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Abstract

In this paper, we describe the LitPC
toolkit, a variety of tools and methods de-
signed for the quick and effective creation
of parallel corpora derived from literary
works. This toolkit can be a useful re-
source due to the scarcity of curated par-
allel texts for this domain. We also fea-
ture a case study describing the creation
of a Russian-English parallel corpus based
on the literary works by Leo Tolstoy. Fur-
thermore, an augmented version of this
corpus is used to both train and assess
neural machine translation systems specif-
ically adapted to the author’s style.

1 Introduction

A parallel corpus is a collection of texts, each of
which is translated into one or more other lan-
guages than the original. Parallel corpora are in-
valuable resources for researchers and profession-
als in the fields of literary studies, contrastive lin-
guistics, machine translation, and literary transla-
tion. While there are many parallel corpora which
can be accessed and checked online, the Opus Cor-
pora1 (Tiedemann, 2009) stands out as a primary
collection. However, the representation of literary
texts within these corpora is often limited. Opus
Corpora lists few corpora for the literary domain
and each corpus includes a limited number of par-
allel segments. Table 1 includes an overview of
the total number of parallel segments in the Opus
Corpora compared with the parallel segments for
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the literary domain, across three highly-resourced
language pairs. The scarcity of resources in this
domain means that researchers in literary studies,
scholars in machine translation, and professional
literary translators who seek to integrate parallel
corpora for literary texts into their daily work must
compile their own parallel corpora.

In this paper, we introduce different resources,
software, and methodologies for the rapid and ef-
fective generation of parallel corpora from liter-
ary texts. While the programs and methodologies
outlined are applicable across various subjects, the
section dedicated to resources focuses specifically
on literary texts.

Language Pair All Literature
eng-rus 185 M 17.6 K
eng-spa 922 M 97.1 K
eng-fra 787 M 0.1 M

Table 1: Parallel segments in Opus Corpora: total and litera-
ture corpora.

2 Sources for literary works

When compiling a literary corpus, the first thing
we should consider is the copyright status of the
original works and their translations. Copyright
laws safeguard the rights of authors and transla-
tors for a specified duration-—typically ranging
from 70 to 100 years, varying by country, after
the death of the author or translator. Upon expi-
ration of this term, the works enter into the pub-
lic domain. Numerous online sources offer literary
works for download; however, many such sources
operate illegally, granting unauthorized access to
copyrighted texts. To lawfully acquire copyrighted
material, one must meticulously examine the copy-
right laws pertinent to each country. This process
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often entails negotiations with the rights holders.
It’s noteworthy that in certain jurisdictions, pur-
chasing a book may confer the right to utilize its
content for non-commercial use, although this pro-
vision is not universally assured by all legal frame-
works.

In this section, we explore various avenues for
legally obtaining literary works that have entered
the public domain, thereby ensuring unrestricted
access and usage rights for any intended purpose.

To effectively develop machine translation (MT)
systems focused on the literary domain, it is essen-
tial to create both parallel and monolingual corpora
derived from literary texts with the language com-
binations involved in our project. There is a vast
array of books which can be accessed online. Once
found, they need to be downloaded, transformed
into text format, and subsequently processed to
generate the desired corpus. The following sources
are particularly noteworthy:

• Project Gutenberg2

• Wikisource3

• Feedbooks4

• Hathi Trust Digital Library5

• Archive.org

• Standard Ebooks6

For our case study, we need to obtain the works
by Leo Tolstoy in Russian and English. First of
all, we use a website which is very popular for its
extensive collection of Russian classical literature:
Библиотека Максима Мошкова7. While it is
ambiguous whether the site exclusively hosts pub-
lic domain works, it is certain that Leo Tolstoy’s
contributions have been in the public domain for
some time, as he passed away in 1910.

