 × 28 pixels, divided into
ten classes, with 7,000 images per class. The dataset is split into a training set
of 60,000 images and a test set of 10,000 images.

We trained our model on the training sets and evaluated its performance on the test
sets regarding classification accuracy on unseen data.

We chose these three diverse datasets to assess the proposed approach’s robust-
ness and generalisation capabilities across different image domains and complexity
levels. The CIFAR-10 dataset enabled us to evaluate the model’s ability to handle
colour images, while MNIST and Fashion-MNIST provided insights into the model’s
performance on grayscale images and its generalisation beyond handwritten digits.

3.2.3 CNN architecture

The CNN model consists of convolution, dropout, pooling, activation, and fully con-
nected layers. The CNN pipeline is trained to extract features from the input images
and classify them into different classes. The details of the CNN model such as the
layer type, kernel size, stride, padding, and output size for each layer is shown in
Table 3.1. The purpose of this meta-learning experiment is to optimise the CNN
parameters and enhance its performance. The resulting trained CNN model would
then be ready for further evaluation and testing in subsequent experiments.

Table 3.1: The details of CNN architecture.

Layer (type) Output Shape Filter Size Kernel Size Stride Activation
Input Image [w, h, c]† - - - -

1
Convolutional [B, 10, 28, 28] 10 5× 5 1

ReLUDropout [B, 10, 28, 28] - - -
Max-pooling [B, 10, 14, 14] 10 3× 3 2

2
Convolutional [B, 20, 10, 10] 20 5× 5 1

ReLUDropout [B, 20, 10, 10] - - -
Max-pooling [B, 20, 5, 5] 20 3× 3 2

3 FC [B, 50] - - - ReLUDropout [B, 50] - - -
4 FC [B, 10] - - - Softmax
† For the CIFAR-10 dataset, [w, h, c] = [32, 32, 3].
The [w, h, c] values in the other datasets must be adjusted based on the input image size.
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3.2.4 Meta-Learner (ISS agent)

In the context of our meta-learning, the meta-learner is composed of the CNN model
set to evaluation mode and the ISS agent. The ISS agent is specifically tasked with
learning informative samples. The state space for the ISS agent is determined by
the output from the CNN as defined in Eq. 3.2 and its action space is expressed in
Eq. 3.3.

We adopt a Q-learning algorithm optimised using Markov Decision Process (MDP)s
for policy learning in Eq. 3.1. The ISS agent’s reward function is configured based on
the informativeness of each sample and the performance enhancement on the CNN
(see Eq. 3.4). This setup aims to guide the optimisation of ISS parameters in a way
that maximises the learning of informative samples. In the interaction between the
ISS agent and the CNN, the ISS agent uses the output from the CNN model as its
state, and the performance improvement of the CNN model as its reward.

3.2.5 Results

In this section, we present the results of the proposed ISS method. We discuss the
main findings, and shortcomings of proposed method. We compared the performance
of the CNN model trained with the ISS agent (RL-CNN) and the CNN model
trained without the ISS agent (Classical-CNN). We used train and test accuracy,
and generalisation to unseen classes to evaluate the proposed method. The ISS agent
aims to improve the CNN model’s ability to learn from the most informative samples,
which leads to enhanced classification performance compared to the classical model
trained without the ISS agent. We reported the learning curves, mean average accu-
racy, precision, recall, F1-score, and error rate as performance metrics to assess the
impact of the meta-learning agent on the CNN training process.

Figure 3.2 and 3.3 show the learning curves for the MNIST, Fashion-MNIST,
and CIFAR-10 datasets for training and validation, respectively. The performance
gap between RL-CNN and Classical-CNN is significant and consistent across all three
datasets during training and validation. RL-CNN converges faster and achieves higher
accuracy than Classical-CNN, indicating that it can learn more effectively from the
data. Moreover, RL-CNN avoids overfitting and maintains a stable performance
throughout the training process. When the ISS agent selects informative samples, it
can reduce the redundant and irrelevant data, improving the efficiency and robustness
of the model. Furthermore, as non-informative samples are excluded, the ISS agent
can reduce the computational cost and memory usage, making it more scalable and
practical for large-scale image classification tasks.

Similarly, Table 3.2 shows the training and validation accuracy on the MNIST,
Fashion-MNIST, and CIFAR-10 datasets. The CNN model trained with the ISS
agent achieves higher accuracy than the model trained without the ISS agent on
all three datasets. The accuracy gains are 2% to 4% on the MNIST and Fashion-
MNIST datasets, respectively, and 10% on the CIFAR-10 dataset. The substantial
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(a) (b)

(c) (d)

(e) (f)

Figure 3.2: Learning curves of RL-CNN and Classical-CNN on the MNIST, Fashion-
MNIST, and CIFAR-10 datasets. (a-c) Training accuracy, (d-f) Training loss. RL-CNN
converges faster than Classical-CNN on all three datasets.

performance improvement on the CIFAR-10 dataset indicates that ISS agent helps
the classifier to learn more discriminative features and avoid confusion between classes
when the dataset has higher inter-class similarity. The CIFAR-10 dataset contains
colour images of various objects, such as animals, vehicles, and plants, which are
more complex and diverse than the grayscale images of digits or fashion items in the
MNIST and Fashion-MNIST datasets. The ISS agent helps the classifier to focus on
the most relevant samples from each class and ignore the irrelevant ones, resulting in
better classification performance.

The evaluation of the test sets (see Table 3.3) also shows similar improvement
trends. The CNN model trained with the ISS agent (RL-CNN) achieves higher ac-
curacy, precision, recall, F1-score, and lower error rate than the CNN model trained
without the ISS agent (Classical-CNN). The experimental results demonstrate that
the ISS agent-based meta-learning can effectively select informative samples and avoid
samples that could potentially cause bias and overfitting.
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(a) (b)

(c)

Figure 3.3: Validation progress curves of RL-CNN and Classical-CNN on the MNIST,
Fashion-MNIST, and CIFAR-10 datasets.

Table 3.2: Comparison of the average classification accuracy (%) of the proposed strat-
egy (RL-CNN) with the Classical-CNN training approach on MNIST, Fashion-MNIST, and
CIFAR-10 datasets.

Method MNIST Fashion-MNIST CIFAR-10
Training accuracy(%)

Classical-CNN 91.43 77.43 33.49
RL-CNN 93.53 81.23 44.99

Validation accuracy(%)
Classical-CNN 96.10 80.73 47.28
RL-CNN 98.01 84.91 52.62

To illustrate the samples excluded from the training set, we present random images
from MNIST and CIFAR-10 in Figure 3.4. The MNIST images excluded from the
training set are difficult to identify, even for humans. For instance, images of 7
that resemble 1 are predicted as 1 and excluded from the training. Moreover, for
the CIFAR-10 dataset, the model often struggles to distinguish between images with
similar visual features (e.g., Cat vs. Dog and Deer vs. Horse), especially when noisy
or containing multiple objects from different classes. The excluded images are either
ambiguous, have multiple objects in them or difficult to distinguish one from the
other class.
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Table 3.3: Comparison of Classical-CNN and RL-CNN on MNIST, Fashion-MNIST and
CIFAR-10 test sets.

Method Accuracy(%) Precision Recall F1-Score Error-rate(%)
MNIST

Classical-CNN 97.2 0.97 0.97 0.97 0.484
RL-CNN 98.3 0.98 0.98 0.98 0.352

Fashion-MNIST
Classical-CNN 83.0 0.83 0.83 0.82 3.41
RL-CNN 84.2 0.83 0.84 0.83 3.06

CIFAR-10
Classical-CNN 46.93 0.46 0.47 0.45 10.61
RL-CNN 52.60 0.52 0.53 0.51 9.47

3.2.6 Analysing time and space complexity

While our method brings notable benefits, examining the potential overhead intro-
duced by the ISS agent for sample selection is crucial. This will help to analyse the
computational costs and trade-offs associated with incorporating the ISS agent for
sample selection, providing valuable insights into our approach’s overall efficiency and
effectiveness.

Let k be the number of hidden layers in the CNN model, n be the number of
training samples, d be the number of features, and ki be the number of nodes in each
layer. Let E be the number of epochs for training and T be the number of iterations
for Q-learning. For Classical-CNN training, the time complexity is dominated by the
forward and backward passes of the gradient descent algorithm. The forward pass
involves matrix multiplications between the input and weight matrices of each layer,
which takes O(dk1 +

∑k−1
i=1 kiki+1) time per sample. The backward pass involves

matrix multiplications between the error and weight matrices of each layer, which
takes O(k1 +

∑k−1
i=1 kiki+1) time per sample. Therefore, the total time complexity for

normal CNN training is O(En(dk1 +
∑k−1
i=1 kiki+1)). The space complexity for normal

CNN training is dominated by the storage of the weight matrices of each layer, which
takes O(dk1 +

∑k−1
i=1 kiki+1) space.

For RL-CNN, the time complexity is the sum of the meta-learning and fine-tuning
phases. The meta-learning phase involves evaluating the CNN model on the original
training dataset and updating the Q-table based on the rewards. The evaluation
of the CNN model takes O(n(dk1 +

∑k−1
i=1 kiki+1)) time per epoch. The update of

the Q-table takes O(T ) time per epoch. Therefore, the total time complexity for
the meta-evaluation phase is O(En(dk1 +

∑k−1
i=1 kiki+1)+ET ). The fine-tuning phase

uses gradient descent to fine-tune the CNN model on the informative training dataset.
The size of the informative training dataset is at most n, so the time complexity for
this phase is also O(En(dk1 +

∑k−1
i=1 kiki+1)). Therefore, the total time complexity

for the proposed method is O(En(dk1 +
∑k−1
i=1 kiki+1)) + ET .
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(a) MNIST

(b) CIFAR-10

Figure 3.4: Examples of non-informative samples excluded from the training set by the RL
method for MNIST and CIFAR-10 datasets.

The space complexity of the proposed method is the sum of the storage of the
weight matrices of each layer, the Q-table, and the informative training dataset. The
weight matrices take O(dk1 +

∑k−1
i=1 kiki+1) space. The Q-table takes O(n) space. The

informative training dataset takes at most O(nd) space. Therefore, the total space
complexity for the proposed method is O(nd+ dk1 +

∑k−1
i=1 kiki+1).

The proposed method introduces a slight overhead in time complexity due to the
ISS agent and the CNN model in the meta-learning phase. However, this overhead
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is negligible compared to the significant improvement in performance and reliability
achieved by the proposed method. Furthermore, the proposed method has a compara-
ble space complexity to normal CNN training, as it only stores a subset of informative
samples rather than all.

3.3 Discussion

One of the implications of incorporating reinforcement learning for ISS is that it can
be seen as a form of curriculum learning, where the CNN model learns from easy to
hard samples in a self-paced manner. Curriculum learning improves generalisation
ability by presenting the samples in a meaningful order, from simple to complex or
familiar to novel. However, curriculum learning also faces some challenges, such as
defining the difficulty of each sample, avoiding discarding informative samples, and
obtaining feedback or guidance from an expert or a teacher. In the proposed method,
we tackled these challenges by using ISS agent to learn how informative each sample
was based on how much it improved the CNN model’s performance and how good
each selection or rejection is. In this way, the ISS agent acts as a curriculum generator
that selects the most informative or relevant samples for each iteration and excludes
uninformative samples. Unlike the existing methods for curriculum learning that rely
on predefined criteria or heuristics to order the samples, our method uses ISS to learn
a policy that adapts to the learning dynamics and the data distribution.

The proposed method has some limitations that can be addressed in future re-
search and can be extended in multiple directions. The proposed method does not
involve any expert opinion or uncertainty measure for the sample selection. Moreover,
the model lacks explainability for its selection decisions, which may reduce its trust-
worthiness and transparency. Therefore, a possible improvement could be to design
a model that accepts expert opinion and uses uncertainty instead of point estimation
for sample selection.

The reasons for choosing a simple CNN architecture for this work was primarily
guided by two factors. First, the work presented here is conference and subject
to the space constraints of conference publications. Second, future extensions of
this research intend to employ more complex CNN architectures. Nevertheless, the
selection of the dataset is also crucial. Selecting challenging datasets with numerous
misleading examples, such as fine-grained classification datasets, are ideal. Using
robust CNN architectures for simple datasets can result in high performance, thereby
marginalising the impact of the ISS agent. Therefore, the future direction is to apply
this method to either simple CNN architectures that have performance issues, or
complex architectures designed for more challenging tasks and datasets.

Another limitation of the proposed method is that our method uses Q-learning to
design the ISS agent, which may not be the most efficient or effective algorithm for the
sample selection problem. Q-learning requires a large state-action space, which may
be impractical or intractable for large or complex datasets. Some possible directions
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for future research are to extend the proposed method to handle multiple tasks and
datasets and to use more efficient ISS algorithms, such as policy gradient methods or
deep Q-networks.

3.4 Conclusion

In this chapter, we proposed a novel ISS agent based meta-learning method for image
classification task. The ISS agent learns a policy to select or reject samples from
the pool of candidates based on the predictions of the CNN model and the reward
function. The CNN model is fine-tuned on the selected samples and evaluated on the
test set. We conducted experiments on three public datasets (i.e., MNIST, Fashion-
MNIST, and CIFAR-10) and compared the proposed method with the CNN model
trained without the ISS agent. The results show that the proposed method outper-
forms the CNN model trained without the ISS agent on all datasets, achieving higher
accuracy, faster convergence, better robustness, and better generalisation.

This work has some implications and directions for future research. First, it
shows that not all samples are informative and that some samples may cause the
model to overfit or perform poorly. Therefore, excluding them might minimise bias
and overfitting and to improve the quality and efficiency of the training data. Second,
it opens up new possibilities for enhancing model performance and avoid bias.
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Chapter 4

Uncertainty-Guided Learning with Monte Carlo Dropout

Deep Neural Networks (DNNs) have revolutionised many fields, but their real-world
application can be limited by many challenges. One of the main challenges is the
need for large amounts of labelled data to train the DNNs, which is often costly
and time-consuming to obtain, especially for specific domains that require expert
annotation. Furthermore, DNNs often struggle to quantify their own uncertainty,
leading to overconfident and erroneous predictions, especially when dealing with noisy
data, out-of-distribution samples, or the inherent limitations of the model itself. To
address this challenge and the need for large amounts of labelled data, we propose
using Monte Carlo (MC) dropout, a robust uncertainty estimation technique, that
optimises the utility of manual annotation, especially for specific domains requiring
expert annotation.

We estimate uncertainty using MC dropout and propose two human-in-the-loop
approaches that use the uncertainty measures to select the most informative samples
for annotation. Our first approach employs an active learning framework incorpo-
rating human annotators into the training loop, using MC dropout to assess the
uncertainty of unlabelled data. The idea is to use the available unlabelled data to
query the annotator for the labels of the most uncertain samples, which are expected
to provide the most information gain for the DNN. This strategy aims to enhance
both training accuracy and reduce annotation efforts. The second approach extends
a human-in-the-loop testing for classifiers equipped with a rejection option, based on
the uncertainty estimate. This enables the DNN to request feedback from the human
annotator or abstain from making a decision during inference. Specifically, when the
model encounters either out-of-distribution or noisy samples, it can choose to say
“No, I do not know,” thus avoiding potential missclassifications. The model consults
the human annotator to verify the samples with large prediction uncertainty, likely
to be misclassified. This strategy helps to improve accuracy while minimising the
number of samples directed to the expert annotator.

We evaluate the applicability of the proposed method to a real-world problem
within the Mosquito Alert project [126], where selecting informative samples can re-
duce labelling cost and error in identifying mosquito species. Mosquito Alert is a
citizen science initiative that monitors and controls the spread of invasive mosquito
species that transmit diseases such as dengue, Zika, or chikungunya. This project re-
lies on citizens taking pictures of mosquitoes and uploading them to a central dataset
where experts manually label the mosquito species. However, this process is time-
consuming and costly, as the experts cannot handle all the labelling tasks.

To overcome these challenges, we design a DNN that leverages model uncertainty
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to select informative and representative samples to enhance the performance and
reliability of a DNN model. The model uses MC dropout to measure the uncertainty
of its predictions and integrate it into an active learning framework. During inference,
the model ranks the citizen-submitted samples based on their uncertainty score and
labels the samples that it is confident. It then forwards the ambiguous or out-of-
distribution samples to the experts for further inspection. This way, the experts only
deal with a smaller subset of samples requiring their attention, while the DNN labels
most samples. This approach speeds up the labelling process and ensures a more
cost-effective utilisation of expert resources.

4.1 Proposed Methods

Over the past few years, MC dropout has been used to approximate Bayesian inference
in DNN and estimate uncertainty in to the model prediction [49, 53, 127]. MC
dropout is used as a practical way to estimate uncertainty in model predictions, acting
as an efficient alternative to more computationally demanding Bayesian methods.
Specifically, MC dropout enables the design of DNNs that utilise variational inference
as an efficient approximation strategy for Bayesian inference during training and
testing, where we get multiple predictions for each input by running multiple forward
passes. Each forward pass produces a prediction that is a sample from the probability
distribution over the possible classes given by the softmax output of the network. The
final probability score for a given input image is obtained by averaging the scores from
multiple forward passes, and the variance is used to measure model uncertainty. This
model uncertainty reflects how confident the DNN is about its predictions.

Suppose that we have a dataset of n samples D = {(xi, yi)}ni=1, with xi ∈ Rdx

and yi ∈ Rdy , our goal is to train a neural network H(x) = E[Y|X = x] that classify
images by minimising the cross-entropy between the class labels and the softmax
output as in Eq. 4.1.

p(yi|x;w, b) = exp(xTwi + bi)∑
j∈dy

exp(xTwj + bj)
(4.1)

where w and b are the weight and bias parameters. This softmax function takes the
exponential of each score and divides it by the sum of all the exponentials to convert
the raw scores from the network into probabilities that sum up to one.

