
Linux
administration
PID_00290379

Remo Suppi Boldrito
Josep Jorba Esteve

Recommended minimum reading time: 11 hours

GNUFDL • PID_00290379 Linux administration

Remo Suppi Boldrito Josep Jorba Esteve

Telecommunications Engineer.
Ph.D in Computer Science from the
Autonomous University of Barcelona
(UAB). Lecturer in the Department
of Computer Architecture and
Operating Systems at the UAB.

Senior Engineer in Computer
Science. Ph.D. in Computer Science
Engineering from the UAB. Lecturer
in Computer Science, Multimedia
and Telecommunications at the
UOC, Barcelona.

The assignment and creation of this UOC Learning Resource have been coordinated
by the lecturer: Josep Jorba Esteve

First edition: September 2022
© of this edition, Fundació Universitat Oberta de Catalunya (FUOC)
Av. Tibidabo, 39-43, 08035 Barcelona
Authorship: Remo Suppi Boldrito, Josep Jorba Esteve
Production: FUOC

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License,
Version 1.3 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and
no Back-Cover Texts. The terms of the license can be consulted in http://www.gnu.org/licenses/fdl-1.3.html.

GNUFDL • PID_00290379 Linux administration

Contents

Introduction... 7

Objectives... 8

1. Basic tools for the administrator.. 9

1.1. Package management tools ... 10

1.2. Red Hat (or derived distributions): RPM packages 11

1.3. Debian: DEB packages ... 15

1.4. New packaging formats .. 18

1.5. Snap ... 19

1.6. Flatpak ... 20

1.7. Generic management tools ... 21

1.8. Other tools .. 23

1.9. Distribution characteristics ... 24

2. Boot levels and services.. 26

3. System status... 31

3.1. Booting the system ... 31

3.2. /proc directory .. 32

3.3. Kernel: /sys directory ... 33

3.4. Udev: /dev device management .. 34

3.5. Processes .. 36

3.6. System logs .. 37

3.7. Memory ... 39

3.8. Disks .. 40

4. Energy management... 44

5. File system.. 45

5.1. Mount points .. 46

6. Users and groups.. 49

7. Print servers.. 53

7.1. CUPS .. 53

8. Storage redundancy: RAID.. 56

9. Logical volume disks: LVM.. 62

GNUFDL • PID_00290379 Linux administration

10. Non-interactive jobs.. 64

11. Network management.. 66

11.1. The TCP/IP protocol ... 66

11.2. Network physical devices (hardware) ... 70

11.3. General concepts about networks .. 71

11.4. Assigning an Internet address ... 73

11.4.1. IPv4 .. 74

11.4.2. IPv6 .. 75

11.5. Subnets and routing .. 77

11.6. Interface configuration (NIC) ... 79

11.7. Advanced network configuration ... 83

11.7.1. Network Configuration on IPv6 84

11.8. Network configuration in RHEL (style) and derivatives 86

11.9. Configuring a Wi-Fi (wireless) network 87

11.9.1. The files host.conf, nsswitch.conf 88

11.9.2. The /etc/hosts file .. 89

11.10.Routing configuration ... 90

11.11.Configuring network services ... 91

11.12.Configuring the xinetd ... 92

11.13.Security basics ... 94

11.14.IP options .. 95

11.15.Multiple IPs over one interface .. 96

11.16.DHCP service ... 96

11.17.IP Network Address Translation (NAT) 98

11.18.Bridging ... 99

11.19.Domain Name System: (DNS) .. 100

11.20.Information service: NIS (YP) ... 101

11.21.Remote connection services: ssh .. 104

11.22.Chained connections .. 105

11.23.Remote file services: NFS (Remote File System) 106

11.24.Virtual Private Network (VPN) .. 107

11.25.Installation and testing in raw mode ... 108

11.26.VPN with static key exchange .. 108

11.27.Useful network management tools ... 110

12. Local security.. 115

12.1. Protection using wrappers .. 118

12.2. Protection using firewalls ... 119

12.3. Netfilter: iptables ... 119

12.4. Netfilter: nftables .. 122

13. Configuring servers... 125

13.1. World Wide Web (httpd) .. 125

13.2. Virtual servers .. 127

13.3. Proxies ... 131

13.4. Apache as reverse proxy and with load balancing 132

GNUFDL • PID_00290379 Linux administration

13.5. Apache as Forward Proxy and Proxy cache 135

Activities.. 137

Bibliography... 138

GNUFDL • PID_00290379 7 Linux administration

Introduction

One of the first tasks the administrator will have to deal with will be the

management of the local resources present in the system to be managed.

This module will cover some of these basic administration tasks, concerning

network and disks, and security and services.

This will be done by getting an overview of the current state of the system

using the different procedures and commands that the administrator can use

to evaluate the different parts of the system. This will allow administrative

decisions to be made if performance failures, gaps or lack of resources are

detected.

As with any operating system, one of the main points of management is

the administration of these resources (CPU, memory, processes, disks, users/

groups, services, software, etc.), since in any role that the machine acts, their

management will be necessary. These topics will be covered in detail in each

section.

An important part will also be devoted to network administration, as it is

vitally important in a current system and an essential element in its operation.

Within this section, the most important network services for information

needs (DNS, DHCP, NIS), resource sharing (NFS), and secure connection

systems (SSH, VPN) will be analyzed.

Finally, the main issues related to security will be analyzed and aspects of both

local and network security will be seen, and it will end with the deployment of

services (web and proxies) to analyze the potential of the GNU/Linux systems

in these aspects.

GNUFDL • PID_00290379 8 Linux administration

Objectives

The main objectives of this module are:

1. To learn the basics of the GNU-Linux operating system management.

2. To analyze how the operating system manages and administers the

resources of disks, devices, networks, security, and services.

3. To analyze different scenarios and use cases of common services in

operating systems.

Most�important�concepts:

The students should focus their attention on the following fundamental

concepts presented in this module:

• Package management tools

• Generic management tools

• Booting levels and services

• Processes and Memory

• Disks and File System

• Storage redundancy and logical volumes (RAID and LVM)

• Network administration

• Subnets and routing

• Network services configuration (NAT, DHCP, DNS, NFS, Bridging, NIS,

SSH, VPN)

• Local security

• Firewalls: iptables and nftables

• Servers: Web and Proxies.

GNUFDL • PID_00290379 9 Linux administration

1. Basic tools for the administrator

The GNU/Linux system administrator has to deal with a large number of tasks

on a daily basis. In general, in the *Nix (Unix/Linux) philosophy, there is not

usually a single tool for each task or a single way of doing things, and it is

common for *Nix systems to provide numerous more or less simple tools to

deal with the different tasks.

In this section we will see different groups of tools, identify some of

their basic functions and see some examples of their uses. As mentioned

in previous modules, there are some standards in the GNU/Linux world,

which allow defining certain basic common characteristics in any GNU/Linux

distribution. These standards, such as the LSB (or Linux Standard Base) and

the FHS (Filesystem Hierarchy Standard), define different tools or structures

of information, as well as a set of rules that have to be met for a distribution

to be considered a GNU/Linux system and that the administrator must keep

in mind.

Also as mentioned in the GNU/Linux introductory module, an administrator

will automate administration tasks through commands grouped into shell

scripts (text files with scripts, control and variables), which will be interpreted

by the shell (command interpreter) of the system. Programming these

shell scripts, which can be of considerable complexity, allows simple

commands to be joined with flow control structures, variables, functions,

and other elements to generate new commands but adapted to the tasks a

particular administrator wants to perform. This allows for a rapid prototype

environment of new tools for task automation, and we encourage the reader

to read specialized literature in shell script programming, such as [Qui] [Mik]

[Coo]. If this is not sufficient for the actions the administrator wants to

perform, high-level language compiling and debugging environments (such

as C) can be used. It is unusual, as the large number of commands and

shell script programming gives considerable capacity for the automation

of management tasks, but these environments add additional capacity to

generate new applications or tools, or to incorporate applications into the

system that are of open source code.

Below we will analyze a set of tools that are essential for keeping the system

up to date, which are the package management tools. The software provided

by each GNU/Linux distribution, or subsequently incorporated, is organized

into units called packages, which include the files of a given software, plus

the steps necessary for installation preparation (dependencies), subsequent

configuration, or, if applicable, the upgrade or uninstallation of a given

package. Each distribution has a different strategy (depending on the branch

from which they are derived) and usually consists of a management software

GNUFDL • PID_00290379 10 Linux administration

to maintain the lists of packages installed/or to be installed, as well as the

control of existing versions, or various possibilities of updating through

different sources (package repositories).

1.1. Package management tools

In any distribution, packages are the basic element for new software

installation, upgrade, or removal of unused software.

Basically, a package is a set of files that form an application or a

combination of several related applications, forming a single file (called

package), in its own compressed format, which is the one that is

distributed, nowadays, through web services from public repositories.

Using packages makes it easy to add or remove software as it works as a unit

and the individual files that make it up.

Sometimes, some applications or components are distributed in more than

one package, separating essential components from optional or development-

related components, or modular components. Packages with different

nomenclatures can be found, such as, for example, package as the main,

package-common, to offer the associated common files (e.g., if a client

or server is installed); package-devel and/or -libs, with the files associated

with development and other names for additional files to the application/

system component. For example, if in the Debian packages we search for

NFS (Network File System), packages such as nfs-common (common files

to the client and server), nfs-ganesha (NFS server in user space), nfs-kernel-

server (NFS server), nfs-modules (support for NFS filesystem), nfs4-acl-tools

(complementary tools for ACL) can be seen, among others.

In the content of the distribution (ISO images), the packages are usually

grouped by categories such as:

a)�Base: essential packages for system operation (utilities, booting programs,

system libraries).

b)�System: administration tools, utility commands.

c)�Development: programming aids such as editors, compilers, debuggers...

d)� Graphics: graphical controllers and interfaces, desktops, window

managers.

e)�Other�categories.

https://packages.debian.org/search?keywords=NFS&searchon=names&suite=stable§ion=all

GNUFDL • PID_00290379 11 Linux administration

These should not be confused with the groupings that are made of the

repositories since these are usually more specific, such as Debian, which

establishes the following categories (only some of them): Administration

Utilities, Databases, Development, Documentation, Editors, Education,

Gnome, GNU R, Graphics, Networks, Web Servers, JavaScript, Kernels, etc.

For the installation of a package, a series of steps will be required:

1)�Pre-installation: it must be verified that there is the necessary software

(and with the correct versions) for its operation (dependencies), whether they

are system libraries or other applications that will be used by it.

2)� Installation: unpacking the content and copying the files to their final

locations, either absolute (they will have a fixed position) or, if allowed,

relocated to other directories.

3)�Post-installation: adaptation of the necessary files and configuration of

the possible software parameters for their correct operation.

Depending on the types of packages, these steps are usually mostly automatic

(this is the case for RPM and DEB). A set of steps may also need to be done

manually (such as for TGZ packages), depending on the tools the distribution

provides.

Next, two of the most classic packages will be discussed; each distribution

typically has one as standard but generally includes utilities to work with the

other common formats. A description will also be made of a series of proposals

for “universal” packaging systems that can be used generically by more than

one distribution.

1.2. Red Hat (or derived distributions): RPM packages

RPM packages, by convention, usually use a name such as: package-

version-rev.arch.rpm where the package is the software name, version is

the software version numbering, rev is usually the revision of the RPM and arch

package, the architecture for which the package is intended, either Intel/AMD/

ARM (for example x86_64, aarch64,...). We can also find arch=noarch that is

typically used when it is architecture independent, for example scripts, source

code or text, data tables, etc. The usual execution includes the execution of the

rpm command, with the options of the operation to be performed and one or

more package names to be processed. Typical operations with RPM packages

include:

• Dependency� management: RPM packages incorporate the idea of

database and dependency management of existing packages.

https://packages.debian.org/stable/

GNUFDL • PID_00290379 12 Linux administration

• Package�information: with the option -q accompanied by the package

name or with -p if done on an rpm file. If the package has not been

installed yet, in addition to the option -q, the information to be obtained

must be indicated, and if we want to ask all the packages installed at the

same time, the option would be -qa. The following table summarizes the

main options:

Table 1

Consultation RPM options Results

Files rpm -ql List of files contained in the package (passed as
parameter)

Information rpm -qi Package description

Requirements rpm -qR Prerequisites, libraries or software

• Installation: it is done with rpm -i package.rpm, or it can be done

with the URL where the package is found, to download it from web

servers (or ftp). We simply need to use the ftp:// or http:// syntax to

indicate the location of the package. The installation can be done as

long as the package dependencies are being met, which can be either

previous software or libraries that should be installed. In the case of non-

compliance, it will list which software is missing, and the name of the

package that provides it. The installation can be forced (at the risk of

it not working) with the -- force or --nodeps options, or the dependency

information can simply be ignored.

Example of installing a remote package

rpm -i http://remote_site/directory/package.rpm

will allow us to download the package from the URL/directory website (or ftp) and
proceed with the package installation.

• Update: rpm -U package.rpm (equivalent to the installation), but first

checking that the software already exists. It will take care of deleting the

previous installation.

• Verification: during normal system operation, many of the installed files

may change, which is why RPM allows verifying the files for changes.

These can occur due to normal process or due to an error that could

indicate corrupt data and/or affect its operation. We can check the package

by using rpm -V package, or with rpm -Va, they will all be checked.

• Deletion: erase the package from the RPM system (-e or --erase). If there

are dependencies, they may need to be removed first.

GNUFDL • PID_00290379 13 Linux administration

Care should be taken about the source of the packages, and only use known

and reliable package sources, either from the distribution developer itself, or

from trusted and community-recognized sites. A digital “signature” of these is

usually offered with the packages so that they can be verified for authenticity;

Hash md5, sha128/256/512 functions are often used to verify that the package

has not been altered, and other systems, such as GPG (Gnu version of PGP),

to verify the authenticity of the package developer. There are also different

generic RPM package repositories on the Internet, where they are available

for different distributions that use or allow the RPM format or RPM package

browsers, such as https://www.rpmfind.net/.

For secure package use, repositories digitally sign packages (e.g., with the

above-mentioned GPG). This allows ensuring (if signatures are available) that

the packages come from the reliable source since each supplier (repository)

includes PGP signature files with the key for their site. Normally for the official

repositories of the distribution they are already installed, but there are no

third-party signatures that must be installed with a file downloaded from the

developer. To do this, we must execute: rpm --import GPG-KEY-FILE

Where GPP-KEY-FILE is the GPG key file or the file URL that will also be

accompanied by a hash (usually md5) to check its integrity. To know the

existing signatures in the system, rpm -qa | grep ^gpg-pubkey can be

executed.

For a specific rpm package, it can be checked whether it has a signature and

which one has been used by running rpm –checksig -y package.rpm and

to verify that a package is correct based on the available signatures, it can be

checked with: rpm -K <package.rpm>

Obviously, only trusted site signatures should be imported to control risks

because when RPM finds packages with signatures that cannot be verified, or

the package is not signed, it will notify, and the action to be taken will depend

on the actions indicated by the administrator.

RPM is the default Red Hat format (and derived distributions), so it has full

support and updates. In Debian (and derived distributions) the DEB format

is used (see below), but the rpm command also exists although the alien

command is recommended to convert a .rpm packet to .deb and then install

it with the Debian package manager (dpkg).

In addition to the distribution packaging base system, each distribution

includes a high-level software management system, which adds a superior

layer to the base system and facilitates software management tasks with a

number of utilities to control the process more amicably.

https://www.rpmfind.net/

GNUFDL • PID_00290379 14 Linux administration

In the case of Red Hat (and derived distributions) it is common to use the

yum command, which allows the installation and management of packages

in rpm systems and the automatic management of dependencies between

packages, facilitating access to multiple different repositories indicated in the

/etc/yum.conf file, or in different files with .repo extension in /etc/yum.repos.d.

RPM-based systems include a new package management system called dnf

(meaning Dandified YUM) that is considered the yum substitute and default

manager for some distributions such as Fedora 22+, CentOS8+, and RHEL8.

The yum configuration is based on:

/etc/yum.config (options file)

/etc/yum (directory for some associated utilities)

/etc/yum.repos.d (repository specification directory, one file for each, includes access and

location information for gpg)

A summary of typical yum operations is:

Table 2

Order Description

yum install <name> Install package with name.

yum update <name> Update an existing package.

yum remove <name> Delete package.

yum list <name> Search package by name (name only).

yum search <name> Search more broadly.

yum provices <file> Search for packages that provide the file.

yum update Update the entire system.

yum upgrade Same as above including additional packages.

Regarding the advantages of dnf in relation to yum, we can mention:

• Better performance (speed, < memory usage, efficiency).

• Improvements in the resolution of dependencies and resolution of

potential dependency corruption problems in some cases.

• Documented APIs (which did not happen with YUM), and independence

from Python versions.

All of this has meant a change and inclusion of independent libraries to resolve

dependencies (libsolv and hawkey), metadata and repository management

(librepo), and package group management (libcomps) by providing well-defined

APIs, based on a number of external libraries, which can be improved

https://docs.fedoraproject.org/en-US/fedora/latest/system-administrators-guide/package-management/DNF/

GNUFDL • PID_00290379 15 Linux administration

independently. In order not to cause problems for administrators, the

command parameters have been kept practically compatible with YUM (we

only have to change the yum command to dnf) so an individual package

installation will be:

$ dnf install package-name

The configuration of the DNF system is done through the /etc/dnf/dnf.conf file

and all the repos description files (*.repo) found at /etc/yum.repos.d. On the

other hand, cached system files can be found at /var/cache/dnf.

1.3. Debian: DEB packages

Debian incorporates interactive tools (in text mode) such as tasksel, which

allow choosing large sets of packages grouped by the type of task: packages

for X, for development, for documentation, etc., or as dselect which makes

it easy to navigate through the entire list of available packages (an extensive

list) and choose those that we want to install or uninstall. In fact, these are

only APT mid-level software manager front-ends (equivalent to YUM in RPM-

based distributions).

At the basic level of package management (rpm equivalent) Debian uses

the dpkg command to manage DEB packages with parameters such as -i to

install a package (dpkg -i package.deb). Although considered a low-level

command, it allows all types of tasks to be performed, such as obtaining

information, installing, deleting, or making internal changes to software

packages.

At a higher level of abstraction (such as yum in distributions using RPM) is the

APT command series (such as apt -general- or apt-get, apt-cache, apt-

file,...). APT allows managing packages through a list of current and available

packages from multiple software sources, either from the facility’s own ISO

images or from websites (the most common form). This management is done

transparently, so that the system is independent from the software sources.

The APT system is configured from the files available in /etc/apt, where /etc/

apt/sources.list is the list of available sources. It could be, for example, for the

Bullseye version of Debian:

deb https://deb.debian.org/debian/ bullseye main contrib non-free

deb-src https://deb.debian.org/debian/ bullseye main contrib non-free

Where “official” sources are indicated for Debian specifying the type of source

(web in this case), the site, the version of the distribution and categories of the

software to be searched (free, or contributions from third parties or non-free or

commercial licence). Software packages are available for different versions of

the Debian distribution and are identified with stable, testing, and unstable.

The use of one or the other determines the type of distribution (after changing

Note

CLI differences between DNF
and YUM can be found at:
http://dnf.readthedocs.io/en/
latest/ cli_vs_yum.html.

https://brontosaurusrex.github.io/2021/07/21/Bullseye-sources.list/
http://dnf.readthedocs.io/en/latest/cli_vs_yum.html
http://dnf.readthedocs.io/en/latest/cli_vs_yum.html

GNUFDL • PID_00290379 16 Linux administration

repository sources on sources.list). Mixed package sources may be available, but

are not highly recommended as conflicts may occur between the versions of

the different distributions.

Once software sources are configured, the main command to manage them is

apt-get (although some administrators prefer apt that does not provide as

much information as the first one) and allows installing, updating, or deleting

from an individual package, until the entire distribution is updated.

There is also a front-end to apt-get, called aptitude, with a similar

interface but, according to experts’ opinions, it has better package dependency

management, and more efficient algorithms for resolving package conflicts,

so it is advisable for complex package conflict problems.

Some basic apt-get functions are:

1) Installing and deleting a package:

apt-get install package

apt-get remove package

2) Updating the list of available packages:

apt-get update

3) To update the distribution, we could update the list of packages and then

upgrade it:

apt-get update

apt-get upgrade

apt-get dist-upgrade

The distribution upgrade can also be done by updating the installed

packages and verifying the dependencies with the new ones, although some

administrators are reluctant to do so because they can delete some packages

and install new ones or larger versions, which could generate some problems.

The system update generates a download of a large number of packages

which makes it advisable to empty the cache, the local repository, of the

downloaded packages (they are kept in /var/cache/apt/archive) with the apt-

get clean command (all) or apt-get autoclean (those not necessary

because there are already new versions) or with apt-get autoremove (to

remove packages/libraries that were necessary for another package and that

has been uninstalled).

GNUFDL • PID_00290379 17 Linux administration

The APT system also allows a secure mode (SecureAPT) based on a hash (md5)

and packet signature (by GPG). If signatures are not available during the

download, apt-get reports it and generates a list with the unsigned packages,

leaving the decision to the administrator whether to install them anyway. For

a list of available trusted sources, we can run:

apt-key list

The gpg keys of the official Debian sites are distributed in a package and to

install them:

apt-get install debian-archive-keyring

Obviously considering that we have sources.list with the official sites. The

default distribution keys are already installed and only those from other sites

should be installed if considered reliable by running apt-key add key

_file or also with:

gpg --import file.key

gpg --export --armor XXXXXXXX | apt-key add -

Where XXXXXX is a key-related hexadecimal number (see repository

instructions for the recommended way to import key and required data).

Another important functionality of the APT system is querying package

information through the apt-cache command, which allows us to interact

with Debian software package lists.

Example: to search for package information

Search for packages based on an incomplete name:

apt-cache search name

Show the package description:

apt-cache show package

Which packages it depends on:

apt-cache depends package

Another useful and interesting apt command is apt-show-versions, which

will show which packages can be updated.

Other more specific tasks can only be performed by dpkg, for example, getting

the file list of a given package already installed:

dpkg -L package

Or the entire package list with:

GNUFDL • PID_00290379 18 Linux administration

dpkg -l

Or look up which package an element comes from (a file, for example):

dpkg -S file

This particular one works for installed packages; apt-file also allows the

same but for packages that have not been installed yet. Finally, some graphical

tools for APT, such as synaptic (or in text mode, such as those already

mentioned: aptitude or dselect), should also be mentioned.

In conclusion, it should be noted that the APT management system (in

combination with the dpkg base) is very flexible and powerful in managing

updates, and it is the package management system used in Debian and its

derived distributions (Ubuntu, Knoppix, Mint, etc.).

1.4. New packaging formats

To solve some problems with these packaging systems (basically

dependencies), new alternatives have emerged such as Snap (or Snappy if the

packaging system is referenced), Flatpak or AppImage.

Typical problems with classic packaging systems include:

• The packages are overly dependent on the distribution. Despite being

a specific standard (such as DEB or RPM) they may depend on

specific packages of the particular distribution, or there may be library

dependencies or versions thereof that may not be found in the target

distribution.

• This creates a “fragmentation” of the GNU/Linux packages, making it

nearly impossible to package applications validly for different GNU/Linux

distributions.

• In a single distribution, the package may require versions of libraries prior

to or later than the existing ones, creating dependencies that are difficult

(or impossible in some cases) to resolve.

• “Universal” packages, valid for any distribution, are not possible.

• In most cases, root privileges are required to install the packages (via sudo

or su).

New systems such as Snap (from Canonical, developer of Ubuntu), Flatpak

(also known as xdg-app, and with the participation of developers of the

Gnome and Red Hat community) or AppImage (as the maximum exponent

for packaging portable applications in user space - without being root-) have

https://en.wikipedia.org/wiki/Snap_(software)
https://en.wikipedia.org/wiki/Flatpak
https://en.wikipedia.org/wiki/AppImage

GNUFDL • PID_00290379 19 Linux administration

different features that try to solve the aforementioned issues with some

particularities: Snap is used in both server packages and desktop applications,

while Flatpak (and its relationship with Gnome, although it may be used in

other window environments) is intended for running applications in user

sessions. In the case of Snap, there is the concept of centralized repository

(Snap Store or Ubuntu myApps, or other names, depending on the destination

platform) controlled by Canonical, while in Flatpak there is no such concept,

only multiple repositories to add for having sources of different packages.

AppImage is intended so that a user can download the developer app and test/

use it without having to worry about anything else and so that the developer

can make an app without worrying about multiple distributions.

As evidence, Snap (due to Canonical/Ubuntu support) and Flatpak (due to its

importance in RHEL/Gnome) will be analyzed.

1.5. Snap

It has been active as from Ubuntu 16.04 LTS and later versions and is used

to a lesser extent in other distributions, with the most downloaded snaps by

distribution being the following: Arch Linux/spotify, CentOS/wekan, Debian/

spotify, Fedora/spotify, Manjar/vlc.

For its use in the distribution, the snapd package (or similar name, depending

on the distribution) must be installed, which includes the snap command for

package management. If we want to create packages, we will also need the

snapcraft package (and on Ubuntu multipass, required for creating isolated

environments)

The main parameters are summarized below:

Table 3

Order Description

snap help For information on available options.

snap find [package] To search for available packages, either by name or by part of it. It
can be combined with grep to find other words associated with the
package in its comments.

snap install package To install a package.

snap refresh package To update a previously installed package, if a new version is
available, it will be updated.

snap list [--all] To list packages installed on the system. It can be combined with
grep to find a certain package/word of the installed packages. [--
all] to list the disabled ones as well.

snap remove package To uninstall a package.

snap changes To list recent changes to the snap system.

https://ubuntu.com/blog/popular-snaps-per-distro
https://snapcraft.io/blog/introduction-to-snapcraft

GNUFDL • PID_00290379 20 Linux administration

Packages are in the /snap directory, and depending on the type, if they are

graphically executed, they are added to the system menus, or if they are CLI

executable, they will be called from the shell with names similar to the package

name. We can always browse the directories:

• /snap/bin, to find the binaries available to run.

• /snap/package_name/current/bin, to find the binaries/executables associated

with a package, in its most current version. Although the application

launcher is typically found on /snap/bin, it is recommended that the

application be run via the command available in the first directory, or by

accessing the system menus where the application is installed.

Each snap is a read-only image of the squashfs file system and to access the

files within these images, snapd mounts the images, one for each installed

version of snap, within /snap. This list of loop devices includes the snaps that

have been installed and they are part of the normal operation of snapd, so no

attempt should be made to delete them. If we want to delete them, we simply

will execute snap remove package and the app, and the corresponding loop

device will be deleted. An important maintenance that can be done to recover

disk space is to remove the snaps that are disabled since there is a new version;

they are listed with snap list --all and deleted with

sudo snap remove --revision=revision_ID name_snap.

It is necessary to note that in some cases there are problems to resolve

with security models, for example, especially for graphical applications in X

Window where an application, for example, can use X Window to send false

keyboard events and cause an application to interact in an unwanted way.

These issues are expected to be resolved by replacing X Window Server with

alternatives such as Wayland or Mir.

1.6. Flatpak

Flatpak, also known as xdg-app, is a utility for universal package installation

and management that provides a process-isolated environment (called

Bubblewrap), where users can run applications isolated from the rest of the

operating system. This allows applications independent of the Gnu/Linux

release or distribution to be installed and packages can be updated without

touching the operating system on which they are running.

This package is officially distributed over Fedora 24 and is also included in

other distributions such as Centos, Mint, Ubuntu Mate or others that can be

installed such as Debian, OpenSuSE, etc. (if not available it can be installed in

RHEL and derivatives with dnf install flatpak).

The flatpak command is used to perform the following tasks:

GNUFDL • PID_00290379 21 Linux administration

1) Install the required package repositories. It includes importing GPG keys

to identify the repository and its packages, and importing the specific

repositories we want to access.

2) Install from the repository the necessary runtime that will provide all the

required dependencies for the applications in the repository.

3) This allows to see with different options, which packages are available,

install them and run the installed applications.

This summary box shows some of the commands that can be used:

Table 4

Order Description

flatpak remote-add --gpg-import=keygpg repo urlrepo Add a repo repository identified by a keygpg
(previously downloaded), and located at URL urlrepo.

flatpak remote-list List available remote repositories.

flatpak install repo runtime version Install runtime from the repository with the specific version
number version.

flatpak remote-ls repo --app List the applications available in the repo.

flatpak install repo stable application Install the application in its stable version from the repo repository.

flatpak list List available applications.

flatpak run name Run an available (name) application.

flatpak update Update all installed applications from repository.

As discussed in Snap, Flatpak also has a number of issues pending with security

models (especially for X Window graphics applications). This part is expected

to be fixed as the X Window Server is replaced by alternatives such as Wayland

or Mir (for Ubuntu and Snap).

It is also interesting to discuss the possibilities of AppImage, although it

is more designed for non-administrative users, or OrbitalApps, designed to

develop portable applications, as the ones that could be carried on USB

between various systems.

1.7. Generic management tools

In certain management environments, some generically designed tools can be

considered to manage various aspects of the machine. It should be noted that

for these tools it is difficult to stay up to date, given the current distribution

version plans that mostly have very rapid evolutions. Examples of these tools

include:

https://appimage.org/
https://orbital-apps.com/

GNUFDL • PID_00290379 22 Linux administration

1)�Webmin: it is a long-standing tool that has gone through different states

but currently has an active development (2022) although it is not included in

some repositories. It is a web tool with a series of plugins that can be added for

each service to be managed with forms, where the configuration parameters

of the services are specified allowing the possible remote administration of a

server.

2)� Cockpit: a management environment focused on providing a modern,

easy-to-use interface for managing and administering servers that is available

for the most widely used distributions and in official repositories. It reminds

administrators with a certain experience of Webmin, but with better features,

API and security model. The most important features of Cockpit are: high

quality graphical environment/user interface, modular design expandable

by additional modules (including developing proprietary modules), multiple

servers from a single dashboard, non-intrusive (it works in conjunction with

other management tools without any problems), it uses a systemd socket and

does not use memory when not in use. It is based on the existing functionality

(it does not require a default setting), does not store server status or data

anywhere, does not have special privileges and does not run as root creating

a session as a user and has the same permissions as that user, so to perform

administrative tasks, a user needs permission to use sudo or PolicyKit to

escalate privileges.

Some distributions, such as OpenSuSE, have their own tools such as YaST, or in

the Gnome and KDE desktop environments, they usually have the concept of

“Control Panel”, which allow managing both the visual aspect of the graphical

interfaces and treating some parameters of the system devices (there are also

proprietary software examples, such as cPanel or Plesk, among others, or

linked to Cloud providers, such as SPanel).

As for individual graphical management tools, the GNU/Linux distribution

itself offers some directly (tools that accompany both Gnome and KDE), tools

dedicated to managing a device (printers, sound, network card, etc.), and

others for the execution of specific tasks (Internet connection, configuring

system service boot, configuring X Window, viewing logs, etc.). Many of them

are simple frontends to basic system tools, or are tailored to the particularities

of the distribution.