Additionally, to obtain the English translation,
we use Project Gutenberg. This website offers a
searchable database, complemented by daily up-
dated catalog files. The LitPC toolkit encompasses
a utility that interprets these catalogs in RDF for-
mat, enabling the search for books based on cri-
teria such as author, title, language, the author’s
2https://www.gutenberg.org/
3https://wikisource.org/
4https://www.feedbooks.com/catalog/
public\_domain
5https://www.hathitrust.org/
6https://standardebooks.org/
7http://lib.ru/

lifespan, and subject matter. These parameters can
be specified as either strings or regular expres-
sions, and searches can combine multiple crite-
ria. Utilizing this functionality, the tool displays
a curated list of works that align with the specified
search parameters. Users have the flexibility to re-
fine their search or modify the list of works. Upon
finalization, the tool facilitates the download of the
selected works in epub format to a designated di-
rectory.

3 Basic processing steps

3.1 Conversion to text

After downloading all the works in the different
language combinations, we need to process them.
To do so, we need them in text format and in Uni-
code UTF-8 encoding. This process can be per-
formed with any external tool, but for convenience,
the LitPC toolkit provides a program capable of
converting all epub files in a given directory to text.
It can either place all the converted files in a given
directory or produce a text file with all the contents
of all epub files in the directory.

3.2 Segmentation

After conversion to text, the next step is text seg-
mentation. This process divides the text into seg-
ments, which are usually sentences. This task can
be performed by analyzing the periods that can be
found in the text. A set of rules indicates whether
each of the periods are splitting points. These
rules are defined using regular expressions and are
typically expressed using a standard XML format
called Segmentation Rules eXchange (SRX). The
toolkit includes a program that can use SRX files
to segment a single file or all the files included in a
directory. In the toolkit, different SRX files are in-
cluded for different languages, even though other
SRX files can also be used.

If no SRX file is available for a given language,
we can use a trainable segmenter implemented in
the NLTK library (Bird, 2006). This segmenter
uses the algorithm created by Kiss and Strunk
(2006) and can be trained on a large unsegmented
corpus of a given language. The same corpus to be
segmented can be used for training. Once trained,
the segmenter can be customised using a list of ab-
breviations for the language. The LitPC toolkit
also implements a program for training and cus-
tomizing a segmenter and a program for segment-
ing using the trained model.
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Both available segmenters can optionally add
the paragraph mark (<p>) to the segmented text.
As we will see in the next section, this mark can
be useful for one of the automatic alignment strate-
gies.

4 Automatic text alignment

After the basic pre-processing steps, we will have
segmented text that we want to align. The seg-
mented text can either include two text files or two
directories–one for each language–containing the
segmented text files.

There are several freely available automatic text
alignment strategies. In the LitPC toolkit we use
two different algorithms: one based on more clas-
sical techniques (which assumes parallel docu-
ments), and another one based on sentence em-
beddings (which is able to find translated segment
pairs even in non-parallel texts).

As we are working with original literary works
and its translations, it would seem clear that these
are parallel documents for which we can seam-
lessly apply parallel document techniques. How-
ever, there are some elements which can turn a
published original work into semi-parallel or com-
parable documents. Some of these factors include:

• The translated work is not from the same edi-
tion as the original work. In these cases, the
changes are usually very small and can be
handled by parallel document techniques. In
other cases, however, the changes are signifi-
cant. For example, a collection of some short
stories is translated, but the translated pub-
lished book changes the order of the short sto-
ries. In such cases, techniques for comparable
corpora are appropriate.

• Either the original or the translation, or both,
contain introductions, prefaces or other ele-
ments that make it impossible to align the
document using classical techniques. The
amount of human work required to manually
edit the documents to make them equal is very
important, so it is more efficient to use align-
ment techniques for comparable corpora. In
the case of documents obtained from Project
Gutenberg, they include a large section ex-
plaining the licence and terms of use.

• When bulk aligning documents, they must
have the same name and be placed in two

directories, or they must use the same name
plus a suffix indicating the language of the
document. This means spending additional
time renaming all the files. To save time, in
such cases we can align all the content in each
language without taking into account the doc-
ument information. This can be done with
techniques for comparable documents.

4.1 From parallel documents

If we have two parallel documents or two directo-
ries, one containing a set of documents in a source
language and the other containing the translated
documents, we can use well-known techniques for
document alignment. When working with a large
number of documents in two directories, the rela-
tionship between the source and target documents
must be easily deduced from their names. To fa-
cilitate this task, the source and target documents
should have the same name, or only differ in the
suffixes that indicate the language of the docu-
ments.