We integrated the concept of MC dropout into the fine-tuned version of VGG-
16 [128] to obtain a calibrated model with uncertainty estimation, as motivated by [63,
129]. After each convolution and fully-connected layer, we added a dropout layer
with a probability of α and β, respectively, and kept these layers active during the
evaluation phase to define a variational posterior distribution for each weight matrix,
as shown in Eq. 4.2.

zi ∼ Bernoulli(pi)
Wi = Mi · diag(zi),

(4.2)



40 Chapter 4. Uncertainty-Guided Learning with Monte Carlo Dropout

where zi denotes the random inactivation coefficients, Mi denotes the weights matrix
prior to dropout, and pi denotes the activation probability for the ith layer, which
can be learned or manually set. This means that some of the neurons will have
their outputs multiplied by zero, which effectively removes them from the network to
prevent overfitting and improve generalisation. The dropout layer can be seen as a
way of sampling from a distribution over the possible network configurations, where
each configuration has a different set of active neurons. The activation probability pi
is not a value of the activation function, but rather a hyperparameter that controls
how likely a neuron is to be kept in the network. For example, if pi = 0.5, then each
neuron has a 50% chance of being dropped out.

More formally, Eq. 4.3 represents the loss function which incorporates two regu-
larisation techniques, L2 regularisation and dropout applied to the cross-entropy loss
function, to improve generalisation performance on our relatively small dataset. This
loss function is analogous to a standard objective function that incorporates dropout
for regularisation and an additional weight decay term. The dropout applied to the
cross-entropy quantifies the model’s accuracy in predicting the true class labels based
on the input data, and it is minimised when the network assigns high probabilities
to the correct classes. The weight decay regularisation, controlled by the hyperpa-
rameter λ, penalises large weights in the network, helping to mitigate overfitting and
enhance the model’s generalisation. This regularisation term is significant as it im-
poses an L2 norm penalty on the weight parameters, which is particularly important
for smaller datasets. Dropout, applied to the cross-entropy loss function, improves
generalisation performance on our relatively small dataset by forcing the network to
rely on different subsets of neurons during each training epoch, which helps prevent
overfitting.

ℓdroupout = −
n∑
i=1

log exp(xtranspi wi + bi)∑
j∈dy

exp(xtranspi wj + bj)
+ λ

n∑
i=1

w2
i . (4.3)

During evaluation, we performed T stochastic forward passes through the trained
model to estimate the prediction uncertainty. Each stochastic forward pass (t ∈
{1, 2, · · · , T}) produces a new softmax prediction (ỹt). The posterior predictive dis-
tribution is obtained by averaging the softmax outputs from multiple stochastic for-
ward passes through the network with dropout layers active. The class mean (µ) of
each distribution represents the final prediction for a given input, and it is calculated
by averaging a distribution per each class. The variance (σ) of this distribution repre-
sents the model uncertainty, and it is calculated by measuring how much the samples
deviate from the mean.

µ = 1
T

T∑
i=1

ỹi, σ = 1
T − 1

√√√√ T∑
i=1

(ỹi − µ)2. (4.4)
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4.1.1 MC dropout as an acquisition function in active learning

Active learning (AL) is a paradigm that aims to reduce the labelling cost and improve
the model performance by selecting the most informative samples from a pool of
unlabelled data for expert annotation. The selection criterion is usually based on
an acquisition function, which measures the expected value of observing the label of
a sample. A common acquisition function for AL is least confidence, which selects
samples with low prediction confidence, indicating that the model is uncertain about
its output. However, the least confidence only uses the direct output of the softmax
layer, which may not reflect the true probability distribution over the possible classes.
In fact, DNN models have demonstrated that deeper architectures typically lead
to higher confidence scores, which tend to overestimate their accuracy. This may
lead to selecting samples that are not very informative or representative of the data
distribution, and thus slowing down the training. Moreover, least confidence can be
sensitive to noisy or outlier data points, as these often present low confidence scores,
diverting valuable annotation resources towards less meaningful samples.

In our active learning framework, the acquisition function, Q(xi) is formulated
using the variance of the model’s prediction, obtained through Monte Carlo (MC)
dropout:

Q(xi) = σ2(xi) (4.5)

where σ represents the variance of the predictions for sample xi over multiple stochas-
tic forward passes with dropout enabled. The model selects samples {xi∗} for which
Q(xi∗) exhibit the lowest prediction variance, indicating where the model’s certainty
is high. This process ensures that the selection of samples is data-driven and focuses
on refining the model where it is most needed, optimising the allocation of annotation
resources.

To select samples from a pool of m unlabelled samples, U = {(xi, li)}mi=1, where
li represents an unknown label, we calculate the variance of the posterior predictive
distribution for each sample, which measures the model (epistemic) uncertainty. We
rank the samples based on their acquisition scores and select the top k samples with
the highest scores to form a batch B = {(xi, li)}ki=1, where k < m. Then, we request
the expert to annotate the samples in B and add them to a labelled dataset L =
{(xi, yi)}ni=1, where yi is the true label. Finally, we update U by removing the samples
in B from it. This iterative process is continued until we achieve a targeted model
accuracy or exhaust a labelling budget.

4.1.2 Classification with rejection

One of the main challenges in DNN is handling inputs that are out of the model’s
training distribution or contain ambiguities or noise. Such inputs can cause DNNs to
produce uncertain predictions, which means the model is not confident about its de-
cision. However, DNNs often do not express their uncertainty explicitly and produce
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predictions for any given input, even if they are incorrect or meaningless. For exam-
ple, a DNN model trained to classify cats and dogs will say either cat or dog when it
gets an input of a human, even if with low confidence. This behaviour can lead to er-
roneous decisions, which can have serious consequences in safety-critical applications,
such as medical diagnosis, autonomous driving, or fraud detection. Therefore, it is
important to develop methods that can estimate and communicate the uncertainty
of DNNs and enable them to reject inputs for which they cannot make confident
predictions.

A possible way to achieve this goal is to use classification with rejection, a testing
approach that allows the model to say “No, I do not know” when faced with ambiguous
or out of distribution inputs. This approach is related to active learning, which is
a training approach that allows the model to select the most informative samples
from a pool of samples and request their labels from an expert but differs from it in
two aspects: first, classification with rejection works under the open set assumption,
where the model may encounter inputs that belong to unknown classes that are not
seen during training; second, classification with rejection works during the inference
phase, where the model queries the expert for labels only when it is uncertain about
its predictions, and it does not update the model parameters. Therefore, classification
with rejection is a useful approach that allows the model to express its uncertainty
and query the expert for labels during inference. However, a crucial research question
remains: how can uncertainty be measured and effectively utilised, particularly with
respect to optimising resource allocation between trained models and human experts?

To address this, we implement MC dropout during inference and equip the classi-
fier with rejection capabilities. This classifier is designed with rejection criteria based
on uncertainty scores or percentiles, which dictate whether a sample is to be accepted
or flagged for expert review. Rejected samples, characterised by high uncertainty, are
automatically marked for annotation. Such a system aims to decrease the volume of
inaccurate or irrelevant predictions that necessitate expert review, thereby minimis-
ing the experts’ time and ensuring their expertise is reserved for the most ambiguous
cases.

We consider a scenario where we have a trained model H and a pool of samples U
to make predictions. We also have a budget B that determines the maximum number
of samples that can be queried to the expert for labelling. Using MC dropout, the
model estimates the uncertainty for each sample in U and ranks them based on their
uncertainty score. Depending on the rejection rules used, the model accepts or rejects
the samples and accepted samples are labelled by the model, while the rejected ones
are forwarded to the expert.

We define the first rejection rule as the uncertainty threshold, where the model
employs a threshold value τ to accept or reject samples. The model makes predictions
only on the samples that have an uncertainty score ≤ τ , and forwards the rest of the
samples to the expert for annotation. Thus, out of n total samples in U , N = n−R
samples are accepted by the model and R samples are rejected, as long as R ≤ B,
where, N and R represents the non-rejected and rejected samples, respectively. This
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is formulated as follows:

ỹ =


H(x) σ ≤ τ
query σ > τ and R ≤ B
reject σ > τ and R > B

(4.6)

where ỹ is the predicted label for a sample x, σ is the uncertainty score, B is the
budget and R is rejected samples.

The second rejection rule is based on the percentile (number of samples) that the
expert can annotate. The expert can specify the number of most uncertain samples to
be annotated by the expert (R), and the model will automatically make predictions
on the rest of the samples (A). Given n number of samples in U , the model ranks the
samples based on their uncertainty and predicts only the top A most certain samples.
It then forwards the bottom R most uncertain samples to the expert for annotation.
We formulate this scenario as follows:

ỹ =


H(x) ρ ≤ A
query ρ > A and R ≤ B
reject ρ > A and R > B

(4.7)

where ρ is the rank of the sample based on its uncertainty score. In our setting, we
assume that R is always less than or equal to B, which means that all samples will
be either labelled by the model or the expert.

4.1.3 Visual explainability

Visual expandability involves generating visualisations or explanations that highlight
how a model processes input data and arrives at its conclusions, making it easier to
interpret, trust, and improve the model’s decisions.

In this chapter, we employ two saliency-based visual explainability methods,
namely Grad-CAM [90] and Bayesian Layer-Wise Relevance Propagation (B-LRP) [130],
to assist users and experts understand how the model makes decision and learns new
patterns to identify mosquito species. Grad-CAM uses the gradients of the final
convolutional layer for the predicted class, to produce a coarse localisation map high-
lighting the important regions in the image for predicting the class. B-LRP assigns
relevance scores to each input pixel based on how much they contribute to the output
prediction, taking into account the uncertainty of the model. B-LRP applies a local
normalisation step to each layer to improve the stability and interpretability of the
relevance scores. We use Grad-CAM to generate saliency maps and explain how the
model makes decisions and identify the parts of the mosquito species. We use B-LRP
to explain what causes the uncertainty, and the sources of the uncertainty during
prediction.
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4.2 Experiments

4.2.1 Mosquito alert dataset

We conducted experiments on the open-source dataset from the Mosquito Alert
project1 [126]. This project was launched in 2014 by the Centre for Research and Eco-
logical Applications (CREAF) and the Centre for Advanced Studies of Blanes (CEAB-
CSIC) near Barcelona (Spain) to monitor and control disease-carrying mosquitoes.
The data collection process for this platform is based on images of mosquitoes and
mosquito breeding sites submitted by citizens. The uploaded images are in RGB
format. Since this platform has no photo size restrictions, image sizes range from
200× 200× 3 to 460× 460× 3, with an average size of 420× 368× 3. A team of three
entomologists inspects, validates, and classifies the images that are submitted. In the
event of a disagreement, the final label is assigned by a senior-expert who holds the
final decision.

During the period of our study, the Mosquito Alert dataset comprised images
categorised asAedes albopictus, Aedes aegypti, other species, unclassified or unknown,
with each image being further classified as confirmed or probable by expert analysis.
At the time of our analysis, the dataset included a total of 3364 confirmed Aedes
albopictus images. Figure 4.1 shows samples from the Mosquito Alert dataset, which
are Aedes albopictus and other Non-tiger samples.

Figure 4.1: Sample of (a) Aedes albopictus (tiger) and (b) non-tiger mosquitoes from the
Mosquito Alert dataset.

It is important to note that the Mosquito Alert dataset is continually updated and
expanded, potentially leading to an increase in the number and variety of mosquito
species beyond those available during our experiment. For the purposes of our study,
we used 3364 images labelled as confirmed Aedes albopictus cases to represent positive
samples and classified images of other species as negative samples. This approach al-
lowed us to train our architecture on a dataset consisting of 6378 images, representing

1The database is available on this link.

http://www.mosquitoalert.com/en/mosquito-images-dataset
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both tiger and non-tiger mosquito categories. We acknowledge that subsequent ac-
cess to the dataset may reveal larger quantities and additional varieties of mosquitoes,
reflecting ongoing contributions to and evolution of the Mosquito Alert project.

4.2.2 Architecture details

To leverage the power of DNNs for uncertainty estimation, we chose the VGG-16 [131]
pre-trained model as our base architecture. However, the standard VGG-16 architec-
ture lacks dropout layers, essential for quantifying uncertainty through MC dropout.
Therefore, we modified the model’s capabilities to quantify uncertainty by incorpo-
rating dropout layers after each convolutional and fully connected layer.

We modified the pre-trained VGG-16 architecture by applying dropout with prob-
ability α after each convolution layer and setting the dropout rate of the fully con-
nected layers to β. However, since no definitive values for α and β universally apply
across datasets, we conducted an extensive experiment to determine the optimal com-
bination for our specific dataset. We trained the modified architecture with different
values of (α, β) using five-fold cross-validation and evaluate the mean accuracy to
find the best combination. As shown in Figure 4.2, we achieved the highest accu-
racy of 97.6% at α = 0.5 and β = 0.4, and we used these dropout rates for the rest
of the experiments. The proposed end-to-end architecture was implemented using
PyTorch [132] and trained using Tesla K80 GPU. We compared our model with the
previous studies on mosquito alert [128, 133] and demonstrated that the proposed
model achieved better performance.

Figure 4.2: Accuracy of the proposed architecture as a function of α and β, where α and
β are the dropout rates for the hidden and fully-connected layers, respectively.
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We used cross-entropy as a loss function and stochastic gradient descent with
initial learning rates and momentum of 0.001 and 0.9, respectively, during the train-
ing process. The learning rate decayed by a factor of 0.1 every 5 epochs by using
the StepLR scheduler. We fed the network with a mini-batch size of 64, and the
optimisation process was terminated after 25 epochs. We did not use data augmen-
tation to avoid unrealistic changes in micro-morphological patterns of mosquitoes
that could have skewed the final results. We kept the dropout active during the
test phase to measure the uncertainty outcomes from the MC dropout by conducting
T = 100 stochastic forward passes through the network. As a result, rather than a
single point estimate for a given input, we have a per-class output distribution of the
softmax confidence in which the distribution variance serves as the model uncertainty.

4.2.3 Evaluation metrics

To evaluate the performance of the proposed classifier with rejection, we need to
consider not only the accuracy of the accepted samples but also the quality of the
rejected samples. A naive way to achieve high accuracy is to reject more uncertain or
ambiguous samples, but this would reduce the coverage and usefulness of the classifier.
On the other hand, accepting more samples that are likely to be misclassified would
lower the accuracy and reliability of the classifier. Therefore, we need to balance
accuracy and coverage and measure how well the classifier can reject truly difficult
or out-of-distribution samples.

To this end, we adopted the performance metrics proposed by Filipe et al. [134],
which include non-rejection accuracy (NRA), classification quality (CQ), and rejec-
tion quality (RQ). The non-rejection accuracy is the accuracy of the model on the
accepted samples, i.e., the ratio of correctly classified samples to the total number of
accepted samples. The classification quality is the ratio of correctly classified sam-
ples to the total number of samples, i.e., the model’s overall accuracy. The rejection
quality is the ratio of incorrectly classified samples to the total number of rejected
samples, i.e., how well the model rejects uncertain or ambiguous samples. The metrics
are formulated as follows:

(a) (b) (c)

Figure 4.3: Rejection performance metrics proposed in [134]. (a) Classification partition
space (b) rejection partition space, (c) classification with rejection. Correctly classified sam-
ples, misclassified samples, non-rejected samples, and rejected samples are represented by the
letters A, M , N , and R, respectively.
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NRA = |A ∩N |
|N |

CQ = |A ∩N |+ |M ∩R|
|N |+ |R|

RQ = |M ∩R| |A|
|A ∩R| |M |

.

(4.8)

where A, M , N , and R represent correctly classified samples, misclassified samples,
non-rejected samples, and rejected samples, respectively. NRA measures the classi-
fier’s ability to accurately classify non-rejected samples, CQ measures the classifier’s
ability to accurately classify non-rejected samples and reject misclassified samples,
and RQ measures the classifier’s ability to concentrate all misclassified samples into
the rejected partition of samples. We also reported precision, recall, and F1-score
using Equaiton 4.9 to provide further insight into the predictive model performance
and to compare it to competing methods.

Precision = TP

TP + FP
, Recall = TP

TP + FN
,

F1-score = 2× Precision× Recall
Precision + Recall . (4.9)

where TP , FP and FN stand for true positive, false positive and false negative,
respectively.

4.2.4 Results

In this section, we present the experimental results of the proposed method in various
scenarios. We first use the proposed method as an acquisition function to design an
AL framework and accelerate the learning process of a DNN model. Next, we tested
the trained model in a classifier with rejection settings. The DNN model can reject
uncertain prediction and refer them to the expert for annotation. We show that using
model uncertainty as a proxy to select samples improves the model’s performance
and robustness. Finally, we apply existing explainability methods and approaches to
interpret the model predictions and the sources of uncertainty.

Active learning with uncertainty based sampling

We apply the proposed uncertainty estimation in AL to select informative samples and
accelerate the model training. We compare the proposed method with two baseline
methods: least-confidence and random sampling. The least-confidence acquisition
function selects the most informative samples based on the model’s confidence in its
prediction. This method assumes that the model is more uncertain about samples
with lower confidence scores. The MC dropout acquisition function selects the most
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informative samples based on the variance of the posterior predictive distribution for
each sample, which measures the epistemic uncertainty of the model. This method
assumes that the model is more uncertain about the samples with higher variance
scores. It can also consider the informativeness and diversity of the samples by
combining the variance and the mean of the posterior predictive distribution. We
measure the test accuracy, the number of queries, and the learning curves of the
methods. The results show that MC dropout as an acquisition function performs
better with fewer samples.

Figure 4.4 show the results of the experiment and the proposed method reaches
higher test accuracy with fewer labelled samples compared to the other methods.
Although uncertainty based sampling converges slower at the beginning of the train-
ing, it improves gradually by starting with a small number of labelled samples and
adding more informative samples. For example, uncertainty based sampling method
achieved a test accuracy of 90% using only 25% of the labelled training samples, while
the least-confidence and random methods need 34% and 58% of the data, respectively.

Figure 4.4: A comparison of three query strategies based on accuracy and the number of
images acquired from the pool.

The results demonstrate that MC dropout as an acquisition function improves
the model’s performance with fewer samples. In the following section, we extend this
approach during the inference stage, where the experts are queried to annotate the
most uncertain samples during prediction.