It should be noted, in this section, that the Red Hat distribution and its

derivatives have different utilities for different administration functions (see

the administration menu), or commands such as system-config-xxxxx for

different functionalities but which have progressively been replaced by the

concept of a desktop environment control panel (whether the Gnome or KDE

configuration, for example) with functionalities similar to these utilities. The

following figure shows this approximation in the Gnome control panel on

Ubuntu 20.04LTS control panel.

https://webmin.com/
https://cockpit-project.org/
https://en.opensuse.org/Portal:YaST

GNUFDL • PID_00290379 23 Linux administration

Figure 1

1.8. Other tools

In the limited space of this unit, not all those tools that can provide benefits

for administration can be discussed, but some of the tools that can be

considered basic will be cited:

• The�multiple�basic�UNIX�utility�commands: grep, awk, sed, find, diff,

gzip, bzip2, cut, sort, df, du, cat, more, file, which, ip, ss, dhclient, ...

• The� editors: required for any configuration task. In text mode, the

choice is the vi editor (although there are alternatives, such as joe,

nano) that is found in all distributions through an improvement

called vim (VI iMproved). This editor allows coloured syntax in various

languages, fast movement and effectiveness but its detractors say that

its work modes are unfriendly and the keyboard shortcuts are not

the usual ones; however, once we learn to work with it, it is highly

efficient and recommendable. And in graphical mode, Sublime, Atom, or

VisualStudioCode are recommended, although they are professional editors

GNUFDL • PID_00290379 24 Linux administration

more adapted to programmers. However, Sublime, for example, is simple

and easy to install and manage.

• Script�languages: Bash (for any simple - or not simple - administration

task, Perl (very suitable for treatment of regular expressions and analysis

of files such as filtering, sorting, etc.); PHP (very widely used language in

web environments); Python, for rapid app prototyping, ...

• High-level�language�compiling�and�debugging�tools: GNU gcc (C and

C++ compiler among others), gdb (debugger), xxgdb (graphic interface for

gdb), ddd (debugger for several languages).

1.9. Distribution characteristics

This section contains some unique aspects of the distributions of both the

Red Hat/Centos/Rocky/Fedora branch and the Debian/Ubuntu/Mint branch,

which are two of the large branches of distribution, as mentioned by [Soy]:

• Using� the� grub� boot� loader (GNU utility). Unlike older versions of

most distributions, which used to use lilo, current distributions use

grub (Grand Unified Bootloader). It has a text mode setting (typically

/boot/grub/grub.conf) but is modified via scripts in /etc/grub.d (or /etc/

defaults/grub* or /etc/defaults/grub.d in Debian/Ubuntu) and also supports

modification at booting. Most current distributions have already migrated

to GRUB2, which includes a more modular configuration system, as well

as expanded Linux kernel parameter support, and improved support for

various operating systems.

• Alternative� management. If more than one equivalent software is

present for a particular task, a directory (/etc/alternatives) indicates which

alternative is used. This system was borrowed from Debian, which makes

extensive use of it in its distribution. For example, when we enter update-

alternatives --list vi the system will display /usr/bin/vim.tiny which

means that when a user enters the vi command, vim.tiny will actually

run.

• TCP/IP� network� service� manager� program� based� on� xinetd. The

classic service management super-daemon in *Nix called inetd has been

replaced by an enhanced version called xinetd (eXtended inet) which is

configured via /etc/xinetd.conf or in the /etc/xinetd.d directory. In almost

all distributions this super-daemon is not installed by default, and almost

all of them have migrated to the daemons management/systemd-based

service boot environment (see below) so it is not necessary in many cases.

• Special� configuration� directories. The distributions have organized

better some of the configuration directories such as: /etc/profile.d, files

GNUFDL • PID_00290379 25 Linux administration

that run when a user opens a shell; /etc/sysconfig, configuration data for

various aspects and services of the system (RHEL branch); /etc/cron, various

directories specifying jobs to be done periodically (via crontab); /etc/pam.d,

where PAM (Pluggable Authentication Modules) are a set of libraries that

allows the administrator to configure how users authenticate so this task

should not be done by applications; /etc/logrotate.d, configuration of the

rotation of log files (usually in /var/log) for different services and that

indicate when a new version must be made, deleted, compressed, etc.

• Expanded� FHS. For example, Debian has added some particulars

about the standard directory structure in /etc, such as: /etc/default,

configuration files, and values by default for some programs; /etc/network,

network interface data and configuration scripts; /etc/dpkg and /etc/apt,

package management tool configuration information, /etc/alternatives,

links to default programs, in those where there are (or may be) several

alternatives available.It also includes for many software packages the

ability to reconfigure them after they are installed, by using the dpkg-

reconfigure tool. For example:

dpkg-reconfigure locales

that allows choosing the regional language and character set settings that will

be available, or

dpkg-reconfigure tzdata

which allows resetting the default time zone.

• The services and boot system have traditionally been managed by SyVinit

which is based on a daemon (init) and a set of scripts in /etc/init.d and start

and stop execution scripts of each level managed by /etc/rc.X. Currently,

most distributions have migrated to a new concurrent service boot system,

based on a different philosophy that makes it safer and more efficient,

called systemd (and which will be seen in the next section).

GNUFDL • PID_00290379 26 Linux administration

2. Boot levels and services

Historically, the distributions based the OS boot-up and initial services

through a system called Sysvinit (or SysV type init), based on daemons

(background execution processes and always active) boot-up levels and

associated services. In this system, the activation or stopping of services was

performed by using sequential scripts (in /etc/init.d/) which was an inefficient

system and very sensitive to errors due to poor configurations (if we wish to

expand on this system, there is a lot of available literature, such as init or

Debian Adm Handbook).

Nowadays, most distributions have migrated (or are in the process) to a

new system called systemd that has received significant momentum especially

after the decisions of the two large distribution branches to adopt them as

a default boot system: Debian/Ubuntu/Mint and RHEL/ Fedora/CentOS. An

equivalence between commands from one system or another published by

Linoxide may be useful for administrators skilled in sysvinit.

Systemd is a system management daemon designed for Linux, which replaces

the init process and, therefore, is placed as a process with PID=1 (although in

some distributions, systemd daemons are observed as children of the PID=1

process and in others, such as Ubuntu, there is a /sbin/init process with PID=1

but if we look in detail, it is a link to /lib/systemd/systemd) at boot of the Linux

system. Also the same name, systemd, is used to name the complete package of

system components, including the daemon systemd. This (systemd) is the

first daemon to start and the last to finish during the shutdown process.

The main design objectives were to be able to express dependencies between

daemons to run them concurrently (whenever possible) in the interest of

efficiency (reduced boot time) and to improve blockages due to defective

configurations. The design and integration of systemd has not been free from

community criticism, basically because it is an attempt to gather a large

number of functionalities in a single environment (in the opposite direction of

the UNIX philosophy, of small, interconnected tools, each performing specific

and well-defined tasks).

Currently, systemd has brought together or offers alternatives to a whole

series of classic daemons, such as udev, sysvinit, inetd, acpid, syslog, or cron,

among others. In addition, network configuration components have also

been added, among others, by adding even more dispersed components and

functionalities, to a single block of functionality, all controlled by systemd.

The figure below shows this union of services and functionalities.

Note

The Boycott systemd site
collected much of these
criticisms of systemd and
some of the discussions or
more arguments against and
alternatives to systemd can still
be found.

https://en.wikipedia.org/wiki/Systemd
https://systemd.io/
https://opensuse-factory.opensuse.narkive.com/0tBTkysE/boycott-systemd
https://without-systemd.org/wiki/index_php/Main_Page/
https://without-systemd.org/wiki/index_php/Main_Page/

GNUFDL • PID_00290379 27 Linux administration

Figure 2. Some systemd components

Source: adapted from Wikipedia.

In systemd we can distinguish, among others, components such as:

• Unit� files: where the initialization instructions for each daemon are

collected in a configuration file (called a “unit file”). There are different

types such as: service, socket, device, mount, automount, swap, target, path,

timer, snapshot, slice and scope.

• Core�components:

– systemd, the main daemon of the systemd system acting as a service

manager for GNU/Linux.

– systemctl, as the primary command to control the status of the

system and service manager, as well as to manage the different units

of the system.

– systemd-analize, to analyze the performance of the booting

system, and to obtain statistics about it. For example, with systemd-

analize blame, the booting time of each unit will be obtained and

with the option plot a file in svg format is generated.

– Utilities such as systemd-cgls and systemd-cgtop allow the use

of control groups by systemd to be tracked. The Linux kernel uses

cgroups to track processes (rather than using -PID- process identifiers).

Additionally, systemd also uses cgroups to manage Linux containers

using commands such as systemd-nspawn and machinectl.

• A series of accessory components (may vary depending on the current

version of the systemd), most of which are daemons (those ending in d in

the following list) of the systemd-name form:

GNUFDL • PID_00290379 28 Linux administration

– console: systemd-consoled provides a daemon for the management

of text consoles, in order to replace the GNU/Linux virtual consoles/

terminals.

– journal: system-journald is the daemon responsible for the control

of the events log, managed in systemd by read-only binary log files.

Logs can be managed within systemd, with system-journald, syslog-ng,

or rsyslog depending on the administrator’s decision.

– logind: deals with system user access.

– networkd: it is responsible for managing network interface

configurations.

– timedate: it controls options related to system time, and time zones.

– udev: is a device manager responsible for dynamically managing them

using the system /dev directory, and the actions of adding or removing

devices from the user space, as well as firmware load control.

– libudev: standard library for using udev, which allows third-party

applications to access resources managed by udev.

– systemd-boot: a system bootloader (derived from a previously existing

one called gummiboot), with support for UEFI firmware (Unified

Extensible Firmware Interface), which is a model for the interface

between the OS and the firmware, providing support for booting and

not to be confused with the MBR boot code method known as legacy

BIOS systems or standard boot by BIOS). In principle, systemd-boot was

initially intended as a lightweight replacement for GNU Grub.

Some graphical frontends are also available for managing services, and

consulting the available units, such as systemd-ui (for Gnome environments,

also known as systemadm) and systems-kcm (for KDE environments).

As mentioned above, systemd introduces the concept of units, which are

represented by configuration files, and basically represent information about

a system service, listening sockets, system statuses, or other objects relevant

to booting.

The files are in (in reverse order of importance if there are equal files in

different directories):

• /usr/lib/systemd/system/: system units (usually from packages).

• /run/systemd/system/: units created at runtime.

GNUFDL • PID_00290379 29 Linux administration

• /etc/systemd/system/: units created and managed by the administrator.

Regarding unit types, we can find (among others):

Table 5

Unit of File extension Description

Service .service A system service

Target .target Systemd unit group

Device .device Device file

Automount point .automount A filesystem automount point

Mount .mount A filesystem mounting point

Snapshot .snapshot A saved status of the systemd manager

Socket .socket A point of communication between processes

Timer .timer A systemd timer

For the management of system services, service units (.service) are used, which

are used for purposes similar to the old service files present in /etc/init.d/.

systemd is basically managed with the systemctl command and parameters

such as start, stop, restart, enable, disable, status, is-enabled to manage the

services.

Some distributions still maintain by compatibility commands from previous

systems (such as init or upstart) as, for example, service or chkconfig, to

reduce the impact, but in reality these all move the syntax to systemctl.

A command such as:

systemctl list-units --type service --all

will provide the status of all services (or service type units in systemd

terminology).

systemctl list-units-files --type service

lists the name of the service with its full name and information on whether it

is active or not. For a particular service it can be done with:

systemctl status service_name e.g. ssh

To ask if the service is active:

systemctl is-active service_name

GNUFDL • PID_00290379 30 Linux administration

To ask if the service is enabled:

systemctl is-enable service_name

In relation to the execution levels (runlevels), systemd provides different

equivalent units, in target format with names such as: power off, multi-user,

graphical, reboot, which can be listed with the first command and changed

with the second command:

systemctl list-units --type=target –all

systemctl isolate name.target

To know the current default target (or set it with set-default):

systemctl get-default

For the different machine shutdown and restart options, the following options

are available: halt, power off, reboot, suspend, hibernate.

One particularity of systemd is that it can also act on remote machines via

ssh connection, for example, a command can be executed with:

systemctl --host user@host_remote command

To investigate errors from different units, we can do the following:

systemctl --state=failed Displays the units that caused faults

systemctl status unit_with_faults Displays additional unit information.

Or detailed information (to be expanded below) can also be obtained from the

PID of the process involved by examining the corresponding journal (logs):

 journalctl -b PID_ID

Systemd considers many possibilities, depending on the units used and the

multiple components available and which will be discussed in subsequent

sections. An interesting source of detailed systemd documentation is that

developed by ComputerNetworkingNotes in systemctl, services, targets, unit

files and units types & states.

https://www.computernetworkingnotes.com/linux-tutorials/
https://www.computernetworkingnotes.com/linux-tutorials/how-to-use-the-systemctl-command-to-manage-systemd-services.html
https://www.computernetworkingnotes.com/linux-tutorials/how-to-use-the-systemctl-command-to-manage-systemd-services.html
https://www.computernetworkingnotes.com/linux-tutorials/systemd-target-units-explained.html
https://www.computernetworkingnotes.com/linux-tutorials/systemd-unit-configuration-files-explained.html
https://www.computernetworkingnotes.com/linux-tutorials/systemd-unit-configuration-files-explained.html
https://www.computernetworkingnotes.com/linux-tutorials/systemd-units-explained-with-types-and-states.html

GNUFDL • PID_00290379 31 Linux administration

3. System status

One of the main daily tasks of the administrator (root) will be to verify the

correct operation of the system and to monitor the existence of possible errors

or saturation of the machine resources (memory, disks, etc.). This section will

detail the basic methods for examining the system status at a given time and

taking the necessary actions to prevent further problems.

3.1. Booting the system

During the booting of a GNU/Linux system, a set of interesting information

is produced, such as the detection data of the characteristics of the machine,

devices, system services, etc., and any problems that may exist are mentioned.

In addition, virtual file systems are created with the information so that it can

be manipulated in the user-space and in the kernel-space.

In some distributions, much of this boot-up information (in the form of

events) can be seen on the system console directly during the boot-up process

or simply by switching to it (for example in Ubuntu by selecting Crtl+Alt+F1).

However, the speed of the messages (or as mentioned, they are hidden behind

a graphic cover sheet) may prevent paying attention to the messages correctly,

so we will need tools/access to the information saved to analyze this process.

Basically, we can analyze:

• dmesg�command: gives the messages of the last kernel boot.

• /var/log/messages� file: general system log, which contains messages

generated by the kernel and other daemons (there may be many files with

different logs, which are usually in /var/log, but it depends on its syslog

service configuration at /etc/syslog.conf).In some modern distributions, the

log system has been replaced with rsyslog, which typically has the log set

to /var/log/syslog. In other distributions that use systemd as a booting

system, it also handles the log of events with a component/daemon called

journald, in this case the journalctl command is available, to obtain

the list of events from the system log in CLI (and they will also generally

be seen in /var/log/).

• Uptime�command: indicates for how long the system has been active.

GNUFDL • PID_00290379 32 Linux administration

At booting time, a series of virtual file systems are also generated, which allow

us to access information about the boot process, and the dynamic state of

the system, from both the user space and the kernel space, and its various

components. Among the virtual file systems used, we must highlight:

• System�/proc: file pseudosystem (procfs) that is used by the kernel to store

process and system information.

• System�/sys: pseudo file system (sysfs) that provides a consistent way to

access information from devices and their drivers.

• System�/config: based on Configfs, it is similar to sysfs. It is only found

in some distributions, is complementary and allows creating, managing

and destroying objects/data in kernel space, from the user space. It will

typically be mounted in /config or in /sys/kernel/config.

• tmpfs�file�system: it is typically used to mount temporary storage space

(virtually, in volatile memory, without disk storage). Several layouts use it

to mount the /run directory and its subdirectories.

• devtmpfs�file�system: provides device information and it is mounted in

/dev during machine booting. This information will be used by the udev

device manager (via their udevd daemon) which is integrated into systems

with systemd.

3.2. /proc directory

The kernel, during its booting, creates the virtual file system procfs and

mounts it in /proc, where it will save most of the system information. The /proc

directory is deployed on memory and is not saved on disk and data in files/

directories can be either static (not modified during OS execution) or dynamic

(created/destroyed/modified during execution). Because its structure depends

on the activity of the kernel, the files/contents may change in different

executions/versions of the kernel.

In the /proc we will be able to find the images of the running processes,

along with the information that the kernel manages about them and each

process will have a directory with PID of the process (/proc/<pidprocess>) that

will include the files that represent their status. This information will be the

primary source for debugging programs, or for the system’s own commands,

such as ps or top, or htop to view the status of running processes. A set

of system commands query the dynamic system information from /proc and

some specifics found in the procps package.

GNUFDL • PID_00290379 33 Linux administration

In addition, the global status files of the system can be found in /proc, a

summary of which is shown below:

Table 6

File Description

/proc/bus PCI and USB Bus information directory

/proc/cmdline Kernel boot line

/proc/cpuinfo CPU information

/proc/devices List of character or block system devices

/proc/driver Information on some hardware kernel modules

/proc/filesystems File systems enabled in the kernel

/proc/scsi SCSI, in the scsi disk characteristics file

/proc/interrupts Hardware interrupt map (IRQ) used

/proc/ioports I/O ports used

/proc/meminfo Memory usage data

/proc/modules Kernel modules

/proc/mounts Currently mounted file systems

/proc/net Directory with all network information

/proc/scsi SCSI Device directory, or SCSI emulated IDE

/proc/sys Access to dynamically configurable kernel parameters

/proc/version Kernel version and date

3.3. Kernel: /sys directory

The sys virtual file system makes the device and driver information visible

in the user space (this information is available to the kernel) so that other

APIs or applications can easily access device information (or its drivers). It is

often used layered as the udev service for dynamic device monitoring and

configuration.

/sys contains a tree data structure of the devices and drivers and is then

accessed via the sysfs file system (whose structure can vary among different

versions). When the kernel detects a device, a directory is created in sysfs and

the parent/child relationship is reflected with subdirectories under /sys/devices/

(reflecting the physical layer and its identifiers). Symbolic links are placed in

the /sys/bus subdirectory, reflecting how the devices belong to the different

physical buses of the system and in /sys/class the devices grouped are displayed

according to their class, such as network, while /sys/block/ contains the block

devices.

GNUFDL • PID_00290379 34 Linux administration

Some of the information provided by /sys can also be found on /proc, but

gradually, in the different versions of kernels, it is expected that device

information will be migrated from /proc to /sys to centralize all its information.

3.4. Udev: /dev device management

Unlike traditional systems, where the device nodes, present in the /dev

directory, were considered as a static set of files, the udev system dynamically

provides the nodes for the devices present in the system.

Udev is the device manager for the Linux kernel (which replaces previous ones

such as hotplug and devfsd). This service (now included in systemd), manages

the device nodes in the /dev directory, as well as the events generated in user

space, due to the new insertion/deletion of hardware devices. Among other

features, udev supports:

• Allocation of persistent device identifiers, thus avoiding the allocation by

order of arrival (or connection) of devices to the system. For example, for

storage devices where each one is recognized by a file system id, the disk

name, and the physical location of the hardware where it is connected.

Exactly the same as the network devices that are identified by the position

they occupy on the bus where they are connected.

• Notification to external systems of device changes.

• Creation of a dynamic /dev directory.

• Execution in user space, thus avoiding the need for the kernel to name

devices by allowing the use of specific device names from the device

properties.

The udev system is basically made up of three parts:

• The libudev� library, which allows access to device information.

Depending on the implementation, this library may be isolated, or as in

the case of distributions with systemd boot, it has come to be included

as a built-in feature of it.

• A user�space�daemon, udevd, that manages the virtual /dev directory. The

daemon communicates through a socket established between the kernel

and the user space, to determine when a device is added/removed from

the system and udev manages operations as needed (node creation in /dev,

module/driver load needed from the kernel, etc.). In systems with systemd

the operation is controlled by systemd-udevd.

GNUFDL • PID_00290379 35 Linux administration

• The udevadm�command, which allows interaction to manage behaviour/

control/obtain udev information.

Historically, in the /dev directory are the system device files (nodes) so that

a program in user space can access a hardware device or a function of it. For

example, the device file /dev/sda is traditionally used to represent the first disk

of the system (SATA bus) and the name sda corresponds to a pair of numbers

called the major and minor of the device, and which are those used by the

kernel to determine which hardware device it is using. Each of the major and

minor numbers is assigned a name that corresponds to the device type as can

be seen in the kernel information.

Given its limitations (number scheme, dynamic assignment with removable

devices, or the large amount of numbers required) but especially to the non-

static situation of /dev, the name of the device was delegated to udev with

a series of steps/rules to determine a unique name as needed (thus avoiding

creating a large number of devices that probably would not be used). For this

purpose, the following is used:

• Label or serial number that can be identified by device class.

• The�number�of�the�device on the bus where it is connected (for example,

its identifier on a PCI bus).

• Bus�topology: position on the bus to which it belongs.

• Replacement�name in case there is a match between multiple devices.

• Name�in�the�kernel.

If the above steps cannot provide a name, the one available in the kernel will

be used.

The udev system, whose information typically resides at /lib/udev and /etc/

udev (there may also be a /run/udev at runtime), among others, includes a

number of rules for the naming and the actions to take on devices in /lib/udev/

rules.d (default rules) or /etc/udev/rules.d (managed by the administrator and

take precedence over the default rules).

If udev needs to load a driver, it will use the modalias to load the correct

driver that will be found from the information of the modules that ends up

creating (via depmod when installing new modules) the corresponding file in

/lib/modules/`uname -r`/module.alias.

https://www.kernel.org/doc/Documentation/admin-guide/devices.txt

GNUFDL • PID_00290379 36 Linux administration

3.5. Processes

Among the processes that are running at a given time, we can find 3 types:

• System�processes, associated with the local operation of the machine,

kernel, or processes (called daemons) associated with the control of

different services and can be local, or network (when the machine acts as

a server providing a service). These are typically associated with the root

user although they are usually migrated to pseudo users specialized by

service, for example, bin, www-data, mail, etc. (which are “virtual” and

non-interactive users) used by the system to execute certain processes.

• Administrator�user�processes: root user processes (interactive processes

or running applications) that will also appear as processes associated with

the root user.

• System� user� processes: associated with running user applications,

whether interactive tasks or not, in text or graphic mode.

The most useful commands for managing processes are listed below:

• ps: most used command for versatility and information, list processes,

time, process identifier, status, resources and command line used. It

supports different parameters/syntax and options between the most used

ps -edaf or in BSD ps aux syntax (see man ps).

• top (or htop): a command that dynamically displays processes by

updating changes as well as statistics regarding CPU and memory

utilization.

• kill (killall): it allows deleting processes in the first case by the PID,

and in the second case by the name or other parameters. kill sends

signals to the process such as kill -9 PID_ID of the_process (9

corresponds to SIGKILL) or killall firefox where it will delete all the

processes of the user who executes it and which are called firefox. See also

skill possibilities, for example, to delete all processes for a user with skill

-STOP -u user_name.

• pstree: allows generating a process dependency tree. It should be

remembered that in *Nix, when the parent process is deleted, all the child

processes are deleted, so it may be interesting to know this relationship to

manage a set of processes (using ps -edaf some additional information

can be extracted in the PPID column).

GNUFDL • PID_00290379 37 Linux administration

• Suspend an interactive process: this can be done with Crtl-z which will

return the control to the terminal and then resume it with the fg

command.

• Change the execution priority of a process: through the nice and renice

commands we can modify the priorities of the process and change the

access they have to the resources.

• It is recommended to consult man 7 signal for the valid signals to send

to a process.

3.6. System logs

Both the kernel and many of the service daemons, as well as different GNU/

Linux applications or subsystems, can generate messages that are saved in files

as a trace of their operation and that will also serve to detect errors, or critical

situations. These logs are essential in many cases for administration tasks and

often take a lot of administration time to process and analyze their contents.

Most logs are stored in the /var/log directory, although some

applications may modify this behaviour. Most of the logs of the system

itself are in this directory and are usually set to /etc/syslog.conf or /etc/

rsyslog.conf (depending on the daemon that manages them).

The daemon syslogd (or its alternatives such as rsyslog or journald), which is

responsible for receiving the messages that are sent by the kernel and other

service daemons and sends them to a log file (usually /var/log/messages but

it can be configured at /etc/syslog.conf). The configuration allows redirecting

the messages to different files depending on the daemon that produces them

and/or also classify them by importance (priority level): alarm, warning, error,

critical, etc.

As mentioned, most distributions use rsyslog and journald and their

configuration may be different, for example, Ubuntu uses systemd -managed

rsyslog that can be checked by making systemctl status rsyslog and the

log master file is /var/log/syslog in addition to others and is configured with /

etc/rsyslog). To look at the latest log, we often use (with rsyslog):

tail -f /var/log/syslog

which will show any changes to the device that may appear in the file.

Other useful commands for extracting information from the system are:

Note

There are several log managers
depending on the distribution
used; the classic UNIX and
GNU/Linux system is initially
Syslogd, but progressively the
rsyslog and Journald systems
(part of systemd) have begun
to be used as alternatives, or in
conjunction with syslogd.

GNUFDL • PID_00290379 38 Linux administration

• uptime: time since the system is active and charging.

• last: it analyzes system inputs/outputs (/var/log/wtmp) log of users, and

system bootings. Or lastlog, control of the last time users accessed the

system (information in /var/log/lastlog).

• Commands or applications for combined log processing: commands that

issue summaries (or alarms) of what happened in the system such as

logwatch, logcheck or display of the logs in graphical form such as

gnome-logs.

• logger: allows inserting messages into the log system such as logger

“Checkpoint at `date`” which then with tail /var/log/syslog we can

see as Apr 24 10:48:28 aopcrs adminp: Checkpoint at Sun 24 Apr 10:48:28

CEST 2022

rsyslog (through its configuration in /etc/rsyslog) allows greater control of filters

and TCP utilization as a configuration mechanism to receive/send logs from

one machine to another (remote log management) allowing deployment of a

centralized server of logs from multiple client machines that also incorporates

native support for MySQL and Postgres databases so that logs can be stored

directly in these databases (among others).

With regard to the other daemon that has been mentioned (journald), included

in the systemd, it has aroused many criticisms since it uses binary formats

to save the logs (unlike the previous ones that are in text mode), but it has

gained importance in the distributions that support systemd (or in some it is

a combined method between both daemons (see for example man systemd-

journald or man rsylogd in Ubuntu for example and systemctl status

rsyslog or systemctl status systemd-journald).

To read journald logs:

journalctl

With systemctl status systemd-journald we can see where the logs are

being saved (for example, in Ubuntu in /run/log/journal/...) and which will be

processed by journalctl. The configuration file is in this case at /etc/systemd/

journald.conf. There are different parameters for journalctl, among the most

interesting ones, we have:

• journalctl -b: Last boot messages (similar to dmesg)

• journalctl -b -p err: Error messages on the last boot.

GNUFDL • PID_00290379 39 Linux administration

• journalctl --since=yesterday: Messages appeared since yesterday

(combine --since --until for a period).

• journalctl -f: The process becomes active and will display the next

messages as they are generated by the terminal.

• journalctl _PID=1: It ists process messages with a particular PID, UID,

or GID.

• journalctl /usr/sbin/cron: Messages from a specific executable.

• journalctl /dev/device: Messages regarding a specific device.

• journalctl –disk-usage: Disk space used by logs.

• journalctl _TRANSPORT=kernel: Messages from the kernel (equals -k).

• journalctl –list-boots: It lists the latest system boots and their

timestamps.

• journalctl _SYSTEMD_UNIT=crond.service: Messages from a

systemd service, or unit controlled systemd.

• journalctl -F _SYSTEMD_UNIT: Units available for log.

See the pages of the journalctl manual, and section 7 of systemd.journal-fields,

for a comprehensive description of available fields and options.

3.7. Memory

Regarding the system memory, it should be noted that it is divided into two:

physical memory and virtual memory. Normally (unless specific servers), large

amounts of physical memory will not be available and it is advisable to use

virtual memory (called swap memory) that will be implemented on the disk.

This memory (swap) can be implemented as a file in the file system, although

it is usually defined as a partition dedicated to this purpose (swap partition),

created during the installation of the system and of the ‘Linux Swap’ type.

To examine memory information, there are different commands/files:

• ps: it allows knowing which processes are running and with the

percentage and memory used options.

• top: is a dynamic ps version that is upgradable by time periods and can

classify processes based on memory used or CPU time.

GNUFDL • PID_00290379 40 Linux administration

• free: information about the global state of physical memory and virtual

memory.

• vmstat: information about the status of virtual memory, and its use.

• lsmem: lists the available memory ranges and their status.

• pmap PID: information about the memory map of a process.

• /etc/fstab file: the swap partition (if any) appears, also with fdisk -l we

can find out its size or consult /proc/swaps.

• dstat: is a replacement for some system statistics commands such as

vmstat, iostat, and ifstat that overcomes their limitations and is

much more versatile with additional options (usually not installed by

default).

3.8. Disks

One of the complementary aspects of CPU and memory management is

the disk subsystem, since it will maintain the (massive) information when

the computer has no power (there is some type of memory that keeps its

information without power such as that used in USB (disks) or solid-state

disks, but they must be differentiated from the RAM memory discussed in

the previous section since it loses its content when it has no power). Below

we will see what technologies exist, how they are organized, what partitions

are, and what file systems can be used within a wide variety. In *Nix (just

as all OSs), a disk must be partitioned (divided into sections) and on each of

them create a filesystem for it to be used. To do this, the administrator must

‘mount it’ (associate it to a subdirectory from the / directory) and then it will

be accessible to the system/users. This can be done manually (for example

with mount -t ext4 /dev/device /mnt) or programmed via an entry in

the /etc/fstab file.

To know the available disks (or storage devices) we can look at the system boot

information (with the dmesg command or in the file/var/log/messages), where

devices such as /dev/hdx are detected for IDE devices (currently in disuse) or

SATA/SCSIs with /dev/sdx type devices. Other devices, such as USB-connected

hard drives, solid-state drives (usually called pendrives), removable drives,

external CD-ROMs, are often devices with some type of scsi emulation, so they

will also look like /dev/sdx type devices. It should be noted that the different

layers of hardware+software in the operating system hide the disk technology

that can be magnetic (mechanical) or solid state (electronic only) and called

SSD (Solid State Disk). The latter are increasingly encompassing market share

GNUFDL • PID_00290379 41 Linux administration

due to their speed, consumption, acceptable price in relation to magnetic disks

(although these remain, for now, those used when large quantities of storage

are needed (10-15 TeraBytes disks are still magnetic).

Any storage device will present a series of partitions of its space and

typically a disk with the classic MBR format supports a maximum of

four physical partitions, or more if they are logical (multiple partitions

of this type can be placed on a physical one). Each partition can contain

different filesystems, either from the same operating system or from

different ones.