One of the most widely used automatic docu-
ment alignment programs is Hunalign8 (Varga et
al., 2007). To achieve better results with this pro-
gramme, we can:

• Include the paragraph mark (<p>) when seg-
menting the files.

• Use a bilingual dictionary for the language
pair. The programme requires a bilingual
dictionary to perform the alignment. Even
though it is not mandatory and an empty file
can be used, using bilingual dictionaries im-
proves performance. Bilingual dictionaries
are text files with one entry per line which fol-
lows the format target word @ source word,
as in the following example for a English-
Spanish alignment dictionary:

hogar @ home

The toolkit provides Python scripts to create
alignment dictionaries from the transfer dictionar-
ies of the Apertium machine translation system
(Forcada et al., 2011) and from MUSE9 (Multilin-
gual Unsupervised and Supervised Embeddings)
(Conneau et al., 2017).

8https://github.com/danielvarga/hunalign
9https://github.com/facebookresearch/MUSE
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4.2 From comparable documents
It is possible to find translated segments in a large
collection of multilingual documents, even though
they are not exact translated versions. If we can
have a representation of each sentence in a doc-
ument, we can then compare it to the represen-
tations which appear in another language to find
the most similar one. If two sentences have suf-
ficiently similar representations, we can infer that
they are translation equivalents.

We can represent the sentences with sentence
embeddings using a multilingual model. Then,
calculating the cosine distance between all the sen-
tences in the source language and in the target
language, we can find those sentence pairs hav-
ing the smaller distance. If this distance is small
enough, we can select this sentence pair as trans-
lation equivalent. We have adapted an algorithm
that can be found in the SBERT website, following
the ideas of Artetxe and Schwenk (2019). The full
process can be divided into the following steps:

• Representing all sentences in the source and
target corpus by their sentence embeddings
using a multilingual model. By default,
as recommended by Reimers and Gurevych
(2020), we use the LaBSE model (Language-
agnostic BERT Sentence Embeddings) (Feng
et al., 2022). To implement the algorithm,
we use the Sentence-Transformers library10,
and LaBSE is integrated into the library. Any
other model can be used with the provided al-
gorithm.

• For each sentence in the source corpus, using
its sentence embedding representation, the
algorithm finds the k nearest neighbor sen-
tences in the target corpus. Typical choices
for k are between 4 and 16. The cosine dis-
tance between the embedding representations
is used as a measure.

• All possible source-target sentence combina-
tions are scored using a measure. Instead of
directly using the cosine distance, a margin
criterion is used, where the cosine distance
for all the k nearest neighbors in both direc-
tions is considered, as explained by Artetxe
and Schwenk (2019).

• The pairs with the highest margin scores are
the most likely translated sentences. After

10https://www.sbert.net/

the alignment, a visual inspection is required
to set a minimum value and discard all pairs
below that threshold. Usually, scores higher
than 1.2 or 1.3 work very well.

This algorithm is implemented in the LitPC
toolkit and can be used with or without a GPU unit.

5 Cleaning of parallel corpora

When obtaining an available parallel corpus or
compiling our own corpus, we can find several
common errors. Hence, it is always advisable to
clean the corpus. The toolkit distributes a cleaning
script that can perform, among others, the follow-
ing cleaning operations:

• Apostrophe normalization: replacing the ty-
pographic apostrophe with the standard one.

• Removing HTML and XML tags.

• Replacing HTML/XML entities with their re-
spective characters.

• Removing segment pairs where one is empty.

• Removing segments pairs where one or both
are shorter than a given threshold.

• Removing segment pairs with equal seg-
ments.

• Removing segment pairs with a percent of nu-
meric characters higher than a given thresh-
old.

• We can set a file containing a set of strings. If
a segment pair contains any of these strings,
it will be removed.

• Removing segment pairs matching a set of
regular expressions stated in a given file.

• Checking the source and target languages.