Classification with rejection

Classification with rejection is a technique that allows the model to say “No, I do not
know” for some samples that are too ambiguous or difficult to classify and forward
them to the expert. We apply the proposed uncertainty sampling method to design
a classifier with rejection during the evaluation phase. This classifier uses model
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uncertainty estimated using MC dropout. It improves the model’s performance and
robustness as it dynamically queries the expert for samples that the model is uncertain
about. We explore various conditions with different uncertainty thresholds and DNN
architectures to evaluate the classification with rejection.

To evaluate the classifier with rejection, we consider two rejection policies. The
first policy involves setting an uncertainty threshold, τ , selected from a range of
values {0.08, 0.1, 0.2, 0.3}. These values were determined based on the observed
minimum and maximum estimated uncertainty (variance) within the Mosquito Alert
dataset, which range between 0.08 and 0.3. A lower threshold (e.g., 0.08 or 0.1)
allows the model to accept only samples with minimam model uncertainty and high
confidence, referring the rest to human experts for annotation. While this approach
boosts evaluation accuracy, it also increases annotation costs due to the higher number
of samples requiring expert review. On the other hand, a higher threshold (e.g., 0.3)
permits the model to accept a wider range of samples, even those with higher model
uncertainty. Although this reduces annotation costs, it compromises performance
and increase the likelihood of accepting more uncertain predictions.

Table 4.1: Performance of different DNN architectures referring uncertain samples with
varying uncertainty thresholds τ . The uncertainty threshold determines when a DNN model
says “No, I don’t know” and refers a sample to an expert.

Model Un. Threshold Rejected
samples #

Retained samples
(Samples #) TP TN FP FN Precision Recall F1 score

Proposed architecture τ ≤ 0.08 467 808 502 290 3 13 0.99 0.98 0.98
τ ≤ 0.1 390 885 535 329 6 15 0.99 0.97 0.98
τ ≤ 0.2 125 1140 636 447 15 52 0.97 0.93 0.95
τ ≤ 0.3 3 1272 665 495 30 82 0.96 0.89 0.92
No τ 0 1275 664 492 31 88 0.95 0.88 0.92

Adhane et al. [128] τ ≤ 0.08 195 1080 572 470 20 18 0.97 0.97 0.97
τ ≤ 0.1 155 1120 596 477 24 23 0.96 0.96 0.96
τ ≤ 0.2 2 1273 651 535 42 45 0.94 0.94 0.94
τ ≤ 0.3 0 1275 653 543 42 46 0.94 0.93 0.94
No τ 0 1275 652 533 43 47 0.94 0.93 0.94

AlexNet [135] τ ≤ 0.08 254 1021 593 377 15 36 0.97 0.94 0.95
τ ≤ 0.1 220 1055 606 390 16 43 0.97 0.93 0.95
τ ≤ 0.2 37 1238 652 473 34 79 0.95 0.89 0.92
τ ≤ 0.3 0 1275 658 487 37 93 0.95 0.87 0.91
No τ 0 1275 658 497 37 88 0.95 0.88 0.91

Modified AlexNet τ ≤ 0.08 705 570 303 251 6 10 0.98 0.96 0.97
τ ≤ 0.1 615 660 365 272 9 14 0.97 0.96 0.97
τ ≤ 0.2 202 1073 574 402 23 74 0.96 0.88 0.92
τ ≤ 0.3 17 1258 636 467 48 107 0.92 0.85 0.89
No τ 0 1275 641 471 54 109 0.92 0.85 0.88

Table 4.1 summarises the performance of classification with rejection for various
DNN models with various uncertainty threshold values. The uncertainty threshold
determines when a DNN model has to say “No, I do not know” and reject the sample
to an expert. A lower uncertainty threshold means more rejections and a higher
threshold means more samples accepted. We compared the proposed architecture
with [128, 135] and a modified AlexNet. We modified AlexNet [135] in the same way
we modified VGG-16 [128], i.e., adding a dropout layer after each convolution and
FC layers to the original AlexNet architecture.

In the second policy, we used percentiles to select samples that will be labelled by
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the model and refer the rest to the expert. We compare two approaches of selecting
the samples to refer to an expert: informed referral and random referral. Informed
referral ranks the samples based on their estimated uncertainty and refers the most
uncertain ones to the expert. Random referral selects the samples randomly and
refers them to the expert. We measure the performance of the model on the quality
of the samples retained and referred. The quality is measured by comparing the
trade-off between the accuracy and the sample coverage using the metrics proposed
to evaluate classification with rejection [134]. The metrics capture how well the model
can classify the samples it accepts and how well it refers the uncertain samples to the
expert.

Figure 4.5 shows the percentage of correct and incorrect predictions that are
accepted or referred by the model. The model becomes more conservative and defers
more predictions to the expert as the referral rate increases, which indicates the model
prefers to rely on the expert’s feedback for more samples, even for predictions that
are correct. Informed referral accepted more correct and forwards more incorrect
predictions compared to random referral. This is because informed referral leverages
the model’s uncertainty to assess its confidence and refer predictions that are more
likely incorrect.

(a) (b)

(c) (d)

Figure 4.5: Number of samples that the model accepts or says “No I don’t know” under
different percentiles of referral for informed and random referral.

To systematically evaluate the implications of rejecting varying number of samples
for expert review, we employ three key metrics: NRA, CQ, and RQ formulated in
Eq. 4.8. These metrics serve to quantify both the quality and robustness of the model’s
decisions pertaining to accepted and referred samples. We vary the referral percentile
incrementally, ranging from 0% to 90%, and observe its impact on model performance.
Our analyses reveal that an optimal balance between predictive accuracy and model
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reliability is struck when 10-20% of the samples are referred for expert assessment,
achieving in a performance enhancement of up to 4% (see Figure 4.6(b)).

(a) (b)

(c) (d)

Figure 4.6: Performance measure of informed vs random referral as a function of the rejected
fraction. (a) Non-rejection accuracy (NRA), where the Y-axis shows the accuracy of the non-
rejected prediction. (b) classification quality (CQ), where the Y-axis shows the number of
points that are correctly/wrongly classified. (c) rejection quality (RQ), where the Y-axis
shows the number of points that are correctly/incorrectly classified and not-rejected/rejected
over the total samples. (d) the prediction accuracy over N% of retained data as a function
of informed vs random referral. The standard deviation from the five-fold cross-validation is
shown by the shaded region around the curves.

Figure 4.6 presents a comparative analysis of informed and random referral policies
across different values of N (non-rejected samples)—the proportion of samples not
referred to experts. The results indicate that the informed referral strategy demon-
strates superior performance when N is relatively small. Selecting samples based
on their uncertainty score effectively identifies those most prone to misclassification
or that lie outside the model’s training distribution, thereby enhancing the model’s
overall accuracy.

Figure 4.6(a) explores the relationship between N and NRA. In scenarios where
20% of the most uncertain samples are referred to an expert using the informed referral
policy, the model is then evaluated on the remaining 80% of samples, characterised
by lower uncertainty (σ). This results a higher NRA, approaching 100% accuracy.
In contrast, a random referral strategy, referring 20% of samples, leaves behind a less
predictable mix, leading to a decreased NRA owing to increased misclassifications
and rejections.

Figures 4.6(b) and (c) show how CQ and RQ vary as a function of N . The
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CQ measures the model’s capacity for correctly rejecting misclassified or out-of-
distribution samples, while RQ quantifies the trade-off between model accuracy and
the extent of sample coverage. For instance, referring 80% of all samples to experts
results in minimum acceptance rates and larger rejection rates, negatively impacting
both CQ and RQ. Thus, these metrics serve as valuable tools for identifying the
optimal value of rejection point that maximises performance and efficiency. Accord-
ingly, for our experiment, referring 20% of the samples to the expert emerges as the
optimal strategy.

Since the optimal referral point is established at 20%, we further examine its
impact on individual classes. To this end, we compute class-specific metrics such as
recall, precision, and F1-score when N is set at 20%, meaning the model opts to
refrain from making predictions for the most uncertain 20% of samples. Table 4.2
reveals that the informed referral policy surpasses the random referral policy in terms
of recall, precision, and F1-score across most classes.

Table 4.2: Comparison of informed and random referral for uncertain samples using class-
wise recall, precision, and F1-score.

Number of samples TP TN FP FN Precision Recall F1-score Accuracy
No referral 1275 614 553 58 70 0.91 0.89 0.90 0.91
Random referral (20%) 1021 486 432 49 54 0.90 0.90 0.90 0.90
Informed referral (20%) 1021 506 487 20 28 0.96 0.94 0.95 0.97

In addition, we examined the predictive posterior distribution under various uncer-
tainty thresholds and displayed the histogram of the predictive posterior distribution
for some randomly selected inputs. The histogram plotted from the multiple forward
passes conducted during the evaluation phase, shows the probability distribution of
the output labels for a given input sample and the prediction output. It also reflects
the model’s confidence and uncertainty in its prediction. A high probability for a
certain class implies a confident prediction, while a low or uniform probability for all
classes implies an uncertain prediction. Based on the predictive posterior distribution
and the true label, we classified the outcome into four possible states.

1. Correct certain: This refers to the state of the outcome when the classifier
predicts the correct class with a high level of certainty. In other words, the
classifier confidently assigns the correct label to the input, and there is minimal
or no uncertainty associated with this prediction.

2. Correct uncertain: This term describes the state of the outcome when the
classifier predicts the correct class, but with a certain degree of uncertainty. In
this case, the classifier assigns the correct label to the input, but it also indicates
some level of doubt or ambiguity in its prediction. This uncertainty could arise
due to various factors, such as the input being on the boundary between two
classes or having similar characteristics to multiple classes.

3. Incorrect uncertain: It refers to the state of the outcome when the classifier
predicts an incorrect class, but with a certain degree of uncertainty. In this sce-
nario, the classifier assigns an incorrect label to the input, but it also expresses
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some level of uncertainty or lack of confidence in its prediction. The uncer-
tainty may arise due to the input having characteristics that make it difficult
to classify accurately or being similar to multiple classes.

4. Incorrect certain: It is the state of the outcome when the classifier predicts
an incorrect class with a high level of certainty. In this case, the classifier
confidently assigns an incorrect label to the input, and there is minimam or no
uncertainty associated with this prediction. The classifier’s high confidence in
an incorrect prediction suggests that it is likely making a systematic error or
misinterpreting certain patterns in the data.

Figure 4.7: Visualisation of the posterior distributions and associated uncertainty estimates
for 12 samples at σ ≤ 0.1. The distribution of correct predictions is shown in red, while the
distribution of incorrectly classified samples is shown in blue.

Based on the possible states described above, plotted the probability density func-
tion of the prediction’s level of confidence. A single histogram with a narrow tail (i.e.,
correct certain) implies a confident and correct prediction, which the classifier accepts.
A single plot with a broad tail (i.e., correct uncertain) or two overlapped plots (i.e., in-
correct uncertain) imply an unconfident prediction, which is forwarded to the expert.
Two non-overlapped plots with narrow tails (i.e., incorrect certain) imply a confident
but incorrect prediction, which the classifier accepts. The model encounters some dif-
ficulties when processing images acquired in-the-wild, such as (1) various objects in
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the image that are more salient than the mosquito and (2) mosquitoes with damaged
body parts (see Figure 4.7 (b) and (d)). These factors can increase the uncertainty
in the outcomes.

In summary, we used MC dropout to measure model uncertainty, identify the
most likely misclassified or uncertain samples, and forward them to an expert for
feedback. Model uncertainty was used as an acquisition function in active learning,
and trained the model with more informative data, improving the model’s accuracy
and generalisation capability with fewer samples. Furthermore, model uncertainty
helped to design a classifier with rejection, allowing the classifier to express its pre-
dictive doubts during inference and forward samples to the expert for annotation.
Incorporating uncertainty sampling into an active learning framework significantly
improved the model’s efficiency, accuracy, and adaptability, making it a feasible ap-
proach in various domains.

Visual explainability

To understand the model’s decision-making process and the differences among mosquito
species, we apply Grad-CAM [90] to visualise the regions of interest for the model. We
observe that the model’s decisions are consistent with the entomological knowledge
but also that the model has learned some additional features that the entomologists
have not used as classification criteria. This finding helps entomologists discover new
characteristics to identify mosquito species. Moreover, we use B-LRP [130] to exam-
ine how the model estimates its uncertainty and what factors influence its confidence
level. This method allows us to identify the input features that contribute to the
uncertainty by breaking down the predictive distribution into individual feature con-
tributions. We then compare the contributions of different features and see how they
affect the predicted probabilities of different classes.

The use of visual explanations has shown that the key components of tiger mosquito
specimens that support network convergence are the white band on the legs, ab-
domen patches, head, and thorax, see Figure 4.8 for the anatomy of Aedes albopictus.
Entomologists mainly distinguish Aedes albopictus from other Aedes species by its
morphological features such as the unique white banding patterns on the legs, clear
markings on the dorsal surface of the abdomen, and noticeable stripes on the head
and thorax [136, 137]. These morphological features are consistent with the regions of
interest identified by Grad-CAM. Details of the findings are presented in the following
section.

Figure 4.9 shows the Grad-CAM visualisation of randomly selected images pre-
dicted as a tiger and non-tiger mosquitoes. The heatmap reveals that for the tiger
mosquito species, the model focuses mainly on the thorax and head of the mosquito,
which are unique features of tiger mosquito species. On the other hand, the images
predicted as non-tiger mosquito shows that the model pays attention to the legs and
abdomen, which differ from those of the tiger mosquito, and the areas around the
wings, which may vary among species.
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Figure 4.8: Anatomy of Aedes albopictus mosquito. Image source - Biogents USA.

(a) Tiger mosquito (b) Non-tiger mosquito

Figure 4.9: Examples of Grad-CAMs for the (a) tiger and (b) non-tiger mosquitoes species
generated from the last convolutional layer.

Figure 4.10 shows an example of a tiger mosquito image and the corresponding
heatmaps at the shallow, middle, and deep layers. We observe that the shallow layers
emphasised the legs, antennae, and proboscis. The middle layers highlight the head,
thorax, and abdomen, which are important features for species identification. The
deep layer highlights the area around the thorax and the white stripes around the
abdomen. The heatmaps show that the model learns to focus on similar features as
the entomologists do. The thorax are the most reliable feature for identifying the tiger
mosquito, while the other two features are used to confirm or reject the classification.

We then investigate the cases where the model makes incorrect predictions and
analyse the reasons for the errors. Figure 4.11 shows some examples of misclassified
images along with their Grad-CAMs and prediction scores. The model misses the
tiger mosquito features when they are damaged or occluded, especially the legs and
thorax (Figure 4.12). It also confuses some non-tiger mosquito features, such as
striped legs and abdominal patches, with those of the tiger mosquito (Figure 4.13).

While Grad-CAM offers valuable insights into the regions of an image that the

https://us.biogents.com/aedes-albopictus-asian-tiger-mosquito/
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(a) (b)

Figure 4.10: Visualisation of discriminative regions of images predicted as tiger mosquitoes;
the white stripes in the legs and antennae are slightly highlighted in the shallow layers,
whereas the thorax is strongly highlighted in the middle and deeper layers.

(a) (b)

Figure 4.11: (a) Examples of tiger input images predicted as non-tiger. (b) Examples of
non-tiger input images predicted as tiger. The Grad-CAMs were generated from the last
convolution layer.

(a) (b)

Figure 4.12: Discriminative regions for tiger images predicted as non-tiger in the shallow,
middle and deeper layers.

model focuses on, it does not identify regions contributing to model uncertainty.
To address this limitation, we employ another explainability technique known as
B-LRP [130]. B-LRP provides a pixel-wise relevance score, highlighting both the
regions crucial for the model’s prediction as well as those that contribute to the model
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(a) (b)

Figure 4.13: Visualisation of discriminative regions for non-tiger images predicted as tiger
in the shallow, middle and deeper layers and their respective accuracy.

uncertainty. Using this method, we aim to investigate the factors that contribute to
uncertainty and errors in the model’s decision-making process, presenting specific
examples for clarity.

In the B-LRP framework, each pixel’s relevance score measures its contribution
to the model’s prediction. Higher scores mean more important pixels, while lower
scores mean uncertain pixels. We can filter the pixels by a percentile or threshold to
show only those above it. For example, the 5th percentile shows the top 5% of critical
pixels, while the 75th percentile shows the top 75% of pixels, some of which may be
uncertain or less important. The percentile choice affects the explanation risk, with
lower percentiles being more conservative and reliable, and higher percentiles being
more inclusive but riskier.

Figure 4.14 displays some examples of B-LRP visualisations for different images.
It illustrates that when the model is confident about its prediction, for example
in Figure 4.14(a), the 75th percentile has mostly positive relevance scores for the
pixels that are important for identifying the tiger mosquito, like the thorax and
abdomen. The pixels that are irrelevant or can cause confusion, like the background
or reflections, have negative relevance scores. However, when the model is uncertain
about its prediction, for example in Figure 4.14(b), the 75th percentile has more
mixed relevance scores for the pixels that are not very distinctive or informative for
identifying the mosquito species, like the wings or legs. The 5th percentile also has
some pixels with low or negative relevance scores, indicating that the model is not
very certain about them.

We used Grad-CAM and Bayesian Layer-Wise Relevance Propagation (B-LRP) to
explain the model’s decisions in mosquito species classification. Both methods proved
that when the model is certain about its decision, it mainly focuses on the parts of
the mosquito features similar to those used by entomologists. B-LRP quantified
pixel-wise relevance and captured the model’s uncertainty, revealing the factors that
influenced the model’s confidence and errors. Grad-CAM generated heatmaps that
highlighted the model’s regions of interest, without requiring a Bayesian framework
or a pixel-ranking mechanism. These two explainability tools helped us visualise the
relevant anatomical features for identifying mosquito species.



58 Chapter 4. Uncertainty-Guided Learning with Monte Carlo Dropout

(a) (b)

Figure 4.14: Examples of B-LRP [130] explanation. (a) Two samples of Aedes albopictus
(Tiger) mosquitoes where the model is certain (confident) in its prediction. The B-LRP high-
lights the thorax and legs as key discriminant features in the 5th percentile and it highlights
the regions that can be referred to as the second discriminant features in the 75th percentile.
(b) Samples of Aedes albopictus and non-Aedes albopictus (non-Tiger) mosquitoes, where the
model is uncertain in its prediction. Here, the B-LRP in the 5th and 75th is unable to high-
light discriminative regions. Red pixels indicate positive relevance, and blue pixels represent
negative relevance.