The classic partition format (developed in the 1980s), has a structure called

MBR (Master Boot Record), and is a special type of boot sector (512 or

more bytes in the first sector of the disk), which saves the disk partitions as

organized, as well as containing code (loader) that allows the disk to boot on

an operating system resident in any of the partitions, starting at the request

of the BIOS.

MBR has some important limitations, but the two main ones are that it

supports only 4 physical partitions called primary (or 3 primary ones and

an extended one that can accommodate 128 logical partitions) and a disk

capacity limitation of 2TB. Because of these limitations, the current disk

partitioning scheme is migrating to the GPT (GUID Partition Table) scheme

that does not have these limitations. New versions of BIOS such as EFI and

UEFI support GPT, in addition to allowing access to disks larger than 2TB, but

there are some manufacturers that have made various modifications to the

MBR scheme to support the two schemes and support GPT as well.

GPT is part of the UEFI (Unified Extensible Firmware Interface) specification

that replaces traditional booting with BIOS (although most computers

maintain both methods) for EFI-supported systems, UEFI (e.g., OS X and

Windows). On Linux (and some BSDs), they can be booted from GPT, with/

without EFI/UEFI support in older BIOS, and they have the gdisk command

(which allows managing the partition table for GUID disks), fdisk, and

Grub2 boot with GPT support included. In the case of fdisk, the support is

not complete and it is recommended to use gdisk for full GPT disk support.

The fdisk command (on MBR disks, in GPT gdisk or gparted is

recommended), or any of the fdisk variants (such as cfdisk, sfdisk). For

example, when examining a disk where Linux is installed:

fdisk -l /dev/sda

Disk /dev/sda: 5 GiB, 5368709120 bytes, 10485760 sectors

Disk model: XX.YY HARDDISK

Units: sectors of 1 * 512 = 512 bytes Sector size (logical/physical): 512 bytes / 512 bytes

GNUFDL • PID_00290379 42 Linux administration

I/O size (minimum/optimal): 512 bytes / 512 bytes

Device Boot Start End Sectors Size Id Type

/dev/sda1 * 2048 8984575 8982528 4.3G 83 Linux

/dev/sda2 8986622 10483711 1497090 731M 5 Extended

/dev/sda5 8986624 10483711 1497088 731M 82 Linux swap

5GiB MBR disk with three partitions (identified by the number added to the

device name), where we can see a boot partition (Boot column with *) Linux

type, an extended partition, and within a swap logical partition (we can see

that sda2 and sda5 share the same start/end sector although the swap has 2

bytes less (for alignment reasons) than the extended one. Similar information

can be found in /proc/partitions.

During booting, the system mounts the default partitions and there may be

others that can be mounted on-demand or automatically mounted when a

device is available (e.g., USB drives). The most important commands and files

for obtaining information from disks in addition to those mentioned are:

• mount: it gives information about mounted filesystems (either real devices

or virtual filesystems, such as /proc or loop). This information can be seen

from the /etc/mtab or /proc/mounts file. It also allows (the administrator or

user if enabled on /etc/fstab) to mount a disk for example with mount -

t ext4 /dev/sda4 /mnt.

• df -h: reports on filesystems and allows verification of used and available

space. This command easily allows to monitor disk space and prevent a

filesystem from becoming saturated (especially if it is the /) since below

10-15% free could lead to system errors and bad functioning.

• du -h directory: command that provides information about the space

occupied by a given /directory/subdirectories and that includes many

parameters.

• tree: it displays the directory tree visually.

• udiskctl: it allows interaction with the daemon udisk and provides

an interface between block devices (disks) and allows information to be

extracted from them, for example udiskctl dump.

• sync: it allows us to synchronize cached writings (memory) with the disk

device to avoid inconsistencies in it.

• blkid: it displays all disk information including UUID (single disk

identifier).

GNUFDL • PID_00290379 43 Linux administration

• gdisk: it is a command for modifying partition tables (GPT) on a GUID

disk.

• gnome-disks: graphical utility for managing disks.

• gnome-disk-image-mounter: it allows mounting files that are disk

images.

• ldmtool: it is a tool for managing Microsoft Windows dynamic disks.

• lvmdiskscan: lists devices that can be used as physical volume.

• Create a disk in RAM: on certain occasions it may be necessary to create

a disk in memory; in order to do it: mount -t tmpfs -or size=10G

myramdisk /tmp/ramdisk where the directory /tmp/ramdisk must exist

previously. Another way will be with the ram device (see man ram)

• /etc/fstab file: it indicates which devices must be mounted at booting or

which can be mounted by users. This does not prevent other discs from

being mounted on demand with the mount command, or dismantling

them with unmount.

To maintain the occupied disk space, it is necessary to delete old temporary

files (for example in /tmp and /var/tmp) and log files to prevent overgrowth

(the bleachbit program is recommended to be used in graphical mode).

For systematic deletion of log files, the logrotate command is recommended,

configured through /etc/logrotate.conf and the /etc/logrotate.d directory (with a

file for each application to manage its logs).

There are also a number of files that the administrator will need to review

(and delete if necessary) which may include: core files (these are large files

with images from the memory of programs that have caused an error),

among which we can mention: email system (in /var/spool/mail or in the user

directory), browser caches or other applications (usually in the user directory)

and HOME directories of the users themselves (in general).

GNUFDL • PID_00290379 44 Linux administration

4. Energy management

As a special case of control devices similar to udev, but not integrated into it,

is the management of energy-related devices (and in some distributions also

the disks). These components are integrated into the freedesktop.org initiative,

which aims to develop interoperable technologies for developing desktop

environments. Various desktop environment projects, such as GNOME, KDE

and Xfce, collaborate with freedesktop.org (also known as X Desktop Group

or XDG) to develop methodologies and techniques that add value to the

developments of these environments.

One of the active projects for GNU/Linux is D-bus, which is an interprocess

communication (IPC) mechanism, and which allows processes, running

concurrently, to communicate with each other to exchange information

or services. In GNU-Linux, it is used to communicate running desktop

applications in the same desktop session, as well as communicate the desktop

session with the operating system, either the kernel, or daemons or particular

processes.

D-Bus is currently used in KDE, Gnome, and Xfce desktop applications, so

two applications/processes can exchange messages with each other, through

the infrastructure provided by the project. In systemd, the D-Bus code was

rewritten and became more efficient, which has increased its performance.

There is a project called kdbus (Linux Kernel D-Bus implementation), which

will offer an alternative in the future, and which implements peer-to-

peer communications to implement IPC through kernel mediation. D-Bus

interactions can be viewed and monitored via the busctl or busctl monitor

command.

Another project maintained by freedesktop.org is called DeviceKit and have

enabled the development of Upower and Udisks as interfaces and services,

through D-Bus, to manage energy management and storage devices. Since

many distributions do not use udisk, only upower will be seen, which

allows listing energy devices (AC or batteries), listening to device events,

and asking about their history or statistics, for example: upower -e (lists

battery devices, AC or display), upower -d (shows all parameters), upower

-i <device_name> (provides device-specific information obtained with -

e), upower --monitor (monitors all UPower daemon events). It can also

be obtained with cat /sys/class/power_supply/BAT0/capacity or by installing the

acpi utility.

https://www.freedesktop.org/wiki/
https://www.freedesktop.org/wiki/Software/dbus/
https://www.freedesktop.org/wiki/Software/systemd/kdbus/
https://freedesktop.org/wiki/Software/DeviceKit/

GNUFDL • PID_00290379 45 Linux administration

5. File system

On each machine with a GNU/Linux system, file systems of different types

can be mounted. It is common to encounter the Linux file systems themselves

created in different disk partitions (or remote disks), such as ext4, raiser, btrfs,

zfs, xfs, nffs (Windows) among others, and where each one has its properties

and characteristics.

Two partitions are usually found in a typical configuration:

1) the one corresponding to “/” (root filesystem) and

2) the one corresponding to the exchange or swap file.

In business/professional-oriented configurations, partitions are typically

separated to manage and administer the contents better (for example,

differentiated partitions for /, /boot, /home, /usr, /opt, /var, among others).

Another common configuration can be three partitions: /, swap, /home, where

/home will be dedicated to user accounts. This allows the accounts of users to

be separated from the system, isolating into two separate partitions, and the

necessary space can be given for the accounts in another partition.

Partitions are made to clearly separate more static or dynamic parts

of the system, and when facing saturation issues, facilitate extending

partitions, or isolating parts for backup more easily (e.g., user accounts

in the /home partition).

The type of partitions must be indicated (fdisk command) according to their

objective (for example swap partitions is Linux swap type and has ID=82). The

one corresponding to the ‘/ ‘ is identified as Linux and ID=83 and must have

one of the standard file systems, for example ext4, which includes journaling

(allows having a log of what happens in the file system and then it can be

used to recover it more efficiently in case of errors). Ext4 is the usual file

system, but the administrator can select Reiser (hardly used as there are no

new developments), XFS, and some more extended with important support

such as Btrfs and ZFS. The file systems that can be found in GNU/Linux are

described below:

• Traditional� systems� on� Linux/*Nix: initially ext2, ext3, (evolution of

the previous one with journaling concept) and ext4, which significantly

improves the benefits of ext3. But we can also use: btrfs (designed by

Oracle, with clear compression and on-line fragmentation), zfs (designed

GNUFDL • PID_00290379 46 Linux administration

by Sun Microsystems, with snapshots, dynamic disk striping, dynamic

error control, it is not opensource but it can be installed on any Linux

-Ubuntu uses ZFS for containers), xfs (developed by Silicon Graphics,

similar to ext4 with good features for large files), jfs (developed by IBM,

with low CPU consumption and good features for large and small files).

• Support�for�non-GNU/Linux�environments: msdos, vfat, ntfs, access to

different fat16, fat32 and ntfs (Windows) hfs and hfsplus (MacOS) systems.

Many of these systems are implemented in user space through FUSE (a

component that allows managing file systems in user space) with the

benefits that it implies.

• Systems�associated�with�physical�supports, in the case of CD/DVD, such

as iso9660 and udf.

• Network�file�systems (widely used): NFS, Samba (smbfs, cifs), allow access

to file systems available on other machines in a transparent manner over

the network.

• Network�distributed�file�systems: such as GFS, Lustre, Ceph, or HDFS.

• Pseudo�filesystems, such as procfs (/proc), sysfs (/sys) or file systems in

RAM tmpfs.

Detailed information on file systems can be found on Linux at http://

www.kernel.org.

5.1. Mount points

Apart from the main/filesystem and its possible splits into extra disk partitions

(/usr /var /tmp /home), the partitions of other operating systems can be accessed

in GNU/Linux if they exist (and that one or the other is selected at boot time).

Sometimes, it is interesting to be able to access these files in read or write and

there is no problem for Linux to access Windows partitions and files (either

FAT or NTFS) and they are accessed through FUSE (module integrated in the

kernel that allows access to the files in user space).

For the data to be read or written, the partition has to be available

within the root file system (/). Therefore, a file system “mount” process

must be performed somewhere in the directory tree.

Depending on the distribution, default directories are used, but the

administrator can create his/her own. Typically, there are subdirectories of the

root, for example /cdrom, /mnt, /media (preferred lately by distributions for

https://www.kernel.org/doc/html/latest/filesystems/index.html
https://www.kernel.org/doc/html/latest/filesystems/index.html

GNUFDL • PID_00290379 47 Linux administration

removable devices). According to the FHS standard, /mnt should be used for

temporary mount of file systems, while /media is used to mount removable

devices.

mount -t filesystem-type device mount-point

The assembly process is carried out by using the mount command:

The filesystem type can be: msdos (fat), vfat (fat32), ntfs, iso9660 (for cdrom),

ext4, xfs, among others.

The device is the corresponding input in the directory /dev to the location of

the device (the IDEs -obsolete- /dev/hdmn, where ‘m’ is a,b,c,d and ‘n’ is the

partition number, the SCSIs with /dev/sdmn, where ‘m’ is a,b,c,d... and ‘n’ the

partition number.

For example:

mount -t iso9660 /dev/sdc /mnt/cdrom

mounts the CD-ROM (if it is the sdc device) to /mnt/cdrom.

mount -t ntfs /dev/sda2 /mnt/win

mounts the second partition of the first device (C drive:Windows), NTFS type

in /mnt/win.

When the disk is no longer needed it can be ‘removed’ with:

umount /mnt/cdrom

umount /mnt/win

For removable media, USB/CD/DVD type, eject can be used for media

removal.

In the device specification, especially in the /etc/fstab file, /dev/device is used as

an identifier, that can be the device partitions, or RAID type special software

(/dev/mdx) or LVM (type /dev/mapper), or UUID, which are unique identifiers

assigned to disks or partitions, used at boot time. We can use the blkid

command or access /dev/disk/by-uuid to know the associated UUIDs.

Note that all files/directories are given reduced access control lists in 3 groups

(owner, group, rest) and with rwx permissions (read, run, write including

deletion) so there will be 9 bits left as rwxrwxrwx, where the first 3 correspond

to the owner, the second ones to the group and the rest to users who do not

own or belong to the group. For a directory, x denotes the permission to be

able to enter that directory (with the cd command, for example). To modify

GNUFDL • PID_00290379 48 Linux administration

the rights/property over a directory or file, it can be done with: chown (change

owner of the files, only the root can do it), chgrp (change owner group of

the files, only the root can do it), chmod (change specific permissions (rwx)

of the files).

GNUFDL • PID_00290379 49 Linux administration

6. Users and groups

As mentioned in the initial module, users of a GNU/Linux system have an

associated account (defined with some of their data and preferences), along

with disk space so they can arrange their files and directories. This space

assigned to the user is his/her property (and a general group as users for

example) and can only be used by the user (unless the permissions specify

different things). Within accounts associated with users, we can find different

types:

• administrator: with root identifier (UID=0), which is only (or should

be) used for administration operations. The root user has all permissions

and full access to the machine and configuration files. Therefore, it is

recommended to always work with a user account and when we want

to perform some privileged activity, such as installing a package, scaling

privileges with the sudo command or changing the root user with su –

root. Nowadays, almost all desktop environments do not allow the root

user to connect from the interface by default.

• User� accounts: accounts for any machine user who can perform any

activity on their HOME and in some directories such as /tmp but in the

rest he/she will only be able to look and in some such as /var this activity

will even be restricted.

• Special� services� accounts: lp, wheel, www-data... accounts that are not

used by people, but by system services (usually to not use the root for

managing these services), and normally as shell they have /bin/false in the

file /etc/passwd to prevent them from being interactive accounts.

The user will be created with an identifier known as a name or login (or user

identifier), a password, and an associated personal directory (the account). As

a name, the initial of the name and the last name are generally used, all in

lowercase, although it is an unwritten rule. System user information (local,

unless external directory systems such as YP/NIS or LDAP are used, which will

be seen later).

The user can change the password (and it is advisable to do so regularly or at

least the first time they enter to change the one that the root user has given

them) with the passwd command and it must be a combination of letters,

numbers and special characters (for example .!-_) and must not be made up

of any dictionary word or the like because it can represent a major security

problem.

GNUFDL • PID_00290379 50 Linux administration

Most distributions currently implement a mechanism based on a summary

function (hash) in addition to continuing to use the salt value and save them

in /etc/shadow that is only accessible to the root. The cryptographic hash

function is a function that, from an arbitrary block of data, returns a fixed-

size bitchain (called digest) to be used as a password since any changes to the

input data will change the value of the result string (digest). In addition, salt

is continued to be used to avoid that, by comparison and knowing the hash

algorithm, the word that generated the digest can be obtained.

The algorithm definitions of which passwords are supported and how,

are configured in the PAM (Pluggable Authentication Modules) system, a

mechanism included in all Linux to manage the authentication of tasks and

services, allowing to model custom security policies for the different services.

The password setting in Debian, for example, will be in the /etc/pam.d/common-

password file where we can see a line indicating sha512 which is the hash

algorithm (512-bit secure hash algorithm). The hash value (digest) will be

saved in the /etc/shadow file (in the second field of the line belonging to

the corresponding user) in the following format: idsalt$value_hash where id

identifies the algorithm used and can take the following values: 1(MD5), 2a

(Blowfish), 5 (SHA256), 6 (SHA-512). Therefore, 5salt$digest is a SHA-256

and 6salt$digest password in SHA-512. The salt represents a maximum of

16 characters following the "$" symbols following the id, and the encrypted

string size is set to MD5=22 bytes, SHA-256=43 bytes, and SHA-512=86 bytes

where all password characters are representative and not just the first 8 as in

3DES (the original encryption algorithm). To generate a hash of a password

word, the passwd command must be used and the result will be stored directly

in the /etc/shadow file (obviously a user will only be able to change his/her

password and not that of other users).

User and group information can be found in the following files:

• /etc/passwd: user information (name, HOME directory, etc.).

• /etc/group: information about user groups.

• /etc/shadow, /etc/gshadow: encrypted passwords (hash value) of users

(shadow) or groups (gshadow) and settings for validity, change, etc.

All of these files are organized by lines, each of which identifies a user or group

(depending on the file). On each line there are several fields separated by the

character “:” and it is important to know what information they contain. All

of this information can be found in the introduction module.

When a user enters the system, after the user/password has been validated,

they are placed in their HOME directory and the order interpreter (shell)

set to /etc/passwd is executed on the line corresponding to the user (field 7)

GNUFDL • PID_00290379 51 Linux administration

and can begin to execute orders or work interactively with the system. Only

the system root (or users in its group) have permission to manipulate the

information of the other users and groups, register them, unsubscribe them,

etc. (some orders, such as chfn, will allow users to change their information if

it is configured that it can be done). Each order for handling users has several

different parameters for managing user information and/or fields mentioned

above.

The most representative commands for managing users/groups include:

• adduser: adds a new user to the system. The way the user is created

(if no additional information is specified) can be configured in the /etc/

adduser.conf file. It supports a different set of options to specify the home

directory, the shell to use, etc. It is recommended to use this command

and not useradd.

• usermod: with this order, most of the fields found in the passwd and

shadow file can be modified, such as the home directory, shell, password

expiration, etc.

• chfn: it changes the user’s personal information, contained in the

comments field of the passwd file (field 5).

• chsh: it changes the user shell.

• deluser: deletes a user from the system, and deletes all their files

according to the parameters indicated (allowing even a backup), etc.

The default settings to be used with this order are specified in the /etc/

deluser.conf file.

• passwd: it changes a user’s password, its expiration information, or it locks

or unlocks a certain account.

• addgroup: it allows adding a group to the system.

• groupmod: it allows modifying the information (name and GID) for a

given group.

• delgroup: it deletes a certain group. If any user still has it as primary, it

cannot be deleted.

• gpasswd: it is used to change the group password.

• whoami: it is used for knowing which user we are identified with (it may

seem like a nonsense question, but it is a common question when working

with different users or as root) and it will display the current user identifier.

GNUFDL • PID_00290379 52 Linux administration

• groups: used to know which groups the user belongs to and it will display

user and group ID.

It is also interesting that the current user can ‘become’ another user without

exiting the current session via the login or su command (useful action

when it is necessary to run/access information as another system user if their

password is available) or changing groups with the newgrp order. This last

order should only be used when it does not belong to the group in question

and its password is known (which must be activated in the /etc/gshadow file). If

only the permissions of a given group are needed to execute an order enabled

for this group, the sg command can be used.

There is a directory (usually /etc/skel), where we find the files included when

a new account is created and they will be the ones that initially configure the

user session (environment variables, keyboard, alias, etc.). The administrator

must adapt these files according to what their users need as an initial session

(each user can then modify them according to their needs).

It is necessary to mention that in some installations the users/groups and other

variables/configurations are not defined on each machine but on a server

known as user identity/information manager. This allows a set of machines to

be used by users without having a local account but on the server which makes

the user’s computer independent. These services, also referred to as network

information systems or directory services, are identified as NIS or LDAP (or in

Windows as Active Directory).

To determine if the user is local or from a directory service, we can check if

the user is defined in /etc/passwd and if it is, the user will be local (regardless

of whether it is also defined in the directory service). To determine if the

user belongs to a NIS system, we can also refer to the passwd and group lines

of the configuration file /etc/nsswitch.conf if nis (or nisplus) appears that will

indicate that this machine is a client of a NIS server. In general, it does not

imply any modification for the user, since the management of the machines

is transparent, and especially if combined with files shared by NFS (Network

File System) that allows for their account to be available regardless of which

machine they work with.

If the user wants to change the password in NIS systems, instead of the passwd

command, the yppasswd command must be used which will change it in the

database and propagate it to all clients in the NIS domain. These concepts will

be expanded in the network services section.

GNUFDL • PID_00290379 53 Linux administration

7. Print servers

There are two classic printing systems: LPD (Line Printer Daemon) of the BSD-

UNIX branch and System V Line Printer (or LPR), common in different UNIX.

GNU/Linux has originally integrated both systems, either primarily by using

LPD and emulating LPR or depending on the distribution integrating one or

the other by default.

LPD is a fairly old system (dated back to the origins of the mid-1980s BSD

branch) and is often lacking support for modern devices as it was not intended

for current printers. To solve this problem, LPD is combined with Ghostscript,

which is an environment that produces output in postscript format for a

very wide range of printers with drivers. This software is also combined with

filtering software that eventually defines, depending on the file to be printed,

the most suitable for the task to be performed. The process with LPR is very

similar.

The way to determine which printing system is installed is by checking the

main command that in BSD (LPD) system is lpr, or in SystemV (LPR) is lp.

While these print servers are functional, they offer little flexibility and

a complex setup task for quality prints. To solve these problems, the

CUPS project was developed with the aim of unifying criteria, making the

configuration process (for printers and printing service) simple, flexible and

of good quality. Nowadays, CUPS has become the de facto standard for GNU/

Linux and, although LPD and LPR are still included for compatibility, they are

not commonly used.

At present, the administrator can find local (typically connected to USB) or

remote printers that are connected to a network. For this type of printer,

we must know the communication protocol used, which can be TCP/IP (for

example, in HP printers), or other higher-level ones over TCP/IP, such as IPP

(CUPS), JetDirect (some HP printers), etc.

7.1. CUPS

CUPS is a new print system architecture that features a support layer for BSD

LPD and allows it to interact with servers of this type. It also supports a new

printing protocol called IPP (based on http), but only available when the client

and the server are CUPS type and it also uses a type of drivers called PPD that

identify printer capabilities and properties.

GNUFDL • PID_00290379 54 Linux administration

CUPS has a management system based on a set of files: /etc/cups/cupsd.conf

centralizes the configuration of the printing system, /etc/cups/printers.conf

controls the definition of printers and /etc/cups/classes.conf controls the groups

of printers. In /etc/cups/cupsd.conf the system is configured according to a series

of sections of the file and the policies of the different actions.

It should be noted that CUPS is designed for both clients and the server

to operate under the same environment; if clients use LPD, a compatibility

daemon called cups-lpd (in packages such as cupsys-bsd) must be installed. In

this case, CUPS will accept jobs, from an LPD system, but it will not control

the access.

For command line administration, CUPS is somewhat peculiar, as it accepts

both LPD and SystemV commands on clients, and the administration is

usually done with the SystemV lpadmin command. However, graphical tools

such as those in the Gnome or KDE control panel are often used or other tools

such as gtklp, system-config-printers are available or the web interface

incorporates the same CUPS system into the URL http://localhost:631 as shown

in the following figure:

Figure 3

And it is displayed as shown in the following figure from the client (for

example Libre Office):

GNUFDL • PID_00290379 55 Linux administration

Figure 4

GNUFDL • PID_00290379 56 Linux administration

8. Storage redundancy: RAID

RAID (Redundant Array of Inexpensive Disks) is an environment that allows

defining a high-availability storage scheme using low-cost disks without large

infrastructures (cabins, fibre, etc.). The main objective of the design is to

provide fault tolerance from the device level (disk set), to different possible

types of physical and logical faults, and to prevent data loss or system

consistency faults. Since we will be working with information replicas, some

schematics are designed to increase the performance of the disk system,

extending its bandwidth available to the system and applications.

Typical deployment on enterprise-class servers is via hardware cards that allow

a RAID to be configured with disks connected directly to the server (DAS,

direct-attached storage) but it can also be done in GNU/Linux via software

and no additional hardware is required.

It is important to note that RAID provides significant fault tolerance capability,

but available data should always be backed up periodically. This strategy is

important, because if more devices than the RAID’s capacity fail at the same

time, the only way to prevent data loss will be through the recovery of

previously saved files.

RAID distinguishes a number of possible levels or configurations (each

hardware manufacturer, or specific software can support one or more of these

levels). Each RAID level is applied over a set of disks, sometimes referred to as

a RAID array, which are usually disks of equal size (or by groups) but it is not

an indispensable condition. Hardware driver features should be analyzed as

some do not allow disks (or groups) to be of different sizes; in others they can

be used, but the array is defined by the smaller disk (or group) size.

Typical RAID levels are (although in some cases the nomenclature may depend

on each manufacturer):

• RAID�0: data is distributed equally between one or more disks without

parity or layered redundancy (striping) information and does not involve

fault tolerances. Only data is being distributed; if the disk physically fails,

the information is lost and we must retrieve it from backups. What does

increase is performance, depending on RAID 0 deployment, as read and

write operations will be split between the different drives

• RAID�1: an exact copy (mirror) is created on a set of two or more drives.

In this case, it is useful for reading performance (which can increase

linearly with the number of disks), and especially for having tolerance

for the failure of n-1 disks in the array. RAID 1 is often suitable for high

GNUFDL • PID_00290379 57 Linux administration

availability, such as 24x7 environments, where access to disk resources is

critical. In hardware controllers it is common to support hot swapping of

the disks allowing, once the fault is detected, to replace the affected disk

with a new one without shutting down the system and for the controller to

automatically synchronize the data to restore the initial operational state.

• RAID�2,�3,�and�4: they use different divisions, groups, and redundancy

codes but they are not typically used. RAID 5 and RAID 6 are used instead,

because they have better features and/or capabilities.

• RAID�5: splitting is used at the block level, distributing parity across all

disks. It is widely used, due to the simple parity scheme, and because

this calculation is easily implemented by hardware, with good features.

RAID 5 will require a minimum of 3 disks to be deployed and only

allows one disk to fail (the failure of a second disk causes complete data

loss). The maximum number of disks in a RAID 5 redundancy group is

theoretically unlimited, but in practice it is common to limit the number

of drives as the drawbacks of using larger redundancy groups are a higher

probability of simultaneous failure of two disks, a longer reconstruction

time, and a higher probability of finding an unrecoverable sector during a

reconstruction. One alternative that provides dual parity protection, thus

allowing for more disks per group, is RAID 6.

• RAID�6: it was not part of the original levels and it extends the RAID5

level by adding another parity block, so it divides the data at the block

level and distributes the two parity blocks between all members of the set.

An algorithm based on Reed-Solomon code is used for parity calculation

and therefore RAID6 is a special case of this with only two codes (2 parity

blocks). RAID 6 provides protection against dual disk failure and failure

when a disk is being rebuilt and a minimum of 4 disks are required to

deploy it.

• RAID�5E� and�RAID�6E: this is how RAID 5 and RAID 6 variants that

include backup drives are referred to. These disks can be connected and

ready (hot spare) or on standby (standby spare). In this ‘E’ classification,

backup disks are available for any of the drives and do not result in any

performance improvement, but reconstruction time (for hot spare disks)

and management tasks are minimized when failures occur. A backup disk

is not actually part of the assembly until a disk fails and the assembly is

rebuilt over the backup disk.

Nested�RAIDs:

• RAID�0+1�(or�01): a stripe mirror is an embedded RAID level. For example,

two RAID 0 groups are deployed, which are used in RAID 1 to mirror each

other (categories are read from right to left and the last, 1 in this case, is

the top one). One advantage is that in the event of a failure, the RAID 0

GNUFDL • PID_00290379 58 Linux administration

level used can be rebuilt thanks to the other copy, but if disks are to be

added, they must be added to all RAID 0 groups.

• RAID�10�(1+0): mirror splitting, RAID 1 groups under RAID 0. So, in each

RAID 1 group, a disk can fail without losing data. However, this will require

replacing them, since if not, the disk remaining in the group becomes

a possible point of failure of the entire system. It is a configuration

commonly used for high performance databases (for its fault tolerance and

speed, not based on parity calculations).

• RAID�50�(or�5+0): it combines the block-level splitting of a RAID 0 with

the distributed parity of a RAID 5, thus a split RAID 0 set of RAID 5

elements. The configuration of the RAID sets impacts on the overall fault

tolerance as, for example, a configuration of three RAID 5 sets of 3 disks

each has the highest storage capacity and efficiency, but can only tolerate

a maximum of three potential disk failures of each RAID 0 set. Because

system reliability depends on the rapid replacement of broken disks so

that the assembly can be rebuilt, it is common to build six-disk RAID 5 sets

with an online backup disk (hot spare) that allows immediate rebuilding

to begin in the event of the failure of the set. RAID 50 improves RAID

5 performance, especially in writing, and provides better fault tolerance

than a single RAID level. This level is recommended for applications that

require high fault tolerance, capacity, and random search performance.

It is recommended to expand the information before deciding on a particular

design and use any of the online RAID calculators to learn about it.

Some considerations to keep in mind about RAID in general:

• RAID improves system uptime, as some of the levels allow the disks to

fail and the system to remain consistent, and depending on the hardware,

even the problematic hardware can be changed without the need to shut

down the system, a particularly important issue in critical systems.

• RAID can improve application performance, especially in systems with

mirror deployments, data splitting may allow linear read operations to

increase significantly.

• RAID does not protect data; obviously, destruction by other means (virus,

general malfunction, or natural disasters) is unprotected and it is vital to

have backup copies.

• Data recovery is not simplified; if a disk belongs to a RAID array, it has to be

recovered in that environment and data cannot be accessed individually

on each disk.

https://es.wikipedia.org/wiki/RAID
http://www.raid-calculator.com/

GNUFDL • PID_00290379 59 Linux administration

• It usually does not improve typical user applications (e.g., desktop

applications) because these applications have random access components

to data, or to small datasets; they may not benefit from linear readings or

sustained data transfers.

• Some schemes speed up reading operations, but on the other hand, they

penalize writing operations (RAID 5 case for parity calculation to write). If

the use is basically writing, we will need to look for which schemes do not

penalize them (some cases, such as RAID 0.1, or some RAID 10 modalities

are equivalent to writing on a single disk, or even increase performance).

• Information transfer is not facilitated; it’s quite easy to move data without

RAID, by simply moving the drive from one system to another. In the case

of RAID, it is almost impossible (unless the same hardware controller is

available) to move one disk array to another system.

For GNU/Linux, RAID hardware is supported by multiple kernel modules,

associated with different sets of manufacturers. This allows the system to be

able to abstract itself from hardware mechanisms and make them transparent

to the system and to the end user. These kernel modules allow access to

the details of these controllers, and their configuration of very low-level

parameters, which in some cases (especially on servers that support high load)

to adapt (tuning) the disk system to the needs of the service.