• Remove segments pairs with one or both seg-
ments written in upper case.

• Fixing encoding errors.

The Python langid library, which is able to de-
tect 97 languages, is used to detect the language.
However, the precision of language detection is
relatively low for short text segments in a parallel
corpus. Thus, a set of languages expected in the
corpus can be given to increase the performance of
the algorithm.
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5.1 Rescoring of parallel corpora
Once cleaned, we have a corpus that does not in-
clude any of the aforementioned problems. To
ensure these segment pairs are translation equiv-
alents, we can calculate a score that provides a
measure of the translation equivalence between the
source and target segments in the segment pair. It
can be achieved using sentence embeddings. We
can encode the source and target segments in the
segment pairs with sentence embeddings using a
multilingual model, as explained in Section 4.2.
The cosine distance between the source and target
embeddings can be used as a score.

The toolkit provides a program that performs
two actions:

• Language detection of the source and target
segments, using fasttext11 (Bojanowski et al.,
2016). This tool offers two interesting fea-
tures: it returns the detected language along
with a detection confidence score and users
can easily train their own language detection
models.

• Scoring of all the segments with the cosine
distance of the sentence embedding represen-
tation calculated using a multilingual model
(LaBSE by default).

After the scoring process is completed, we pro-
vide a companion program used to select the par-
allel segments which match the language and the
language detection confidence score. A minimum
confidence score is required based on the cosine
distance.

6 Enlarging the corpus using general
language parallel corpora

In our use case, we utilize the compiled parallel
corpus to train a neural machine translation sys-
tem. Most likely, the compiled corpus will not be
large enough to train an NMT system. Millions
of parallel segments are required for a successful
training. Preliminary experiments have shown that
a good starting point would be 5 million segments,
even though 10 or 15 million would be a better
threshold.

In case there is a very large parallel corpus avail-
able for the required language pair, we can auto-
matically select from the large general corpus the
segments which are more similar to the ones found
11https://fasttext.cc/

in the domain corpus. The procedure is very sim-
ilar to the described in Moore and Lewis (2010).
Let us call corpus A the small in-domain corpus (in
our case, the parallel corpus from Tolstoy’s works)
and corpus B the very large general corpus. This
process involves the following steps.

Fist of all, a language model is calculated from
the source language part of corpus A. The perplex-
ity of all source segments of corpus B is calculated
using the language model. Then, all source and
target segments of corpus B along with perplexity
are stored in a database.

Once the calculations are finished, we select a
given number of segments from the database, sort-
ing them according to the perplexity in ascending
order. This whole process can be performed using
a program available in the LitPC toolkit.

7 Use case: Russian-English NMT model
tailored to Tolstoy works

As an experimental part, we compiled a Russian-
English parallel corpus from the works of Lev
Nikolayevich Tolstoy, a Russian writer who was
born in 1828 and died in 1919.

7.1 Original works and translations

We downloaded the original works and its transla-
tion into English in fb2 and epub format and con-
verted them into text with Python scripts available
in the LitPC toolkit.

We downloaded a total of 42 original works in
Russian from Библиотека Максима Мошкова.
We also downloaded all the English translations of
Tolstoy’s works available in Project Gutenberg.

The complete list of works used to create the
corpus can be found in Appendix A. Please note
that the list of original works is different from that
of translated works.

After converting the files into text, they were
segmented. For each language, all the segments of
all the works were concatenated, and repeated seg-
ments were eliminated. As a result, we obtained
a file containing all the unique Russian segments
(a total of 118,755 segments) and a file containing
all the unique English segments (a total of 200.013
segments).

7.2 Alignment

We used the alignment strategy for comparable
corpora to align the two files containing unique
segments in Russian and English. We can see these
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two files as a comparable or semi-parallel corpus,
as there is no line-by-line relationship between the
two files. We obtained a file containing 74,998
aligned pairs. Each pair contains information on
the margin score assigned to this pair. The file
is sorted in descending order by the margin score;
therefore, the first segments are more likely to be
correctly aligned. In Table 2, we can observe some
examples of alignments with higher scores (and
correctly aligned) and with lower scores (incor-
rectly aligned).