4.3 Discussion and Future Work

In this chapter, we presented a framework that uses MC dropout as a technique to
estimate model uncertainty and uses it as an acquisition function to design an active
learning framework and classification with rejection. The proposed method was ap-
plied to automated mosquito species classification, which has significant implications
for entomology and public health. The approach allows domain experts to focus only
on labelling the most uncertain samples, while the DNN model takes responsibility
for making decisions on more certain predictions. This configuration improves the
overall reliability and trustworthiness of the classifier.

The proposed method achieved promising performance in terms of accuracy, re-
liability, and efficiency. Model uncertainty estimated using MC dropout allowed the
model to train and achieve baseline performance with fewer training samples. Using
the uncertainty during inference time and allowing the trained model to abstain from
making predictions on uncertain or ambiguous samples enhanced its performance and
reduced the risk of errors or bias. The ability to accurately quantify and utilise uncer-
tainty is crucial for DNN models to avoid making inaccurate predictions, particularly
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when faced with inputs that are out of distribution, noisy, or adversarial. More-
over, we also provide visual explainability to support the domain experts and users
in understanding the basis of the model’s decisions and the sources of uncertainty.

However, the proposed methodology does come with limitations that require fu-
ture attention. One of these limitations is that the uncertainty estimation using MC
dropout does not provide a principled way to select the dropout probability, which
may influence the quality and reliability of the uncertainty estimates. A possible solu-
tion to this issue could be using Bayesian optimisation to determine the most suitable
dropout rates for each model layer. Another limitation is that providing uncertainty
estimates is insufficient to explain how the model makes its decisions. Therefore, a
technique that explains the internal model and decision-making process is required.
In the next chapters, we will address this challenge by providing a more comprehen-
sive explainability method capable of explaining the internal decision-making of a
DNN model.

4.4 Conclusion

This chapter presents a framework that uses uncertainty estimation based on MC
dropout for active learning and classification with rejection. We applied the pro-
posed method to the task of automated mosquito species classification—a complex
and crucial task in the fields of entomology and public health. Through empirical
evaluation, we have demonstrated that our approach improves the model’s accuracy,
reliability, and efficiency and reduces the costs associated with labelling specimens
collected from citizens. The capability to reject uncertain or ambiguous images of-
fers significant progress to improve AI decision making. The contribution of this
chapter is twofold: firstly, it advances the state-of-the-art in classification with rejec-
tion and active learning by introducing a novel framework that leverages uncertainty
estimation through Monte Carlo (MC) dropout. This advancement enables more
precise and confident decision-making capabilities in models. Secondly, it augments
the transparency and safety of DNNs by providing a mechanism to acknowledge their
limitations in the form of rejection based on uncertainty. This acknowledgement al-
lows for more responsible deployment of artificial intelligence in critical domains such
as public health and entomology. The proposed approach has potential applications
for entomologists and public health practitioners who require accurate and efficient
classification of mosquito species.



60

Chapter 5

ADVISE: A Novel Approach to Quantify and Visualise
Feature-Relevance

Convolutional Neural Networks (CNNs) have gained significant prominence with the
potential to outperform expectations in various computer vision tasks such as image
classification [30, 128, 138, 139, 140], pattern detection [141, 142], semantic segmenta-
tion [143, 144], image captioning [145], and human behaviour analysis [146]. However,
this sub-symbolism (also known as the opaque or black-box model) is vulnerable to
the underlying barrier of explainability in response to critical questions like how a
particular trained model arrives at a decision, how certain it is about its decision, if
and when it can be trusted, why it makes certain mistakes, and in which part of the
learning algorithm or parametric space correction should take place [5, 6, 29]. Ma-
jority of explainability techniques in CNNs are linked to post-hoc explainability [147]
and, as proposed by Arrieta et al. [6], relies on model simplification [97, 148, 149],
feature-relevance estimation [20, 150, 151, 152], visualisation [85, 90, 93, 153, 154,
155], and architectural modification [156, 157, 158] to convert a non-interpretable
model into an explainable one.

While model simplification and architectural modification techniques have been
used to make CNNs interpretable, their associated complexity grows as the number
of layers and parameters increases. Furthermore, several studies [6, 159, 160] have
shown that altering CNNs may result in the spontaneous appearance of a disentangled
representation [161, 162], which is not only unrelated to the model’s initial intention
but also challenging to interpret. As a result, the emphasis in explaining CNNs has
shifted toward feature-relevance and visualisation methods.

Feature visualisation has received much attention because human cognitive skills
favour the understanding of visual data. However, feature visualisation methods do
not necessarily provide a comprehensive level of explainability and interpretability.
Even for high-performance image classification models like VGG16 [163] and Xcep-
tion [164], surpassing human-level accuracy, their feature visualisations may differ
significantly despite generating similar predictions for a given input image.

Therefore, several studies [20, 150, 165, 166] focused on feature-relevance ap-
proaches, which provide an importance score to each feature for specific input. These
approaches have both advantages and disadvantages. On the positive side, they
provide direct information about the relevance of input features for the model’s deci-
sion, which can help build trust and interpretability in the model. These approaches
are also generally model-agnostic, meaning they can be applied to various machine-
learning models. However, there are also some downsides to these approaches. They
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can be computationally expensive and may not provide a complete understanding
of how the model makes its decision. In addition, they can be sensitive to feature
correlations and may not account for complex interactions between features. Overall,
feature-relevance approaches should be used in conjunction with other methods to
gain a more comprehensive understanding of the model’s behaviour.

In this chapter, we propose a method for quantifying the feature-relevance and
visualising the latent representations in CNNs. We revisit the relationships be-
tween feature maps1 and their associated gradients by introducing ADaptive VISual
Explanation (ADVISE). ADVISE estimates the kernel density of gradients with an
adaptive bandwidth for each unit in the feature map (see Figures 5.1) to assign an
importance score (ϕk(A)) to each unit. Then, we calculate the cumulative gradient of
units with the same importance score for the class of interest to visualise the feature
map. In this way, we simultaneously quantify the relevance of each unit and highlight
how much the cumulative gradient of units influences the model’s decision using the
generated saliency map(s). We use the proposed method to demonstrate that indi-
vidual units are significantly more interpretable than cumulative linear combinations
of gradient’s units. Furthermore, we propose a new evaluation metrics that measures
the quality and effectiveness of visual explanations.

Figure 5.1: A schematic of the proposed scoring method. The proposed method assigns
an importance score ϕk(A) to the kth unit in the feature map A. This score represents
the contribution of each feature map to the network decision. Using the computed scores
(weights), we then calculate the linear weighted sum of the feature maps in A.

The experiment is centred on the image classification task since it allows us to visu-
alise adaptive cumulative gradient attributions and compare ADVISE with attention
approaches that focus on global information. We use AlexNet [135], VGG16 [163],
ResNet50 [167], and Xception [164], which were trained on the ImageNet [168] in
order to decide to which of 1000 classes each image belongs. We should note that es-
timating the kernel density of gradients with the adaptive bandwidth can be applied
to a wide range of deep learning models without requiring architectural changes or
retraining.

1The terms feature map and activation map are used interchangeable here since the former refers
to a mapping of where a specific type of feature can be found in an image, and the latter is a mapping
that relates to the activation of different areas of the image.
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5.1 Proposed Methods

We present a novel approach to overcome the drawbacks of existing methods for visual
explanation of CNNs. One of the challenges with gradient-based visual explainability
methods stem from the oversimplified assumption of a fixed rate for accumulating
gradients across feature maps. Our approach, ADVISE, uses Kernel Density Esti-
mation (KDE) [169] and Adaptive Mean Integrated Squared Error (AMISE) [170]
criterion to perform a more refined analysis of feature map relevance. KDE is a non-
parametric method to estimate the probability density function of a random variable,
and AMISE is a criterion to optimise the bandwidth parameter of KDE. Using these
approaches, we estimate the probabilistic density of each unit and their contributions,
thereby providing a more nuanced and precise quantification of their impact on the
model’s decisions. In addition, we propose an evaluation protocol to quantitatively as-
sess visual explainability generated by various explanation techniques. The proposed
metrics measure the correlation between the importance scores and the saliency maps
generated by various explanation techniques.

5.1.1 KDE and adaptive bandwidth selection

Kernel Density Estimation (KDE) [169] is a non-parametric technique for estimat-
ing the probability density function of a random variable. It involves smoothing the
observed data points with a kernel function, usually a symmetric and unimodal func-
tion that integrates into one. The estimated density’s quality depends on the kernel
function’s choice and bandwidth, which determines the degree of smoothing. A com-
mon approach is to use a fixed bandwidth for all data points, which may result in
under-smoothing or over-smoothing in some regions of the data space. However, this
approach may not capture the local density variations in the data, which can affect
the accuracy and reliability of the density estimation. Therefore, a more flexible and
accurate approach is to use adaptive KDE methods, which allow the bandwidth to
vary according to the local density of the data. This way, the bandwidth can be larger
in regions with low density and smaller in regions with high density. Adaptive KDE
methods have been applied to various fields, such as image processing, clustering,
anomaly detection, and edge detection.

Let x1, x2, · · · , xn be a set of independent and identically distributed gradient
values from an unknown density function f(x). The kernel density estimate f̂(x) of
f(x) is given by:

f̂(x) = 1
n

n∑
i=1

Khx(x− xi), (5.1)

where Khx is a kernel function with a bandwidth hx that determines the degree of
smoothing. A common choice for the kernel function is the Gaussian kernel, which is
defined as:

Khx(s) = 1√
2πhx

exp
(
− s2

2h2
x

)
, (5.2)
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where s represents the distance between the sample point x and a given point xi from
the dataset, and the term

√
2πhx normalises the Gaussian function, ensuring that its

integral over its domain is 1. The bandwidth hx can be either fixed or adaptive.

The adaptive mean integrated squared error (AMISE) is a sophisticated method
for bandwidth selection in kernel density estimation. It allows adjusting the band-
width according to the local density variations in the data. The method optimises
the bandwidth parameter within local regions, thereby mitigating the expected L2
loss between the estimated and true density functions. Adjusting bandwidth is par-
ticularly advantageous when dealing with datasets that exhibit heterogeneous density
characteristics, as it permits the bandwidth to expand in sparser regions and contract
in denser regions for enhanced accuracy. The AMISE is formulated as follows:

AMISE =
∫

E
(
f̂(x)− f(x)

)2
ρu−x
W dx, (5.3)

where E denotes the expected value, f̂(x) the estimated density function, f(x) the
true density function, and ρu−x

W a weight function that regulates the bandwidth based
on the local density within an interval W centred at x. The quality and reliability
of the density estimation are improved by optimising the bandwidth in a localised
manner with the AMISE criterion.

5.1.2 ADVISE: ADaptive VISual Explanation

We consider a convolutional neural network that performs image classification, which
is defined as f(I; θ) = E[yc|I; θ], where θ denotes the network’s parameters, I ∈
RH×W×3 is the input image with height H and width W , and yc is the score for the
predicted class c. The activation map of f is represented by A ∈ RU×V×K , where
Ak is the kth feature map in A, and U , V , and K are the height, width, and the
number of units, respectively. The gradient of the predicted score yc with respect to
the spatial location (i, j) in the feature map A is given by ∂yc

∂Ai,j
.

Most visualisation methods use cumulative gradients, which is a linear weighted
summation of all feature maps in A. However, these methods lack sensitivity because
they assume a stationary rate variation in the gradients. To address this issue, we
propose a new method that computes ϕk(A), an importance score assigned to the kth

unit in the feature map A. This score represents the contribution of each feature map
to the network decision. We then compute the linear weighted sum of the feature maps
in A using the same importance score. In this way, our visualisation method preserves
both implementation invariance and sensitivity axioms [19]. These sensitivity axioms
are two essential properties that any attribution method should adhere to:

• Sensitivity: If the function implemented by a deep network does not math-
ematically depend on a certain variable, then the attribution to that variable
should always be zero. This axiom captures the desired insensitivity of attribu-
tions when the function does not depend on a specific variable.
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• Implementation invariance: This axiom states that the attribution method
should be invariant to the implementation details of the network, focusing solely
on the function computed by the network rather than how it is implemented.
This ensures that the attribution method is robust and not affected by changes
in the network’s implementation.

Our approach satisfies these sensitivity axioms by assigning and using non-zero
importance scores to the feature maps that contain the differing or perturbed features
in the linear sum. These axioms ensure that the attribution method is sensitive to
changes in the input features that affect the output prediction.

We introduce a method that leverages KDE [169] as a key component in a pipeline
to assess the importance score of each feature map. Specifically, KDE estimates the
density of gradient values, which indicate how sensitive the output is to variations
in the input.These gradients reveal the contribution of each feature map to the final
model prediction. However, the shape of the estimated density may vary due to
the intrinsic difference of each unit in the feature map, and conventional KDE may
not capture this variation. Therefore, we use the AMISE criterion to optimise the
estimated density locally in an interval length. This criterion helps determine the
goodness-of-fit and regulate the estimated density’s shape.

The kth unit of the activation map A is made up of a collection of independent
gradients that have been flattened into a one-dimensional array. The gradients values,
(a1, a2, · · · , an), change with respect to the input image I. In order to determine the
raw density of the gradient values, xa, we must calculate the average of the Dirac
delta function δ(a) for each gradient value ai. This raw density is represented by
Eq. 5.4.

xa = 1
n

n∑
i=1

δ(a− ai), (5.4)

where n = U × V . To estimate the kernel density λ̂a, we convolve the raw density xa
with a kernel Hωa that has a variable bandwidth ωa, optimising over a local interval.
This operation is represented in Eq. 5.5.

λ̂a =
∫ ∞

−∞
xa−sHωa(s) ds. (5.5)

We evaluate the estimated density λ̂a for goodness-of-fit by comparing it to the
unknown underlying density λa using the mean integrated squared error (MISE) [171].
To regulate the shape of the function λa, determine the goodness-of-fit, and select an
interval length for local optimisation at gradient a, we introduce the adaptive MISE
(AMISE) criterion based on [170]. The AMISE criterion is expressed in Eq. 5.6.

AMISE =
∫

E
(
λ̂u − λu

)2
ρu−a
W du, (5.6)

where E represents the expected L2 loss function, λ̂u is the estimated density with a
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fixed bandwidth ω, ρu−a
W is a weight function that determines the integration of the

squared error in a particular interval W centred at a.

Our objective is to minimise AMISE by introducing an adaptive cost function
with respect to a. This adaptive cost function eliminates the irrelevant term for the
bandwidth ω choice. This adaptive cost function is expressed in Eq. 5.7.

Can(ω,W ) = AMISE−
∫
λ2
uρ
u−a
W du. (5.7)

Then, the optimal fixed bandwidth, denoted by ω∗, is determined by minimising the
estimated cost function in Eq. 5.8.

Ĉan(ω,W ) = 1
n2

∑
i,j

ψaω,W (ai, aj)−
2
n2

n∑
i ̸=j
Hω(ai − aj)ρai−a

W , (5.8)

This cost function has two parts. The first is the average of the kernel ψaω,W (ai, aj)
across all observation pairs i and j. The second is a correction term that considers
overlapping regions of the kernel. Eq. 5.9 defines the kernel ψaω,W , which includes a
convolution of the kernel function Hω(u− a) with the density function ρu−a

W .

ψaω,W (ai, aj) =
∫
Hω(u− ai)Hω(u− aj)ρu−a

W du. (5.9)

In our experiments, we use an interval length of ω∗

γ to control the degree of
fluctuation in the variable bandwidth since the optimal bandwidth ω∗ varies according
to the length of the interval W . The smoothing parameter γ determines the extent
of the fluctuations, with smaller values, γ << 1, leading to minor fluctuations and
larger values, γ ∼ 1, resulting in more significant fluctuations. The Nadaraya-Watson
kernel regression [172] is used to obtain a variable bandwidth ωγa using Eq. 5.10 for
the interval [0, 1].

ωγa =
∫
ρa−s
W γ

s
ω̄γs ds

/∫
ρa−s
W γ

s
ds . (5.10)

Here, W γ
a and ω̄γa represent the interval length and fixed bandwidth at a, respectively.

The variable bandwidth ωγa is determined from the same data, but different γ values
result in varying levels of smoothness. The cost function for the variable bandwidth
selected with γ is obtained using Eq. 5.11.

Ĉn(γ) =
∫ 1

0
λ̂2
a da− 2

n2

∑
i ̸=j
Hωγ

ai
(ai − aj), (5.11)

The estimated rate λ̂a with the variable bandwidth ωγa is calculated numerically with
the stiffness constant γ∗ =

√
5+1
2 that minimises Eq. 5.11. In this study, we use the

Gauss density function expressed in Eq. 5.12.

Hωγ (s) = 1√
2πωγ

exp
(
− s2

2(ωγ)2

)
, (5.12)
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Figure 5.2b depicts one of the activation map units in the final convolution layer
of the VGG16 model. Additionally, Figure 5.2c displays the estimated density of
gradient values (shown as solid red line) and the underlying gradient value distribution
(depicted as a grey area) at that specific unit. The density of gradient values is
estimated using the proposed variable bandwidth kernel density estimation method.

(a) (b) (c)

Figure 5.2: (a) Input image. (b) The 265th unit of the activation map in the last convolution
layer of the VGG16 model. The gradient values are represented by colours in the ’cool’ colour
map to aid visualisation. (c) The estimated kernel density with a variable bandwidth (solid
red line) using Eq. 5.11. The grey area displays the underlying distribution of the gradient
values in the 265th unit of the activation map.

The proposed scoring method that assigns an importance score to the kth unit in
the feature map, as well as the visualisation approach (ADVISE), are summarised in
Algorithm 1.

The results from using ADVISE to generate the saliency map and score function
ϕk(A) to quantify feature-relevance can be summarised into three key observations.