As mentioned above, it is possible in GNU/Linux to create a RAID software

through a controller integrated into the kernel, called Multiple Device (md),

that can be considered as the kernel level support for RAID. This can deploy

RAID levels, typically 0,1,5,6 and nested (e.g., RAID 10), on different block

devices such as SATA or SCSI drives. This module also supports a mode of

operation called linear with two or more disks which are combined into a

physical device. Disks are “added” to each other, so writing linearly on the

RAID device will fill disk 0 first, then disk 1 and so on. Disks do not have to

be the same size. There is no redundancy at this level and if a disk fails, all

data will be lost.

The command used to create and manage RAIDs in Gnu/Linux is called mdadm

and below are some examples regarding SCSI disks:

Creating a linear array (striping on consecutive disks):

mdadm --create --verbose /dev/md0 --level=linear --raid-devices=2 /dev/sda1 /dev/sdb1

where a linear array is generated from the /dev/sda1 and /dev/sdb1 partitions,

creating the new /dev/md0 device on which the archiving system can already

be created and mounted:

mkfs.ext4 /dev/md0; mkdir /mnt/linearRAID

https://raid.wiki.kernel.org/index.php/Linux_Raid

GNUFDL • PID_00290379 60 Linux administration

mount /dev/md0 /mnt/linearRAID

For a RAID0 or RAID1 we simply change the level to raid0 or raid1. With mdadm

--detail /dev/md0 we can check the parameters of the newly created array

and we can check the input in /proc/mdstat to determine the active arrays,

as well as their parameters. mdadm has options to examine and manage the

different RAID arrays software created (see man mdadm) and it should be

noted that RAID arrays by software are not automatically recognized at boot

time (as with RAID hardware), as they actually depend on the construction

with mdadm. For the definition of an array software to be persistent, it must

be recorded in the configuration file /etc/mdadm/mdadm.conf (location may

depend on distribution) through:

mdadm --detail --scan >> /etc/mdadm/mdadm.conf

To configure a RAID5 with three SATA disks and one partition per disk, we

must:

• Prepare the disks: with fdisk creating an ‘fd’ type partition (Linux Raid

autodetect) over each one.

• Create the RAID 5 called /dev/md0:

mdadm --create --level=5 [--chunk=1024] --raid-devices=3 /

dev/md0 /dev/sdb1 /dev/sdc1 /dev/sdd1 (the chunk parameter has

special relevance in RAID performance and sizes from 512 onwards are

recommended depending on average file size - see manual page).

• Create the file system: mkfs.ext4 /dev/md0

• To be activated on the following boot:

mdadm --detail --scan >> /etc/mdadm/mdadm.conf

• For mounting: mkdir /mnt/RAID5; mount -t ext4 /dev/md0 /mnt/

RAID5

Other useful orders:

• To assemble an array (it collects the components of a previously created

array into an active array):

mdadm --assemble /dev/md0 /dev/sdb1 /dev/sdc1 /dev/sdd1

• To add a new drive: mdadm --add /dev/md0 /dev/sde1 (this drive will

remain as a spare), mdadm --grow /dev/md0 --raid-devices=4 (to

move the spare drive to active) and then the file system must be resized

with resize2fs /dev/md0 size

GNUFDL • PID_00290379 61 Linux administration

• Mark a disk with errors and remove it: mdadm --fail /dev/md0 /dev/

sde1; mdadm --remove /dev/md0 /dev/sde1

• Stop/Start an array (remember to unmount/mount the filesystem before/

after stopping/booting the array): mdadm --stop|run /dev/md0

• Obtain array information: mdadm --detail /dev/md0

• Monitor the array (be careful with this command as it can be a massive

source of emails if it is not configured correctly): mdadm --monitor --

scan --mail=[email address] --delay=1800 &

• If it is desired to be mounted during the booting, it must be included in

the /etc/fstab file.

In relation to the operation of the array, the information of /proc/mdstat can be

examined or its status can be checked by the email or mdadm --detail /dev/

md0. If any failure occurs in the array, it would go into degraded condition,

and the system would lose its capacity to tolerate a subsequent failure, so it

will be necessary to remove the disk and replace it (if there are no spare disks)

and the system would automatically start the reconstruction.

GNUFDL • PID_00290379 62 Linux administration

9. Logical volume disks: LVM

LVM (Logical Volume Manager) is an environment that allows to be abstracted

from the physical disk system, its configuration and number of devices/space,

so that the (operational) system can handle this work through logical volumes

with a simpler and more effective view. LVM was based on ideas developed

from storage volume managers used in HP-UX and Gnu/Linux implements

version 2 called lvm2.

LVM architecture typically consists of:

• Physical�volumes (PVs): they are the hard drives, or partitions of them,

or any other element that appears as a hard drive on the operating system

(e.g., a RAID software or hardware).

• Logical�volumes (LVs): these are visible in the system as a block device

(absolutely equivalent to a physical partition), and can contain a file

system (e.g., users' home) and can be given any desired name, facilitating

administration tasks.

• Volume� groups (VGs): it is the administrative unit that encompasses

resources (logical and physical volumes). This unit saves the available PV

data, and how LVs are formed from PVs. Obviously, to be able to use a VG

group, physical PV media must be available, which will be organized into

different LV logic units.

Using logical volumes, a more flexible treatment of storage system space

(which could have a large number of disks and partitions) is allowed,

depending on the needs. The space may be managed, both by more

appropriate identifiers and by operations that allow adapting the needs to the

space available at any given time. That is, LVM allows:

1) To dynamically resize logical groups and volumes, taking advantage of new

PVs, or extracting some of the initially available ones.

2) Snapshots of the file system making it easy to create a new device that

is a snapshot at the time of a LV situation. We can, for example, create the

snapshot, mount it, test various new software operations or configuration, or

other items, and if it does not work as expected, return the original volume

to its state before testing.

3) Redundancy: it can be used together with RAID to determine the desired

degree of redundancy (see man lvmraid).

GNUFDL • PID_00290379 63 Linux administration

To create an LVM, 4 basic steps must be followed:

• Use fdisk to initialize disks by creating a type 8e partition (Linux LVM)

• Define and initialize the physical volumes (PV):

pvcreate /dev/device [/dev/device]

• Define the volume groups by grouping PVs into a VG:

vgcreate vg-name /dev/device [dev/device]

• Initialize the logical volumes on each VG (LV):

lvcreate –L size –n lv-name vg-name

• We can expand (or reduce) a volume with pvcreate /dev/new_device

and then vgextend vg-name /dev/new_device; to reduce vgreduce

vg-name /dev/device

Example for creating, mounting, and unmounting an LVM:

apt install lvm2; apt install system-config-lvm

pvcreate /dev/sdd1 /dev/sde1

vgcreate myvol /dev/sdd1 /dev/sde1

vgdisplay

lvcreate -n mylogvol -L 10g myvol

mkfs.ext4 /dev/myvol/mylogvol

mkdir /mnt/lvm-test

mount /dev/myvol/mylogvol /mnt/lvm-test;

df –h

lvdisplay

umount /mnt/lvm-test

lvremove /dev/myvol/mylogvol

Some additional commands to those mentioned are: lvchange (change of

the attributes of a Logical Volume), lvconvert (converts a Logical Volume

from linear to mirror or snapshot), lvrename (it changes the name of a

Logical Volume), lvresize (resizes a Logical Volume), lvs (information

about Logical Volumes), lvscan (searches all disks for a Logical Volumes).

GNUFDL • PID_00290379 64 Linux administration

10.Non-interactive jobs

In administration tasks, it is usually necessary to perform certain tasks at

time intervals, either by scheduling and performing the tasks at times of low

utilization of the system, or due to the periodic nature of the tasks to be

executed.

To perform these types of jobs, there are several options for planning and

executing tasks:

• nohup: this is the simplest case used by users as it allows them to perform a

non-interactive task and it is maintained even if the user exits the session.

• at: it allows launching an action in a future time by scheduling the instant

at which it will start, specifying the time (hh:mm) and date, or whether it

will be done today or tomorrow.

at 10pm task (runs task at 10:00 pm)

• cron: it sets a list of tasks to be performed through a configuration in /etc/

crontab. Specifically, each entry in this file will have: minutes | hour | day

of the month | month | day of the week | user | task/command.

The content will be similar to:

10 3 * * * root task1

20 3 * * 7 root task2

30 3 1 * * root task3

where a series of tasks to be done are being scheduled: every day (“*” indicates

“any”), weekly (the seventh day of the week), or monthly (the first of each

month). The tasks would be executed by the crontab command, but the cron

system assumes that the machine is always on. If not, it is best to use anacron,

which checks if the action was not performed when it should have been done,

and executes it. In this example, task1 will run every day at 3:10, task2 on the

7th day of each week at 3:20, and task3 on the 1st of each month at 3:30.

There may also be some files, cron.allow, cron.deny, to limit who can place jobs

(or not) in cron, and using the crontab command, a user can define jobs in

the same format as above and which will be saved in /var/spool/cron/crontabs.

In some cases, there is also a /etc/cron.d directory where jobs can be placed and

which is treated as an extension of the /etc/crontab file. In some versions, the

GNUFDL • PID_00290379 65 Linux administration

system already specifies its periodic system jobs directly on subdirectories of

the /etc such as cron.hourly, cron.daily, cron.weekly and cron.montly, where the

system jobs that need this periodicity are placed.

In systems with systemd booting, there is systemd-cron, as a service based on

timers and calendars, which allows using the standard directories cron.hourly,

daily, monthly and with systemctl start|stop crond.service the service

can be started/stopped.

Depending on the distribution and support of systemd, a classic cron support

layer will be used, or the definition of systemd’s timers definition may be used

to create tasks only. It is recommended to refer to the distribution man pages,

referring to systemd, systemd.timer, cron and crond to know the methods

enabled.

GNUFDL • PID_00290379 66 Linux administration

11.Network management

The GNU/Linux operating system is taken as an example of a

standard communications architecture and since its inception has

incorporated different protocols and network-based services to improve its

interconnectivity and versatility. Many changes have occurred in recent years

with the rise of Internet-connected devices (which have grown exponentially

and IPv4 device addresses have been exhausted), stemming from the

proliferation of smartphones, tablets (but also TVs, video game consoles, cars,

etc.), as well as the bandwidth needs that have caused evolutions that will still

take a few years to stabilize.

Among them, the most direct one is the change of IP protocol that will be in

its version 6 (IPv6) and that will force all systems to be changed to operators

and users to support this new connection protocol. The other significant

concept in communication environments is the Internet of Things which will

soon change society as it is known (by the number and diversity of devices

connected to the Internet).

Beyond these challenges, this section will discuss the current TCP/IP-based

communication structure and protocols, which is the base protocol used on

the Internet.

11.1. The TCP/IP protocol

The TCP/IP protocol synthesizes an example of standardization and a global

communication will and it consists of a set of basic protocols that have been

added to the main one to meet the different needs in computer-computer

communication such as TCP, UDP, IP, ICMP, ARP. [Com].

Nowadays, the most common use of TCP/IP for the user is the remote

connection to other computers (SSH), the use of remote files (NFS), or

their transfer (HTTP, Hypertext Transfer Protocol) among others. The most

important traditional TCP/IP services (and which nowadays still exist or have

evolved) are:

a)�File�transfer: initially the FTP service allowed files to be obtained/sent to

another computer. Nowadays it is a little-used protocol. Protocols such as a

WebDAV over HTTP have allowed the file transfer to be done more simply

and without specific applications beyond a browser and web server.

GNUFDL • PID_00290379 67 Linux administration

b)� Remote� connection� (login): initially, the network terminal protocol

(telnet) that allowed interactive interconnection, but it is in disuse due to

its insecurity. The service currently used is called SHH and it encodes the

information and makes the packets on the network illegible to an external

observer.

c)�Mail: this service allows sending messages to users on other computers.

This mode of communication has become a vital element in users’ lives and it

allows emails to be sent to a central server so that they can then be retrieved

through specific programs (clients) or read through a web connection.

The advancement of technology and the low cost of computers have allowed

certain services can be offered already configured over certain computers

working on a client-server model. A server is a system that provides a specific

service for the rest of the network. A client is another computer that uses this

service. All of these services are generally offered over TCP/IP:

• Network�file�systems (NFS): allows a system to access files on a remote

system so that storage devices (or some of them) are exported to the system

that wants to access them, and it can “see” them as if they were local

devices.

• Remote�printing: allows access to printers connected to other computers.

• Remote�run: enables a user to run a program on another computer. There

are different ways to perform this execution: either through a command

(ssh) or through systems with RPC (Remote Procedure Call) that allow a

program on a local computer to perform a program function on another

computer.

• Name�servers: in large installations there is a set of data that needs to be

centralized to improve its utilization, e.g., user name, keywords, network

addresses, etc. All of this makes it easy for a user to have an account for

all machines in an organization (for example, a NIS service, -Network

Information Service-, or LDAP, -Lightweight Directory Access Protocol-).

The DNS (Domain Name System) is another name service but it has a

relationship between the machine name and the logical identification of

this machine (IP address).

• Graphic�terminal�servers (network-oriented window systems): allows a

computer to view graphical information about a display that is connected

to another computer. The most common of these systems in GNU/Linux

is X Window and it operates through a display manager (dm) or in the case

of Windows® systems, terminal services (now known as remote Desktop

Services) allow a user to access applications and data stored on another

computer via the network.

GNUFDL • PID_00290379 68 Linux administration

However, in recent decades, the services offered in TCP/IP have proliferated

to meet the needs of both individual users and large facilities services. Among

the most important for *nix systems, we can list the following, among others:

• autofs,�amd. Auto-mounting disks over the network.

• audit. Saving remote information for audit purposes.

• bootparamd/tftp. Allows the machines without disks to obtain network

parameters and the operating system itself.

• cups. Network printing service.

• cvs/subversion. Concurrent version system.

• inetd/xinetd. Network environment (daemon) that centralizes a set of

services and filters.

• imap/pop. Internet Service Message Access Protocol for remote mail

system access.

• dhcp. Dynamic Host Configuration provides network parameter

information to clients on a subnet.

• firewall. Packet Filtering firewall used to manage and filter all TCP/IP

packets on the Linux kernel.

• heartbeat. High Availability Services to increase redundancy in critical

services.

• http. Web service management.

• ipmi. Remote machine management via OpenIPMI.

• ipsec,� kerberos,� ssl/ssh. Protocols/services for coded communications

and authentication.

• iscsi. Management and access to disks via the SCSI protocol over a

network.

• ldap. Lightweight Directory Access Protocol, information access services

on large networks.

• named. Domain Name System, name/domain service vs. IP.

• netdump. Sending network information for kernel error diagnosis.

• netfs/nfs/smb. Network disk mount: Network File System (NFS),

Windows (SMB).

• ntalk. Chat service.

• ntpd. Time synchronization services.

• proxy. Proxy Caching Server services for http.

• rsync. Remote Synchronization for file backup services.

• rtp: streaming audio/video.

• snmpd. Simple Network Management Protocol to monitor, management

& monitoring of devices connected to a network.

• sql. Network database service.

• vncserver. Service for Virtual Network Computing and using Remote

Desktop Sharing.

• voip. Voice over IP.

• ypbind/ypserv. NIS information services on GNU/Linux systems.

• zeroconf�DNS. Network information services when a DNS service does

not exist.

GNUFDL • PID_00290379 69 Linux administration

A list of TCP/IP services can be found in the list of services:ports (standard

communication points) mapping in the /etc/services file of any GNU/Linux

distribution.

TCP/IP are actually two communication protocols between separate

computers. On the one hand, TCP (transmission control protocol), defines

the communication rules so that a computer (host) can ‘talk’ to another one

and on the other hand, IP (internet protocol) defines the protocol that allows

identifying the networks and establishing the paths between the different

computers. That is, it routes data between two computers across networks.

An alternative to TCP (connection-oriented protocol in which the sender and

receiver must be simultaneously connected) is the UDP protocol, which treats

the data as a message (datagram) and works offline (the receiver does not have

to be connected when the message is sent) but communication is not reliable

since the packets may not arrive or arrive duplicated or with errors.

There is another alternative protocol called ICMP that is used for error/control

messages or to extract information about a network.

In the OSI/ISO communications model, it is a 7-layer theoretical model

adopted by many networks in which each has an interface to communicate

with the previous and subsequent ones. Although the OSI model is the

reference model, it is often preferred to use the TCP/IP or Internet model that

has four layers of abstraction (as defined in RFC 1122) and it is often compared

to the seven-layer OSI model to establish equivalences. The TCP/IP model and

related protocols are maintained by the Internet Engineering Task Force (IETF)

and the layered subdivision they perform is:

• Layer�4�or�application�layer (similar to OSI Model Layers 5 (session), 6

(presentation), and 7 (application): this layer handles high-level protocols

and presentation/coding and dialogue aspects.

• Layer� 3� or� transport� layer (similar to layer 4 (transport) of the OSI

model): linked to protocols and quality of service parameters in relation

to reliability and error control. That is why it defines two Transmission

Control Protocols (TCPs), communication-oriented and error-free, and

User Datagram Protocol (UDP), which is connectionless and therefore

there may be duplicate or out-of-order packets.

• Layer�2�or�Internet�layer (similar to layer 3 (Network) of the OSI Model):

it sends source packets from any network and makes them reach their

destination, regardless of the route chosen and the networks they must

travel. The specific protocol of this layer is called the Internet Protocol

(IP), which must decide the best route and suitability of the packets to

achieve the desired objective.

GNUFDL • PID_00290379 70 Linux administration

• Layer�1�or�media�access�layer (similar to layer 2 (data connection or link)

and layer 1 (physical) of the OSI model): it addresses all aspects that an

IP packet requires to actually perform a physical link and includes the

technology details.

In summary, TCP/IP is a family of protocols (including IP, TCP, UDP) that

provide a set of low-level functions used by most applications. As mentioned

above, there is a new version of the IPv6 protocol, which replaces the IPv4

and which significantly improves the previous one in topics, such as a greater

number of nodes, traffic control, security or improvements in routing aspects.

11.2. Network physical devices (hardware)

From the physical point of view (OSI model layer 1), the most widely used

hardware for local networks (LAN, local area network) is known as Ethernet. Its

advantages are its low cost, acceptable speeds (from 10 to 10,000 Megabit/s -

that is, 10 Gbit per second in the latter case), and ease of installation. Although

there were different ways of connecting, the ones used nowadays are twisted

pair and optical fibre.

Ethernet technology uses communication intermediates (hubs, switches,

routers) to configure multiple network segments and divide traffic to

improve information transfer capabilities. Typically, in large institutions these

LANs are interconnected via optical fibre. For domestic or small business

connections, the network technology that has been widely broadcast is

through connections via a copper telephone cable (ADSL Asymmetric Digital

Subscriber Line) or lately, via optical fibre (FTTH Fibre to the Home), where in

any case a device (router) that converts these protocols to Ethernet (or wireless

Wi-Fi protocols) is necessary.

Speed is one of the selection parameters between one type of technology or

another and the cost is beginning to be affordable for private connections,

especially due to the incorporation of broadband services, such as digital TV

or Video on Demand, to the usual ones. On ASDL we find bandwidth options

from 12Mbit/s to 50Mbit/s, depending on the location of the central unit and

the client, and on fibre we can find speeds between 100Mbit/s and 500Mbit/s.

It should be noted that the values given on ADSL are generally for download,

while for upload they are usually approximately 1/10 of the download value,

whereas in fibre it is generally symmetrical (same upload speed as download

speed).

In GNU/Linux, network interface card (NIC) controllers are included in the

kernel or can be loaded as modules. The /sys/class/net directory will provide all

identified network devices that can be viewed via ip a, but network devices

can also be located via lspci or hwinfo by locating hardware devices.

GNUFDL • PID_00290379 71 Linux administration

We can also view configured devices and all (dynamic) status and

configuration information on /proc/net and view all instant packet

information sent and received and their status for each interface on /proc/net/

dev.

11.3. General concepts about networks

Some general networking concepts will be summarized below:

• Internet/Intranet: the term intranet refers to the application of Internet

technologies within an organization, basically to distribute and make

information available within the company. These services are usually

mounted on private IP addresses (it will be seen later), so these machines

are not recognized from the Internet and their output to the Internet is

through a router (in most cases the same thing goes for machines in a

home environment). If any of these services need to be accessed from

outside the institution, proxy services or routers that can redirect packets

to the internal server should be used.

• Node: a node (host) is a machine that connects to the network (in a broad

sense, a node can be a computer, tablet, phone, printer, disk cabinets, etc.),

i.e., an active and distinguishable element in the network that claims or

provides some service and/or shares information.

• Ethernet� address (or MAC address): a 48-bit number (e.g.,

00:88:40:73:AB:FF – in octal code) that is located on the physical device

(hardware) of the Ethernet network controller (NIC) and is recorded

by the Ethernet network manufacturer (this number must be unique

in the world, so each NIC manufacturer has a pre-assigned range). It

is used in layer 2 of the OSI model and it is possible to have 248 or

281.474.976.710.656 potential MAC addresses.

• Host�name: Each node must also have a unique name on the network.

They can be just names or use a hierarchical domain naming scheme.

Names must be a maximum of 32 characters between a-zA-Z0-9.-, and

contain no spaces or #, starting with an alphabetic character.

• Internet�address (IP address): it is composed of a set of numbers and it will

depend on the IP protocol version, and it is used universally to identify

computers over a network or Internet. For version 4 (IPV4) it consists

of four numbers in the range 0-255 (32 bits), separated by dots (e.g.,

192.168.0.1) which enables 4.294.967.296 (232) different host addresses,

which has shown to be insufficient and especially because each individual

has more than one computer, tablet, phone, etc. For version 6 (IPv6) the

address is 128 bits and is grouped into four hexadecimal digits forming 8

GNUFDL • PID_00290379 72 Linux administration

groups, for example fe80:0db8:85a3:08d3:1319:7b2e:0470:0534 is a valid

IPv6 address. A four-digit group can be compressed if it is null (0000).

For example:

fe80:0db8:0000:08d3:1319:7b2e:0470:0534=fe80:0db8::08d3:1319:7b2e:0470:0534.

Following this rule, if two consecutive groups are

null, they can be grouped together for example:

fe80:0db8:0000:0000:0000:0000:0470:0534=fe80:0db8:::0470:0534. Care

should be taken as fe80:0000:0000:0000:1319:0000:0000:0534 cannot

be summarized as fe80::1319::0534 as the number of null groups on

each side is unknown. The first zeros of each group may also be

omitted with fe80:0db8::0470:0534 remaining as fe80:db8::470:534. In

IPv6, therefore, 340.282.366.920.938.463.463.374.607.431.768.211.456

addresses are supported (2128 or 340 sixtillions of addresses), which

demonstrate a large enough number to not have the limitations of IPv4

for a long time. Name translation into IP addresses is performed by a

DNS server (Domain Name System) that transforms node names (human

readable) into IP addresses (named or dnsmasq are services that perform

this conversion in GNU/Linux).

• Port: a numeric identifier of a connection point (similar to a mailbox)

on a node that allows a message (TCP, UDP) to be read by a particular

application within this node (for example, two machines communicating

by ssh will communicate via port 22, but these same machines may

have http communication by port 80). Different applications can be

made by communicating between two nodes through different ports

simultaneously.

• Router� node (gateway): is a node that performs routing (data transfer

routing). A router, depending on its characteristics, may transfer

information between two networks of similar or different protocols and

may also be selective.

• Domain� name� system (DNS): it allows securing a single name and

facilitating the administration of databases that carry out the translation

between name and Internet address and are structured in the form of

a tree. For this purpose, domains separated by points are specified, of

which the highest (from right to left) describes a category, institution

or country (COM, commercial, EDU, education, GOV, government, MIL,

military (government), ORG, non-profit organizations, XX two letters

per country, or in special cases three letters CAT, Catalan language and

culture, among others). The second level represents the organization,

and the third and others, departments, sections, or divisions within an

organization (e.g., www.uoc.edu or admin@remix.nteum.cat). The first

two names (from right to left, uoc.edu in the first case, nteum.cat (in the

second) must be assigned (approved) by the ICANN (Internet Corporation

for Assigned Names and Numbers, worldwide name management body

on the Internet) and the remaining ones can be configured/assigned

GNUFDL • PID_00290379 73 Linux administration

by the institution. A rule that governs these names is the FQDN (Fully

Qualified Domain Name) that includes a computer name and the

domain name associated with that computer. For example, if we have

a host named ‘remix’ and the domain is ‘nteum.cat’, the FQDN will

be ‘remix.nteum.cat’. On some networks where DNS is not available or

accessible, the /etc/hosts file (which must be on all devices in the network)

can be used and will meet the same objective, or the mDNS service

(e.g., avahi) that implements the so called zero-configuration networking

(zeroconf) for DNS/DNS-SD multicast configuration can be installed. This

service allows programs to publish and discover services and hosts over a

local network. In an opening policy, the ICANN has regulated the request/

inclusion of new generic higher order domains (called gTLDs) oriented by

sectors, for example, cities (.barcelona, .miami...), food (.beer, .coffee...),

geocultural, music and art, education, computer science, etc.

• DHCP,�bootp: these services are high-level protocols that allow a client

node to obtain network information (such as node IP address, mask,

gateway, DNS, etc.). It is used in a home environment so that devices

connected to a Wi-Fi/LAN, for example, can receive the parameters from

the internal network and then connect to the Internet. This mechanism

is also used by large machine organizations to facilitate management on

large networks or where there are a large number of mobile users.

• ARP,�RARP: in networks (such as Ethernet), IP addresses are automatically

discovered through two protocols: ARP and RARP. ARP uses messages

(broadcast messages) to determine the Ethernet address (OSI model layer

3 MAC specification) corresponding to a particular network address

(IP). RARP uses broadcast messages (message that reaches all nodes) to

determine the network address associated with a particular hardware

address.

• Socket� library: In UNIX, the entire TCP/IP deployment is part of the

operating system kernel and the way to use them by a programmer is

through the API (Application Programming Interfaces) that the operating

system deploys. For TCP/IP, the most common API is the Berkeley Socket

Library (Windows uses an equivalent library called Winsocks). This library

allows to create a communication point (socket), associate it with an

address of a remote node/port (bind), and offer the communication service

(for example, via connect, listen, accept, send, sendto, recv, recvfrom).

11.4. Assigning an Internet address

Internet IP addresses were originally assigned by the Internet Network

Information Center (government Internet agency responsible for domain

names and IP addresses until 18/09/1998). It is currently managed by the

GNUFDL • PID_00290379 74 Linux administration

Internet Corporation for Assigned Names and Numbers (ICANN). In the

following sections, the characteristics of the IPv4 protocol and the IPv6

protocol will be shown.

11.4.1. IPv4

The IP address in IPv4 has two fields: the left one represents the network ID

and the right one represents the node ID. With this in mind, the 4 numbers

between 0-255, or four bytes, each byte is either part of the network or the

node. The network part is assigned by the ICANN and the node part is assigned

by the institution or provider.

There are some constraints: 0 (for example, 0.0.0.0) in the network field is

reserved for default routing and 127 (for example, 127.0.0.1) is reserved for

self-referral (local loopback or local host), 0 in the node part refers to this

network (for example, 192.168.0.0) and 255 is reserved for broadcast (the same

packet is sent to all host in the network) (for example, 198.162.255.255).

Different mappings can have different types of networks or addresses:

• Class�A (network.host.host.host): 1.0.0.1 to 126.254.254.254 (126 networks,

16 million nodes) define large networks.

• Class� B (network.network.host.host): 128.1.0.1 to 191.255.254.254 (16K

networks, 65K nodes) the first node byte is typically used to identify

subnets within an institution).

• Class� C (network.network.network.host): 192.1.1.1 to 223.255.255.254 (2

million network bits, 254 nodes).

• Class� D� and� E (network.network.network.host): 224.1.1.1 to

255.255.255.254 reserved for multicast (from a node to a set of nodes that

are part of a group) and experimental purposes.

Some address ranges have been reserved so that they do not correspond to

public networks. These addresses belong to private networks and messages will

not be routed over the Internet, which is commonly known as the Intranet.

These are:

• Class�A: 10.0.0.0 up to 10.255.255.255

• Class�B: 172.16.0.0 up to 172.31.0.0

• Class�C: 192.168.0.0 up to 192.168.255.0

GNUFDL • PID_00290379 75 Linux administration

A concept associated with an IP address is the mask, which will then allow

defining subnets and automatically route packets between these subnets. To

do this, it is necessary to define a network mask that will be the significant bits

of the subnet and that will allow to define whether two IPs are within the same

network or not. For example, in a given static IPv4 address (e.g., 192.168.1.30),

the network mask 255.255.255.0 (i.e., 11111111111111111111111100000000

in binary representation) indicates that the first 24 bits of the IP address

correspond to the network address and the other 8 are machine-specific.

In IPv6, and since they are 128 bits, only the number of 1s (notation that is

also used in IPv4) will be expressed, to facilitate its reading. In the example

above, for IPv4 it would be 24 and generally would be 192.168.1.30/24 and

in IPv6, for example, for the address fe80:0db8::0470:0534 the mask could be

expressed as fe80:0db8:::0470:0534/96, where it indicates that for this address,

the first 96 bits correspond to the network.

The broadcast address is special, as each node on a network listens to all

messages (in addition to its own address). This address allows datagrams,

usually routing information and warning messages, to be sent to a network

and read by all nodes in the same network segment. For example, when ARP

seeks to find the Ethernet address corresponding to an IP, it uses a broadcast

message, which is sent to all machines on the network simultaneously. Each

node on the network reads this message and compares the IP being searched

to its own, and returns a message to the node that asked the question if it

matches. For example, on a 192.168.1.0/24 network, the broadcast address is

192.168.1.255.

11.4.2. IPv6

IPv6 address types can be identified by taking into account the ranges defined

by the first few bits of each address (the value specified after the bar is the

mask equivalent to the number of bits not considered for that address):

• ::/128. The all-zero address is used to indicate the absence of an address,

and no node is assigned.

• ::1/128. It represents the loopback address that a node can use to send

packets to itself (corresponds to 127.0.0.1 of IPv4). It cannot be assigned

to any physical interface.

• ::1.2.3.4/96. The supported IPv4 address is used as a transition mechanism

on dual IPv4/IPv6 networks (hardly used).

• ::ffff:0:0/96. The mapped IPv4 address is used as a transition mechanism.

GNUFDL • PID_00290379 76 Linux administration

• fe80::/10. The local link prefix specifies that the address is only valid on

the local physical link.

• fec0::. The local prefix (site-local prefix) specifies that the address is only

valid within a local organization. RFC 3879 has made it obsolete and it

must be replaced by Local IPv6 Unicast addresses.

• ff00::/8. The multicast prefix used for this type of address.

It should be noted that broadcast addresses do not exist in IPv6, and

functionality can be emulated using the multicast FF01::1/128 address.