7.3 Available Russian-English corpora
To build a large Russian corpus, we used a se-
ries of parallel corpora available in Opus Corpora.
However, we must keep in mind that in the avail-
able corpora, we usually do not have information
about the source and target languages. Any lan-
guage in the pair can be the source, and both seg-
ments can be translated from another language.
The following parallel corpora were used: CC-
Matrix, CCAligned, Wikimatrix, Paracrawl, and
UNPC.

• CCMatrix (Schwenk et al., 2021b) is a par-
allel corpus extracted from web crawls. Each
web document is converted to text, the lan-
guage is identified and then segmented. All
the segments in a given language are treated
together, without having into account the doc-
ument where it comes from, so the document
information is not used. To create the par-
allel corpus from language A to language B,
all segments in A are compared with all seg-
ments in B. The comparison is performed af-
ter converting the segments into sentence em-
beddings using a multilingual model. In this
way, sentences in language A are very close
in the multidimensional space to sentences in
language B with similar meanings. Using the
cosine distance, a margin score is calculated
as explained in Artetxe and Schwenk (2019)
to detect segment pairs with a high chance to
be mutual translations.

• CCAligned is a parallel corpus compiled in
a very similar manner as CCMatrix. In this
case, though, document information is used.
Only segments in the documents detected as
parallel are aligned. The alignment is also
performed using sentence embeddings. The
process of creation of this corpus is described
in El-Kishky et al. (2020).

• Wikimatrix: To compile this corpus
(Schwenk et al., 2021a), Wikipedia articles in
85 languages were used. Authors don’t limit
the process to alignments with English and
all possible language pairs are considered.
It is very important to keep in mind that
Wikipedia articles in different languages are
different documents, and only eventually
some articles or sections of articles are
translations from other language versions.
However, as the same articles in different
languages explain the same concepts, it’s
likely to find segments being translation
equivalents, even when the articles are
written independently. To detect equivalent
segments, similar techniques to the ones used
in CCMatrix and CCAligned are used.

• Paracrawl (Bañón et al., 2020): A corpus de-
veloped within an EU-project that also pro-
vides tools for crawling the web in the search
of parallel documents to be aligned. Ini-
tially, it only included EU languages, but
more languages are being added, including
the English-Russian pair.

• UNPC: The United Nations Parallel Cor-
pus (Ziemski et al., 2016) was created from
manually translated documents of the United
Nations from 25 years (1990 to 2014). It
is available in six official languages at the
UN: Arabic, Chinese, English, French, Rus-
sian, and Spanish. All the alignments have
been performed using Hunalign (Varga et al.,
2007). The corpus does not contain informa-
tion about the source language, but most of
the original documents at UN are written in
English or French. This is not a general cor-
pus, but we have included it because it is a
high-quality corpus.

7.4 Preprocessing of the available corpora
Before creating the corpus from the available cor-
pora, we carried out several preprocessing steps:

• Elimination of repeated segments, using the
standard Linux commands cat, sort, uniq and
shuf.

• Cleaning of the corpora using the program de-
scribed in section 5. The following cleaning
operations have been performed:

– Apostrophe normalization.
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Source segment Target segment Margin score

Неприступная Мальта сдается без
выстрела; самые неосторожные
распоряжения увенчиваются успе-
хом.

Impregnable Malta surrenders without
a shot; his most reckless schemes are
crowned with success.

1.6393

Берегись делать какое-нибудь раз-
личие, могущее нарушить равен-
ство.

Beware of making any distinctions
which may infringe equality.

1.6101

... ... ...

Запил, так запил! When I drink, it’s there!
1.0000

Скверность это, значит, не по за-
кону это.

It’s filthy, that’s what I call it; it’s not
right.

1.0000

Table 2: Examples of obtained parallel segments from the Tolstoy’s works and translations (the two segments with the highest
and the lowest margin scores are presented)

– Removing of HMT/XML tags
– Removing of control characters
– Unescaping of HTML/XML entities
– Fixing encoding errors
– Removing segment pairs with one side

empty
– Removing segments pairs with one part

or both shorter than 10 characters
– Removing segment pairs with more

thant 60% of numerical expression char-
acters

– Removing segments pairs with equal
source and target

Table 3 shows the size of the individual and final
corpus after these operations.