1. Not all feature map units contribute equally to the model’s prediction, and some
units may even mislead the model. For example, in Figure 5.3a, saliency maps
generated by ADVISE for units with 1, 6, and 7 peaks, which make up 119 out
of 256 AlexNet units, highlight uninformative regions of the image with respect
to the predicted class (i.e., ‘Bernese mountain dog’). On the other hand, the
generated saliency map with only 2 units with 2 peaks performs better than
Grad-CAM, which needs the incorporation of all 256 AlexNet units.

2. As Bau et al. [159] pointed out, CNNs trained for a specific purpose may en-
counter disentangled representations unrelated to the model’s initial intention.
For example, Grad-CAM generated saliency maps of the VGG16 network in
Figure 5.3b show highlights in regions unrelated to the predicted ‘monastery’
class, while 4 units with 6 peaks in ADVISE highlight more portions of the
building.

3. When different visual explainability methods show less divergence, using AD-
VISE can assist developers in determining which layers contribute the most to
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Algorithm 1 ADaptive VISual Explanation
Require: AU×V×K – Feature map, also known as activation map in CNNs.

yc – predicted class.
[row, col] – size of input image.

Ensure: ϕk(A) – Importance score for units in A.
ADVISE – Feature saliency map(s).

1: for k = 1 to K do
2: {ai}ni=1 ← flatten(A) ▷ n = U × V
3: ϕk(A) = findPeaks

(∫ 1
0 λ̂

2
a da− 2

n2
∑
i ̸=j Hωγ

ai
(ai − aj)

)
4: g = ∂yc

∂A
5: for i = min (ϕk(A)) to max (ϕk(A)) do
6: idx← find (ϕk(A) == i)
7: Ãi = A(:, :, idx)
8: w̃ci = 1

n

∑
U

∑
V g(:, :, idx)

9: mapi = ReLU
(∑|idx|

j=1

(
w̃ci,j · Ãi,j

))
▷ |•| is the cardinality of •

10: ADVISEi = resize (mapi, [row, col],bc) ▷ ‘bc’ is bicubic interpolation

return ϕk(A), ADVISE

the final model’s prediction. In Figures 5.3c and 5.3d, ADVISE shows that
ResNet50 and Xception require 177 units with 1 peak and 8 units with 3 peaks,
respectively, for generating relatively accurate saliency maps. However, the
Grad-CAM method requires incorporating all 2048 units to generate compara-
ble or even less salient maps.

5.1.3 Evaluation metrics

Evaluating visual explainability is not a trivial task, as it involves both objective and
subjective criteria that may vary depending on the context and the user. Moreover,
different visual explanation methods may have different strengths and weaknesses
and highlight different aspects of the model’s decision process. Therefore, we need
a comprehensive and consistent evaluation framework that can measure the quality
and effectiveness of visual explanations from different perspectives. We use existing
and new metrics that measure different aspects of visual explanation quality, such as
class sensitivity, hit rate, and confidence drop.

(1) Class Sensitivity (CS): it measures the similarity of saliency maps generated
with respect to the top two class scores predicted by the model. It uses Pearson’s
Correlation Coefficient to measure CS as in Eq. 5.13.
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(a)

(b)

(c)

(d)

Figure 5.3: The outputs of ADVISE and Grad-CAM [90] are compared for four images
fed into the pretrained AlexNet [135], VGG16 [163], ResNet50 [167], and Xception [164]
models on ImageNet [168]. The use of ϕk(A) on the estimated kernel density and ADVISE
show that in the explainability of (a) AlexNet prediction (‘Bernese mountain dog’), two units
with two peaks work better than Grad-CAM that requires 256 units, (b) VGG16 prediction
(‘monastery’), four units with six peaks contribute more than Grad-CAM that requires 512
units, (c) ResNet50 prediction (‘Zebra’), 177 units with one peak outperform Grad-CAM,
which requires 2048 units, and (d) Xception prediction (‘band aid’), eight units with three
peaks perform better than Grad-CAM that uses 2048 units.
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CS = cov (E(f, I)c1 , E(f, I)c2)
σ (E(f, I)c1)× σ (E(f, I)c2) . (5.13)

where E, cov, and σ denote the explanation map, covariance, and standard deviation,
respectively. A good explanation method should have a score near to or below zero,
while a score outside the [−0.5, 0.5] range implies that the correlation between two
maps is not statistically significant.

(2) Hit: it is a proxy that indicates if the model can retrieve the target class c in
its top-5 prediction when it just sees the explanation map and not the entire image.
This proxy is formulated in Eq. 5.14.

Hit =
{

1 : NI ∩MI⊙E(f,I)c

0 : otherwise (5.14)

where NI is the index of the predicted class c by the model when it just sees the input
image as input, and MI⊙E(f,I)c is a set including the top-5 index of the predicted class
when the model sees the explanation map. Here, ⊙ is the Hadamard product.

(3) Average Drop (AD): it measures the average percentage drop in confidence
for the target class c when the explanation map (I ⊙ E(f, I)c) is fed to the model
instead of the input image I. This metric is defined in Eq. 5.15, where lower is better.

AD = max (0, (yc − oc))/yc (5.15)

where oc is the predicted score by model to which the the explanation map is fed.

However, these existing metrics have some limitations. CS does not consider the
spatial distribution of saliency values and may not capture the perceptual differences
between saliency maps. Hit is a binary measure that does not reflect the degree of
confidence change for the target class. AD only considers the confidence drop for
the target class and ignores the confidence changes for other classes. Moreover, these
metrics do not account for the structural and feature similarity between the input
image and the explanation map, which are important factors for human perception
and interpretation.

To address these limitations, we propose new evaluation metrics that measure
the Structural Similarity Index (SSIM), Feature Similarity Index (FSIM), and Mean
Squared Error (MSE) between the input image masked by the explanation map and
the original input image as the reference. These metrics capture different aspects
of visual image quality, such as luminance, contrast, structure, phase congruency,
gradient magnitude, and pixel-wise difference.

(4) Structural similarity index (SSIM): it is a perception-based measure that
considers image degradation as a perceived change in structural information while
also considering crucial perceptual phenomena [173]. In this context, SSIM measures
the structural similarity index between the input image masked by the explanation
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map and the input image as the reference. This metric returns a value in (0, 1], where
the higher is better, and is formulated in Eq. 5.16.

SSIM(I, Ĩ) = (2µIµĨ + e1)(2cov(I, Ĩ) + e2)
(µ2
I + µ2

Ĩ
+ e1)(σ2

I + σ2
Ĩ

+ e2)
. (5.16)

where Ĩ = I⊙E(f, I)c, and µ and σ are the mean and variance, respectively. In order
to stabilise the division with weak denominator, e1 = (0.01 · L)2 and e2 = (0.03 · L)2

are used, where L denotes the dynamic range of the pixel values and is set to 255 in
this study.

(5) Feature similarity index (FSIM): it uses phase congruency and gradient
magnitude, which reflect complementary components of visual image quality, to mea-
sure local image quality. This metric also includes a saliency measure for the image
gradient feature, which weights each pixel’s contribution to the overall quality score.
This metric returns a value in (0, 1], where the higher is better, and the mathematical
formulation is given in 5.17.

FSIM(I, Ĩ) =
∑N
i=1wiµIiµĨi√∑N

i=1wiµ
2
Ii

√∑N
i=1wiµ

2
Ĩi

×
∑N
i=1wicov(i)

I,Ĩ√∑N
i=1wiσ

2(i)
I

√∑N
i=1wiσ

2(i)
Ĩ

(5.17)

where N is the number of feature maps, wi is the weighting function for the ith feature
map, µIi and µĨi

are the mean values of the ith feature map in the two images, and
cov(i)

I,Ĩ
, σ2(i)

I , and σ
2(i)
Ĩ

are the covariance and variances of the ith feature map in the
two images, respectively.

(6) Mean squared error (MSE): it is the second error moment and measures the
average squared difference between the input image masked by the explanation map
and the input image as the reference as in Eq. 5.18.

MSE(I, Ĩ) = 1
HW

H∑
i=1

W∑
j=1

(
Ii,j − Ĩi,j

)2
. (5.18)

Finally, we propose a new metric that combines AD, SSIM, FSIM, and MSE into
a single score that reflects the overall explainability of a model. The proposed metric,
called AVerage eXplainability (AVX).

(7) AVerage eXplainability (AVX): it measures the harmonic mean of AD, SSIM,
FSIM, and MSE and returns a value in [0, 1] to ease of comparison as defined in
Eq. 5.19.

AVX = 4
( 1

1−AD + 1
SSIM + 1

FSIM + 1
1−MSE

)−1
(5.19)

We employ two proxy variables, CS and Hit, that operate as regulators to adjust
the AVerage eXplainability (AVX) score. These proxies capture distinct aspects of the
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model explainability, offering a refined insight into how well the model’s predictions
correspond with human interpretability.

• If Hit = 0 and CS ∈ [−0.5, 0.5]: We define a penalty coefficient ∆ = 1 −
|yc − oc| and multiply AD, SSIM, FSIM, and MSE by ∆ before measuring the
harmonic mean. The purpose of this penalty coefficient ∆ is to be to introduce
a modulation factor for the existing metrics (AD, SSIM, FSIM, MSE) when
Hit = 0 and CS ∈ [−0.5, 0.5]. In this case, the Hit = 0 condition indicates
that the model failed to identify the target class c in its top-5 predictions when
provided with the explanation map alone. Meanwhile, the CS ∈ [−0.5, 0.5]
condition indicates that the correlation between the saliency maps for the top
two classes predicted by the model is within an acceptable range. When both
these conditions are met, it suggests that the model’s failure is not due to grossly
inaccurate or misleading saliency maps. Hence, the ∆ penalty scales down the
metrics to potentially lower their impact on the final AVX score, allowing for
a more nuanced evaluation. The design of ∆ helps to account for cases where
the model’s poor performance is not necessarily because of the explanation’s
quality but could be due to other factors, thus providing a more balanced view
of the model’s explainability.

• If Hit = 0 and CS /∈ [−0.5, 0.5]: In this case, the framework applies penalty
conditions to indicate significant shortcomings in the model’s explainability, and
we set AD and MSE to 1 and SSIM and FSIM to 0. Specifically, the condi-
tion Hit = 0 shows that the model fails to include the target class c among
its top-5 predictions when only the explanation map is considered. Moreover,
the criterion CS /∈ [−0.5, 0.5] implies that the correlation between the saliency
maps corresponding to the top two predicted classes falls outside a statistically
acceptable range, thus raising concerns of either misleading or ambiguous ex-
planations. To adapt the scoring function to this case, the framework sets the
metrics of AD and MSE to their maximum penalty value of 1 while lowering
the SSIM and FSIM to their minimum value of 0. These extreme metric values
act as a strong indicator, considerably affecting the model’s AVX score, thereby
flagging the model’s explainability as a point of urgent attention requiring fur-
ther investigation.

5.2 Experimental Results

This section presents the experimental results of ADVISE and compares them with
the existing state-of-the-art visual explanation methods. We use four popular CNN
architectures, AlexNet [135], VGG16 [163], ResNet50 [167], and Xception [164], trained
on the ImageNet dataset. We use existing and newly proposed evaluation metrics to
measure the quality and effectiveness of visual explanations generated using various
XAI methods.
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Figure 5.4: Visual explanations of four different inputs using (a) AlexNet, (b) VGG16,
(c) ResNet50, and (d) Xception models. ADVISE highlighted the key features better than
Grad-CAM and LIME.

Figure 5.4 shows the visual explanations of four inputs using AlexNet, VGG16,
ResNet50, and Xception models. The proposed method ADVISE outperforms Grad-
CAM and LIME in all cases by highlighting the key features with fewer units. For
instance, in Figure 5.4(a), ADVISE uses only 111 units with 1 peak to highlight
the head and ears of the German shepherd, while Grad-CAM and LIME uses entire
features to generate less informative maps. In Figure 5.4(b), ADVISE uses only 1
unit with 7 peaks to highlight the balloon and its reflection, while Grad-CAM and
LIME highlight regions unrelated to the air balloon class. In Figure 5.4(c), ADVISE
uses only 293 unit with 1 peak to highlight the face and mane of the African lion,
while Grad-CAM and LIME highlight more background regions. In Figure 5.4(d),
ADVISE uses only 12 units with 3 peaks to highlight the face and stripes of the Asian
tiger, while Grad-CAM and LIME highlight less salient regions. ADVISE highlights
the salient regions of the input image with fewer units, while Grad-CAM and LIME
use more units and generate less informative maps.

Next, we compare and quantify ADVISE with other state-of-the-art visual ex-
planation methods. However, evaluating visual explanations is not a trivial task, as
there are no ground-truth discriminative features for a trained CNN [174], and there
is no consensus on the impact of explanations on the model’s performance, trust,
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and reliance. Therefore, we assume that a well-trained model would make predic-
tions based on the features of the object itself [6], and we follow quantitative metrics
used to evaluate image retrieval methods, saliency models and the novel evaluation
protocol proposed in Eq. 5.19.

Table 5.1: The comparison of the ADVISE with Grad-CAM, Grad-CAM++, Score-CAM,
and Layer-CAM visualisation methods on AlexNet, VGG16, ResNet50, and Xception.

Architecture Method Metrics Time (s)
Peak range AD ↓ SSIM ↑ FSIM ↑ MSE ↓ AVX ↑ GPU/Parallel CPU

AlexNet [135]

ADVISE 0 – 8 0.26 0.14 0.38 0.14 0.28 0.69 30.3
Grad-CAM N/A 0.39 0.05 0.26 0.32 0.13 1.06 1.64
Grad-CAM++ N/A 0.38 0.06 0.27 0.32 0.17 1.16 2.14
Score-CAM N/A 0.37 0.06 0.28 0.31 0.17 1.18 2.60
Layer-CAM N/A 0.33 0.07 0.31 0.28 0.19 1.48 3.33
LIME N/A 0.39 0.05 0.26 0.32 0.13 5.71 11.85

VGG16 [163]

ADVISE 0 – 7 0.26 0.14 0.40 0.15 0.29 1.56 6.91
Grad-CAM N/A 0.38 0.06 0.26 0.29 0.15 1.88 2.66
Grad-CAM++ N/A 0.38 0.07 0.27 0.28 0.19 2.01 3.36
Score-CAM N/A 0.37 0.09 0.30 0.29 0.22 2.21 3.87
Layer-CAM N/A 0.32 0.09 0.34 0.27 0.23 2.66 4.24
LIME N/A 0.38 0.06 0.26 0.29 0.15 22.18 57.95

ResNet50 [167]

ADVISE 0 – 5 0.26 0.15 0.43 0.17 0.31 1.46 6.37
Grad-CAM N/A 0.33 0.10 0.34 0.24 0.23 6.22 7.77
Grad-CAM++ N/A 0.36 0.11 0.35 0.24 0.26 6.62 8.56
Score-CAM N/A 0.35 0.11 0.37 0.22 0.27 7.02 9.18
Layer-CAM N/A 0.32 0.12 0.39 0.21 0.29 7.51 11.18
LIME N/A 0.33 0.10 0.34 0.24 0.23 7.68 31.61

Xception [164]

ADVISE 0 – 6 0.43 0.12 0.37 0.31 0.24 4.20 16.38
Grad-CAM N/A 0.68 0.04 0.20 0.59 0.10 5.92 8.12
Grad-CAM++ N/A 0.65 0.04 0.21 0.59 0.11 6.03 9.10
Score-CAM N/A 0.64 0.05 0.21 0.57 0.13 6.56 9.70
Layer-CAM N/A 0.57 0.08 0.27 0.49 0.19 7.07 10.34
LIME N/A 0.68 0.04 0.20 0.59 0.10 26.31 90.31

Table 5.1 shows the comparison of the ADVISE with Grad-CAM [90], Grad-
CAM++ [91], Score-CAM [92], and Layer-CAM [93] visualisation methods. The
study involved comparing the performance of four pretrained models (AlexNet [135],
VGG16 [163], ResNet50 [167], and Xception [164]) on the ImageNet dataset [168]
using five evaluation metrics (AD, SSIM, FSIM, MSE, and AVX). The comparison
led to two observations. The first observation showed that ADVISE consistently out-
performed other methods on all models, indicating that it is a highly competitive
visual explainability method. The second observation indicated that Xception, de-
spite having higher classification accuracy than other models on the ImageNet task,
exhibited lower efficiency in visual explainability across all metrics when compared
to the other pretrained models.

In our quest for this AVX decline in Xception, we examined the saliency maps
produced by the ADVISE in shallow, middle, and deep layers (see an example in
Figure 5.5). In contrast to the shallow and middle layers, which tend to highlight low-
level visual features like edges and blobs distributed throughout the image, the deep
layer of the Xception model tends to focus on the centre of the scene. Additionally,
the other models we studied have different focal points within the image. This focus
is known as the centre bias in saliency studies [175, 176], where most studies revealed
that observers prefer to look more often at the centre of the image than at the edges.
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Figure 5.5: ADVISE outputs for shallow, middle, and deep layers of (a) VGG16, (b)
ResNet50, and (c) Xception pretrained models on ImageNet.

However, Xception model exhibits a notable inclination towards centre bias, a
characteristic that carries both merits and drawbacks. While it is more aligned with
human cognitive skills for perceiving visual data, as explained by [88], the centre of
mass of the saliency map is the Achilles Heel of many visual explanation methods, with
path attribution methods offered to address it [19] but failing the sanity checks [177].

A combination of the Xception model’s centre bias and the existing XAI methods’
limitations seems to account for the reduced visual explainability observed for this
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model. The Xception model’s tendency to focus on the image centre matches human
cognitive patterns, but it also hinders the generation of informative saliency maps.
Current XAI techniques, such as path attribution methods, have difficulties adjusting
to this bias and often do not pass sanity checks. Thus, the problem stems from an
interplay between the model’s features and the current explainability techniques’
constraints, which requires further research to effectively overcome this challenge.