If the address is a built-in IPv4 address, the last 32 bits can be written

in decimal base as ::ffff:192.168.1.1 or ::ffff:c0a8:0101, not to be confused

with ::192.168.89.9 or ::c0a8:0101. The format ::ffff:1.2.3.4 is called the

mapped IPv4 address, and the format ::1.2.3.4, is called the compatible IPv4

address.

IPv4 addresses can be easily transformed into the IPv6 format. For example, if

the IPv4 decimal address is 158.109.64.1 (in hexadecimal, 0x9e6d4001), it can

be converted as 0000:0000:0000:0000:0000:0000:9e6d:4001 or ::9e6d:4001.

In this case, we can use the IPv4 mixed supported notation which would

be ::158.109.64.1. This type of supported IPv4 address is hardly being used,

although the standards have not made it obsolete.

When we want to identify a range of addresses that can be made by the first

bits, this number of bits is added after the bar character“/”. For example,

fe80:0db8::0674:9966/96 would be equivalent to fe80:0db8:: and also to

fe80:0db8::0470:0534/96

IPv6 addresses are represented in DNS using AAAA records (also called quad-

A records, as they are four times the length of A records for IPv4) specified by

RFC 3363 (there is another view called A6, but while it is more generic, it is

also more complex and can further complicate the transition between ipv4

and ipv6).

There is a smooth transition from IPV4 to IPV6 that can be consulted on

Google with large disparities between countries including the EC (for example,

France with a 71% implementation or Spain with a 3%). While there are

a number of mechanisms that will allow for coexistence and progressive

migration, both of the networks and user equipment (such as double stack,

tunnels, or translation), the major change in adoption is by large network

operators and is linked to political decisions.

https://www.google.com/intl/en/ipv6/statistics.html

GNUFDL • PID_00290379 77 Linux administration

11.5. Subnets and routing

Two complementary concepts to those described above are subnets and

routing among them. Subnets means subdividing the node part into small

networks within the same network to improve traffic, for example.

A subnet takes responsibility for sending traffic to certain IP address ranges by

extending the same concept of A-B-C class networks, but only applying this

redirection on the node part of the IP. The number of bits that are interpreted

as the subnet identifier is given by a netmask which is a 32-bit number (same

as the IP).

The one who defines which packets are going to one side or another will

be the host that meets the router role and will interconnect several network

segments/networks with each other. The router is generally known as a

gateway and is used as the host that helps reach the outside (e.g., Internet)

from the local network. To obtain the subnet identifier, a logical AND

operation must be performed between the mask and the IP, which will give

the IP of the subnet.

For example, let it be an institution that has a class B network with number

172.17.0.0, and its netmask is 255.255.0.0. Internally, this network is made

up of small networks (one per floor of the building, for example). Thus,

the address range is reassigned on 20 subnets 172.17.1.0 to 172.17.20.0. The

point connecting all these subnets (backbone) has its own range/address, for

example 172.17.1.0. These subnets share the same network IP, while the third

is used to identify each of the subnets within it.

The second concept, routing, represents how messages are sent over subnets.

For example, there are three departments with Ethernet subnets:

• Sales (subnet 172.17.2.0).

• Clients (subnet 172.17.4.0).

• Human resources (subnet 172.17.6.0).

• Backbone with FFDI (subnet 172.17.1.0).

To route the messages between the computers of the three networks, three

gateways will be required that will each have two network interfaces to switch

between Ethernet and FFDI. These will be:

• SalesGW IPs:172.17.2.1 and 172.17.1.1

• ClientsGW IPs:172.17.4.1 and 172.17.1.2

• ResourcesHGW IPs:172.17.6.1 and 172.17.1.3

I.e., an IP to the subnet side and another IP to the backbone.

GNUFDL • PID_00290379 78 Linux administration

When messages are sent between sales machines, there is no need to exit

to the gateway as the TCP/IP protocol will find the machine directly. The

problem is when the Sales0 machine wants to send a message to HHRR3. The

message must flow through the two respective gateways. When Sales0 “sees”

that HHRR3 is in another network, it sends the packet to its SalesGW gateway,

which in turn will send it to HRGW and which in turn will send it to HHRR3.

The advantage of subnets is obvious, as traffic between all Sales machines,

for example, will not affect client or human resource machines (although it

means a more complex and expensive approach to designing, and building

the network).

IP uses a table for routing packets between different networks and in which

there is a default routing associated with the 0.0.0.0 network. All addresses

matching this, as none of the 32 bits are required, are sent to the default

gateway towards the indicated network. On SalesGW, for example, the table

could be:

Table 7

Management Mask Gateway Interface

172.17.1.0 255.255.255.0 - fddi0

172.17.4.0 255.255.255.0 172.17.1.2 fddi0

172.17.6.0 255.255.255.0 172.17.1.3 fddi0

0.0.0.0 0.0.0.0 172.17.2.1 fddi0

172.17.2.0 255.255.255.0 - eno1

The '-' means that the machine is directly connected and does not require

routing. The procedure to identify whether this is performed or not is carried

out through a very simple operation with two logical ANDs (subnet AND mask

and origin AND mask) and a comparison between the two results. If they are

the same, there is no routing, if they are different, the packet must be sent to

the machine defined as gateway in each network so that it can forward the

message.

For example, a message from 172.17.2.4 to 172.17.2.6 will mean: 172.17.2.4

AND 255.255.255.0 = 172.17.2.0 and 172.17.2.6 AND 255.255.255.0 =

172.17.2.0. Because the results are the same, there will be no routing and the

messages are sent directly.

Instead, if sent from 172.17.2.4 to 172.17.6.6, it can be seen that there will

be a routing through 172.17.2.1 with an interface change (cable to fibre) to

172.17.1.1 and from it to 172.17.1.2 with another interface change (fibre to

cable) and then to 172.17.6.6.

GNUFDL • PID_00290379 79 Linux administration

The default routing will be used when no rule satisfies the match. In the event

that two rules match, the one that does so more accurately, that is, the one

that has the least zeros, will be used. The ip route command can be used

to build routing tables, but if more complex rules (or automatic routing) are

required, routing protocols such as RIP, EGP, or BGP can be used.

To install a machine over an existing network, it is therefore necessary to have

the following information obtained from the network provider or its network

administrator (although DNS, if the network allows it, can be used by publics

DNS such as Google 8.8.8.8, 8.8.4.4):

• Node IP

• Network mask IP

• Gateway IP (on the same node network)

• DNS IP

If building a network that will never have an Internet connection, it

is recommended to maintain an order and use private IPs to avoid

administration problems within that network. Next, we will see how the

network and node are defined for a private network (care must be taken, as

if the machine is connected to the network, it could harm another user/host

with this assigned address).

11.6. Interface configuration (NIC)

In this section, we will see in a little more detail what was already mentioned

in the Linux introduction module about the configuration of the network

(Ethernet) and the Wi-Fi network.

Once the GNU/Linux kernel is loaded, it runs the systemd daemon

(equivalent to the init process in previous versions) and that according to the

configuration in /etc/systemd (or in /usr/lib/systemd) will configure the system

and will allow the configuration of the network between the services.

Network devices are automatically created when the corresponding hardware

is booted and in current versions, the devices are named by their position

on the bus and/or MAC (see man systemd.net-naming-scheme for more

information) assigning 2 letters for each device, for example en (Ethernet)

ib (InfiniBand), wl (Wireless local area network, WLAN), ww (Wireless wide

area network, WWAN). Active devices can be viewed with ip link or

networkctl.

From this point on, the network interface can be configured, which involves

two steps: assigning the network address to the device and initializing the

network parameters to the system. The command used for this is the ip. An

example would be:

GNUFDL • PID_00290379 80 Linux administration

ip addr add 192.168.110.23/24 dev eno1

This indicates configuring the device eno1 (Ethernet) with IP address

192.168.110.23 and network mask 255.255.255.0. To delete the assigned IP,

we can run ip addr del 192.168.110.23/24 dev eno1. To enable the

interface, we can run ip link set eno1 up and to disable ip link set

eno1 down.

In the Debian branch, the ifdown/ifup commands can be used, although the

corresponding package (apt install ifupdown) must be installed, which

allows the devices to be easily activated and deactivated independently by

using the /etc/network/interfaces file to obtain all the necessary parameters (see

man interfaces for its syntax).

In GNU/Linux there are different ways to configure the network so that the

administrator should not have to enter the configuration parameters in each

boot. One of the simplest ways is through the commands mentioned above

(ifup, ifdown) that take their information from the /etc/network/interfaces

file. To modify the network parameters of the eno1 interface, we can do the

following:

• ifdown eno1. Stops all network services. We can also run systemctl

stop networking.

• vi /etc/network/interfaces (or preferred editor tool, but vi

normally, is available on all *nix systems). It allows editing and modifying

the corresponding parameters.

• ifup eno1. This command allows to start the network services on eno1

(or systemctl networking start).

Consider that we want to configure over Debian an eno1 interface that has a

fixed IP address of 192.168.0.123 and with 192.168.0.1 as a gateway. We edit

/etc/network/interfaces to include a section such as:

auto eno1

iface eno1 inet static

 address 192.168.0.123

 netmask 255.255.255.0

 gateway 192.168.0.1

If it has the resolvconf package installed (in some distributions, such as

Ubuntu, it is installed by default) it can add lines to specify DNS information.

For example:

auto eno1

iface eno1 inet static

GNUFDL • PID_00290379 81 Linux administration

 address 192.168.0.123

 netmask 255.255.255.0

 gateway 192.168.0.1

 dns-search nteum.cat

 dns-nameservers 8.8.8.8 8.8.4.4

Instead of auto eno1, we can also use, for example, the allow-hotplug

eno1 sentence, which indicates the interface that can be activated with ifup

--allow=hotplug eno1. Lines starting with allow- are used to identify

interfaces that could be activated by different subsystems (allow-auto and

auto are synonyms).

Remember that if the machine has multiple network interfaces, the previous

section can be repeated with the corresponding device, but the last three lines

(gateway, dns-search and dns-nameservers) should only be there once, as they

are common for all interfaces.

After activating the interface, the arguments of the dns-search and dns-

nameservers options are included in /etc/resolv.conf. The nteum.cat argument

of the dns-search option corresponds to the resolv.conf search option argument

and the 8.8.8.8 and 8.8.4.4 arguments for the dns-nameservers option

correspond to the name-server options arguments at resolv.conf. If the

resolvconf package is not installed, the /etc/resolv.conf file can be manually

modified (and if the /etc/network/interfaces is installed and not used to

configure DNS, the files found in /etc/resolvconf.d can be modified).

It should be noted that distributions with systemd include the systemd-

resolved service (see man systemd-resolved.service) that provides

network name resolution for local applications. In addition to calls to glibc

native APIs, systemd-resolved listens to local DNS requests at IP address

127.0.0.53. DNS servers are determined from the global configuration at /

etc/systemd/resolved.conf (see man resolved.conf), and the resolvectl

command can be used to resolve domain names, IPv4 and IPv6 addresses, DNS

resource records, and services from systemd-resolved.service. This command

can be used to resolve domains or IPs (e.g., resolvectl query uoc.edu)

including the protocol used for the search, on the network/interface on which

the request has been resolved, and whether or not the request is authenticated.

To improve compatibility, systemd-resolved.service checks /etc/resolv.conf to find

out if DNS servers are configured by this method (but only if it is not a

symbolic link to /run/systemd/resolve/stub-resolv.conf, /usr/lib/systemd/resolv.conf

or /run/systemd/resolve/resolv.conf).

Expand with the manual sheet how local addresses (with localhost domain or

localhost.localdomain) and those indicated in /etc/hosts are resolved.

GNUFDL • PID_00290379 82 Linux administration

Returning to the network configuration, an equivalent configuration by

DHCP (i.e., a DHCP server that will give the network configuration

parameters) is simplified to:

auto eno1

iface eno1 inet dhcp

The ip command (from the iproute2 package and replacing the traditional

ifconfig) allows configuring devices, establishing tunnels, routing rules, etc.

Below are a series of examples for network configuration for the ip command:

• ip addr addr add 192.168.1.1 dev eno1: it defines an IP to eno1.

• ip addr show: it displays the settings.

• ip addr del 192.168.1.1/24 dev eno1: it removes IP from eno1.

• ip route add default via 192.168.0.1: it adds a gateway.

• ip link set eno1 up: it activates interface.

• ip link set eno1 down: it disables interface.

• ip route show: it displays routing.

• ip route add 10.10.20.0/24 via 192.168.50.100 dev eno1:

it adds a rule.

• ip route del 10.10.20.0/24: it deletes a rule.

• post-up ip route add 10.10.20.0/24 via 192.168.1.1 dev

eno1: it is added to define a static rule in /etc/network/interfaces.

Another way to configure the network (recommended for users with mobility

and standard configurations) is through the Network�Manager (NM) package.

This package consists of a graphical interface (nm-connection-editor) for the

configuration of network devices (and it can coexist with the configurations

in /etc/network/interfaces) or can be configured through the files, taking

into account that the interfaces we want the NM to manage in /etc/

network/interfaces must be disabled. NM will not manage interfaces defined

in /etc/network/interfaces as long as /etc/NetworkManager/NetworkManager.conf

contains:

[main]

plugins=ifupdown,keyfile

[ifupdown]

managed=false

We must change managed=true if we want NM to manage the interfaces

defined in /etc/network/interfaces. Whenever the NetworkManager.conf file is

modified, the values updated with mncli general reload (for more

details of the configuration see man NetworkManager.conf or https://

wiki.gnome.org/Projects/NetworkManager/SystemSettings). In some situations, the

NM may generate conflicts with some network devices that have been

previously configured with the NM and then configuration is desired via /

GNUFDL • PID_00290379 83 Linux administration

etc/network/interfaces, so it is recommended to uninstall the NM or delete

the configuration files from the corresponding interface from the /etc/

NetworkManager/system-connections/ directory.

With systemd adoption, it is possible to use a service called systemd-

networkd to manage network devices. This service, when active, detects and

configures network devices as they are discovered and also creates virtual

network devices. Configuration files are read from files located in the /lib/

systemd/network network directory, the /run/systemd/network volatile network

directory, and the /etc/systemd/network local management network directory

(see systemd.network(5) and for low-level link settings, see systemd.link(5)).

Interaction with systemd-networkd can be done with the networkctl

command.

Some distributions (such as Ubuntu) may use a new network configuration

environment called Netplan that addresses NM compatibility issues and

deficiencies. Netplan allows to easily configure the network on a Linux system

via a YAML syntax file for the required network interfaces in /etc/netplan/

*.yaml. From this description, Netplan will generate all necessary settings for

the network manager used (NetworkManager or Systemd-networkd).

11.7. Advanced network configuration

It is necessary in GNU/Linux to differentiate between a physical interface

and a logical interface. A physical interface is what has so far been called

an interface (for example, eno1) and a logical interface is a set of values

(sometimes called profiles) that can be assigned to the variable parameters

of a physical interface. Iface definitions in /etc/network/interfaces are actually

definitions of logical interfaces not of physical interfaces, but unless the

opposite is indicated, a physical interface will be configured, by default, as a

logical interface.

However, if we have a laptop computer that is used at different sites (e.g., home

and work) and we need different configurations for each site network, we can

use the logical interface definitions. Two logical interfaces, such as home and

work (instead of eno1 as previously done), must be defined first:

iface house inet static

 address 192.168.1.30

 netmask 255.255.255.0

 gateway 192.168.1.1

iface work inet static

 address 158,.109.65.66

 netmask 255.255.240.0

 gateway 158.109.64.1

https://netplan.io/
https://en.wikipedia.org/wiki/YAML

GNUFDL • PID_00290379 84 Linux administration

In this way, the physical eno1 interface can be activated for the home network

with ifup eno1=home and to reconfigure it for the work with ifdown eno1;

ifup eno1=work. The mechanism is very powerful and can be expanded

through configuration based on a series of conditions, using a mapping

section. The syntax of a mapping section is as follows:

mapping pattern

 script name_script

 [map script]

The script called in the mapping section will be executed with the name

of the physical interface as argument and with the content of all map lines

in the section. Before finalizing, the script will display the result of the

transformation by the standard output. For example, the following mapping

section will cause ifup to activate the eno1 interface as the logical home

interface:

mapping eno1

 script /usr/local/sbin/echo-home

where /usr/local/sbin/echo-house is:

 #!/bin/sh

 echo home

This can be helpful if we have, for example, two different network cards (one

for home and one for work). If the ifupdown package is installed, the /usr/share/

doc/ifupdown/examples/ directory contains a transformation script that can be

used to select a logical interface, based on the MAC (Media Access Controller)

address. The script must first be installed in an appropriate directory with:

install -m770 /usr/share/doc/ifupdown/examples/get-mac-address.sh /usr/local/sbin/

We can then add a section like the following in the file

/etc/network/interfaces:

 mapping eno1

 script /usr/local/sbin/get-mac-address.sh

 map 02:23:45:3C:45:3C house

 map 00:A3:03:63:26:93 work

See other more sophisticated configuration scripts, such as guessnet, among

others.

11.7.1. Network Configuration on IPv6

In relation to IPv6 configuration, GNU/Linux systems incorporate this

functionality through their implementation in the kernel or through modules

(in Debian they are included in the kernel and some specific architectures

GNUFDL • PID_00290379 85 Linux administration

through a module called ipv6). Basic tools such as ping and traceroute have

their IPv6, ping6 and traceroute6 equivalents. At the basic level, with the

/etc/network/interfaces file, an IPv6 network is configured similarly to IPv4 (it

must be verified in advance that the available router supports IPv6 that relays

data to the global IPv6 network):

iface eno1 inet6 static

 address fe80:0db8::0470:0534

 netmask 64

 # Disable autoconfiguration #

 autoconf 0

 # Gateway is automatically configured

 # if it had to be configured

 # gateway fe80:0db8:1234:5::1

IPv6 subnets typically have a 64-bit network mask, which means there are 264

different addresses within the subnet and allows a SLAAC (Stateless Address

Autoconfiguration) method to select an address based on the MAC address

of the network interface. By default, if SLAAC is enabled on the network, the

kernel will find IPv6 routers automatically and configure network interfaces.

This type of configuration can have privacy consequences, since if we change

networks frequently, it would be easy to identify the device on these networks.

IPv6 privacy extensions address this issue and will assign additional randomly

generated addresses to the interface, change them periodically, and use

them for outbound connections, while inbound connections can use SLAAC-

generated addresses. An example of this setting is to enable on /etc/network/

interfaces:

iface eno1 inet6 auto

 # Prefer assigned addresses

 # randomly for outbound connections.

 privext 2

If an IPv6 connection is not available, the alternative method is to use a tunnel

over IPv4. It is important that IPv6 tunnel providers conform to RFC 3053

(RFC describing the procedure for requesting the creation of an IPv6 tunnel

on a host called Point of Presence or PoP). There are a large number of vendors

with own deployments and based on different business objectives. Two of

them that can be tested are Hurricane Electric Free IPv6 Tunnel Broker or

Router48 among others.

https://tunnelbroker.net/
https://route48.org/

GNUFDL • PID_00290379 86 Linux administration

11.8. Network configuration in RHEL (style) and derivatives

Red Hat and its derivatives (Centos, Rocky, Fedora,...) use a different file

structure for network configuration: /etc/sysconfig/network. For example, for

static network configuration:

NETWORKING=yes

HOSTNAME=my-hostname

 Hostname defined by cmd hostname

FORWARD_IPV4=true

 True for NAT firewall gateways and routers. False for any other case

GATEWAY="XXX.XXX.XXX.YYY"

 Default gateway IP address.

For DHCP configuration the gateway line must be removed as it will be

assigned by the server. And if NIS is incorporated, a line must be added with

the domain server:

NISDOMAIN=NIS-DOMAIN

To configure the eno1 interface in /etc/sysconfig/network-scripts/ifcfg-eno1 (for

example for a private network):

DEVICE=eno1

BOOTPROTO=static

BROADCAST=172.16.1.255

IPADDR=172.16.1.2

NETMASK=255.255.255.0

NETWORK=172.16.1.0

ONBOOT= yes We will activate the network on the boot

We can also add:

TYPE=Ethernet

HWADDR=08:00:12:34:56:78

GATEWAY=172.16.1.1

IPV6INIT=no

USERCTL=no

PEERDNS=yes

Or for a DHCP configuration:

DEVICE=eno1

ONBOOT=yes

BOOTPROTO=dhcp

GNUFDL • PID_00290379 87 Linux administration

To disable DHCP, we must change BOOTPROTO=dhcp to BOOTPROTO=none.

Any changes to these files must restart the services (depending on the network

manager) with systemctl restart network|NetworkManager.

The host name can be changed by using the hostnamectl set-hostname

command or manually changed in /etc/sysconfig/network in HOSTNAME=new-

name.

11.9. Configuring a Wi-Fi (wireless) network

The basic configuration of a Wi-Fi network has already been discussed in the

Introduction to Linux module, so this section will only give some additional

aspects about it. The configuration of Wi-Fi interfaces basically uses the

wireless-tools package (in addition to the iproute2 package and the ip

command). This package uses the iwconfig command to configure a wireless

interface, but it can also be done through the /etc/network/interfaces (some

distributions include the iw package, which is equivalent to iproute2, and

will replace wireless-tools; Debian, for example, includes both).

As a use case, it will be shown how to load the drivers of an Intel Pro/Wireless

2200BG card as a general method, but in current kernels these drivers are

already included in the kernel, so it is not necessary to perform these previous

steps although it serves as an example. Typically, the software that controls the

cards is divided into two parts: the software module that will be loaded into

the kernel through the modprobe command and the firmware, which is the

code that will be loaded onto the card and given by the manufacturer (see Intel

page for this model or Linux Wireless project https://wireless.wiki.kernel.org/

en/users/Drivers/iwlwifi). As we are talking about modules, it is interesting to

use the Debian module-assistant package, which allows us to easily create and

install a module (another option would be to install the fonts and create the

corresponding module). The software (found on the manufacturer’s page and

referred to as ipw2200) will be compiled and installed by using the module-

assistant m-a command package:

aptget install module-assistant

m-a -t update

m-a -t -f get ipw2200

m-a -t build ipw2200

m-a -t install ipw2200

From the address indicated by the manufacturer (in its documentation),

the firmware version compatible with the driver version is downloaded,

decompressed and installed in /lib/firmware (where X.Y is the firmware

version):

tar xzvf ipw2200fwX.Y.tgz /tmp/fwr/

https://wireless.wiki.kernel.org/en/users/Drivers/iwlwifi
https://wireless.wiki.kernel.org/en/users/Drivers/iwlwifi

GNUFDL • PID_00290379 88 Linux administration

cp /tmp/fwr/*.fw /lib/firmware/

The module can then be loaded with modprobe ipw2200, the system is

rebooted and then the result of device initialization, or errors, if any, can be

seen with dmesg | grep ipw, (we can also check if it is loaded with lsmod):

The wireless-tools package and iwconfig command can then be used to

analyze the Wifi device, and then configured as instructed in the Linux

Introduction module.

11.9.1. The files host.conf, nsswitch.conf

The /etc/host.conf file is maintained for compatibility and contains specific

name resolution information. In current versions, its functionality is assumed

by the /etc/nsswitch.conf (Name Service Switch or NSS) file to determine the

sources from which to obtain information from the name/domain services.

The host.conf file has the following options:

• order (for compatibility only). It indicates the order of how the name

search will be performed (e.g., bind, hosts, nis).

• multi. It indicates that it can be on, so it will return all valid addresses for

a host that is in /etc/hosts file instead of just returning the first (off). On

can cause major delays when /etc/hosts is a big file.

• trim. It is designed to be used with local hosts and domains and may

appear more than once and should be followed by a list of domains,

separated by ‘:,;’ with a starting point and will automatically trim the given

domain name from the end of any host name resolved through DNS.

• reorder. If enabled (on), the resolution library will attempt to rearrange

host addresses with local addresses first. The default value is off.

Among the most important databases managed by the /etc/nsswitch.conf file

are:

• aliases: mail aliases.

• ethers: ID Ethernet.

• group: names and group IDs.

• hosts: host names and IPs

• networks: network names and IDs.

• passwd: passwords and user information.

• protocols: network protocols.

• services: network services.

• shadow: Shadow user passwords.

GNUFDL • PID_00290379 89 Linux administration

An example would be:

passwd: compat

group: compat

shadow: compat

hosts: dns [!UNAVAIL=return] files

networks: nis [NOTFOUND=return] files

services: nis [NOTFOUND=return] files

Where the first column is the database and the following are the service

specification, e.g., files, db, or nis and where its sequence is the order until

the result is obtained. Additional options can be indicated to take for a result

such as [NOTFOUND=return].

The ‘compat’ descriptor is similar to ‘files’ (files on the local machine) except

that it allows some additional words/options in local information files. The

files consulted when indicated as a ‘files’ service are those that have already

been discussed in this document and in the Introduction to Linux:

• aliases: /etc/aliases

• ethers: /etc/ethers

• group: /etc/group

• hosts: /etc/hosts

• initgroups: /etc/group

• netgroup: /etc/netgroup

• networks: /etc/networks

• passwd: /etc/passwd

• protocols: /etc/protocols

• publickey: /etc/publickey

• rpc: /etc/rpc

• services: /etc/services

• shadow: /etc/shadow

11.9.2. The /etc/hosts file

This file acts as a name server and is especially useful on a local network that

does not have high variability of the IPs assigned to the names (or private local

networks without private DNS server):

127.0.0.1 localhost

192.168.168.254 remix.nteum.local remix

Private network nodes

192.168.168.1 nodo1.nteum.local node1

192.168.168.2 nodo2.nteum.local node2

IPv6 hosts

::1 localhost ip6-localhost ip6-loopback

ff02::1 ip6-allnodes

GNUFDL • PID_00290379 90 Linux administration

ff02::2 ip6-allrouters

Aliases can be used for a machine name, which means that machine can be

called in different ways for the same IP address.

In reference to the loopback interface, this is a special type of interface that

allows the node to make connections with itself (for example, to verify that

the network subsystem operates without accessing the network). By default,

IP address 127.0.0.1 has been specifically assigned to the loopback (a ssh

command 127.0.0.1 will connect to the same machine). It is very easy to

set up (typically done by the network initialization script). In many systems

(including Debian) the following line is added to the /etc/hosts file: 127.0.1.1

<host_name>. This is created on systems that do not have permanent IP and

to prevent any program from causing problems (for example, Gnome). The

<host_name> label will match the machine name defined in /etc/hostname.

For a system with defined IP, this line must be commented on and it is

advisable to put a domain of the fully qualified domain name (FQDN) type

(as the one that appears in the DNS) or if it is not necessary to insert one

defined as <host_name>.<domain_name> instead of just putting <host_name>

(for machines that do not have a record in a DNS, it is advisable to put as a

local domain, for example nteum.local or nteum.localdomain).

11.10. Routing configuration

An important aspect of network management is routing configuration. While

there is a topic on its difficulty, usually very simple routing requirements are

needed. In a node with multiple connections, routing is about deciding where

to send and what is received. A simple node (a single network connection) also

needs routing, as all nodes have a loopback and a network connection (e.g.,

Ethernet or Wi-Fi). As explained above, there is a table called routing table,

which contains rows with various fields, but with three extremely important

ones: destination address, interface where the message will leave from and

IP address, which will perform the next step in the network (gateway).

The ip route command allows modifying this table to perform the

appropriate routing tasks. When a message arrives, its destination address

is viewed, it is compared to the entries in the table, and sent through the

interface, where the address best matches the package destination. Otherwise,

if a gateway is specified, the message will be sent through the appropriate

interface. Let’s consider, for example, that our node is on a class C network

with an address of 192.168.110.0 and has an address of 192.168.110.23; and

the router with an Internet connection is 192.168.110.3. First, we need to

configure the interface (eno1 in this example):

ip addr add 192.168.110.23/24 dev eno1

GNUFDL • PID_00290379 91 Linux administration

ip link set eno1 up

We do not need to, but we could add that all the packets in the network were

linked to the interface with:

ip route add 192.168.110.0/24 dev eno1

If the packets need to be sent to an IP outside of the 192.168.110.0/24 network,

it would be very difficult to have all the proper routes for all the machines to

which we want to connect. To simplify this task, there is the (gateway) default

route, which is used when the destination address does not match in the table

with any of the entries, to configure it, run:

ip route add default via 192.168.110.3

Then we can see the result with ip route that will give information such as:

default via 192.168.110.3 dev eno1 proto static metric 100

192.168.110.0/24 dev eno1 proto kernel scope link src 192.168.110.23 metric 600

To add and to delete a route, for example:

ip route add 10.0.0.0/16 via 172.16.1.1

ip route del 10.0.0.0/16 via 172.16.1.1

To determine where a packet will be routing for a given IP, we can run:

ip route get 8.8.8.8

8.8.8.8 via 10.0.2.2 dev eth0 src 10.0.2.15

11.11. Configuring network services

The next step in network configuration is the configuration of the servers and

services that will allow another user to access the local machine or its services.

Server programs will use ports to listen to client requests, which will be routed

to this service as IP:port.

In most *Nix systems there is a super-daemon called inetd that manages

different network services by listening to connections on certain sockets

(points of communication identified by ports). When it detects a connection,

it decides which service the socket corresponds to, and it invokes a program

to service the request; once the program is complete, it continues listening

in the socket for new requests. Essentially, inetd allows running a daemon to

invoke several others, reducing the load on the system, inetd is obsolete in

GNU/Linux, and its replacement is called xinetd, which incorporates better

features, performance and safety.

GNUFDL • PID_00290379 92 Linux administration

11.12. Configuring the xinetd

xinetd is the recommended option when we need to manage network services

efficiently and securely and its configuration is through the /etc/xinetd.conf file

and the /etc/xinetd.d directory.

There are some services that, although they could be put under the influence

of xinetd, but it is advisable either because of the delay in the booting (sshd

case) or because of the load that means booting and shutting it down in each

request, which would generate an extra unnecessary load on services with

many transactions. Daemons that are advised not to be under the influence

of xinetd include:

• ssh: secure interactive connection as a telnet replacement and includes

two configuration files /etc/ssh/ssh_config (for the client) and /etc/ssh/

sshd_config (for the server) configuration files.

• exim: mail transport agent (MTA), including configuration files:

/etc/exim/exim.conf, /etc/mailname, /etc/aliases, /etc/email-addresses.

• fetchmail: daemon used for downloading mail from a POP3 account,

configuration file: /etc/fetchmailrc.

• procmail: program used for filtering and distributing local mail,

configuration file: ~/.procmailrc.

• DHCP: service for management (server) or obtaining IP (client), /etc/dhcp/

dhclient.conf (client), /etc/dhcp/dhcpd.conf (server). Directories/name may

vary depending on the package installed.

• DNS: name service, e.g., dnsmaq in /etc/dnsmasq.d.

• CVS: concurrent version control system, /etc/cvs-cron.conf, /etc/cvs-

pserver.conf.

• NFS: network file system, /etc/exports.