Corpus Size (segments)

CCMatrix 139,863,720
CCAligned 13,341,868
Wikimatrix 1,617,622
Paracrawl 5,318,501
UNPC 28,581,489
TOTAL 178,686,030

Table 3: Size of the Russian-English parallel corpora avail-
able in Opus Corpora used in the experiments

7.5 Rescoring of the corpora
Both the corpus from Tolstoy’s works and the
large corpus created from existing corpora were

rescored using the tool described in Section 5.1.
This rescoring process re-verifies the languages
and computes a distance between the sentence em-
beddings of the source and target segments, us-
ing SBERT. The language detection model is able
to return the language code together with a con-
fidence score. In our experiments, we use a lan-
guage detection threshold of 0.75 for both lan-
guages. This figure has been set after experiment-
ing with several values and observing a good com-
promise between the final number of segments and
the quality of the alignment. In Table 4 we can see
the number of segments obtained after filtering out
the segment pairs with a SBERT score lower than
the indicated for the Tolstoy’s parallel corpus. Ta-
ble 5 shows the values for the large parallel corpus.

SBERT score Segments

0.9 5,336
0.8 34,270
0.75 46,571
0.7 55,209
0.6 65,365
0.5 69,521
no filtering 74,998

Table 4: Size of the Tolstoy corpus with different minimum
values of SBERT scores

7.6 Corpus combination
The size of Tolstoy corpus, regardless of the mini-
mum SBERT score, and even without any filtering
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SBERT score Segments

0.9 31,899,731
0.8 116,247,528
0.75 135,595,366
0.7 145,935,126
0.6 154,980,096
0.5 158,014,261
no filtering 178,686,030

Table 5: Size of the large general corpus with different mini-
mum values of SBERT scores

at all, is clearly insufficient to train an NMT sys-
tem. In order to obtain a larger corpus, we used the
corpus combination program described in Section
6. We have used the version filtered with a mini-
mum value of SBERT score of 0.75. We have cre-
ated three corpora in this way by selecting 10M,
20M and 30M parallel segments from the large
corpus. Furthermore, we obtained three subcor-
pora for each size of the selected corpus:

• A training corpus using the selected segments
from the large corpus and a fragment of the
Tolstoy corpus (the remaining segments after
the creation of the validation and evaluation
corpus).

• A validation corpus using 5,000 segments
from the Tolstoy corpus.

• An evaluation corpus using 5,000 segments
from the Tolstoy corpus

As the parallel corpora have been deduplicated,
no common segments are present in the three sub-
sets. Table 6 shows the size of all the corpora:

Segments

Train 10,036,571 20,036,571 30,036,571
Val 5,000 5,000 5,000
Eval 5,000 5,000 5,000

Table 6: Size of the corpora used for training the NMT sys-
tems

7.7 Training of the NMT systems
The following NMT systems have been trained:

• A system using the large general corpus with
a rescoring with a minimum SBERT score of
0.9 (Marian Gen.).

• A system using the corpus resulting from the
combination of the Tolstoy corpus with 10M
segments selected from the rescored general
corpus (Marian 10M).

• A system using the corpus resulting from the
combination of the Tolstoy corpus with 20M
segments selected from the rescored general
corpus (Marian 20M).

• A system using the corpus resulting from the
combination of the Tolstoy corpus with 30M
segments selected from the rescored general
corpus (Marian 30M).

All the corpora were preprocessed using Sen-
tencePiece (Kudo and Richardson, 2018) with the
following parameters: joining languages: False;
model type: bpe; vocabulary size 64,000; vocab-
ulary threshold: 50. The (sub)word alignments of
the training corpus were computed calculated us-
ing eflomal (Östling and Tiedemann, 2016) in or-
der to use guided-alignment in the training.