The specific challenges observed with the Xception model, although the proposed
XAI method and quantitative metrics, which are supported by best practices, can
evaluate the performance of different models in visual explanation, we still have a
fundamental problem with the lack of ground-truth explanations. In fact, we aim
to determine which methods best explain our model without knowing how it works.
Evaluating supervised models is relatively straightforward since we have a test set.
However, evaluating explanations is difficult since we do not exactly know how our
model works and do not have the ground-truth for a fair comparison.

(a)

(b) AlexNet (c) VGG16 (d) ResNet50 (e) Xception

Figure 5.6: (a) An ablated image by randomly replacing pixels with the salt and pepper
noise with the noise density of δ = [0.025, 0.075, 0.125, 0.175, 0.225]. (b-e) Changes in the
performance of the ADVISE and five additional visual explanation methods as a function of
(AVX, δ).

To address this challenge, we conduct an ablation study to explore the robustness
and sensitivity of ADVISE and other visual explanation methods. The ablation study
consists of two parts: (1) we ablate the input image by randomly replacing pixels
with the salt and pepper noise counterparts; (2) we remove ReLU at the same time
to explore the effect of negative gradients on scoring the feature map units and the
visual explanation. To do this, we use 3,000 images selected from ImageNet and
ablate them using the noise density of δ = [0.025, 0.05, 0.075]. Figure 5.6a shows
an ablated image, and Figure 5.6b–5.6e shows the proposed method’s performance
compared with other visual explanation methods.

While the AVX value of the ADVISE and other visual explanation methods de-
grades due to incorporating negative gradients and ablating the input images, the
proposed feature scoring method, unlike other methods, could meet the sensitivity
axiom [19] in this classification task because the AVX never reached 0. However, we
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should mention that the pitfall of the ablation test is that if we artificially ablate
pixels in an image, we end up with inputs that do not belong to the original data
distribution. The question of whether or not users should feed their models with
inputs that are not part of the initial training distribution is still being debated [178,
179, 180].

5.3 Discussion and Future Works

In this chapter, we introduced a method for both quantifying and visualising feature
relevance in CNNs using adaptive KDE. The proposed approach enhances the quality
and interpretability of visual explanations by effectively highlighting salient regions
that significantly contribute to a model’s predictive decisions. Moreover, we propose
comprehensive evaluation metrics to assess the quality and effectiveness of visual
explanations from multiple dimensions, such as class sensitivity, hit rate, confidence
drop, structural similarity, feature similarity, and mean squared error.

Despite its advantages, our method shares common limitations inherent to many
existing visual explanation techniques. One challenge is that visual explanations
are not sufficient for providing a complete understanding of the model’s decision
process. Visual explanations only show what regions or features in the input image
are relevant for the model’s prediction but do not show why or how these regions or
features are relevant. For example, visual explanations do not explain what concepts
or rules the model learned from the data, how these concepts or rules are combined
or activated in different layers or units, or how these concepts or rules relate to
human-understandable semantics or logic. Therefore, we need to complement visual
explanations with other forms of explanations, such as textual, symbolic, or causal
explanations, that can provide more insights into the model’s reasoning process.

Another gap lies in the current visual explanation methods’ ability to compare
different models effectively. While these methods highlight relevant features, they
do not capture unique attributes—exclusive features one model learns while another
fails to. Comprehending such exclusive features is crucial for model comparison,
enhancement, and knowledge transfer processes during distillation. Current visual
explanation methods and evaluation metrics do not adequately capture the nuanced
differences between models or measure the extent of unique attributes learned during
knowledge distillation. To fill this gap, we proposed a novel technique called Uni-
CAM, which includes quantifying metrics to elucidate model-specific features in the
knowledge distillation process and assess their significance for the target task. The
following chapter elaborates on our contribution to enhancing the explainability of
architectures benefiting from the knowledge distillation training approach.
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5.4 Conclusion

In this chapter, we presented a new method for quantifying and visualising the feature
relevance of CNNs using adaptive kernel density estimation. The proposed method,
ADVISE, estimates each unit’s importance score in the feature map using adaptive
KDE to capture the local variation of the gradient values. Then, it generates saliency
maps highlighting how much each pixel in the input image influences the model’s
decision for a given class. We also presented new evaluation metrics to measure
the quality and effectiveness of visual explanations. We conducted extensive experi-
ments on three benchmark datasets and four popular CNN architectures to evaluate
and compare the proposed method with existing methods. The results proved that
ADVISE outperformed other methods and generated more salient and informative
saliency maps with fewer units.
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Chapter 6

Explaining Knowledge Distillation: Visualising and
Quantifying Knowledge Transfer

Knowledge distillation (KD) is a technique used to enhance the performance of Deep
Neural Networks (DNNs) by transferring knowledge from a complex Teacher to a
simpler Student model [101, 102, 103, 104, 105, 106]. Despite its growing popularity
in various applications such as computer vision, a major challenge in KD is to provide
effective and interpretable explanations of the knowledge transfer process from a
Teacher to a Student. Existing visual explainability techniques for Convolutional
Neural Networks (CNNs) [84, 85, 86, 87, 90] are not directly applicable for the specific
context of KD. These techniques only explain single-model predictions and fail to
capture the specific features or activations of the knowledge transfer that enhance
the Student’s performance.

Our study introduces novel techniques to enhance the explainability of the KD
process. We achieve this by comparing the attention patterns and salience maps of
a Student model, trained with the guidance of the Teacher’s knowledge and data,
with a Base model, trained solely on data. The core of our analysis are Distilled
features, novel features acquired by the Student, and Residual features, features that
the Student overlooked and only exist in the Base model. As KD is generally thought
to improve the Student’s performance over the Base model, these distilled features
could provide insights into what knowledge is transferred during KD, while residual
features could be irrelevant to the task or a consequence of Student overfitting during
KD. Hence, we aim to visualise and quantify these features, making the KD process
more interpretable.

Specifically, we investigate the following key questions: (1) How similar are the
attention patterns and saliency maps of the Student and the Base model? (2) How
do the features learned by the Student compare to the features learned by the Base
model in terms of their relevance to the task? (3) How can we quantify and visualise
the saliency maps of the knowledge acquired during KD (distilled features) and the
features the Student overlooked (residual features)? (4) How does the difference in
depth architecture between the Teacher and Student influence the KD process, and
can we explain the observed impact?

To address these key questions, we propose Unique Class Activation Maps (Uni-
CAM ), a novel gradient-based visual explanation method designed to visualise the
saliency maps of the distilled and residual features. Furthermore, we propose two
novel metrics, Feature Similarity Score (FSS) and Relevance Score (RS), using dis-
tance correlation (dCor) [181] and partial distance correlation(pdCor) [181, 182]. FSS
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Figure 6.1: Saliency maps of distilled and residual features generated using UniCAM.

measures the similarity of the feature representations and the attention patterns be-
tween the Student and Base model. RS measures the relevance of the salient regions
and the distilled features for the target task. To avoid potential architectural bi-
ases, we performed most experiments using the same architecture for the Student
and Teacher models, using the Teacher as the Base model. We also performed an
experiment where Student and Teacher architectures vary, to assess the fourth re-
search question and evaluate the impact of architectural differences. We apply our
methodology to three state-of-the-art KD techniques with different knowledge transfer
strategies [183]: Response-based [107], Attention-based [105], and Overhaul feature-
based [108].

Figure 6.1 shows how UniCAM visualises knowledge distilled and overlooked dur-
ing KD. The distilled features focus on the leaf region, especially the areas crucial for
plant disease classification. On the other hand, the residual features mainly highlight
the background areas, which are irrelevant to the target task. The Student model
learns to concentrate on the key aspects of the target object with the help of the
knowledge transferred from the Teacher and thus achieves improved performance.

Our key contributions are fourfold: (1) we visualise and quantify the salient fea-
tures localised by the Student and the Base model at various layers, demonstrating
that KD facilitates the Student to learn more relevant features; (2) we introduce Uni-
CAM that visualises the distilled and residual features during KD; (3) we propose
novel metrics, FSS and RS to measure the similarity and relevance of the atten-
tion patterns, distilled and residual features; and (4) using UniCAM, FSS and RS,
we demonstrate how smaller Student models struggle to learn relevant features from
complex Teacher models, giving further insights to the findings by Mehdi et al. [184].



80 Chapter 6. Explaining Knowledge Distillation: Visualising and Quantifying
Knowledge Transfer

6.1 Methodology

Given a Teacher and a Student models, our goal is to explain and quantify dis-
tilled and residual features. Our approach uses Grad-CAM [90], distance correlation
(dCor) [181], and partial distance correlation (pdCor) [181, 182] to introduce a novel
visual explanation and metrics.

6.1.1 Preliminaries: distance and partial distance correlation

Distance correlation [181] measures the dependence between two random vectors that
capture their multidimensional associations. For an observed random samples (x, y) =
(Xk, Yk) : k = 1, . . . , n, where n is the number of samples, the empirical distance
correlation between x and y, R2

n(x, y), is defined as:

R2
n(x, y) =


V 2

n (x,y)√
V 2

n (x,x)V 2
n (y,y)

, V 2
n (x, x)V 2

n (y, y) > 0

0 , V 2
n (x, x)V 2

n (y, y) = 0
(6.1)

where V 2
n (x, y), V 2

n (x, x) and V 2
n (y, y) are the squared sample distance covariance.

Partial distance correlation [181] extends dCor to measure the association between
two random vectors after adjusting for the influence of a third vector. It is computed
by projecting the distance matrices onto a Hilbert space and taking the inner product
between the U-centered matrices. Let (x, y, z) be random samples observed from the
joint distribution of (X,Y, Z), then the partial distance correlation between x and y
controlling for z is given by:

R∗2(x, y; z) =
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z (x)·P⊥
z (y))
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where, P⊥
z (x), P⊥

z (y) is the orthogonal projection of x and y onto z, (P⊥
z (x)·P⊥

z (y)) is
the sample partial distance covariance and ∥.∥ represents the Euclidean norm. Zhen et
al. [182] used pdCor to condition multiple models and identify their unique features1,
which means removing the common features and assessing the remaining ones.

6.1.2 UniCAM: Unique Class Activation Mapping

We aim to generate the saliency maps of the distilled and residual features, high-
lighting their importance and attention patterns of the features, enabling a deeper
understanding of KD. Grad-CAM [90] generates saliency maps based on the target
class’s gradients, revealing the relevance of features and providing a better under-
standing of the prediction. However, Grad-CAM is not suitable for KD, as it does

1Unique features are the features specific either to the Base model (residual features) or to the
Student (distilled features).
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not explain which features the Student acquires or misses from the Teacher. To
address this limitation, we propose UniCAM, a novel gradient-based explainability
technique for KD. UniCAM uses pdCor to adjust the feature representations for mu-
tual influence and remove shared representations between the Student and Teacher.
The remaining (unique) features are the distilled or residual features, which represent
the knowledge that the Student model acquires or fails to learn from the Teacher.

Let xs and xt be the features extracted from a specific convolutional layer of the
Student and the Teacher, respectively. UniCAM consists of the following main steps:
(1) computing pairwise distance matrices for both xs and xt, (2) normalising the
distance matrices to obtain the adjusted distance matrices, P s and P t, (3) measuring
the mutual influence and subtracting the shared feature from each model’s feature
set, and (4) generating the heatmaps of the unique features. We will show in detail
how to compute the distilled features, as the residual features can be computed in
the same way.

Following the approach in [181], we first compute the pairwise distance matrix
D(s) = (D(s)

i,j ) as:
D

(s)
i,j =

√
(xi − xj)2 + ϵ. (6.3)

Then, we normalise the distance matrix to obtain the adjusted pairwise distance
matrix P (s). This normalisation is a form of U-centred projection that centres the
distance matrix and accounts for the overall distribution of distances within each
feature set.
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Next, we extract the unique features by adjusting for the mutual influence between
the Student’s and Teacher’s features:

xs|unique = P (s) − ⟨P
(s), P (t)⟩

⟨P (t), P (t)⟩
· P (t). (6.5)

where
⟨P (s), P (t)⟩ = 1

n(n− 3)
∑
i ̸=j

(
P

(s)
i,j · P

(t)
i,j

)
. (6.6)

Then, we compute the importance of the unique features towards the model’s
prediction using the gradients with respect to these features and derive weights for
each unit k as:

β
(xs|unique,c)
k = 1

N

∑
i

∑
j

∂yc

∂A
(xs|unique)
ij

, (6.7)
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where Aij is the activation at the (i, j)th location, β(xs|unique,c)
k is the weights of unit

k for class c, computed based on the unique features extracted, xs|unique. N is a nor-
malisation factor to ensure the gradient’s magnitude is standardised across different
units. Finally, the UniCAM localisation maps for are generated by applying a ReLU
function to emphasise the areas of importance:

L
(xs|unique,c)
UniCAM = ReLU

(∑
k

β
(xs|unique,c)
k A(xs|unique)

)
. (6.8)

6.1.3 Quantitative analysis of KD features

In addition to UniCAM, we propose two novel metrics —Feature Similarity Score
(FSS) and Relevance Score (RS)—to quantify the distilled and residual features.
To compute these metrics, we need to extract the features from the salient regions
generated using UniCAM or Grad-CAM. Then, we use a perturbation technique
proposed by Rong et al. [185], that modifies the image pixels based on their prediction
relevance. This perturbation technique preserves the important pixels and replaces
the rest with the weighted average of their neighbours. This way, the perturbed
images retain the most salient features identified by UniCAM or Grad-CAM, while
reducing the noise and redundancy of the irrelevant features. Fig. 6.2 shows this
process with examples of input images, UniCAM explanations, and perturbed images.

Figure 6.2: Visualisation of residual and distilled features after perturbation.

The feature extraction function takes the perturbed images in Fig. 6.2 as input
and extract the features (See Eq. 6.9) from the corresponding layer as:

x̂s = fs(I ⊙H), x̂t = ft(I ⊙H) (6.9)

where fs and ft are the feature extractor functions for the Student and Teacher,
respectively, I is the input image, H is the heatmap generated by UniCAM or Grad-
CAM, ⊙ is the element-wise multiplication operator. These features are the numerical
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representations of the perturbed image that capture the essential information for
prediction, and their dimension depends on the number of filters and the size of the
activation maps in each layer. Hence, using these features, we quantify the similarity
of the attention patterns and relevance of distilled and residual features.

Feature similarity score (FSS):

FSS measures how much the Student and the Teacher model agree on the most
relevant features. Since distilled and residual features capture the unique features of
each model, comparing their similarity using FSS is not logical. For this reason, we
compare the similarity of the attention patterns of the Student and Teacher saliency
maps generated using Grad-CAM and measure their degree of alignment as follows:

FSS = R2(x̂s, x̂t) = 1
k

k∑
i=1

dCor(x̂si , x̂ti), (6.10)

where k is the number of batches, x̂si and x̂ti are the minibatch features of the Student
and Teacher extracted from the highlighted region. FSS ranges from 0 to 1, where
0 means no similarity and values close to 1 indicates higher the attention pattern
similarity.

Relevance score (RS):

RS quantifies the relevance of the distilled and residual features for the ground truth
(gt) prediction. Following Zhen et al. [182], we used a pre-trained BERT [186] em-
bedding of the label as ground truth. This allows the label to capture more semantic
information than a one-hot encoding and allows for meaningful notions of distance
between different ground truth gt embedding. Hence we formulate RS as follows:

RS = R2(x̂s, gt) = 1
k

k∑
i=1

dCor(x̂si , gti), (6.11)

where x̂si is the features extracted using Student and gti is the ground truth of the
corresponding batches. We replace x̂si with x̂ti to compute the RS for the Teacher.
Therefore, both FSS and RS offer a robust quantitative approach to evaluate the
similarity of attention patterns and relevance of distilled features during KD.
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6.2 Experiments

6.2.1 Datasets and Implementation Details

We evaluate the proposed method on three public datasets for image classification:
ASIRRA (Microsoft PetImages) [187], CIFAR10 [188] and Plant disease classification
dataset [189]. ASIRRA contains 25,000 images of cats and dogs, while CIFAR10
contains 60,000 images of 10 classes. These datasets are widely used as benchmarks
for image classification tasks and have different levels of complexity and diversity.
Plant disease classification dataset poses a more challenging and realistic problem of
fine-grained image classification, where the differences between classes are subtle and
require more attention details.

We performed various experiments to analyse and explain the KD process. First,
we used similar architecture for the Student and Teacher, ResNet-50 [167], to avoid
the bias of a more complex Teacher having more complex or relevant features than
a simpler Student model. We analysed the performance of the Teacher and Student
models, the similarity attention patterns and relevance of the distilled and residual
features durign KD. In the second experiment, we analysed different combinations
of ResNet-18, ResNet-50, and ResNet-101 as Teacher and Student models to explain
the opaque KD process. We used the proposed methods to uncover the challenges of
KD when the Teacher is complex and the Student is small. We applied our approach
to three state-of-the-art KD methods for classification: response-based KD [107],
overhaul feature-based KD [108], and attention-based KD [105]. We implemented the
proposed method using PyTorch [190] and using open source codes from KD [191]
and Grad-CAM [192].

6.2.2 Results

We trained the models using 5-fold cross-validation. We assessed the performance
and visual explanations of Teacher and Student models trained with different KD.
As shown in Fig. 6.3, the KD-trained models achieved higher accuracy than the
corresponding Teacher model (Base model).

Comparison of Teacher-Student attention patterns:

We hypothesise that KD enhances the Student model’s ability to learn more salient
features and ignore irrelevant ones. To test this, we visualise and quantify the agree-
ment and difference between the visual explanations of the Student and its corre-
sponding Base model at various layers.

We compare the features learned by the Teacher and Student at the salient regions
and measured their attention pattern similarity and relevance. Fig. 6.4 shows the
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Figure 6.3: The training and validation accuracy( (a) and (b) ASIRRA, (c) and (d) CI-
FAR10. The shaded region is the standard deviation.

Figure 6.4: Grad-CAM visualisation of Teacher and Student models trained with various
KD techniques at different layers.

Grad-CAM visualisation at L1, L2, L3, and L4 of the last residual blocks in the four
layers of the ResNet-50. The Teacher model relies on low-level features such as edges
and spreads the attention over the entire image, including the background, in the
first and intermediate layers. The saliency maps generated by KD trained models,
however, highlight more salient regions and focus on the object in all layers. This
suggests that KD helps a model learn better features and improve its localisation
ability by directing attention to more salient features earlier in the network.