• Samba: network file system and printer sharing on Windows nnetworks,

/etc/samba/smb.conf.

• CUPS: printing system, /etc/cups/*

• Web�services: for example, Apache2 on /etc/apache2/*.

• Proxy�services: for example, Squid on /etc/squid/*.

GNUFDL • PID_00290379 93 Linux administration

The configuration of xinetd is very simple and is done through the /etc/

xinetd.conf file (which may include more files from the /etc/xinetd.d/ directory

for better structuring). This file has a defaults section (parameters that will

apply to all services) and service section (or files for each service to be

configured), which will be the services that will be launched through xinetd.

A typical example of the configuration might be that defaults are placed on

xinetd.conf and the services are placed in separate files in the /etc/xinetd.d

directory, although, in this example, everything has been put together for

simplicity:

xinetd.conf

They apply to all servers and can be modified for each service

 defaults

 {

 instances = 10

 log_type = FILE /var/log/service.log

 log_on_success = HOST PID

 log_on_failure = HOST RECORD

 }

 # The service name must be in /etc/services to get the correct port

 # If this is a non-standard server/port, use port = X

 service ftp

 {

 socket_type = stream

 protocol = tcp

 wait = no

 user = root

 server = /usr/sbin/proftpd

 }

 # SSH: although it is not recommended to put it under the control of xinetd but a

 # possible configuration is provided.

 service ssh

 {

 socket_type = stream

 protocol = tcp

 wait = no

 user = root

 port = 22

 server = /usr/sbin/sshd

 server_args = -i

 }

 # tcp version of the ECHO service

 service echo

 {

 disable = yes

 type = INTERNAL

GNUFDL • PID_00290379 94 Linux administration

 id = echo-stream

 socket_type = stream

 protocol = tcp

 user = root

 wait = yes

 }

 # udp version of the ECHO service

 service echo

 {

 disable = yes

 type = INTERNAL

 id = echo-dgram

 socket_type = dgram

 protocol = udp

 user = root

 wait = yes

}

The disabled services (lines start with #) will not be available and neither will

those with disable = yes. In the defaults section, we can insert parameters such

as the maximum number of simultaneous requests for a service, the type of

record (log) that we want to have, from which nodes we will receive default

requests, the maximum number of requests per IP that will be handled, among

others.

An interesting parameter is cps, which limits the number of incoming

connections with 2 arguments: the first is the number of connections per

second to be handled by the service and if it is greater, the service will be

disabled by the number of seconds indicated in the second argument. By

default, there are 50 connections and a 10-second interval that are considered

appropriate parameters to contain a DoS attack.

There must be one service section for each service, and it may contain

specific – and sometimes very detailed – parameters of the service. See man

xinetd.conf for more details.

11.13. Security basics

It is important to take into account the security aspects in network

connections (and it will be seen in more detail in the following sections) but

a minimum of recommendations will be:

1) Do not activate services that are not required in both /etc/xinetd.conf and

independent services (standalone). xinetd is not installed in most distributions

and if it is, the services must be analyzed and commented on or put disable =

GNUFDL • PID_00290379 95 Linux administration

yes. List the systemd managed services with systemctl list-units --type

service --all and disable them with systemctl disable name.service

(be careful with disabling services that are necessary for OS operation).

2) If an FTP service is installed (typically managed via xinetd), modify the /etc/

ftpusers file to deny that certain users can connect via ftp.

3) Modify the /etc/security/access.conf file to indicate where (or the terminals)

the users can connect from. It is important, for example, to indicate where

the root user can be connected from.

4) Disable services such as rlogin, rsh that are not encrypted and allow

access to the machine through the /etc/hosts.equiv file without having to enter

an access key (password). The functionality of these services is replaced by ssh

securely and in an encrypted way.

5) In many distributions (Debian for example) it is important to configure

/etc/security/access.conf, the file indicating the rules of who and from where

(login) can be connected to this machine. This file has a line in order with

three fields separated by ':' of the permission:users:origin type. The first will be

a + or - (access or denied), the second a user/s name, group or user@host, and

the third a device name, node, domain, node or network addresses, or ALL.

For example:

+:root:192.168.200.1 192.168.200.4 192.168.200.9

11.14. IP options

There are a number of IP traffic options that we should mention. Their

configuration can be done dynamically - that is, they will only be active

until the machine is restarted - (modifying pseudo-files of /proc/sys/net/ipv4/)

or statically in the kernel variables managed at /etc/sysctl.conf. In /proc/sys/net/

ipv4/ there are a number of files that identify the different options whose

content must be modified, which in turn modifies this variable in the kernel.

For example, if we want to enable ip_forward, we should run:

echo 1 > /proc/sys/net/ipv4/ip_forward

Or a 0 if we want to deactivate. The most commonly used are: ip_forward

used for packet forwarding between interfaces or with IP Masquerading;

ip_default_ttl, which is the lifetime for an IP packet (64 milliseconds by default)

ip_bootp_agent variable logic (Boolean), which accepts packets (or not) with

source address of type 0.b.c.d and destination of this node, broadcast or

multicast.

GNUFDL • PID_00290379 96 Linux administration

To modify the IP options in the kernel variables statically, the /etc/sysctl.conf

file must be modified (see /etc/sysctl.d/ for additional variables and sysctl.conf

(5) for more information). For example, to disable IPV6, edit the file and

include a line with net.ipv6.conf.all.disable_ipv6 = 1. And to allow the ip_forward

one with net.ipv4.ip_forward=1, save and to update the changes executing the

command sysctl -p and the changes made will be seen.

11.15. Multiple IPs over one interface

There are some applications where it is useful to configure multiple IP

addresses to a single network device. Service providers (ISPs) frequently use

it to provide customized features (e.g., from World Wide Web sites) to their

users. Aliases are appended to virtual network devices associated with the new

device in a format such as device:virtual_number, for example, eno1:0.

A typical configuration would be in /etc/network/interfaces to assign, for

example, three IPs to eno1:

auto eno1

allow-hotplug eno1

iface eno1 inet static

 address 192.168.1.42/24

 gateway 192.168.1.1

auto eno1:0

allow-hotplug eno1:0

iface eno1:0 inet static

 address 192.168.1.43/24

auto eno1:1

allow-hotplug eno1:1

iface eno1:1 inet static

 address 192.168.1.44/24

Or also with the ip addr add command indicating the corresponding device.

11.16. DHCP service

DHCP (Dynamic Host Configuration Protocol) is a service that allows

configuring the network parameters of each node that connects to it

centrally and simply. Configuring a client (typically installed by default in all

distributions) is very easy, as the dhcp-client package only needs to be installed,

if it isn’t already (e.g., in Debian isc-dhcp-client) by adding the word dhcp in

the input corresponding to the interface we want to operate under the dhcp

client (e.g., /etc/network/interfaces must have iface wlo1 inet dhcp in order to

configure wifi interface by dhcp).

GNUFDL • PID_00290379 97 Linux administration

Server configuration requires a little more attention, but does not present any

complications. The installation, for example, in Debian is apt-get install

isc-dhcp-server (it is one of the dhcp servers, but there are others such as

dnsmasq or kea). In general, dhcpd configuration can be done by modifying

the /etc/dhcp/dhcpd.conf file. An example of this file is:

Example of etc/dhcp/dhcpd.conf:

default-lease-time 1200;

max-lease-time 9200;

option domain-name "remix.cat";

deny unknown-clients;

deny bootp;

option broadcast-address 192.168.11.255;

option routers 192.168.11.254;

option domain-name-servers 192.168.11.1;

subnet 192.168.11.0 netmask 255.255.255.0 {

 not authoritative;

 range 192.168.11.1 192.168.11.254

 mars host {

 ethernet hardware 00:00:95:C7:06:4C;

 fixed address 192.168.11.146;

 option host-name "mars";

 }

 saturn host {

 ethernet hardware 00:00:95:C7:06:44;

 fixed address 192.168.11.147;

 option host-name "saturn";

 }

}

This will allow the server to assign the address range 192.168.11.1 to

192.168.11.254 as described by each node. If the corresponding host segment

{ ... } does not exist, they are randomly assigned. IPs are assigned for a

minimum time of 1,200 seconds and a maximum of 9,200 (if these parameters

do not exist, they are assigned indefinitely). On this server, we must also

modify the /etc/default/isc-dhcp-server file and modify the INTERFACESv4=

“eno2” line to indicate the interface where the requests will be received.

Finally, the service can be restarted with systemctl restart isc-dhcp-

server.

With /usr/sbin/dhcpd -d -f we can see information about the service or

we can also see its status with systemctl status isc-dhcp-server.

GNUFDL • PID_00290379 98 Linux administration

Since the DHCP protocol is performed via broadcast since the requesting

node does not have the network configured (discovery event generated by

the DHCP client), routing to other networks cannot be performed since the

DHCP protocol considers the server and client to be on the same network. To

get from one network to another where the dhcp server is located (and thus

avoid having to put one server for each subnet), an intermediate agent called

DHCP relay can be used. A DHCP relay operates on the machine that acts as an

intermediary for the dhcp broadcast packets. Its installation is through apt-

get install isc-dhcp-relay and it is configured with the /etc/default/isc-

dhcp-relay file by adding SERVERS= IP_DHCP__Server where IP_DHCP_Server

will be the IP of the dhcp server. The file contains other options, such as

defining the interface from which to listen to requests (if it is not indicated,

it is all of them), and another option is to send to the DHCP server.

11.17. IP Network Address Translation (NAT)

NAT is a resource for a set of machines configured on a network (usually

private) to use a single IP address as a gateway. This allows nodes on a local

network, for example, to exit to the Internet (i.e., those using the private

IP, for example, 198.162.10.1); but they cannot accept connections directly

from outside, but only through the machine that has the actual IP. The IP

Network Address Translation (NAT) is a replacement for what was known as

IP Masquerade and is part of the kernel.

The most common case, nowadays, is having a set of virtualized machines

connected to the host via NAT or a set of computers on a private internal

network (which in turn will do NAT with the router). These example can be

extrapolated to any physical devices on a private network in order to get access

to Internet for example.

The nodes that must be masqueraded will be within a second network and

each of these machines should have the address of the machine that performs

the masking as default gateway.

On this machine (router) one interface can be configured to “look” at

the internal network (for example, eno2 connected to the 192.168.1.0/24

network) and another, to the external network (for example, eno1, connected

to the 10.0.2.0/24 network - in this example, two private networks are used but

if these machines need to connect to the Internet, somewhere there must be a

NAT between private and public network); the steps for its configuration are:

1) Activate ip_forward, directly:

echo 1 > /proc/sys/net/ipv4/ip_forward or permanently modifying the /etc/

sysctl.conf file by removing the comment to the line net.ipv4.ip_forward=1 and

running sysctl -p.

GNUFDL • PID_00290379 99 Linux administration

2) Activating masquerade:

iptables -t nat -A POSTROUTING -o eno1 -j MASQUERADE

In order for the changes to be permanent (and not have to be made after each

boot) it is recommended to install the iptables-persistent package (which will

save the iptables rules when the machine is turned off and will load them

when it is turned on) and to activate the ip_forward by modifying the file

sysctl.conf. We can run iptables -t nat -L to check that the iptables rule

is active. If the 10.0.2.0/24 network is connected to the Internet (obviously

through another NAT), the connectivity of the internal machines could be

verified by running, for example, ping google.com.

In case of connection problems, the command tcpdump -i eno1|eno2 can

be used to see if the packages are reaching eno1 or eno2 and detect where the

problems are.

This is the simplest way with iptables, but it can also be done with the

command ip route add nat <parameters> to manage rules that route

and move addresses (this is called Stateless NAT).

11.18. Bridging

Bridging is a method of sharing connections; for example, the Internet

connection between two or more computers, which is useful if a router with

more than one Ethernet port is not available or is limited by this number. It is

essentially used so that a computer that is connected to the Internet can, by

another network device, connect to a second computer that does not have an

Internet connection and provide it with Internet access. In physical systems

it may seem strange, but it is common when we have a set of virtualized

machines and we want everyone to have access to the Internet.

The command to use is the brctl, and it is included in the bridge-utils

package that must be installed (apt-get install bridge-utils). This will

allow us to set up and use a new interface (bridge), in the same way as eno1,

eno2, etc., which does not exist physically (it is virtual) and will transparently

obtain packages from one interface and move them to the other. The simplest

way to create an interface is through brctl addbr br0 and physical devices

can be added with brctl addif br0 eno1 eno2.

Permanent configuration can be done via /etc/network/interfaces:

iface eno1 inet manual

iface eno2 inet manual

Bridge setup

iface br0 inet dhcp

GNUFDL • PID_00290379 100 Linux administration

 bridge_ports eno1 eno2

If a static configuration needs to be made it must be changed in br0:

iface br0 inet static

 bridge_ports eno1 eno2

 address 192.168.1.2

 netmask 255.255.255.0

 gateway 192.168.1.1

See Bridging Network Connections (Debian) for more details.

11.19. Domain Name System: (DNS)

The functionality of the DNS service is to convert machine names

(readable and easy to remember by users) into IP addresses or vice

versa. That is, if a GNU/Linux machine connected to the Internet

is running a host cv.uoc.edu, the answer will be cv.uoc.edu has

address 52.215.162.218 (among others) and if host 52.215.162.218 is

executed, we will obtain 218.162.215.52.in-addr.arpa domain name pointer

ec2-52-215-162-218.eu-west-1.compute.amazonaws.com (which is the machine

where the UOC CV really is, i.e., a machine on AWS and cv.uoc.edu is an alias

to this machine).

The Domain Name System (DNS) is a tree-shaped architecture that prevents

duplication of information and facilitates searching. Therefore, a single DNS

makes no sense but as part of the tree. One of the most widely used

applications provided by this service is called named, included in most GNU/

Linux distributions, and is part of a package called bind (currently version

9.x), coordinated by the ISC (Internet Software Consortium). DNS is simply a

database, so the people who modify it need to know its structure, otherwise

the service will be affected. As a precaution, special care should be taken to save

copies of files to avoid any interruption in the service. DNS servers, which can

convert most DNS nodes to their corresponding IP are called recursive DNS

servers. This type of server cannot change the names of the DNS nodes there

are, they just ask other DNS servers the IP of a given DNS node. Authorized

DNS servers can manage/change the IP addresses of the DNS nodes they

manage and are typically contacted by a recursive DNS server for the purpose

of knowing the IP of a given DNS node. A third variant of DNS servers is

cache DNS, which simply stores information obtained from other recursive

DNS servers.

https://wiki.debian.org/BridgeNetworkConnections

GNUFDL • PID_00290379 101 Linux administration

The bind configuration is not complex but requires dedication and in this

case a widely used DNS server called dnsmasq (and can also act with DHCP

server) has been chosen which is very simple and recommended for medium/

small installations. For the bind configuration, we can consult information

such as that of Linuxconf.org, among others.

Dnsmasq allows to simply configure a DNS server (forwarder) (and DHCP

server in the same package) for small/medium networks and can handle

requests for machine names that are not in the global DNS.

The way to quickly configure a DNS for proprietary and forwarder domain

machines is to run apt-get install dnsmasq. If a simple DNS is

desired, then it is already configured considering that the /etc/resolv.conf file

(or equivalents) will have an external DNS server (for example nameserver

8.8.8.8).

The settings can be adjusted on the /etc/dnsmaq.conf file, but with the default

settings we can already query external domains and it will act as DNS-cache.

To complete the installation, a line with nameservers 127.0.0.1 must be

added as nameserver in /etc/resolv.conf (or equivalent service) before the other

nameserver so that the requests can be resolved first by this DNS and then

sent out. On machines where IP is obtained by DHCP and to prevent each

IP renewal from updating the resolv.conf, we can modify /etc/dhcp/dhclient.conf

and remove the comment to the prepend domain-name-servers 127.0.0.1 line;

which will add the indicated line each time the IP is renewed.

Dnsmasq will resolve the internal domains from the FDQNs of the /etc/

hosts machines such as for example if we have a line such as 192.168.1.37

remix.nteum.world remix, we can run host remix.nteum.world and it will

respond to us with the corresponding IP. The /etc/dnsmasq.conf configuration

file includes a number of options for organizing internal domains and other

parameters not only for DNS configuration but also for the DHCP server.

Another interesting DNS server is MaraDNS, which can be used as a recursive

DNS (cache) or as authoritative name server. Its configuration is very simple

and there is a lot of documentation on the developer page that explains how

it is done based on the role of the DNS we want to deploy.

11.20. Information service: NIS (YP)

In order to facilitate administration and provide user comfort in networks

of different sizes, information services that propagate user information are

usually executed on different machines so that these users do not need to

have local accounts on all the machines. Some of these services are the

Network Information Service, NIS (or Yellow Pages, YP, in the original Sun

https://dnsmasq.org/
https://linuxconfig.org/linux-dns-server-bind-configuration
https://maradns.samiam.org/
https://maradns.samiam.org/tutorial/tutorial.html

GNUFDL • PID_00290379 102 Linux administration

definition), LDPA (Lightweight Directory Access Protocol), or Active Directory

(for Windows systems but where the server can be installed in GNU/Linux via

the Samba4 package).

The NIS architecture is of the client-server type, i.e., there is a server that will

have all the databases and some clients that will query this data transparently

for the user. Therefore, the possibility of configuring “backup” servers (actually

called secondary) should be considered so that users are not blocked in case

the main server crashes. That is why the architecture is really called multi-

server (master+mirrors+clients).

In this section, we will discuss the configuration of GNU/Linux as a NIS

client/server and the information that can be distributed in NIS is as follows:

users (login names), passwords (/etc/passwd|shadow), user home directories

and group information (/etc/group), networks, hosts, among others. This

configuration presents the advantage that, from any client machine or from

the same server, the user can connect with the same account and password and

to the same directory (although the directory must be previously mounted on

all client machines by NFS or via the automount service).

To install the server on a machine (nis server) the nis package must be installed

(apt-get install nis). During the installation, a NIS domain will be

requested, under which it will group all the machines it will serve. It is

recommended that this NIS domain does not match the Internet domain or

host name. For example, if the server has name.domain=remix.nteum.world

it could be put as nis domain= NISREMIX (note that it is case sensitive, so

NISREMIX is different from Nisremix). This domain name can be queried

with the order nisdomainname, (or /proc/sys/kernel/domainname can also be

consulted) and can be reconfigured with dpkg-reconfigure nis. The /etc/

default/nis file must then be modified to modify the NISSERVER=master line

to indicate the server role. Also (although it can be done in a second step), the

/etc/ypserv.securenets file must be adjusted to modify the line indicating 0.0.0.0

0.0.0.0.0 that gives access to everyone and restrict it to the client network, for

example 255.255.255.0 192.168.1.0.

Finally, the /etc/hosts must be modified to have the machine with the name

defined in /etc/hostname (it can be changed/displayed with the hostnamectl

command) with an FQND line such as 192.168.1.30 remix.nteum.world remix.

The server configuration is done with the /usr/lib/yp/ypinit -m

command; in some distributions it is necessary to verify that the /etc/networks

file exists, which is essential for this script. If this file does not exist, an empty

file can be created with touch /etc/networks; this script will request which

the NIS servers will be, indicating the local machine by default, and must end

in Crtl+D. To restart the service, we can run systemctl restart nis.

GNUFDL • PID_00290379 103 Linux administration

It should be noted that from this point onwards, the commands to change

password or user information, such as passwd, chfn or adduser, are valid

only for changing local information. If we want to change NIS information,

commands such as yppasswd, ypchsh and ypchfn must be used. If users are

changed or local files are modified, NIS tables can be reconstructed by running

the make command in the /var/yp directory to update the tables.

The configuration of a backup server is similar to that of the master, except

that in /etc/default/nis it must be configured as NISSERVER = slave. On the

master, it should be indicated that it distributes the tables automatically to

the backup ones, putting NOPUSH = “false” in the /var/yp/Makefile file. To

initialize the master who its backup server is, /usr/lib/yp/ypinit -m will

be executed indicating the name of the backup server. This will reconstruct the

maps but will not send the files. To do this, on each backup server, systemctl

stop nis; /usr/lib/yp/ypinit -s name_master_server; systemctl

start nis must be executed. To verify that the NIS server is active, we can

check with systemctl status ypserv or with rpcinfo -p and the domain

with ypwich -d domain.

It is recommended after using adduser to add a new user on the server,

run cd /var/yp; make to update the NIS tables (and whenever any

user characteristics are changed, for example the keyword with the passwd

command, because it will only change the local password and not the NIS

password).

A NIS client is a machine that is attached to an existing NIS domain running

apt-get install nis. The NIS package installation procedure will request

a domain name (NIS domain name) that will describe the set of machines

that will use the NIS and that has been previously entered into the server

(NISREMIX in this example). Since the NIS server address has not been

configured yet, the client might attempt to locate it by sending a broadcast

message. If it doesn’t find it, it will (after a short time) give a message similar

to the following: [....] Starting NIS services: ypbind[....] binding to YP server...failed

(backgrounded).

The NIS client uses the ypbind command to find a server for the specified

domain, either via broadcast (not advised) or by searching for the server

indicated in the configuration file /etc/yp.conf (recommended). This file must

have a line with ypserver 172.16.1.1 where the IP is that of the master server

(this file supports different syntaxes and can be consulted with man yp.conf).

In order for a user who is not defined on the client machine to access through

the nis service, the /etc/nsswitch.conf file must be modified to include nis in

the following query bases (see man nsswitch.conf):

passwd: compat nis

group: compat nis

shadow: compat nis

GNUFDL • PID_00290379 104 Linux administration

netgroup: nis

hosts: files dns nis

We can then restart the service with systemctl restart nis and verify if

it accesses the tables executing a ypcat passwd that will display the list of

users propagated from the server and with rpcinfo -p or with systemctl

status ypbind we will see the ypbind service active.

Although the autohome and automount can be configured for user directories,

it is recommended to mount the /home directory to the clients by NFS (this

will be seen in the next sections) so that users have access to their files on

each client machine.

11.21. Remote connection services: ssh

For remote connection, it is recommended to use ssh (a command that is

already in all operating systems, included in Windows with putty or mobaterm)

instead of other options that are not secure (e.g., telnet, rlogin or rsh). The

OpenSSH environment (client and server) provides an encrypted connection

(it is advisable not to use version 1.0 of the protocol) and a number of

utilities, such as ssh (client) scp (secure copy), and sftp (secure file transfer),

key management (ssh-add, ssh-keysign, ssh-keyscan, and ssh-keygen)

and sshd servers (ssh server), sftp-server (ftp server), and ssh-agent

(authentication agent). All current distributions incorporate the ssh client and

sshd server by default (otherwise, install the openssh-server package for the

server and the openssh-client for the client) and the OpenSSL library, used by

these programs, needs to be updated as security issues have been encountered

(e.g., heartbleed but it has been quickly fixed in GNU/Linux distributions).

Connection to a remote server is done by running ssh -l user hostname

or ssh user@hostname and through SSH other connections, such as X11 or

any other TCP/IP connection, can be encapsulated. If parameter -l is omitted,

the user will connect to the same local user and in both cases the server will

request the password to validate the user’s identity.

SSH supports different authentication modes (see man ssh), for example, one

based on the RSA algorithm and public key. With the ssh-keygen -t rsa|

dsa command, we can create the user identification keys that will be saved

by default in the $HOME/.shh directory, the id_rsa and id_rsa.pub files, which

are the private and public keys, respectively. The user could copy the public

(id_rsa.pub) to the remote server with ssh-copy-id user@host_remote that

will include the public key in the user's $HOME/.ssh/authorized_keys file of

the remote machine. This file may contain as many public keys as sites from

which we want to connect to this machine remotely. Syntax is one key per

http://www.putty.org/
http://mobaxterm.mobatek.net/
https://www.openssh.com/
https://es.wikipedia.org/wiki/Heartbleed

GNUFDL • PID_00290379 105 Linux administration

line although the lines will be of considerable size. After we have entered the

public keys of the user-machine in this file, this user will be able to connect

without password from that machine.

Normally (if keys have not been created), the user will be asked for a password,

but since the communication will always be encrypted, it will never be

accessible to other users who can listen over the network.

To remotely execute a command, we can simply run ssh login-

name@remote-host remote-command, for example ssh user@remote-

host ls -al.

Both the client and server support multiple configurations that can be

changed from /etc/ssh/ssh_config and /etc/ssh/sshd_config (we must remember

to restart the server after changing files with systemctl restart ssh). On

the server, some of the most commonly used options are PermitRootLogin yes|

no to allow the root user to connect or not, IgnoreRhosts yes to avoid reading

the users' $HOME/.rhosts and $HOME/.shosts files, and X11Forwarding yes to

allow Xwindows applications on the server to be displayed on the client

screen (very useful in remote server management with the command ssh -X

host_a_administer command among others).

11.22. Chained connections

Very often, access to internal networks is only possible through an SSH server

(e.g., that are in the DMZ –demilitarized zone that is a physical or logical

subnetwork that contains and exposes an external service to untrusted users–)

and from this it is possible to connect to internal SSH servers and then reach

the machine of interest. The way to do this is to first connect to the M1, then

to the M2 (to which it is only possible to connect from the M1) and from it

to the M3 (to which it is only possible to connect from the M2). One way to

facilitate authentication is to use agent forwarding with parameter -A and by

setting the public key to all $HOME/.ssh/authorized_keys so when the different

commands are executed, the key request can be forwarded to the previous

machine and so on, the commands will be ssh -A m1.org and from this

ssh -A m2.org and in turn ssh -A m3.org but can automate with ssh

-A -t m1.org ssh -A -t m2.org ssh -A m2.org where the option

-t has been included for ssh to assign a pseudo-tty to it and only the final

screen will be displayed). The SSHmenu applet can help automate all these

types of commands.

Another way to effectively manage this “multi-hop” connection is through

the ssh ProxyCommand option (see man ssh_config) that will enable

the connection more efficiently. The following commands are defined in

$HOME/.ssh/config:

Host m1

http://sshmenu.sourceforge.net/

GNUFDL • PID_00290379 106 Linux administration

 HostName m1.org

Host m2

 ProxyCommand ssh -q m1 nc -q0 m2.org 22

Host new

 Hostname 158.109.174.19

 User root

 ForwardX11 yes

 ProxyCommand ssh -X user@router.uoc.edu -p 223 -W %h:%p

The first command (when running ssh m1) will simply connect to m1.org but

the second command when running ssh m2 will establish an ssh connection

over m1 but the ProxyCommand command will use in nc command to

extend the connection over m2.org. Another way to use it is with the third

configuration when running ssh new will connect to router.uoc.edu with the

‘user’ user and port 223 and then to the IP indicated by Hostname and the user

indicated in User.

11.23. Remote file services: NFS (Remote File System)

The NFS system allows a server to export a file system so that it can be used

interactively from a client. The latest version of NFSv4 includes a series of

additional daemons (idmapd, statd) as well as a series of modules for the new

functionality of this version.

To install (on Debian) the client must run apt-get install nfs-common

and the server with apt-get install nfs-kernel-server. The server is

managed through systemctl start|stop|restart|staus nfs-kernel-

server). The server uses a file (/etc/exports) to manage remote access and the

control of file systems.

On the client (or another user via sudo), the root can mount the

remote system via the mount -t nfs Ipserver:remote_directory

local_directory command and from this point on, the remote-directory

will be seen within the local directory (it must exist before running the mount).

This task on the client can be automated by using the /etc/fstab file including

a line, for example, Ipserver:/home /home nfs defaults 0 0 which indicates that

the /home directory of the Ipserver host will be mounted on the local /home

directory. In addition, this file system will be mounted with the default

parameters (see man mount section mount options for ntfs and man nfs for

specific options for NFSv4). The last two zeros indicate that the file system

should not be dumped and that the fsck will not be activated on it.

GNUFDL • PID_00290379 107 Linux administration

The /etc/exports file on the server acts as the ACL (Access Control List) of the

file systems that can be exported to the clients. Each line contains a filesystem

to be exported followed by the clients that can mount it, separated by blank

spaces. Each client can be associated with a set of options to modify behaviour

(see man exports for a detailed list of options). An example of this could be:

Example of /etc/exports

/pub *(ro)

/soft 192.168.32.0/24(ro)

/home 192.168.10.0/24(rw,no_root_squash,no_subtree_check)

The first line exports the /pub directory to any client in read-only mode,

the second line exports the /soft directory to the 192.168.32.0/24 network

in read-only mode and the third line exports the /home directory to the

192.168.10.0/24 network in read-write (rw) mode, with no_subtree_check (it

indicates that the path/file verification will not be performed on a request on

the server) and no_root_squash (indicates that the root users of both machines

are equivalent).

Two useful commands for working with NFS are exportfs (shows and allows

to update the modifications that have been made) and nfsstat (that will

allow us to obtain NFS operation statistics).

11.24. Virtual Private Network (VPN)

A VPN is a network that uses the Internet as a data transport, but prevents it

from being accessed by members outside of it. Having a VPN means having

different nodes on different networks joined together on a single network

through a tunnel where encrypted communication packets are sent. It is used

when remote users are accessing a corporate network to maintain data security

and privacy. To configure a VPN, we can use a variety of SSH (SSL), CIPE, IPSec,

PPTP methods, among others.

As a proof of concept, in this section we will use OpenVPN, which is an

SSL VPN-based solution, and it can be used for a wide range of solutions,

for example, remote access, point-to-point VPN, secure WiFi networks, or

enterprise distributed networks. OpenVPN deploys OSI layer 2 or 3 using

SSL/TLS protocols and supports certificate-based authentication and other

certification methods, and should not be confused with an application proxy

server. OpenVPN has different access and configuration options where the

Access Server version (with web interface it allows only 2 simultaneous VPN

connections for free) and the Community Edition version with text mode

configuration and unlimited connections, depending on how it is configured.

This latest version will be used in this test.

https://openvpn.net/

GNUFDL • PID_00290379 108 Linux administration

There are other open-source options to consider when setting up a VPN,

among which we can mention Wireguard. This package allows configuring a

VPN very simply and quickly using the latest generation cryptography. The

design goal is to make it simpler and use fewer resources than IPSec and deliver

equal or better performance than OpenVPN.

11.25. Installation and testing in raw mode

A Debian machine and an Ubuntu machine will be used in this section, but

it is similar in all other distributions. OpenVPN must first be installed on

both machines: apt-get install openvpn. Depending on the distribution,

it may give some errors, as it tries to start the service, but since it is not

configured yet, it shows some warnings. Then, it must be tested in raw mode if

the connectivity between server and client works or if there is any impediment

(for example, a firewall). To check this, we must run:

1) From the server:

openvpn --remote 10.9.8.2 --dev tun1 --ifconfig 10.9.8.1 10.9.8.2

2) From the client:

openvpn -remote 10.9.8.1 --dev tun1 -i-fconfig 10.9.8.2 10.9.8.1

Both machines must be connected; in this example, the IP of the client

machine is 10.9.8.2 (Ubuntu) and the IP of the server machine (Debian), is

10.9.8.1. A series of messages will appear on the two terminals that have

executed the commands, ending with a message similar to ‘Initialization

Sequence Completed’. On another terminal, a ping 10.9.8.1 can already be

performed from the client and ping 10.9.8.2 from the server to check that it

works. And we can also see the tun1 virtual interface created on both machines

executing ip a.