The NMT system was trained using the Marian-
nmt toolkit (Junczys-Dowmunt et al., 2018) with
a transformer configuration. Two validation met-
rics were used: bleu-detok and cross-entropy. The
early-stopping criterion was set to 5 on any of the
metrics, and the validation frequency was set to
5,000.

7.8 Evaluation of the trained systems

We have evaluated all the trained systems and com-
pared them with an open neural translation model
(OpusMT12), that will be considered as the base-
line, and two widely used commercial systems:
Google Translate13 and DeepL14. To evaluate the
systems we used three automatic metrics imple-
mented in Sacrebleu15 (Post, 2018): BLEU, chrF2
and TER. Appendix B shows the signatures of the
three metrics stating the exact configuration pa-
rameters as reported by Sacrebleu.

Table 7 shows the evaluation results. In the eval-
uation, paired bootstrap resampling test with 1,000
resampling trials have been performed, using the -
paired-bs option in Sacrebleu. In this way, each
system is pairwise compared to the baseline sys-
tem OpusMT. Assuming a significance threshold
12https://github.com/Helsinki-NLP/
OPUS-MT-train/tree/master/models/ru-en
13https://translate.google.com/
14https://www.deepl.com
15https://github.com/mjpost/sacrebleu
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System BLEU
(µ ± 95% CI)

chrF2
(µ ± 95% CI)

TER
(µ ± 95% CI)

Baseline: OpusMT 17.8 (17.8 ± 1.0) 42.4 (42.4 ± 0.8) 68.8 (68.8 ± 1.2)

MarianGen.en
16.0 (16.0 ± 0.8)

(p = 0.0010)*
40.8 (40.8 ± 0.7)

(p = 0.0010)*
70.0 (70.0 ± 1.1)

(p = 0.0060)*

Marian 10M
18.7 (18.7 ± 0.9)

(p = 0.0240)*
42.2 (42.2 ± 0.8)

(p = 0.1688)
67.6 (67.6 ± 1.1)

(p = 0.0200)*

Marian 20M
19.2 (19.2 ± 0.8)

(p = 0.0020)*
43.7 (43.7 ± 0.7)

(p = 0.0010)*
67.2 (67.2 ± 1.0)

(p = 0.0020)*

Marian 30M
19.1 (19.1 ± 0.8)

(p = 0.0040)*
43.2 (43.2 ± 0.7)

(p = 0.0120)*
67.7 (67.7 ± 1.1)

(p = 0.0150)*

GoogleT.en
25.6 (25.6 ± 1.0)

(p = 0.0010)*
50.3 (50.3 ± 0.8)

(p = 0.0010)*
61.6 (61.6 ± 1.2)

(p = 0.0010)*

DeepL
24.9 (24.9 ± 1.1)

(p = 0.0010)*
49.7 (49.7 ± 0.8)

(p = 0.0010)*
63.1 (63.1 ± 1.3)

(p = 0.0010)*

Table 7: Evaluation results for the NMT systems

of 0.05, the null hypothesis can be rejected for p-
values < 0.05 (marked with ”*” in the tables.)

Regarding the BLEU score, all systems except
the Marian Generic get better results than Opus
MT. Even the Marian 10M improves compared the
baseline system for this metric. In fact, almost all
tailored Marian systems are obtaining better results
than the baseline OpusMT for all metrics. The
only exception is chrF2 score for Marian 10M, that
obtains slightly lower results than the baseline, but
falling to pass the significance test.

This leads us to conclude that the author-
tailoring methodology outlined in this paper can
be highly productive. This assertion is further
supported by comparing the evaluation metrics of
all the tailored systems with those of the Mar-
ian Generic systems, which were trained using the
same parameters as the tailored systems.

Nevertheless, it’s important to acknowledge that
both the baseline system and all the trained sys-
tems achieve evaluation scores which are lower to
those of commercial systems. This suggests that
there is still room for improvement, both in the se-
lection of general and literature-specific corpora,
as well as in improving the training processes.
Anyway, it’s important to note that the training sets
of the commercial systems may include segments
in our evaluation set and this could lead to over-
optimistic evaluations.