We then use FSS and RS metrics to quantify the attention pattern similarity
and relevance of the features between the Teacher and Student models. We apply
these metrics to the features extracted from the localised regions at various layers of
the models, which we obtain by using UniCAM and Grad-CAM. For each layer, we
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Figure 6.5: (a) the attention pattern similarity and (b) relevance of the salient regions
between Student and Teacher, localised by Grad-CAM.

compute FSS = R2(x̂t, x̂s), where x̂t and x̂s are the relevant features extracted from
the Teacher and Student models, respectively. We also compute RSt = R2(x̂t, gt)
and RSs = R2(x̂s, gt) for the Teacher and Student models respectively, where gt is
the BERT embedding representing the ground truth of the predicted class.

Fig. 6.5(a) and (b) show the feature similarity of the attention patterns (FSS) and
their relevance score (RS) between the Teacher and Student models across different
layers, respectively. The FSS is higher for the deeper layers than for the input and
intermediate layers, indicating that the Student models either learn more salient
features in the input layers or fail to mimic the Teacher and learn more irrelevant
features. However, the Grad-CAMs in Fig. 6.4 shows that the Student models have
localised far better salient features than the Teacher model, especially in the input
and intermediate layers. Therefore, the lower FSS at input and intermediate layers
suggests that the Students have learned more relevant features that the Teacher
model have not learned yet. Moreover, the Student models achieve higher RS than
the Teacher across all layers, implying that the models trained with KD have learned
more relevant features with the guidance of the Teacher knowledge.

In summary, Fig. 6.4 and Fig. 6.5 demonstrate that KD enables the Student
models to acquire more relevant features, which enhance the prediction accuracy and
ability to generalise. Furthermore, our proposed methods can explain when a student
overfits and fails to distil adequate knowledge from the teacher (see exploring the
capacity gap).

Visualising and quantifying knowledge transfer:

Here we use our proposed UniCAM method to visualise the unique features the stu-
dent model acquired during KD. The saliency maps generated using UniCAM show
that KD is not a simple feature copying process from the Teacher to the Student but
a guided training process where the Teacher’s knowledge assists the Student to learn
existing or new features. This is demonstrated in Fig. 6.6 where distilled features are
mainly concentrating on the primary object, while the residual features are concen-
trated on the background or seemingly less relevant parts of the object. Moreover,
in the plant disease classification, distilled features accurately identify segments of
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Figure 6.6: Sample visualisation of Teacher and Student features. Distilled features focus
on the object, while residual features spread over the entire image.

Table 6.1: Relevance of features learned by Teacher model (ResNet-50) and Student models
(ResNet-50) trained with different different distillation techniques.

Dataset KD-Technique Layer#
Feature Relevance

Grad-CAM UniCAM

Salient Teacher fts. Salient Student fts. Residual fts. Distilled fts.

ASIRRA [187]

Response-based

L1 0.0092 0.0189 0.0024 0.0017
L2 0.0054 0.0130 0.0001 0.0040
L3 0.0100 0.0365 0.0007 0.008
L4 0.0141 0.0861 0.0043 0.006

Attention-based

L1 0.0092 0.0107 0.0049 0.0047
L2 0.0054 0.0189 0.0022 0.0035
L3 0.0100 0.0431 0.0045 0.0100
L4 0.0141 0.0583 0.0082 0.0102

Feature-based

L1 0.0092 0.0465 0.0063 0.0101
L2 0.0054 0.0453 0.0027 0.0048
L3 0.0100 0.0570 0.0036 0.0196
L4 0.0141 0.0953 0.0012 0.0258

CIFAR10 [188]

Response-based

L1 0.0063 0.0304 0.0040 0.0155
L2 0.0133 0.0378 0.0090 0.0148
L3 0.0282 0.0432 0.0046 0.0113
L4 0.0417 0.0585 0.0090 0.0106

Attention-based

L1 0.0063 0.0232 0.0043 0.0136
L2 0.0133 0.0280 0.0099 0.0101
L3 0.0282 0.0256 0.0087 0.0063
L4 0.0417 0.0437 0.0017 0.0021

Feature-based

L1 0.0063 0.0311 0.0028 0.0185
L2 0.0133 0.0388 0.0017 0.0153
L3 0.0282 0.0457 0.0070 0.0117
L4 0.0417 0.0794 0.0024 0.0150

leaves essential for disease classification, demonstrating that KD helps models learn
more relevant features.

In addition, Table 6.1 quantifies the relevance of the features extracted from re-
gions highlighted using Grad-CAM and UniCAM. UniCAM visually explains the class
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discriminative features exclusive to the Teacher and Student models, whereas Grad-
CAM generates saliency maps highlighting the features important for the prediction.
The models trained with various KD techniques have higher RS than the equivalent
Base model. Among the Students, overhaul feature distillation achieved better accu-
racy performance and learned more relevant features. Overhaul distillation transfers
the intermediate feature representations of the Teacher, enabling the Student to learn
more fine-grained and diverse features.

To further evaluate the unreliability of our proposed explainability technique to
complex datasets, we applied it to plant disease classification. The distilled features
in Fig. 6.7 primarily highlighted regions crucial for accurate prediction, while resid-
ual features tended to be distributed across areas irrelevant to the disease diagnosis.
Furthermore, we visualised the disease-affected areas for Potato Early Blight and

Figure 6.7: Sample visualisation of unique (distilled and residual) features in Plant disease
classification.

Strawberry Leaf Scorch (Fig. 6.8). The KD-trained model shows improved locali-
sation of crucial disease signs on the leaves. Finally, we explored the distilled and
residual features from Layers 3 and 2 (Fig. 6.9). Distilled features predominantly
localised the diseased regions in the input image, even for challenging cases. On the
other hand, residual features highlighted areas with small or no influence on plant
disease classification. Therefore the proposed visual explanation method explains the
distilled and residual features, and it also demonstrates that knowledge guides the
Student model to learn relevant features for the prediction.
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(a) Potato Early Blight (b) Strawberry Leaf Scorch

Figure 6.8: Sample visualisation of distilled and residual features on Potato Early Blight
and Strawberry Leaf Scorch plant disease classification.

(a) Layer-3 (b) Layer-2

Figure 6.9: Sample visualisation of Distilled and residual features on Plant disease classifi-
cation from Layer-3 and Layer-2.

Exploring the capacity gap impact:

The Student’s performance often declines when there is a large architecture (capac-
ity) gap between the Teacher and the Student [193, 194]. However, the Student’s
performance drop could be either attributed to its own inability to learn relevant fea-
tures, or the Teacher’s knowledge is overwhelming the student. To address this issue,
our experiment adopts two distillation strategies involving ResNet-101 as a Teacher
and ResNet-18 as a Student, which have a large capacity gap. In the first approach,
we perform direct knowledge transfer from ResNet-101 to ResNet-18, while the sec-
ond introduces an intermediate “Teacher assistant” [195], to bridge the capacity gap
between ResNet-101 and ResNet-18. We use UniCam and Relevance Score (RS) to
investigate the KD process in these settings, with a focus on how well the smaller
model manages to learn relevant features. Our analysis suggests the large capacity
gap may contribute to the distilled model’s performance drop.

We first examine the impact of a large capacity gap on the knowledge transfer
between Teacher and Student. We use ResNet-101 as the Teacher and ResNet-18 as
the Student and apply KD to train the Student model. Fig. 6.10 shows the saliency
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maps of the unique features of both models. We notice that the distilled knowledge
is unrelated to the object and misses the relevant part of the input. To explore the
cause of this performance drop, we train a ResNet-18 (Base Model) without KD and
compare the unique features with the Student model. Fig. 6.11 demonstrates that in
this setting the Base Model captures more relevant features than the Student model.
This suggests that a large capacity gap impedes knowledge transfer, as the Student
model cannot effectively learn from the complex Teacher’s knowledge.

Figure 6.10: Relevant features learned by
ResNet-18 (Student) distilled from ResNet-
101 (Teacher).

Figure 6.11: Relevant features learned by
Student (ResNet-18) distilled from ResNet-
101 compared to Base Model.

To bridge the capacity gap, we use an intermediate Teacher assistant to enable
a more effective and focused knowledge transfer from ResNet-101 to ResNet-18 via
ResNet-50. Fig. 6.12 compares the saliency maps of the distilled features learned by
two Students: ResNet-18 directly distilled from ResNet-101 (R18-R101) and ResNet-
18 distilled from ResNet-101 through Teacher assistant ResNet-50 (R18-R50-R101).
The saliency maps, visualised using UniCAM, reveal that the Teacher assistant helps
learn more relevant features that highlight the object parts, while R18-R101 learns
some irrelevant features and misses the salient features for the gt prediction. The
Teacher assistant facilitates the Student model to learn compatible knowledge from
the complex Teacher and provides more appropriate supervision and feedback.

We conducted a feature ablation analysis to assess the quality of the features
learned by the Student trained with Teacher-assistant and its equivalent Base model.
We used UniCAM to generate the saliency maps of the distilled and residual features
of each model. Fig. 6.13 shows that the saliency maps of the distilled features are
more focused on the salient regions of the input images, while the residual features
are more dispersed.

Finally, Table 6.2 quantifies the relevance of the features learned by the Base
model, and equivalent Student model at different layers. The model trained with the
Teacher assistant has learned more relevant features compared to the model directly
distilled from ResNet-101 and the Base model.

The empirical findings presented above indicate that the capacity gap between the
Teacher and Student models influences the quality and efficiency of KD. We demon-
strate the benefit of our methods in the analysis of the Student model’s behaviour,
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Figure 6.12: Grad-CAM (2nd and 4th rows) and UniCAM (3rd and 5th rows) visualisations.

Figure 6.13: Comparison of distilled and residual features between Student (R18-R50-
R101) and Base Model.

Table 6.2: Comparing visual explanations and distilled and residual features of ResNet-18
trained with and without Teacher assistant on the ASIRRA dataset.

Layer# Main features Distilled/Residual features

Base model R18-R101 R18-R50-R101 Base model R18-R101 R18-R50-R101
L1 0.0037 0.0022 0.0052 0.0014 0.0007 0.0050
L2 0.0039 0.0035 0.0050 0.0016 0.0014 0.0031
L3 0.0057 0.0045 0.0074 0.0012 0.0008 0.0060
L4 0.0063 0.0052 0.0082 0.0018 0.0011 0.0076

both when it succeeds and when it fails to learn relevant features from the Teacher.
Therefore, our visual explanation technique and metrics can aid to select the optimal
Teacher-Student pairs and improving KD training.

6.3 Discussion and Future Works

This chapter presented novel techniques to explain and quantify the knowledge trans-
fer during KD. We proposed UniCAM, a gradient-based visual explanation method
to explain the distilled knowledge and residual features during KD. Our experimental
results show that UniCAM provides a clear and comprehensive visualisation of the
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features acquired or missed by the Student during KD. We also proposed two metrics:
FSS and RS to quantify the similarity of the attention patterns and the relevance
of the distilled knowledge and residual features. We demonstrate that KD helps the
Student learn more useful features, and the saliency maps of the distilled features
mainly focus on the target object. The proposed explainability technique can be ap-
plied to other applications beyond explaining KD, such as choosing the best model
for fine-tuning or transfer learning for a given dataset. A possible extension of this
work is to select the best model for fine-tuning based on the relevance of its features
for the target dataset.

The proposed method has some limitations. We only conducted experiments on
the classification task, which is one of the many possible tasks that benefit from
KD. Thus, it would be interesting to explore the behaviour of KD for other tasks to
investigate the robustness of the proposed method. This is part of our future work.
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Chapter 7

Discussion

This chapter provides a comprehensive summary of the research journey undertaken in
this thesis. It reflects on the achievements in selecting informative samples to reduce
human effort and improve generalisation through Meta-learning, designing reliable
and robust AI via Uncertainty-Guided Learning, and developing novel Explainability
techniques to elucidate CNN decision-making. This summary shows how the research
chapters relate and form a coherent story. The implications of these studies are
outlined, and an outlook for future work is provided, highlighting the potential areas
of research that could advance the field of unbiased, transparent, and ethical AI.

7.1 Summary

This thesis has conducted a systematic exploration of the dynamic field of computer
vision. It represents several years of meticulous research, combining innovative think-
ing, rigorous analysis, and practical applicability.

Chapter 1 established the foundation by identifying the needs and challenges
within the field of computer vision. It introduced the research questions investigated
in the following chapters and provided a theoretical background, focusing on funda-
mental concepts and theories that are essential to computer vision, thereby creating
a solid basis for more specialised investigations.

Chapter 2 presented a thorough review of related works and relevant literature,
situating our research within the existing academic landscape.

Chapter 3 explored Meta-learning: A Reinforcement Learning for Informative
Sample Selection in Image Classification. This novel approach aimed to optimise the
selection of samples, improving the efficiency and effectiveness of image classification
models.

Chapter 4 explored Uncertainty-Guided Learning: Active Learning with MC
Dropout, a methodology that uses uncertainty estimates to select informative sam-
ples for annotation and enable a classifier with rejection. This chapter proposed intro-
ducing human-in-the-loop approaches that leverage uncertainty to enhance learning
efficiency and reliability, both at training and inference time.

Chapter 5 presented Adaptive KDE for Visual Explainability of CNNs: A Novel
Approach to quantify and visualise feature relevance. This chapter developed a novel
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way to understand and articulate the workings of Convolutional Neural Networks,
contributing to the ongoing research about transparency and interpretability within
machine learning.

Chapter 6 focused on Explaining Knowledge Distillation: Visualising and Quan-
tifying Knowledge Transfer. This exploration into the nature of knowledge transfer
within model training not only provided valuable insights but also proposed practical
tools for visualising and understanding this complex process.

The contributions in this thesis highlight the relentless pursuit of innovations that
advance the field of computer vision towards more responsible, transparent, and un-
biased applications. Through Meta-learning, Uncertainty-Guided Learning, Adaptive
KDE, and Knowledge Distillation techniques, we have worked to select informative
samples, create uncertainty-aware CNNs, propose novel Explainability methods, and
explain KD techniques. These interconnected themes represent a mindful progres-
sion towards a more ethical and comprehensible implementation of machine learning.
This thesis enriches the academic discourse and sets a benchmark for future explo-
ration within the domain of computer vision by bridging the gap between cutting-edge
research and some practical applications. The collaborative, accurate, and transfor-
mative approach showcased in this work stands as a testament to the possibility and
promise of responsible and explainable AI.

7.2 Reflection and Outlook

Finally, we hope that the proposed methods and techniques for improving the per-
formance, reliability, and explainability of DNNs for various computer vision tasks
will inspire and motivate future research in this field. We believe that DNNs have
great potential and value for solving complex and challenging problems in computer
vision and beyond, but they also need to be enhanced and explained to ensure their
quality and trustworthiness. We hope our work will contribute to advancing the
state-of-the-art in DNNs and making them more accessible, explainable, responsible,
and beneficial for humans.

This three-year-long PhD research journey started with a focus on selecting in-
formative samples to avoid model overfitting and bias, essentially handling bias at
the data level. This approach laid the foundation for understanding the causes and
effects of overfitting and the possible solutions. The research then moved towards
uncertainty, developing a methodology that allows a DNN model to abstain from
decision-making when uncertain, enhancing the model’s reliability and robustness.
However, these approaches did not fully reveal the internal mechanisms of DNNs’
decision-making. Therefore, the research further investigated the techniques explain-
ing internal decision-making and proposed a novel visual explainability technique.
Finally, the exploration culminated in proposing new visual explainability techniques
to explain the decision-making processes within knowledge distillation, creating a
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comprehensive and coherent progression from data-level explanations to deep insights
into model functionality.

The future of explainability in DNNs is fascinating and multifaceted. Uncover-
ing causality in explanations and balancing the complexity and understandability of
deep models remain central challenges, offering exciting opportunities for future ex-
ploration. The quest for innovative methodologies to translate DNN decisions into
human-comprehensible terms continues, with the aspiration to bridge the current gap
between academic exploration and real-world implementation. The commitment to
responsible and ethical AI practices guides this ongoing journey, shaping the land-
scape for future research and applications in DNNs.

7.3 Future Works

We have proposed several novel methods and techniques for improving the perfor-
mance, reliability, and explainability of deep neural networks (DNNs) for various
computer vision tasks. We have also discussed the proposed methods’ implications,
limitations, and future directions. Here, we will summarise the main feature works
and suggest possible ways to extend and improve our research.

1. For the meta-learning method, we suggested improving it by using expert opin-
ion and uncertainty for sample selection, handling multiple tasks and datasets,
using more efficient reinforcement learning algorithms, integrating with an ac-
tive learning framework, and testing on real-world datasets and applications.

2. For the uncertainty-guided learning method, we suggested improving it by using
Bayesian optimisation to find the optimal dropout rate, using more complex
distributions for the approximate posterior, and using textual, symbolic, or
causal explanations to provide more insights into the model’s reasoning process.

3. For the adaptive KDE method, we suggested exploring and improving its appli-
cation across domains such as segmentation, detection and DNN models such
as LSTM.

4. On explaining knowledge distillation method, we suggested improving it by
applying it to various computer vision tasks and other applications that benefit
from using KD.

7.4 Ethical Implications

The advent of Artificial Intelligence (AI) has brought about transformative changes
across multiple sectors. However, alongside its myriad benefits, AI has also raised
significant ethical concerns, particularly concerning data bias, decision transparency,
and overall accountability. Pursuing responsible AI necessitates a comprehensive
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approach that extends beyond technical proficiency to consider the broader social,
ethical, and legal implications of these technologies.

Firstly, the issue of data bias is crucial. While this research has contributed
methods for mitigating such bias, the algorithms and models can only be as equitable
as the data on which they are trained. Even with balanced and unbiased training data,
the potential for unintended discriminatory outcomes remains, thereby mandating
continuous ethical vigilance.