To finish the application, we must simply do a Crtl+C (and we will see how

the tun1 virtual interface disappears as well). It must be noted that this mode

only allows for verification of connectivity but is not effective for stable

communication (see OpenVPN documentation).

11.26. VPN with static key exchange

To analyze this service, an OpenVPN option called VPN with pre-shared secret

will be used, which offers a simple way to configure an ideal VPN for testing

or point-to-point connections. Its advantages are simplicity and that an X509

PKI certificate is not required to maintain the VPN. The disadvantages are that

https://www.wireguard.com/
https://openvpn.net/community-resources/how-to/#starting-up-the-vpn-and-testing-for-initial-connectivithttpsy

GNUFDL • PID_00290379 109 Linux administration

it only allows one client and one server. By not using the PKI mechanism

(public key and private key), the key must exist in each peer and must have

been previously exchanged through a secure channel.

We must remember that in this example the VPN tunnel will have over the

IP=10.9.8.1 server and the client with IP=10.9.8.2. The communication will

be encrypted between the client and the server over UDP port 1194 (which is

the default OpenVPN port). After installing the package, the static key must

be generated in /etc/openvpn and copied securely to the client:

cd /etc/openvpn

openvpn --genkey --secret static.key

scp static.key root@10.9.8.2:/etc/openvpn

In this case, the secure copy (scp) command has been used to transfer the

static.key file to the client (10.9.8.2) over a secure channel. The /etc/openvpn/

tun0.conf server configuration file:

dev tun0

ifconfig 10.9.8.1 10.9.8.2

secret /etc/openvpn/static.key

The /etc/openvpn/tun0.conf client configuration file:

remote 10.9.8.1

dev tun0

ifconfig 10.9.8.2 10.9.8.1

secret /etc/openvpn/static.key

Before verifying the VPN operation, we must ensure on the firewall that the

1194 UDP port is open on the server and that the tun0 virtual interface used

by OpenVPN is not blocked on either the client or the server. It must be taken

into account that 90% of connection issues encountered by new OpenVPN

users are related to the firewall.

To verify OpenVPN between two machines, run both on the server side and

on the client side (--verb 6 will display additional information to the output

and it can be avoided in subsequent runs):

openvpn --config /etc/openvpn/tun0.conf --verb 6

This will give an output that will end with something similar to Initialization

Sequence Completed. To verify its operation, for example, a ping 10.9.8.1 can be

executed from the client, so we will see its response and also a message of the

tunnel activity in the server console.

GNUFDL • PID_00290379 110 Linux administration

To add compression over the link, the following line must be added to the

two full configuration comp-lzo files, and to protect the connection via a

NAT router/firewall and follow the IP changes via a DNS, if one of the peers

changes, add to the two configuration files:

keepalive 10 60

ping-timer-rem

persist-tun

persist-key

More information can be found in Static Key Mini-HowTo. As we have seen,

the previous execution is in console, so the console is blocked with the VPN

execution; but once purged, it is necessary to boot up as daemon and for

this, it is necessary to add to the /etc/openvpn/tun0.conf configuration file the

word daemon and change in the file /etc/default/openvpn AUTOSTART="tun0"

to indicate the name of the VPN (it is also possible to put “all” that will execute

all the /etc/openvpn/*.conf) configuration files. Then it is necessary to boot on

both sides (systemctl start openvpn) and test with an ip a command

that there is a tun0 and its functionality with a ping.

Once the connection is established, it can be used as if it were any other IP

and access the services over the remote host via the VPN tunnel.

To create a fully functional VPN, it must be created with a PKI infrastructure,

and for this purpose OpenVPN presents differences between versions (prior

to 2.3 or after it, see OpenVPN 2x HowTo). To do this, it is recommended

to follow the documentation, but the problem is in generating the PKI

certificates, for which an easy-rca2 script can be downloaded from GitHub

(https://github.com/OpenVPN/easy-rsa-old) for version 2.3 or easy-rca3 for

the remaining versions (https://github.com/OpenVPN/easy-rsa).

11.27. Useful network management tools

There is a set of complementary (or replacement) packages and tools that

either improve machine safety (recommended in harsh environments), or aid

in network (and overall system) configuration in a more friendly way. These

packets can be a great help to the network administrator to prevent local users

or intruders that exceed their attributions (usually not by the local user, but

through phishing) or help the new user to properly configure the services.

In this regard, it is necessary to consider:

1)�Iptables: is a set of built-in functionalities into the Linux kernel to intercept

and manage network packets. The main component is iptables, which

functions as a firewall tool allowing not only filter actions but also network

address translation (NAT) actions – as already used in the corresponding

section of this document – or redirections/registration of communications.

https://openvpn.net/community-resources/static-key-mini-howto/
https://github.com/OpenVPN/easy-rsa
https://openvpn.net/community-resources/how-to/#setting-up-your-own-certificate-authority-ca-and-generating-certificates-and-keys-for-an-openvpn-server-and-multiple-clients
https://github.com/OpenVPN/easy-rsa-old
https://github.com/OpenVPN/easy-rsa

GNUFDL • PID_00290379 111 Linux administration

Once the rules are configured, we can check the open services/ports, for

example, from another machine, with a tool such as nmap that will display

the open ports on the machine configured with iptables.

2)�GnuPG: GnuPG is a full implementation of the OpenPGP standard defined

by RFC 4880. GnuPG (or GPG) enables encryption and signing of data of all

types and features a very versatile key management system, as well as access

modules for all types of public key directories. GPG can operate on command-

line or integrated into tools through its libraries and also provides support for

S/MIME (Secure/Multipurpose Internet Mail Extensions).

To create the pair of keys, we must run gpg --gen-key by answering its

questions. To display the keys created, we must run:

gpg --list-keys

or

gpg -v -fingerprint

which will result in key information. The next thing is to create a revocation

certificate because, although it is not important now, when the public key is

on a server and we want to destroy it (for different reasons), the only way is to

revoke it. To do this, we must execute gpg -a --gen-revoke and copy the

information between [BEGIN] and [END] into a file and keep it safely, since it

can annul the public key. The public key must then be “public” on a server,

such as pgp.mit.edu, by running

gpg --keyserver=x-hkp://pgp.mit.edu -a --send-keys KEY_ID

where the last number is the KEY_ID obtained from the key. To incorporate a

public key of another user into our key-ring, we will

gpg --import <file>

or ask the key-server gpg --search-keys <description>, so we get

the key needed to then use it to encrypt data for that user, for example. We

can use gpg --delete-key <description> to delete it.

GPG solves the issue of the need for key exchange in advance with the public

and private key mechanism, but this brings a new problem: if someone’s

public key is received (e.g., from a key server), how do we know that this key

actually belongs to the person to whom it is said to belong? Anyone could

create a key in someone else’s name and use it, and no one would realize

there’s a phishing!

GNUFDL • PID_00290379 112 Linux administration

That’s why care must be taken when accepting other keys and ensuring that

the key is from a certain person and that it is secure (checking it with the

Key-ID and fingerprint). An easy mechanism is to sign a key and the more

known users sign this key, the more (everyone) will be sure that it belongs to

the user they know (this is called key-signing). A user can sign another key

(with theirs) to ensure that that key belongs to someone that they are sure of

who it is, and also if a public key is received from someone they do not know

but it is signed by several people who they know, then this key can be trusted

to belong to that person (trust).

To sign a public key it must be in the key-ring and execute the command gpg

--edit-key <description>, where “description” can be the name/email or

any data or part of the key we want to sign. Then it will enter command mode

and sign -> confidence level (0-3) -> Y -> passwd -> save should be indicated.

Subsequently, this public key should be uploaded back to the server with the

new signature: gpg -a --send-keys <key-ID>. To update the keys that we

have in the local (key-ring), we must run gpg --refresh-keys. To encrypt

a file, we can run gpg -e -a -r <description> file, which will be

called file.asc; since the -a that indicates that the output must be ASCII has

been included, if it does not exist, it will be generated in binary as file.gpg. To

decrypt, gpg -d -or file.asc output_file must be done, which will

request the passwd and generate it in output_ file.

For using it in mail or other applications, it is advisable to integrate gpg with

the application used (e.g., see GNUPGP + Thunderbird information):

3)�Logcheck: One of the activities of a network administrator is to check log

files daily (more than once a day) for possible attacks/intrusions or events that

may give hints about these issues. This tool selects (from log files) condensed

information of potential problems and risks and then sends it to the manager,

for example, via email. The package includes utilities to run autonomously

and remember the last verified entry for subsequent runs. The list of files to

be monitored is stored in /etc/logcheck/logcheck.logfiles and the default setting

is appropriate (if most of the /etc/syslog.conf file was modified). Logcheck can

work in three modalities:

• Paranoid. This mode is very detailed and should be limited to specific

cases such as firewalls.

• Server. It is the default mode and the recommended one for most servers.

• Workstation. It is the right mode for desktop stations.

This tool allows for a full configuration of the filters and rules can be classified

as “intrusion attempt” (cracking), stored in /etc/logcheck/cracking.d/; “security

alert” stored in /etc/logcheck/violations.d/, and those that are applied to the rest

of the messages.

https://support.mozilla.org/en-US/kb/openpgp-thunderbird-howto-and-faq

GNUFDL • PID_00290379 113 Linux administration

4)�PortSentry and Tripwire. PortSentry is part of a set of tools that provide

host-level security services for GNU/Linux, protect against port search and

detect signs of suspicious activity. Tripwire is a tool that will assist the

administrator by notifying them of possible file changes and modifications to

prevent possible (major) damage. This tool compares the differences between

current files and a previously generated database to detect changes (insertions

and deletion), which is very useful for detecting possible modifications to vital

files, such as in configuration files.

5)� Tcpdump and Wireshark: Tcpdump is a very powerful tool that is in

all distributions and will be used to analyze network packets. This program

allows for the dump of network traffic and can analyze most of the protocols

used in current distributions. Wireshark is another (more complex) tool that

has a graphical interface for analyzing packages and also allows them to be

decoded and it analyzes their content (it acts as a network sniffer). Both tools

are installed under the usual procedure and are pre-configured in almost all

distributions.

Given the importance of analyzing where the packages come from and where

they are going, some common tcpdump commands will be displayed:

• tcpdump: default parameters -v or -vv for the displayed information level,

-q fast output.

• tcpdump -D: it makes interfaces available for capture.

• tcpdump -n: it displays IP instead of addresses.

• tcpdump -i eno1: it captures the eno1 traffic.

• tcpdump udp: UDP packages only.

• tcpdump port http: port 80 (web) packages only.

• tcpdump -c 20: first 20 packages only.

• tcpdump -w capture.log: it sends the data to a file.

• tcpdump -r capture.log: it reads data from a file.

• tcpdump host www.uoc.edu: only packages containing this address.

• tcpdump src 192.168.1.100 and dst 192.168.1.2 and port ftp:

it displays ftp packages with source from 192.168.1.100 and destination

to 192.168.1.2.

• tcpdump -A: it displays the contents of the packages.

6)�fail2ban: it is an essential tool to protect against brute force attacks used

especially for controlling SSH connections, but it can be configured to monitor

any login service through blocking the attacker’s IP via iptables (default Linux

kernel firewall).

GNUFDL • PID_00290379 114 Linux administration

7)� system-config-*: in RHEL and derivative distributions (Fedora, Centos,

Rocky, ...) and in some cases in Debian and derivative distributions also, there

is a wide variety of graphical tools called system-config-something- and where

something- is what they are designed for. In general, if we are in a graphic

environment, we can reach each one of them by using a menu.

8)�Other�tools:

• Nmap: scanning and auditing a network for security purposes.

• OpenVas: vulnerability analysis.

• Snort: intrusion detection system, IDS.

• Suricata: highly scalable IDS that is very flexible and complete.

• Netcat: simple and powerful utility for debugging and exploring a

network.

• Hping3: it generates and sends ICMP/UDP/TCP packages to analyze the

operation of a network.

GNUFDL • PID_00290379 115 Linux administration

12.Local security

Local security is essential for system protection, as, typically, after a first

attempt to access from the network, it is the second barrier of protection before

an attack manages to gain part of the control of the machine. In addition, most

attacks end up using internal system resources. In this section, the different

points of risk will be analyzed.

1)�Bootloaders. This is the first risk point if an intruder has physical access

to the machine. One of the problems is whether the attacker can boot from

removable devices (for example USB) as it could access the data of a GNU/

Linux partition (or also in Windows environments) just by mounting the

file system and could be placed as a root user without needing to know any

passwords. Or he/she could also access to modify the kernel boot form so that

it doesn’t ask for the password. For the first case, it is necessary to protect the

system boot from the BIOS, for example, by protecting password access, so

that boot from USB or other external connections is not allowed.

The next step is to protect the bootloader, (typically Grub2) so that the attacker

cannot modify the core boot options or directly modify the boot. In the

case of Grub 2, it is possible to do this by using menuentry, available in the

configuration, by defining passwords for specific users, which can then be

added to each defined menuentry, in addition to the possibility of specifying

a super user who has access to all the entries. Grub2 uses passwords in clear,

so we must make sure that the file does not have read access for other users, or

instead use alternative methods for password creation, for example, by using

grub-mkpasswd-pbkdf2, which will allow us to generate hashes of the password

to be used. Configuration details can be seen in Grub2/Passwd.

2)� Passwords� and� shadows. We must remember to use hash passwords

(usually sha512) in /etc/shadow.

3)�Bits�sticky�and�setuid. Another important issue is some special permissions

that are used over executables or scripts.

The sticky bit is used primarily in temporary directories, where we want any

user to be able to write, but only the owner of the directory or the owner of the

file in the directory (e.g., /tmp)can delete it. Care should be taken that there

are no directories of this type, as they can allow anyone to write on them, so

it should be checked that there are no more than those purely necessary as

temporary. The bit is placed by (chmod +t dir) and can be removed with the

option -t. In a ls it will appear as a directory with drwxrwxrwt permissions

where the last letter is a t.

https://help.ubuntu.com/community/Grub2/Passwords

GNUFDL • PID_00290379 116 Linux administration

The setuid bit (or setgid) allows a user to run (either an executable binary

program or a shell script) with the permissions of another user. This may be

useful in some cases, but it is potentially dangerous especially in the case

of scripts, as they could be edited and modified to perform any task. These

programs need to be controlled and if setuid is not needed, it should be deleted.

The bit is placed by chmod +s, either by applying it to the owner (then called

suid) or the group (it is called bit sgid); it can be removed with -s. In the case

of viewing with ls, the file will appear with -rwSrw-rw (an S instead of an

x), if it is only suid, in sgid the S would appear in the second w.

It is also possible to detect programs that are running with suid permissions,

using ps ax -or pid,euser,ruser,comm where if the effective user (euser)

and the real user (ruser) do not match, it will surely be an executable or script

with suid permissions.

4)�Hosts. There are a number of special configuration files that enable access

to a series of hosts for some network services, but whose errors can allow local

security to be attacked later. Examples of this are .rhosts in the user directory,

/etc/hosts.equiv, /etc/hosts.lpd, among others.

5)�PAM. PAM modules are a method that allows the administrator to control

how the user authentication process is performed for certain applications.

Applications must have been created and linked to PAM libraries. PAM

configuration is present in /etc/pam.conf (maintained for compatibility)

and in the /etc/pam.d directory, where one PAM configuration file appears

for each application that is using PAM modules. For its configuration, see How

to Configure and Use PAM in Linux.

6)� System� alterations. Another problem may be altering basic system

commands or configurations, by introducing trojans or backdoors into the

system, by simply introducing software that replaces or slightly alters the

behaviour of the system software. A typical case is the ability to force the

root user to run false system commands, for example, if the root includes

the “.” in its PATH variable, this would allow for command execution from

its current directory, which would enable the placement of files that replace

system commands that would be executed first before system commands.

The same process can be done with a user, although because their permissions

are more limited, it may not affect the system as much, but the user’s own

security instead. Another typical case is the fake login screens, which can

replace the typical login, passwd, process, with a fake program that stores

the entered passwords.

If these alterations occur, it will be essential to use control tools such as

tripwire. For Trojans, tools such as chkrootkit or rkhunter can be used

to detect known rootkit or clamv for detecting viruses.

https://www.tecmint.com/configure-pam-in-centos-ubuntu-linux/
https://www.tecmint.com/configure-pam-in-centos-ubuntu-linux/

GNUFDL • PID_00290379 117 Linux administration

7)� Limited� resources,� cgroups� and� chroot. Common management of

existing machine processes, whether perfectly valid or harmful (intentional

or careless), can lead to resource saturation situations (CPU, memory, network

resources, or simply concurrent user sessions and/or running processes).

To control this problem, limits can be entered to some of the resources used

with the ulimit command (current values can be seen with ulimit -a),

although the global configuration of limits is maintained in the /etc/security/

limits.conf file. In fact, these limits, which can be imposed on CPU time,

maximum number of processes, amount of memory, are read by PAM modules

during the user login process, and set by default from the limits imposed on

each user. Not setting limits and using default behaviour can make the system

‘fall’ with some ease: a user can easily create a script called a Fork Bomb whose

code is available in various languages and crash the system if there are no set

limits (for example, put the limits.conf on a line with * hard nproc 128

to limit the number of processes to 128 for all users and it can be checked with

limit -a in the user's account).

For the establishment of limits, it should be noted that there is also a

functionality at the kernel level, introduced in the latest versions and used

mostly by the systemd system, called cgroups, that allows controlling and

requesting system resources of different types: CPU, memory, or network

access. The list of subsystems supported with cat /proc/cgroups and with a

set of administrative utilities (libcgroup-tools) that can be used to control these

groups can be examined.

Another way to control resources to a given application, service or user is

through the creation of chroot environments, (a kind of prison-environment -

jail-, where specific limits will be placed on what can be done without affecting

the rest of the system. It is based on a call to the chroot() system that basically

redefines what the associated child process perceives as root directory (/),

which, for the created environment (or jail), can be associated in a certain

file system position, perceived by the process as root (/), and will search from

there for all configurations, system components, libraries, etc. from that false

root. Since the structure of the file system is changed to a new one, the process

will only work if it has all its data in the new zone and all the necessary

data, files and commands must be replicated (for example, the bash and its

libraries, to mention one). It should be noted that a chroot environment

protects against access to files outside the (jail) area, but does not protect

against other limits, such as system use, memory access or other similar ones.

This operation, in Debian for example, can be done from limits.conf as

mentioned previously.

https://es.wikipedia.org/wiki/Bomba_fork

GNUFDL • PID_00290379 118 Linux administration

8)� Hardening-Wrapper. They are a series of techniques used to mitigate

various security issues related to attacks carried out by executables and stack

overflow, heap and protections against access to data memory zones and

executable code.

These techniques are used in conjunction with the compiler (e.g., GNU gcc),

using a series of parameters and options (flags) passed in compile time,

whether for the compilation of user applications, service clients or the service

server part (daemons), which from their code sources and the compile process

are protected against various attack techniques on the executables.

In Debian, the complementary utilities and files can be installed for the

compilation process, in addition to having the hardening-check utility,

which allows checking the protections that a certain command, application or

daemon has. We simply need to install the apt-get install hardening-

wrapper hardening-includes packages and then check the daemon/

service, for example, to check sshd hardening-check /usr/sbin/sshd.

These techniques provide a good foundation for protecting system executables

from attacks while they are running, as well as protecting the data and code

from dynamic changes an attacker might introduce.

However, it is worth noting some defects, such as that these techniques

constantly vary, that certain problems in the implementation of protection

techniques may be exploited, or that in certain cases these protections may

give false positives.

12.1. Protection using wrappers

TCP wrappers is a software that runs prior to the service that manages and

verifies an access control rule, typically listed at /etc/hosts.allow and /etc/

hosts.deny. This wrapper can function as a previous service (tcpd) and if it

verifies the access rules, it calls the corresponding service (option used in the

already obsolete inetd) or its libraries can be integrated into the daemon/

service code itself (for example, xinetd or sshd).

To know if the corresponding binary has the libwrap reference included, for

example the sshd daemon, ldd /usr/sbin/sshd | grep libwrap can be

run which will show whether it has the library or not (in Debian branches it

is included).

The wrapper is controlled from the /etc/hosts.deny files, where it specifies

which services are denied and to whom and /etc/hosts.allow, where

it indicates which service and to whom its entry is enabled (see man

hosts_access and hosts_options for detailed syntax).

GNUFDL • PID_00290379 119 Linux administration

12.2. Protection using firewalls

A firewall is a system or group of systems that enforces inter-network

access control policies. The firewall may be deployed in software, such as a

specialized application running on a single computer, or it may be a special

device dedicated to protecting one or more computers.

Technically, the best solution is to have a computer with two or more network

cards that isolate the different connected networks (or network segments), so

that the firewall software on the machine (or if it is a special hardware) is

responsible for connecting the network packets and determining which ones

may or may not happen, and to which network.

12.3. Netfilter: iptables

The Linux core provides a filtering subsystem called Netfilter which is a

set of functionalities for intercepting and managing network packets by

providing packet filtering and NAT (in addition to other options). The main

control command is iptable that allows us to perform the different rule

configuration tasks that affect the filtering system, whether it is record

generation, actions of pre- and post “routing”of packets, NAT, and port

forwarding.

The iptables system manages different tables where the most used/

important ones are NAT and FILTER, which in turn contains different CHAINS,

where the rules are associated. The FILTER table is for the filtering standards

themselves, and the NAT table for address translation.

The iptables -L command lists the active rules (if -t filter or -t nat are

not indicated, it lists the rules of the filter table by default) in each chain.

The chains by default in FILTER are INPUT (for packets intended for local

sockets), FORWARD (for packets being forwarded through this machine), and

OUTPUT (for packets generated locally). For the NAT table, the default chains

are PREROUTING (to modify packets before entering the machine), INPUT

(to modify packets intended for local sockets), OUTPUT (to modify packets

generated locally after routing), and POSTROUTING (to modify packets that

will leave).

The typical configuration of the FILTER table is a series of rules that specify

what is done within a given chain through an iptables -A string -

parameters -j action command. The -A option adds the rule to the

existing ones and -j indicates what to do with the package that can be accept

(accept it), reject (reject it) or drop (delete it). The difference between reject and

drop is that the latter sends a connection error not allowed while the first (drop)

GNUFDL • PID_00290379 120 Linux administration

does not, so if the first one is used, an attacker already knows that there is a

service but that cannot access while the second one is considered safer since

an attacker does not know if there is a service or not.

It should be noted that the order matters so the least restrictive rules must be

placed at the beginning, since if a rule is first put that deletes the packages it

will no longer be available for the next ones. There are a set of default rules

(public rules) that apply when there is no specific rule for a given package

and they can be ACCEPT or DENY, that is, if none of the package rules can

be applied to the package and the default rule is ACCEPT, the package will be

accepted and if the default rule is DENY, the package will be deleted. A default

rule of DENY all would be:

iptables -P INPUT DROP

iptables -P OUTPUT DROP

iptables -P FORWARD DROP

which means that no package that does not meet any of the active rules will

pass and that there must be one from both INPUT and OUTPUT for the same

package. A policy of ACCEPTING all would be:

iptables -P INPUT ACCEPT

iptables -P OUTPUT ACCEPT

iptables -P FORWARD ACCEPT

iptables -t nat -P PREROUTING ACCEPT

iptables -t nat -P POSTROUTING ACCEPT

In which if the package does not satisfy any of the subsequent active rules, it

will end up accepting, so this type of configuration (less paranoid) ends with

a last iptable rule -A INPUT -s 0.0.0.0/0 -j DROP (that is, when all

the rules are passed and there is none that satisfies the package, it is deleted).

A typical strategy in environments that are not very hostile is a default policy

of ACCEPT all, a set of rules that filter packets to services and end with a DROP

rule to the rest of the packages. Examples of these Filter table rules could be:

iptables -A INPUT -s 10.0.0.0/8 -d 192.168.1.2 -j DROP

iptables -A INPUT -s 10.0.0.0/8 -p tcp -dport 113 -j ACCEPT

iptables -A INPUT -p tcp --dport 113 -j REJECT --reject-with tcp-reset

iptables -A FORWARD -s 192.168.3.2 -d 192.168.10.5 -p tcp --dport 5432 -j ACCEPT

iptables -A FORWARD -s 192.168.10.5 -d 192.168.3.2 -p tcp --sport 5432 -j ACCEPTt

Where:

• Packages coming from 10.x.x.x to 192.168.1.2 are deleted.

GNUFDL • PID_00290379 121 Linux administration

• Tcp packages to port 113 from 10.x.x.x are accepted

• Reject tcp packages to port 113, issuing a tcp-reset response.

• A package in transit from 192.168.3.2 to 192.168.10.5 and to port 5432 is

accepted (and in the opposite direction).

Regarding protocol and port names, the iptable system uses the information

provided by the /etc/services and /etc/protocols files, and the

information (port and protocol) can be specified numerically or by name (we

must be careful, in this case, that the information in the files is correct and

that they have not been modified, for example, by an attacker).

It is always recommended to install the iptables-persistent package (if

available) that is responsible for saving/restoring the rules when the system is

shut down/rebooted and if not, it can be done through the specific iptables-

save and iptables-restore commands. Below is an example to load with

iptables-restore < name _file (# indicates comments):

*filter

Allow all loopback traffic (lo0) and deny the rest of 127/8

-A INPUT -i lo -j ACCEPT

-A INPUT ! -i lo -d 127.0.0.0/8 -j REJECT

Accept all pre-established incoming connections

-A INPUT -m state --state ESTABLISHED,RELATED -j ACCEPT

Accept all output traffic

-A OUTPUT -j ACCEPT

Allow HTTP and HTTPS from anywhere

-A INPUT -p tcp --dport 80 -j ACCEPT

-A INPUT -p tcp --dport 443 -j ACCEPT

Allow SSH connections

It normally uses port 22, check in file /etc/ssh/sshd_config.

-A INPUT -p tcp -m state --state NEW --dport 22 -j ACCEPT

Reply to ping icmp

-A INPUT -p icmp -m icmp --icmp-type 8 -j ACCEPT

Remove remaining incoming traffic.

-A INPUT -j DROP

-A FORWARD -j REJECT

COMMIT

In this example, ping, http, htpps, ssh incoming traffic is accepted and

the remaining incoming traffic is blocked. When it comes to output traffic,

everything is allowed out without restrictions. To test its functionality from

another machine, run for example nmap, which will show us the open ports

on the machine configured with iptables.

GNUFDL • PID_00290379 122 Linux administration

In the RHEL branch and its derivatives, the firewall by default is firewallD

(although it is possible to install iptables). It provides dynamic control of

the firewall and allows multiple zones to be defined to manage the various

networks to which the system is connected. It allows us to simultaneously

maintain permanent, runtime configurations and apply new rules without the

need to restart the entire firewall. Some useful commands in this case that

allow us to get status, supported services, enable a service, get zones and zones

with enabled services:

firewall-cmd –-state

firewall-cmd --get-services

firewall-cmd --add-service=http

firewall-cmd --get-zones

firewall-cmd --list-all-zones

In addition to command configuration, the firewall-config graphical tool is also

available for simpler/guided configuration.

Other tools for configuring firewalls include:

• fwbuilder is a tool that allows building firewall rules graphically. It can

be used in various operating systems (Fedora, Debian, OpenBSD, MacOS),

with management of different types of firewalls (including iptables).

• ufw (Uncomplicated Firewall): as the name implies, it is intended to be

a simple-to-use firewall, which can be found in the distributions of the

Debian branch, based on CLI and which allows for a fairly simple use (but

withstanding much of the possibilities of iptables). A small example

session:

ufw allow ssh/tcp

ufw logging on

ufw enable

ufw status

A graphic package called Gufw is also available for its use.

12.4. Netfilter: nftables

NFtables is the evolution of iptables to define the next generation of

firewalls for Linux (included in the kernel space, starting with version 3.13)

with a new nft command (in user space) and an iptable support layer. Some

notable differences are:

• Different, clearer syntax.

https://fedoraproject.org/wiki/Firewalld?rd=FirewallD

GNUFDL • PID_00290379 123 Linux administration

• Tables and chains are fully user configurable, unlike iptables, which is

based on a predefined table structure.

• Greater control of protocol correspondence.

• Multiple actions in a single rule.

• Supported network protocols can be updated by making modifications to

client applications, without the need to update the kernel, thus avoiding

problems with frozen versions in certain distributions.

As for the paths that the packages follow, they continue to have the same

structure (of hooks, in Netfilter terminology): when a package arrives at the

system, it goes through a prerouting, then accessing a routing decision (is it

an entry package for the system or forwarding to others?); if the system is

forwarded (because it works as a router), the package will arrive at postrouting

and exit the system, depending on the routing options. If it is the opposite

case, and the package was for the system, it will move to INPUT, it will be

processed by the system, which can generate output packages, OUTPUT, which

after a routing decision (is it for the system itself or for external network?), will

arrive at postrouting to exit the system.

The first step in ntables is to create the chains as they are not defined:

Create Table:

nft add table ip filter

List tables:

nft list tables ip

List chains associated with a table (initially they will not be created):

nft list table ip filter

Delete a table

nft delete table filter

Flush from a table (release table rules):

nft flush table ip filter

Add a base chain (related to a Netfilter Hook discussed above), this chain will see the Linux

TCP/IP stack packets, input and output examples, and third case a non-base chain.

With delete or flush instead of add, the rules are deleted (or flush):

nft add chain ip filter input { type filter hook input priority 0 \; }

nft add chain ip filter output { type filter hook output priority 0 \; }

nft add chain ip filter test

Rules: list them (options -n disable resolution names, -nn service resolution), a rule for a

particular port, a rule to a particular previous position within the chain, save rules of a

chain in a file, load them from filter-tble file

nft add rule filter output tcp dport ssh counter

nft add rule filter output position 8 ip daddr 127.0.0.8 drop

nft list table filter > filter-table

GNUFDL • PID_00290379 124 Linux administration

nft -f filter-table

See more information on nftables HOWTO documentation page.

https://wiki.nftables.org/wiki-nftables/index.php/Main_Page

GNUFDL • PID_00290379 125 Linux administration

13.Configuring servers

In this section, some of the typical GNU/Linux services will be installed, such

as an HTTP/HTTPS server and proxy servers. The range of services that can be

provided with GNU/Linux is very wide, but for space reasons it will only be

limited to the installation and configuration of the most interesting options

of these two services. Interested readers can consult a chapter dedicated only

to servers, which although it is outdated, the main concepts and methodology

have not changed:

CAT: https://openaccess.uoc.edu/handle/10609/60685.