8 Conclusions and future work

In this paper, we introduce LitPC, a toolkit de-
signed for swiftly generating parallel corpora from
literary texts. These versatile tools can also be ap-
plied to create parallel corpora for various other
subjects. All tools are made available under a free
license (GNU-GPL v.3) and can be downloaded
from GitHub16.

We have additionally showcased an exper-
iment involving the development of author-
tailored Russian-English NMT systems for Tol-
stoy’s works. The evaluation demonstrates the effi-
cacy of the proposed methodology, although there
remains potential for further enhancements to at-
tain results comparable to those of the examined
commercial systems. In future experiments we
plan to fine-tune exiting models instead of training
from scratch and comparing the two strategies.

The future work is planned in two directions: to
experiment with fine tuning existing NMT mod-
els for literature; and to explore the use of parallel
corpora aligned in larger units than segments, as
paragraphs or chapters, as suggested by Voigt and
Jurafsky (2012).
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Appendix A. List of Tolstoy’s works and
translations

Original Tolstoy’s works:
Детство; Отрочество; Юность; Семейное

счастье; Война и мир; Анна Каренина; Вос-
кресение; Два гусара; Альберт; Поликушка;
Холстомер; Смерть Ивана Ильича; Дьявол;
Казаки; Набег; Рубка леса; Записки маркё-
ра; Утро помещика; Метель; Разжалован-
ный; Три смерти; Крейцерова соната; Отец
Сергий; Хаджи-Мурат; Севастополь в де-
кабре месяце; Севастополь в мае Севасто-
поль в августе 1855 года; Хозяин и работ-
ник; Алеша Горшок; Ягоды; Корней Васи-
льев; Отец Сергий (варианты); Сказки; Де-
кабристы; Первый винокур, Власть тьмы;
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Записки сумасшедшего; Божеское и челове-
ческое

English translations:
A Letter to a Hindu; Anna Karenina; A Rus-

sian Proprietor, and Other Stories; Bethink Your-
selves!”; Boyhood; Childhood; Fables for Chil-
dren, Stories for Children, Natural Science Stories,
Popular Education, Decembrists, Moral Tales; Fa-
ther Sergius; Fruits of Culture; Katia; Master and
Man; My Religion; On the Significance of Sci-
ence and Art; Plays: Complete Edition, Includ-
ing the Posthumous Plays; Redemption and two
other plays; Resurrection; Sebastopol; Sevastopol;
The Awakening (The Resurrection); The Cause of
it All; The Census; in Moscow; The Cossacks:
A Tale of 1852; The Devil; The First Distiller;
The Forged Coupon, and Other Stories; The In-
vaders, and Other; Stories; The Journal of Leo
Tolstoi (First Volume—1895-1899); The Kingdom
of God is Within You Christianity and Patriotism
Miscellanies; The Kingdom of God Is Within You”
Christianity Not as a Mystic Religion but as a
New Theory of Life; The Kingdom of God is
Within You; What is Art?; The Kreutzer Sonata
and Other Stories; The Light Shines in Darkness;
The Live Corpse; The Power of Darkness; Three
Days in the Village, and Other Sketches. Writ-
ten from September 1909 to July 1910.; Tolstoi
for the young: Select tales from Tolstoi; Tol-
stoy on Shakespeare: A Critical Essay on Shake-
speare; War and Peace, Book 01: 1805; War
and Peace; What Is Art?; What Men Live By,
and Other Tales; What Shall We Do?; What to
Do? Thoughts Evoked by the Census of Moscow;
What to Do? Thoughts Evoked By the Census
of Moscow; Where Love is There God is Also;
Youth;

Apendix B. Metric signatures

• BLEU nrefs:1 | bs:1000 | seed:12345 |
case:mixed | eff:no | tok:13a | smooth:exp |
version:2.3.1

• chrF2 nrefs:1 | bs:1000 | seed:12345 |
case:mixed | eff:yes | nc:6 | nw:0 | space:no
| version:2.3.1

• TER nrefs:1 | bs:1000 | seed:12345 | case:lc |
tok:tercom | norm:no | punct:yes | asian:no |
version:2.3.1
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