Secondly, another ethical dimension introduced in this thesis is the aspect of deci-
sion uncertainty. Models often operate under conditions where data can be ambiguous
or incomplete. The thesis aims for a more responsible application of AI by incorpo-
rating uncertainty into the decision-making process and deferring to expert opinions
when necessary. This not only enhances the model’s performance but also reduces
the risk of making uninformed or potentially harmful decisions, especially in critical
sectors like healthcare or public safety.

Thirdly, decision transparency is an ethical imperative as well as a technical re-
quirement. Algorithms used in critical applications such as healthcare, criminal jus-
tice, and financial services wield substantial societal influence. Hence, the ability for
these algorithms to ’explain themselves’ via visual explanations is essential for ethical
governance and democratic accountability.

In conclusion, the ethical considerations surrounding AI are complex and multi-
faceted. While this research aims to contribute to more responsible and transparent
AI, it is crucial to acknowledge that the ethical discourse surrounding these technolo-
gies is an ongoing research requiring continual scrutiny. This thesis serves as one step
towards addressing these ethical challenges but is by no means a conclusive solution.
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Chapter 8

Contributions

This chapter summarises our research contributions and details the significant pub-
lications resulting from our work. These contributions reflect key developments and
novel approaches in our field of study. Through a methodical process and rigorous
investigation, our research has led to a series of publications, each contributing to the
broader scientific community. This section highlights the specific achievements and
places them within the wider context of academic discourse, emphasising the new
perspectives the research offers.

8.1 First Paper

8.1.1 Bibliography Entry

Adhane, G., Dehshibi, M. M., & Masip, D. (2021). A deep convolutional neural
network for classification of aedes albopictus mosquitoes. IEEE Access, 9, 72681-
72690. ISI JCR IMPACT FACTOR: 3.476 (2021). Q1.

8.1.2 Abstract

Monitoring the spread of disease-carrying mosquitoes is a first and necessary step to
control severe diseases such as dengue, chikungunya, Zika or yellow fever. Previous
citizen science projects have been able to obtain large image datasets with linked
geo-tracking information. As the number of international collaborators grows, the
manual annotation by expert entomologists of the large amount of data gathered by
these users becomes too time demanding and unscalable, posing a strong need for au-
tomated classification of mosquito species from images. We introduce the application
of two Deep Convolutional Neural Networks in a comparative study to automate this
classification task. We use the transfer learning principle to train two state-of-the-art
architectures on the data provided by the Mosquito Alert project, obtaining testing
accuracy of 94%. In addition, we applied explainable models based on the Grad-CAM
algorithm to visualise the most discriminant regions of the classified images, which
coincide with the white band stripes located at the legs, abdomen, and thorax of
mosquitoes of the Aedes albopictus species. The model allows us to further analyse
the classification errors. Visual Grad-CAM models show that they are linked to poor
acquisition conditions and strong image occlusions.
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8.1.3 Background

In our study, we have explored the application of a deep convolutional neural network
for the classification of Aedes albopictus mosquitoes (Adhane, G., Dehshibi, M. M.,
& Masip, D., 2021). Published in IEEE Access, Volume 9, this research represents a
relevant contribution to both deep learning and public health, by employing cutting-
edge techniques to categorise a mosquito species of significant concern.

8.1.4 New Methods

This work aims to develop a deep convolutional neural network (CNN) for the clas-
sification of Aedes albopictus mosquitoes, also known as the Asian tiger mosquito or
forest mosquito. Aedes albopictus is a vector of many viral diseases, such as dengue,
chikungunya, Zika, and yellow fever, and poses a serious threat to public health world-
wide. We propose a CNN model that can automatically identify and classify Aedes
albopictus mosquitoes from images captured by a smartphone camera. The model
is trained and tested on a large dataset of mosquito images collected from different
regions and environments. The results show that the proposed CNN model achieves
high accuracy and robustness in classifying Aedes albopictus mosquitoes, and outper-
forms existing methods. This work can provide a useful tool for mosquito surveillance
and control, especially in resource-limited settings.

8.1.5 Results

In our research, we applied a deep convolutional neural network to classify Aedes al-
bopictus mosquitoes, achieving significant success in accurately identifying the species.
Through careful experimentation and detailed analysis, we fine-tuned our model to
optimise performance, demonstrating its effectiveness in various real-world scenarios.
A critical part of our study involved using Grad-CAM to characterise the Aedes al-
bopictus mosquito parts, allowing us to understand how the CNN model makes its
decisions and if it uses the same characteristics as entomologists. With the help of
Grad-CAM, we discovered that, in addition to the parts of the mosquito that en-
tomologists use to distinguish, the model has been utilising additional body parts
such as the strips in the abdomen, the hairs in the antennae, and the thorax shape.
This significant finding offers new insights that can help entomologists easily dis-
tinguish mosquito species from one another, enriching the existing mosquito species
identification.
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8.2 Second Paper

8.2.1 Bibliography Entry

Adhane, G., Dehshibi, M. M., & Masip, D. (2021). On the use of uncertainty in
classifying Aedes Albopictus mosquitoes. IEEE Journal of Selected Topics in Signal
Processing, 16(2), 224-233. Q1

8.2.2 Abstract

The re-emergence of mosquito-borne diseases (MBDs), which kill hundreds of thou-
sands of people each year, has been attributed to increased human population, mi-
gration, and environmental changes. Convolutional neural networks (CNNs) have
been used by several studies to recognise mosquitoes in images provided by projects
such as Mosquito Alert to assist entomologists in identifying, monitoring, and man-
aging MBD. Nonetheless, utilising CNNs to automatically label input samples could
involve incorrect predictions, which may mislead future epidemiological studies. Fur-
thermore, CNNs require large numbers of manually annotated data. In order to
address the mentioned issues, this paper proposes using the Monte Carlo Dropout
method to estimate the uncertainty scores in order to rank the classified samples to
reduce the need for human supervision in recognising Aedes albopictus mosquitoes.
The estimated uncertainty was also used in an active learning framework, where just a
portion of the data from large training sets was manually labelled. The experimental
results show that the proposed classification method with rejection outperforms the
competing methods by improving overall performance and reducing entomologist an-
notation workload. We also provide explainable visualisations of the different regions
that contribute to a set of samples’ uncertainty assessment.

8.2.3 Background

In this paper, we further explore the classification of Aedes albopictus mosquitoes,
focusing on the incorporation of uncertainty models within deep learning frameworks.
Our research represents a novel approach in the field of signal processing, offering
insights into how uncertainty can be leveraged to improve classification accuracy.
The work, published in the IEEE Journal of Selected Topics in Signal Processing,
Volume 16, Issue 2, contributes to the ongoing efforts to enhance vector control and
disease prevention.

8.2.4 New Methods

Building upon previous research, this work introduces the concept of uncertainty mod-
elling to the classification of Aedes albopictus mosquitoes. We propose and compare
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various uncertainty models integrated with deep learning architectures to assess their
impact on classification performance. The experimental design includes the use of
large and diverse datasets encompassing various environmental conditions. The inno-
vative methodologies employed in this study provide a foundation for future research
and potential applications in real-world scenarios.

8.2.5 Results

In our exploration of the application of uncertainty in the classification of Aedes al-
bopictus mosquitoes, we achieved substantial findings that open new avenues in vec-
tor control and public health. Through comprehensive experimentation, we not only
identified the optimal uncertainty model to enhance classification but also proposed
an active learning framework. This framework enables the selection of the most un-
certain samples, forwarding them to experts only when the model is uncertain about
its decisions. Such an approach allows experts to label only a fraction of the data,
thereby enhancing performance and fostering trust in the system. Furthermore, we
extended our work to uncover the reasons for uncertainty by employing B-LRP, find-
ing that the sources of uncertainty often stemmed from damaged body parts and a
noisy background, where the target object is smaller compared to the background.
These insights guide the citizen’s efforts in capturing images of mosquitoes, minimis-
ing confusion in species identification, and ultimately contributing to the accuracy
and efficiency of classification. This multifaceted study underscores the potential
of integrating uncertainty into deep learning models, enriching the existing body of
knowledge and offering promising directions for future research.

8.3 Third Paper

8.3.1 Bibliography Entry

Adhane, G., Dehshibi, M. M., & Masip, D. (2022, August). Incorporating Reinforce-
ment Learning for Quality-aware Sample Selection in Deep Architecture Training.
In 2022 IEEE International Conference on Omni-layer Intelligent Systems (COINS)
(pp. 1-5). IEEE.

8.3.2 Abstract

Many samples are necessary to train a convolutional neural network (CNN) to achieve
optimum performance while maintaining generalisability. Several studies, however,
have indicated that not all input data in large datasets are informative for the model,
and using them for training can degrade the model’s performance and add uncertainty.
Furthermore, in some domains, such as medicine, there is insufficient labelled data to
train a deep learning model from scratch, necessitating the use of transfer learning
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to fine-tune a pretrained model in another domain. This paper proposes a transfer
learning strategy based on partially supervised reinforcement learning (RL) to address
these concerns by selecting the most informative samples while avoiding negative
transfers from the dataset. We conducted several experiments on the benchmark
image classification databases MNIST, Fashion-MNIST, and CIFAR-10 to create a
fair test harness for assessing the performance of the proposed strategy, which can be
extended to explore other domains in the future. The results show that the proposed
strategy outperforms the classical training methods.

8.3.3 Background

The integration of reinforcement learning with quality-aware sample selection repre-
sents a pioneering stride in our ongoing research. This paper builds on the existing
body of work that seeks to optimise the training process of deep learning architec-
tures. Our innovative method uniquely utilises reinforcement learning to facilitate
the dynamic selection of quality samples, focusing the training process on valuable
instances that contribute to overall model accuracy. Presented at the 2022 IEEE
International Conference on Omni-layer Intelligent Systems (COINS), our research
marks a significant advancement in the field of deep learning, contributing new in-
sights and techniques to the broader AI community.

8.3.4 New Methods

Our work introduces a novel reinforcement learning-based approach for quality-aware
sample selection in deep architecture, we establish a dynamic mechanism that selec-
tively focuses on high-quality samples, ignoring redundant or low-quality instances.
This process leads to more efficient training, saving computational resources without
sacrificing performance. Our method includes comprehensive experimentation across
various domains, including image classification and natural language processing, re-
vealing its applicability and effectiveness in different contexts.

8.3.5 Results

Our research culminated in the successful integration of reinforcement learning with
quality-aware sample selection, paving the way for enhanced efficiency in deep ar-
chitecture training. The proposed approach was rigorously tested on several deep
learning tasks, revealing significant improvements in training time without a loss in
model accuracy. The innovative utilisation of reinforcement learning to dynamically
select valuable samples not only optimises computational resources but also provides
insights into the potential synergy between reinforcement learning and other areas of
artificial intelligence. This work opens new horizons in the ongoing pursuit of efficient
and effective deep learning methodologies.
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8.4 Fourth Paper

8.4.1 Bibliography Entry

Dehshibi, M. M., Ashtari-Majlan, M., Adhane, G., & Masip, D. (2023). ADVISE:
ADaptive Feature Relevance and VISual Explanations for Convolutional Neural Net-
works. The Visual Computer, Springer. Q2.

8.4.2 Abstract

To equip Convolutional Neural Networks (CNNs) with explainability, it is essential
to interpret how opaque models make specific decisions, understand what causes the
errors, improve the architecture design, and identify unethical biases in the classi-
fiers. This paper introduces ADVISE, a new explainability method that quantifies
and leverages the relevance of each unit of the feature map to provide better visual
explanations. To this end, we propose using adaptive bandwidth kernel density esti-
mation to assign a relevance score to each unit of the feature map with respect to the
predicted class. We also propose an evaluation protocol to quantitatively assess the
visual explainability of CNN models. We extensively evaluate our idea in the image
classification task using AlexNet, VGG16, ResNet50, and Xception pretrained on Im-
ageNet. We compare ADVISE with the state-of-the-art visual explainable methods
and show that the proposed method outperforms competing approaches in quanti-
fying feature-relevance and visual explainability while maintaining competitive time
complexity. Our experiments further show that ADVISE fulfils the sensitivity and
implementation independence axioms while passing the sanity checks.

8.4.3 Background

Our research introduces ADVISE, an innovative approach to adaptive feature rele-
vance and visual explanations within the context of Convolutional Neural Networks.
The development of ADVISE emanates from the increasing need for interpretability
in deep learning models. Our approach uniquely combines statistical methods with
visualisation techniques to provide insight into how different features impact decision-
making within CNNs. The work is accepted in the Journal of The Visual Computer:
International Journal of Computer Graphics and contributes to the broader field of
explainable AI, offering a new perspective on transparency and understandability in
machine learning models.

8.4.4 New Methods

ADVISE represents a novel contribution to the domain of visual explanations for deep
learning, employing adaptive feature relevance to enhance understanding of model
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decision-making. Our method utilises statistical analysis and tailored visualisation
techniques to discern the importance of different features within CNNs. This approach
not only allows researchers and practitioners to grasp the underlying mechanics of
deep learning models but also fosters a higher degree of trust and reliability in their
applications. The potential applications of ADVISE are vast, ranging from healthcare
to security, reflecting its versatile and impactful nature.

8.4.5 Results

The results of our research highlight the effectiveness and applicability of ADVISE
in delivering insightful visual explanations for CNNs. Through comprehensive ex-
perimentation and evaluation, we demonstrated that our method provides clear, un-
derstandable, and informative insights into how individual features influence model
outcomes. These findings signify a substantial advancement in the field of explainable
AI, extending the boundaries of transparency and interpretability in deep learning.
Our work not only sets the stage for further investigation into the mechanisms of
deep learning but also serves as a benchmark for developing responsible and ethical
AI systems.

8.5 Fifth Paper

8.5.1 Title

Adhane, G., Vetter, D., Dehshibi, M. M., Masip, D., & Roig, G. (2024). On Ex-
plaining Knowledge Distillation: Measuring and Visualising the Knowledge Transfer
Process. Submitted to ECCV2024.

8.5.2 Abstract

Knowledge distillation (KD) remains challenging due to the opaque knowledge trans-
fer process from a Teacher to a Student. To address this, we introduce UniCAM, a
novel gradient-based visual explanation method. UniCAM visually explains both the
features that were learned or overlooked (ignored) by the student during distillation,
providing a clear visual interpretation of the knowledge transfer. Extensive experi-
ments on CIFAR10, ASIRRA, and Plant Disease datasets demonstrate its ability to
provide a detailed and comprehensive explanation of both distilled and overlooked
features. Our analysis reveals that the Student learns to focus on more relevant fea-
tures in its initial layers, like textures and object parts. In contrast, an equivalent
model trained without KD (Base model) has more diffused attention over the whole
image, including the background. In the middle and deeper layers, the Student re-
fines its focus localising more salient features and learning even more discriminative
features. Furthermore, we propose two novel metrics: the feature similarity score
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and relevance score. The feature similarity score measures the degree of similarity
between the features learned by the Student and the Base model, while the relevance
score measures the importance of the features for the task. Finally, we experimen-
tally demonstrate that UniCAM and these novel metrics provide valuable insights
into explaining the KD process.

8.5.3 Background

An essential milestone in this research journey was a scholarly visit to Goethe Uni-
versity of Frankfurt, where collaboration was established with the Computational
Vision and Artificial Intelligence (CVAI) lab. This experience profoundly shaped the
methodologies and insights presented in this paper. The research is a joint effort be-
tween the AIWELL group of the Open University of Catalonia (UOC) in Barcelona
and the CVAI lab in Frankfurt. This collaboration enabled a more nuanced explo-
ration of Knowledge Distillation (KD), which is central to this work. KD acts as a
mechanism where a complex model, the “Teacher,” imparts its acquired knowledge to
a simpler “Student” model. Leveraging the combined resources and expertise of both
the CVAI and AIWELL labs, we employed a range of metrics and visual explanation
tools to scrutinise the KD process. Our work aims to make significant contributions
to the increasingly important field of transparent and explainable AI systems

8.5.4 New Methods

The paper introduces new metrics and visualisation techniques to analyse the Knowl-
edge Distillation process. These methods enable the authors to quantify and visually
represent the transfer of knowledge between teacher and student models. By using
metrics and visualisation tools, we explore the cases where KD fails as a result of
knowledge gap between the teacher and student, contributing to a deeper under-
standing of deep learning models and enriching the field of AI.

8.5.5 Results

The results demonstrate the effectiveness of the proposed methods in explaining the
KD process. We conduct extensive experiments with various CNN models and show
that our approach provides clear and accurate measurement and visualisation of
knowledge transfer. These findings contribute to explainable AI, setting a standard
for interpreting complex machine learning processes and emphasising the importance
of responsible and transparent AI practice.
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8.6 Summary of Research Projects and Grants

During my tenure as a PhD researcher at the AIWell Lab, I was actively involved in
the execution and management of two prominent research grants:

• BECAUsE (BEyond model aCcurAcy: Uncertainty, Explainability,
and Domain Adaptation): BEyond model aCcurAcy: Funded by the Min-
isterio de Ciencia Innovación y Universidades, RTI2018-095232-B-C21, with a
budget of €77,000. The project aimed at advancing machine learning mod-
els by going beyond mere accuracy metrics to include aspects like uncertainty
quantification, explainability, and domain adaptation.

• SENTIENT (Responsible Artificial Intelligence for Human Well-being:
Contextualized Human-Centric Perception). Sponsored by the Ministe-
rio de Ciencia e Innovación, PID2022-138721NB-I00, with a budget of €114,125.
This project was focused on developing AI algorithms that are context-aware
and human-centric, with the objective of promoting well-being and ethical con-
siderations in AI applications.

These projects provided a platform for groundbreaking research in the fields of
machine learning, computer vision, and ethical AI, contributing to the advancement
of knowledge and the creation of more robust, reliable, and responsible AI systems.
I was also the recipient of the scholarship provided by the Universitat Oberta de
Catalunya (UOC) for three years. I would like to acknowledge this financial support,
which has been instrumental in the successful completion of my PhD study. This
competitive grant has not only validated the academic merit and significance of my
research but has also offered invaluable resources that have enriched the quality of
work presented in this thesis. It is an honour to contribute to the scholarly community
at UOC as a scholarship recipient.
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