SPA: https://openaccess.uoc.edu/handle/10609/60686

13.1. World Wide Web (httpd)

Apache is one of the most popular servers with HTTP (HyperText Transfer

Protocol) capabilities. Apache has a modular design and supports dynamic

extensions of modules during execution. It is highly configurable in terms

of the number of servers and modules available and supports various

authentication mechanisms, access control, metafiles, caching proxy, virtual

servers, etc. With the inclusion of modules it is possible to have PHP, Perl,

Java Servlets, SSL and other extensions that can be consulted on the developer

website.

Apache is designed to run as a standalone daemon process, creating a set of

child processes that will handle input requests. It can also run as the daemon

Internet via inetd or xinetd, so it will start every time a request is received,

but it is not recommended. Server configuration can be extremely complex

depending on needs (see documentation), however, a minimum acceptable

configuration will be seen here. Its installation is simple, for example in

Debian or derivatives: apt-get install apache2 apache2-doc apache2-

utils

The server configuration will be set to /etc/apache2 and by default the

RootDirectory to /var/www/html (directory where html files that Apache will

serve will be stored). After installation, it will be started and its operation

can be checked by calling through a browser (it will show the known It

works� page). One of the common commands for managing the service is

apache2ctl (although it can also be managed with systemctl but with

fewer options). This command accepts typical start|stop|restart|graceful|graceful-

https://openaccess.uoc.edu/handle/10609/60685
https://openaccess.uoc.edu/handle/10609/60686
https://www.apache.org/
https://www.apache.org/
https://www.apache.org/

GNUFDL • PID_00290379 126 Linux administration

stop|configtest|status|fullstatus|help service management options and a very

interesting one is configtest, which validates the configuration that was made

before the service was started in case of errors.

While all default parameters have functional values, it should be noted that

the ServerName variable is not defined in the default installation and should

be configured in /etc/apache2/apache2.conf or in the site configuration files

within the Virtualhost tag as ServerName srv.nteum.org.

The Apache2 configuration in Debian (and derivatives) is slightly different

from the overall distribution as it tries to make it as easy as possible to

configure the server for modules, virtual hosts, and configuration policies

(however, equivalencies with other distributions can be quickly found). The

main files found in the /etc/apache2/ directory are apache2.conf, ports.conf, and

six mods-available|mods-enabled, sites-available|sites-enabled, and conf-available|

conf-enabled directories. For additional information please see the /usr/share/

doc/apache2 directory. The most important configuration files are:

• apache2.conf is the main configuration file where the server features are

defined functionally and the corresponding configuration files (ports,

conf.d, sites-enabled) are called.

• ports.conf defines the ports where the incoming connections will be served,

and which of these are used on virtual hosts (80 for http and 443 for https

by default).

• The configuration files in mods-enabled/ and sites-enabled/ are for

the active sites and modules that will be uploaded to the server.

These settings are enabled by creating a symbolic link from

the respective *-available/ directories using the 2enmod/a2dismod,

a2ensite/a2dissite commands.

• The conf-available and conf-enabled directories are configurations for

certain aspects supported by the server or other administrator-added

packets that work in conjunction with Apache (they all have .conf

extension).

• For the default settings in these directories to be effective, Apache2 will

need to be managed via systemctl or apache2ctl.

• The envvars file is the one that contains the definition of the environment

variables and it is necessary to basically modify USER/GROUP that will be

the one used for execution and for obtaining the permissions. The user

www-data and the group www-data are created by default (although they

can be changed).

GNUFDL • PID_00290379 127 Linux administration

Apache may also need to integrate various modules depending on the

technology it supports and therefore the corresponding libraries/packages

should be added, for example:

• Perl: apt-get install libapache2-mod-perl2

• Python: apt-get install libapache2-mod-python

• PHP: apt-get install php7.4 php7.4-cgi libapache2-mod-

php7.4 php7.4-common

• PHP with MySQL: apt-get install php7.4-mysql

13.2. Virtual servers

Virtual servers are isolated sites that will each be served independently of each

other with their own files and configuration. First, the default site must be

disabled with a2dissite 000-default.conf. The sites we will create will

be remix.world and lucix.world which will have two configuration files in the

directory /etc/apache2/sites-available/.

Contents�of�file�/etc/apache2/sites-available/remix.world.conf

<VirtualHost remix.world:80>

 ServerAdmin adminp@localhost

 ServerName remix.world

 ServerAlias www.remix.world

 DocumentRoot /var/www/html/remix/

 ErrorLog ${APACHE_LOG_DIR}/remix-error.log

 CustomLog ${APACHE_LOG_DIR}/remix-access.log combined

</VirtualHost>

Content�of�file�/etc/apache2/sites-available/lucix.world.conf

<VirtualHost lucix.world:80>

 ServerAdmin adminp@localhost

 ServerName lucix.world

 ServerAlias www.lucix.world

 DocumentRoot /var/www/html/lucix/

 ErrorLog ${APACHE_LOG_DIR}/lucix-error.log

 CustomLog ${APACHE_LOG_DIR}/lucix-access.log combined

</VirtualHost>

GNUFDL • PID_00290379 128 Linux administration

This setting is basic and the student should refer to the developer web page

for detailed information. As can be seen, the root directories for each domain

will be in /var/www/remix|lucix and the log files in /errors/accesses in

/var/log/apache2/mmm-error.log and var/log/apache2/nnnn-access.log/. To create

the directories mkdir -p /var/www/html/remix; mkdir -p /var/

www/html/lucix and into which a index.html could be placed with some

identification that would show which domain is being loaded, for example

for remix.world:

<html><body><h1>REMIX: It works!</h1>

<p>This is the default web page for this server.</p>

<p>The web server software is running but no content has been added, yet.</p>

</body></html>

And the same for lucix.world but changing the line at <h1></h1>. No action

should be taken for the logs as the directory /var/log/apache2 already exists

and the files will be created by the server. Finally, the sites must be activated

(creating the link from sites-available to sites-enabled) with

a2ensite remix.world.conf; a2ensite lucix.world.conf and restart

Apache2 with systemctl restart apache2. Since domains are not

available in a primary DNS, we can edit /etc/hosts and add two lines for the

server IP (e.g., 192.168.1.37) such as:

192.168.1.37 remix.world

192.168.1.37 lucix.world

Then from a browser on the same machine (as otherwise no domain/IP will

be visible) or from another machine on the same network to which the /etc/

hosts has been modified, the URL remix.world can be entered and the result

will be the index.html display that will show: REMIX:�It�works�

One of the advantages of Apache is that functionality can be added through

specialized modules and found at /etc/apache2/mods-available/.

For example, apt-cache search libapache2* can be done to get the list

of modules available for Apache, and to install apt-get install [module-

name] which will be available for use (remember that some additional

configuration in the site files may be necessary). With ls -al /etc/

apache2/mods-available/ we can look at the available ones and install

them with a2enmod [module-name]. To list the loaded modules, we can

execute apache2ctl -M which will list the dynamically loaded ones with

shared and those that are compiled with the server with static (these can also

be obtained with apache2 -l). Modules in the mods-available directory have

.load (indicates the library to load) and .conf (additional module configuration)

https://httpd.apache.org/docs/

GNUFDL • PID_00290379 129 Linux administration

extensions but when using the a2enmod command, only the name of the

module without extension should be indicated. To disable a a2dismod

module[module-name].

As a sample of these properties, a secure site will be configured with encrypted

communications over HTTPS and under the remix.world domain, but it will

be redirected to the /var/www/remix.ssl directory. First, a certificate (self-signed)

will be created for the site with:

make-ssl-cert /usr/share/ssl-cert/ssleay.cnf /etc/ssl/private/remix.crt

indicating the domain to be validated (remix.world in this case) – just enter

the domain – and as a second IP validator:IP_SERVER. Then the SSL module

must be activated with a2enmod ssl, create the /var/www/remix.ssl directory

and modify the index.html as it was done with the previous ones. The site

settings are then modified (the default setting can be used by modifying it):

cd /etc/apache2/sites-available; cp default-ssl remix.world.ssl.conf

The remix.world.ssl.conf file is then edited (only the main/modified lines are

displayed):

<VirtualHost _default_:443>

 ...

 DocumentRoot /var/www/remix.ssl

 ...

 ErrorLog ${APACHE_LOG_DIR}/remix.world.ssl_error.log

 CustomLog ${APACHE_LOG_DIR}/remix.world.ssl_access.log combined

 ...

 SSLEngine on

 SSLCertificateFile /etc/ssl/private/remix.crt

 #SSLCertificateKeyFile /etc/ssl/private/ssl-cert-snakeoil.key

 ...

</VirtualHost>

Finally, the site (a2ensite remix.world.ssl.conf) has to be activated,

apache2 (systemctl restart apache2) restarted, and from the browser,

https://remix.world should be made which, as the certificate is self-signed, will

show a warning and after accepting the Autosigned option, the index.html

page will be obtained, which shows SSL�-�REMIX:�It�works� If a site with DNS

and domain is available, a free certificate can be obtained from Cerboot.

An interesting aspect is to allow authenticated access to certain directories

through the Apache authentication module. To do this, in the VirtualHost

configuration file we must include:

<Directory /var/www/html/auth>

https://certbot.eff.org/

GNUFDL • PID_00290379 130 Linux administration

 AuthType Basic

 AuthName “Basic Authentication”

 AuthUserFile /etc/apache2/.htpasswd

 require valid-user

</Directory>

To create the user, htpasswd -c /etc/apache2/htpasswd adminp is

run which will request the passwd for this user and store it in the indicated

file. It can then be put as a URL http://remix.world/auth/ and it will ask for

the user (adminp) and passwd that has been entered previously and the

index.html which is located at /var/www/html/auth. will be visible. If the

passwd is erroneous or if Cancel is done, it will indicate with an Authorization

Required message, preventing access.

There is another mode of authentication through the server but assigning

it to the Operating System (when the user is a valid user of it). If we want

to enable these users, we need to link them to Apache through the PAM

authentication system. To do this, the following will be installed: apt-get

install libapache2-mod-authnz-external pwauth

A /etc/apache2/sites-available/auth-pam.conf configuration file similar to the

above will then be created with the following content:

<VirtualHost authpam.nteum.org:80>

 ServerAdmin webmaster@localhost

 DocumentRoot /var/www/html/auth-pam

 ErrorLog ${APACHE_LOG_DIR}/error.log

 CustomLog ${APACHE_LOG_DIR}/access.log combined

 AddExternalAuth pwauth /usr/sbin/pwauth

 SetExternalAuthMethod pwauth pipe

 <Directory /var/www/html/auth-pam>

 AuthType Basic

 AuthName “PAM Authentication”

 AuthBasicProvider external

 AuthExternal pwauth

 require valid-user

 </Directory>

</VirtualHost>

A mkdir /var/www/html/auth-pam directory will be created and among

which there can be an index.html file with an identifier that is accessing

PAM. Finally, the a2ensite auth-pam site will be enabled, the a2enmod

authnz module will be enabled, and the systemctl restart apache2

server is restarted. If a line is inserted into /etc/hosts with the authpam.nteum.org

GNUFDL • PID_00290379 131 Linux administration

domain with the server IP, http://authpam.nteum.org/auth-pam/ will already

be accessible after entering a local user and the passwd. Authentication is

performed with the integration of the authnz-external module and the pwauth

command.

13.3. Proxies

The function of a proxy is to play the role of intermediary in the requests

that the client requests from another server, that is, the proxy server

knows both resources and puts them in contact without one knowing

the other. As a link between requests and services, it allows different

actions such as access control, traffic registration/control (including blocking),

improved transaction performance (intermediate storage), anonymity in

communication, among others. As an intermediary, there are various

opinions/controversies regarding the use of proxies in terms of safety and

anonymity. That is why it is necessary to take good care of its configuration

and the service it provides so that it cannot be used for any purpose other

than that for which it has been designed.

Although different types of proxies can be found, usually differentiated by

the protocol/application they manage (web, ftp, ARP, dns, . . .), the one used

in web services is probably the most common. If the proxy is connected

to and from the Internet, it is considered an open proxy and its function

is to forward all packets it receives allowing the client IP to be hidden to

the server, which is a form of anonymity (weak). There are extensive lists

of open proxies (we just need to consult the https://www.google.es/search?

q=open+proxies+list query) but no one can attest to the anonymity they allow.

If it is desired to have real anonymity, networks such as Tor (The Onion

Router) must be used, which allows guarantees of anonymity using encrypted

communications (multiple times) and that pass through a worldwide network

of servers (voluntary) obtaining the anonymity of the communication and

preventing it from being monitored or supervised. Another similar network

that allows for anonymity is the I2P network of the project Invisible Internet

Project with similar objectives to Tor but which is not as widespread.

A common question is the difference between a proxy and a firewall (acting as

NAT). Generally, when a proxy is specified it is referring to a layer 7 application

of the OSI model while NAT refers to layer 3 of that model. Because NAT

operates in layer 3, it uses fewer resources, but is also less flexible than in layer

7, as it only acts on packet addresses and not as the proxy might do on content

(in layer 7). It is common in GNU/Linux systems for NAT to be performed

with IPtables (firewall) while different servers are used as a proxy; for example,

Apache, Squid, Nginx, Varnishm, among others, are used for http/https/ftp.

https://www.torproject.org/
https://dcssproject.net/i2p/

GNUFDL • PID_00290379 132 Linux administration

13.4. Apache as reverse proxy and with load balancing

Apache is a very versatile and efficient http server that has a large number

of modules that extend its functionality, including the proxy module. In

this section, the configuration will be analyzed first as a reverse proxy to an

internal server. This reverse proxy service will then be expanded to balance

the load to more than one server by redirecting requests based on different

policies. Apache supports different proxy modules, among which we can

mention: mod_proxy (multi-protocol proxy), mod_http (http support for

proxy), mod_cache, mod_proxy_html (rewrite HTML links to ensure they

work outside the proxy), mod_proxy_balancer (balance for reverse proxy),

lbmethod_bytraffic (for traffic load balancing) lbmethod_byrequests (request

load balancing), among others. The steps to be followed will be:

1) Verify that the modules described above are available in /etc/apache2/mods-

available (in Debian and derivatives they are usually already installed and if

not, something such as: apt-get install libapache2-mod-proxy-*)

must be executed

2) Enable modules: a2enmod proxy proxy_http (can be verified with

apache2ctl -M).

3) A new host is created in /etc/hosts (e.g. 192.168.1.37 proxy.nteum.org proxy).

4) A virtualhost is created at /etc/apache2/sites-avalaible/proxyr.conf:

<VirtualHost proxy.nteum.org:80>

 ServerName proxy.nteum.org

 ServerAdmin webmaster@localhost

 DocumentRoot /var/www/html

 ErrorLog ${APACHE_LOG_DIR}/error.log

 CustomLog ${APACHE_LOG_DIR}/access.log combined

 ProxyRequests Off

 ProxyPreserveHost On

 ProxyPass / http://mig.nteum.org/

 ProxyPassReverse / http://mig.nteum.org/

</VirtualHost>

Where:

• ServerName must be set to /etc/hosts, and indicates how we will call the

input server (it has also been put into VirtualHost).

GNUFDL • PID_00290379 133 Linux administration

• ProxyRequests Off prevents this from being used as an open proxy, that

is, users can go to the proxy and from there to any other address and it is

very important to leave it disabled to avoid security or even legal issues.

• ProxyPreserveHost On allows the jump from the proxy server to the backend

server to be transparent to the user (if it was not enabled, the user would

go to http://proxy.nteum.org but immediately would see how the address

changes to http://mig.nteum.org, which is the internal server –backend–)

and if the backend server is also not visible from the external network the

client would see an error.

• ProxyPass and ProxyPassReverse manage the jump and return from frontend

to backend server (mig.nteum.org) The domain of the backend server can

be changed by the server lp if this domain is not defined in /etc/hosts of

the proxy server.

5) The configuration of the new site is enabled (a2ensite proxyr.conf) and

the service restarts (systemctl restart apache2). We must also have an

apache2 server running on the backend with a different page than the proxy

to verify that it is accessed when http://proxy.nteum.org is entered in a browser.

One of the interesting aspects of the web service is being able to load balance

requests on different servers to avoid the “bottleneck” effect on the service

and improve response time and increase the number of requests handled

per unit of time. This can be done using specific hardware or a reverse

proxy (frontend) that distributes the load to a set of servers (backends)

in accordance with a given policy. Apache has an additional module to

the proxy (mod_proxy_balance) that allows load balancing on a web server

set and different modules to implement policies (lbmethod_byrequests,

lbmethod_bytraffic lbmethod_bybusyness, lbmethod_heartbeat).

To configure this module, we must:

• Load the modules:

proxy, proxy_balancer proxy_connect proxy_html proxy_http

lbmethod_byrequests lbmethod_bytraffic lbmethod_bybusyness

lbmethod_heartbeat status

(to view apache2ctl -M loaded modules)

• Create a virtualhost: vi /etc/apache2/sites-available/proxy-

bal.conf:

<VirtualHost proxy.nteum.org:80>

 ProxyRequests off

 ServerName proxy.nteum.org

GNUFDL • PID_00290379 134 Linux administration

 DocumentRoot /var/www/html

 <Proxy balancer://mycluster>

 BalancerMember http://172.16.1.2:80

 BalancerMember http://172.16.1.3:80

 Options Indexes FollowSymlinks Multiviews

 AllowOverride None

 Order Allow,Deny

 Allow from all

 #ProxySet lbmethod=bytraffic

 ProxySet lbmethod=byrequests

 </Proxy>

 # Enable Balancer Manager

 <Location /balancer-manager>

 SetHandler balancer-manager

 Order deny,allow

 Allow from all

 </Location>

 ProxyPass /balancer-manager !

 ProxyPass / balance://mycluster/

 ProxyPassReverse / balancer://mycluster

 ProxyPass / http://172.16.1.2

 ProxyPassReverse / http://172.16.1.2

 ProxyPass / http://172.16.1.3

 ProxyPassReverse / http://172.16.1.3

</VirtualHost>

Here the IPs of the nodes that will act as Backend have been put but they could

be given as names in /etc/hosts.

The balance manager is a tool that integrates the module and will allow us to

easily see the statistics of the module activity and some modifications (simple

as well). That is why requests to http://proxy.nteum.org/balancer-manager should

not be redirected and addressed by the proxy.

The configuration includes the following elements:

• The Proxy Balancer section: where the balancer is identified.

• BalancerMember: each one of the backend IPs.

• ProxySet lbmethod=byrequests|bytraffic: the balancing policy.

To enable the configuration of the new site (a2ensite proxy-bal.conf)

and restart the service (systemctl restart apache2). We also need to

have the two servers (172.16.1.2 and 172.16.1.3) running on the backend

with Apache2 executing and with a different page than the proxy to verify

http://proxy.nteum.org/balancer-manager

GNUFDL • PID_00290379 135 Linux administration

that it is accessed when http://proxy.nteum.org is entered in a browser and the

page is reloaded repeatedly (we will see how the page changes depending

on the backend server that serves it). For more information, we can view the

balancer statistics at http://proxy.nteum.org/balancer-manager and change the

parameters to suit the load needs (we can use the load tools mentioned to

analyze Apache).

13.5. Apache as Forward Proxy and Proxy cache

To configure Apache as Forward Proxy we must:

• Load the modules (if they are not loaded, and check apache2ctl -M):

a2enmod proxy proxy_http

• Add to the configuration of a site /etc/apache2/sites-available/proxy-f.conf

with the following configuration:

<VirtualHost *:80>

 ServerName www.nteum.org

 ServerAdmin webmaster@localhost

 DocumentRoot /var/www/html

 ErrorLog ${APACHE_LOG_DIR}/error.log

 CustomLog ${APACHE_LOG_DIR}/access.log combined

 ProxyRequests On

 <Proxy “*”>

 Requires ip 172.16.

 </Proxy>

 ProxyBlock “www.site1.com” “www.site2.com”

 #ProxyBlock *

</VirtualHost>

• Enable the site (a2ensite proxy-f.conf) and restart the service

(systemctl restart apache2). Clients must then be modified to solicit

the requests from the proxy server, for example, in Firefox, we must put

Preferences->Network->Settings and in Proxy, put the server IP, for example,

192.168.1.37 and port 80.

• To enable the proxy cache capability, we should add to the virtualhost:

CacheEnable disk /

CacheRoot "/tmp/cache"

CacheQuickHandler off

CacheLock on

CacheLockPath /tmp/mod_cache-lock

CacheLockMaxAge 5

http://proxy.nteum.org/
http://proxy.nteum.org/balancer-manager

GNUFDL • PID_00290379 136 Linux administration

CacheHeader On

• The ProxyBlock sentence will allow an access control policy and prevent

clients from accessing the indicated websites (blocking).

We must then add the a2enmod cache cache_disk modules, enable

the site if it is not, and restart Apache. From the browser and with the Web

Developer options we can see how page load times are reduced when they are

reloaded for a second time (Network tab).

There are other aspects of cache over Apache that have not been treated as

File Caching to accelerate access to the files served by Apache and Key-Value

Caching used by SSL and authentication caching that can be consulted on the

developer’s web.

It is also important to mention that at the enterprise level there are

well-known proxies servers such as Squid or HAProxy. Squid improves

the performance of business and private Internet connections by caching

recurring requests to web servers and DNS, speeding up access to a given web

server, or adding security by filtering traffic and although it is mainly oriented

towards HTTP and HTTPS, it also supports other protocols.

HAProxy is a very fast and reliable reverse proxy that offers high availability,

load balancing and proxy for TCP and HTTP based applications and is well

suited for very high traffic websites. This server has become the de facto proxy

balancer and is included in the repositories of most Linux distributions with

very active development (2 versions per year) and new functionalities in each

major revision.

GNUFDL • PID_00290379 137 Linux administration

Activities

1. For RPM packages, how would some of the following tasks be done?

• Know which package installed a command.
• Get the description of the package that a command installed.
• Delete a package whose full name we do not know.
• Show all files that were in the same package as a given file.

2. Perform the same task as in the previous activity, but for Debian packages, using the APT
tools.

3. Update a Debian (or Fedora) distribution.

4. Install in the available distribution some generic administration tool, such as Webmin.
What does it offer? Is it easy to understand the executed tasks and the effects they cause?

5. The swap space allows to complement the physical memory to have more virtual memory.
Depending on the sizes of physical memory and swap, can memory run out? Can it be solved
otherwise, other than by adding more physical memory?

6. Assume we have a system with two Linux partitions, one is ‘/’ and the other is swap. How
would we fix the fact that users’ accounts ran out of disk space? And if we had an isolated
partition /home that was running low, how would we fix it?

7. Analyze the systemd system. What services and groupings does it have predefined? Is
there compatibility with the SystemV init (sysvinit)? How are services managed? How do we
change target?

8. Examine default GNU/Linux system settings for non-interactive tasks by cron (or systemd-
cron). What tasks are they and when are they going to be executed? How are new user tasks
added?

9. Define the following network scenarios and their configurations:

• Isolated machine.
• Small local network (4 machines, 1 gateway).
• 2 segmented local networks (2 sets of 2 machines, one router each and one general

gateway).
• 2 interconnected local networks (two sets of 2 machines + gateway each).
• A machine with 2 interfaces, one connected to the Internet with NAT to a router and

another to a private network1, a second machine with two interfaces connected to a
private network1 and the other to a private network2, a third machine connected to a
private network2.

• 2 machines connected over a virtual private network.

Indicate the advantages/disadvantages of each configuration, the type of infrastructure they
are suitable for, and what relevant parameters are needed (for both IPv4 and IPv6).

10. Using virtual machines, perform the configuration and monitoring and connection test
(for example, ping, dig and apt-get update) of the proposals from the previous point
and on each machine of the proposed architecture.

11. Perform the above experiments on IPv6 using ping6 and one of the tunnels mentioned
in the Network/IPV6 section to show connectivity to the Internet.

12. Configure a DNS server with dnsmasq and a proprietary domain.

13. Configure a NIS server/client with two machines by exporting the server user directories
by NFS.

14. Configure an SSH server to access from another machine without a password.

GNUFDL • PID_00290379 138 Linux administration

Bibliography

All links were last accessed in May 2022.

[Apa] Apache Server. https://www.apache.org/

[Apachessl] SSL/TLS Strong Encryption: An Introduction. https://httpd.apache.org/docs/2.4/
ssl/ssl_intro.html

[Com] Comer, Douglas. Internetworking with TCP/IP Addison-Wesley. 2013.

[Deb] Debian.org. Debian Home. http://www.debian.org

[Coo] Cooper, M. (2014). “Advanced Bash Scripting Guide”.The Linux Documentation
Project(guides). https://tldp.org/LDP/abs/html/

[Deb] Debian Package. https://wiki.debian.org/deb

[DNSMQ] DNSMasq. DNS forwarder and DHCP server. https://wiki.debian.org/HowTo/
dnsmasq

[Fri] Frisch, A. (2002). Essential System Administration. O'Reilly. UOC Library.

[FHS] Filesystem Hierarchy Standard. https://en.wikipedia.org/wiki/
Filesystem_Hierarchy_Standard, http://www.pathname.com/fhs

[Gnu] GnuPG. https://gnupg.org/

[GRD] Debian. “Debian Chapter 5 Reference Guide. Network configuration”. https://
www.debian.org/doc/manuals/debian-reference/index.es.html

[HAP] HAProxy. http://www.haproxy.org/

[HeMa] Hertzog, R.; More, R. "The Debian Administrator's Handbook". https://debian-
handbook.info/browse/stable/

[IET] IETF. Request For Comment repository developed by Internet Engineering Task Force
(IETF). https://www.rfc-editor.org/rfc/

[LSB] Linux Standard Base specification. https://en.wikipedia.org/wiki/Linux_Standard_Base

[Mik] BASH Programming - Introduction HOW-TO. Mike G. https://tldp.org/HOWTO/Bash-
Prog-Intro-HOWTO.html

[Mik] Mike, G. “BASH Programming - Introduction HOWTO”.The Linux Documentation
Project. https://tldp.org/HOWTO/Bash-Prog-Intro-HOWTO.html

[Mou01] Mourani, Gerhard. Securing and Optimizing Linux: The Ultimate Solution. Open
Network Architecture, Inc. 2001. https://tldp.org/LDP/solrhe/Securing-Optimizing-Linux-
The-Ultimate-Solution-v2.0.pdf

[Muh] Transparent Multi-hop SSH. http://sshmenu.sourceforge.net/articles/transparent-
mulithop.html

[Nem] Nemeth, Evi.; Snyder, Garth, author; Hein, Trent, Unix and Linux System
Administration Handbook. O’Reilly. 2010. UOC Library.

[OVPN] OpenVPN. “OpenVPN: 2x How To”. https://openvpn.net/community-resources/
how-to/

[Qui] Quigley, E. (2001). Linux shells by Example. Prentice Hall. UOC Library.

[RPM] RPM Package Manager. https://rpm.org/index.html

[Squ] Squid. http://www.squid-cache.org/

[Soy] Linux administration: a beginner’s guide. Soyinka, Wale. McGraw Hills/O’Reilly. 2016.
UOC Library.

[Tor]. Tor Project. https://www.torproject.org/

https://www.apache.org/
https://httpd.apache.org/docs/2.4/ssl/ssl_intro.html
https://httpd.apache.org/docs/2.4/ssl/ssl_intro.html
http://www.debian.org/
https://tldp.org/LDP/abs/html/
https://wiki.debian.org/deb
https://wiki.debian.org/HowTo/dnsmasq
https://wiki.debian.org/HowTo/dnsmasq
https://en.wikipedia.org/wiki/Filesystem_Hierarchy_Standard
https://en.wikipedia.org/wiki/Filesystem_Hierarchy_Standard
http://www.pathname.com/fhs
https://gnupg.org/
https://www.debian.org/doc/manuals/debian-reference/index.es.html
https://www.debian.org/doc/manuals/debian-reference/index.es.html
http://www.haproxy.org/
https://debian-handbook.info/browse/stable/
https://debian-handbook.info/browse/stable/
https://www.rfc-editor.org/rfc/
https://en.wikipedia.org/wiki/Linux_Standard_Base
https://tldp.org/HOWTO/Bash-Prog-Intro-HOWTO.html
https://tldp.org/HOWTO/Bash-Prog-Intro-HOWTO.html
https://tldp.org/HOWTO/Bash-Prog-Intro-HOWTO.html
http://sshmenu.sourceforge.net/articles/transparent-mulithop.html
http://sshmenu.sourceforge.net/articles/transparent-mulithop.html
https://openvpn.net/community-resources/how-to/
https://openvpn.net/community-resources/how-to/
https://rpm.org/index.html
http://www.squid-cache.org/
https://www.torproject.org/

	Linux administration
	Credits
	Contents
	Introduction
	Objectives
	1. Basic tools for the administrator
	1.1. Package management tools
	1.2. Red Hat (or derived distributions): RPM packages
	1.3. Debian: DEB packages
	1.4. New packaging formats
	1.5. Snap
	1.6. Flatpak
	1.7. Generic management tools
	1.8. Other tools
	1.9. Distribution characteristics

	2. Boot levels and services
	3. System status
	3.1. Booting the system
	3.2. /proc directory
	3.3. Kernel: /sys directory
	3.4. Udev: /dev device management
	3.5. Processes
	3.6. System logs
	3.7. Memory
	3.8. Disks

	4. Energy management
	5. File system
	5.1. Mount points

	6. Users and groups
	7. Print servers
	7.1. CUPS

	8. Storage redundancy: RAID
	9. Logical volume disks: LVM
	10. Non-interactive jobs
	11. Network management
	11.1. The TCP/IP protocol
	11.2. Network physical devices (hardware)
	11.3. General concepts about networks
	11.4. Assigning an Internet address
	11.4.1. IPv4
	11.4.2. IPv6

	11.5. Subnets and routing
	11.6. Interface configuration (NIC)
	11.7. Advanced network configuration
	11.7.1. Network Configuration on IPv6

	11.8. Network configuration in RHEL (style) and derivatives
	11.9. Configuring a Wi-Fi (wireless) network
	11.9.1. The files host.conf, nsswitch.conf
	11.9.2. The /etc/hosts file

	11.10. Routing configuration
	11.11. Configuring network services
	11.12. Configuring the xinetd
	11.13. Security basics
	11.14. IP options
	11.15. Multiple IPs over one interface
	11.16. DHCP service
	11.17. IP Network Address Translation (NAT)
	11.18. Bridging
	11.19. Domain Name System: (DNS)
	11.20. Information service: NIS (YP)
	11.21. Remote connection services: ssh
	11.22. Chained connections
	11.23. Remote file services: NFS (Remote File System)
	11.24. Virtual Private Network (VPN)
	11.25. Installation and testing in raw mode
	11.26. VPN with static key exchange
	11.27. Useful network management tools

	12. Local security
	12.1. Protection using wrappers
	12.2. Protection using firewalls
	12.3. Netfilter: iptables
	12.4. Netfilter: nftables

	13. Configuring servers
	13.1. World Wide Web (httpd)
	13.2. Virtual servers
	13.3. Proxies
	13.4. Apache as reverse proxy and with load balancing
	13.5. Apache as Forward Proxy and Proxy cache

	Activities
	Bibliography

