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Abstract

The team orienteering problem (TOP) is an NP-hard optimization problem with an increasing number of po-
tential applications in smart cities, humanitarian logistics, wildfire surveillance, etc. In the TOP, a fixed fleet
of vehicles is employed to obtain rewards by visiting nodes in a network. All vehicles share common origin
and destination locations. Since each vehicle has a limitation in time or traveling distance, not all nodes in
the network can be visited. Hence, the goal is focused on the maximization of the collected reward, taking
into account the aforementioned constraints. Most of the existing literature on the TOP focuses on its de-
terministic version, where rewards and travel times are assumed to be predefined values. This paper focuses
on a more realistic TOP version, where travel times are modeled as random variables, which introduces reli-
ability issues in the solutions due to the route-length constraint. In order to deal with these complexities, we
propose a simheuristic algorithm that hybridizes biased-randomized heuristics with a variable neighborhood
search and MCS. To test the quality of the solutions generated by the proposed simheuristic approach, we
employ the well-known sample average approximation (SAA) method, as well as a combination model that
hybridizes the metaheuristic used in the simheuristic approach with the SAA algorithm. The results show
that our proposed simheuristic outperforms the SAA and the hybrid model both on the objective function
values and computational time.

Keywords: team orienteering problem; random travel times; biased-randomized algorithms; simheuristics; sample average
approximation
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Fig. 1. Schema of the TOP with random travel times.

1. Introduction

In the team orienteering problem (TOP), a limited fleet of vehicles have to visit a subset of available
nodes while traveling from the origin depot to the destination depot (Fig. 1). Visiting each location
provides a reward (profit), and a threshold is typically set for the maximum length or duration of
any route. The usual goal is to define the vehicle routes that maximize the total profit gathered.
The classical version of the TOP assumes deterministic rewards and travel times. However, in many
real-life situations these are better modeled as random variables. For instance, travel times might
be subject to weather or traffic conditions, rewards might not be accurately known in advance,
etc. Still, the vast majority of studies focus on the deterministic TOP, with many of them relying
on exact methods, which show limited effectiveness when solving large-scale instances (Gunawan
et al., 2018).

Thus, our paper focuses on the stochastic TOP in order to partially cover this gap in the scien-
tific literature. In particular, we consider random travel times, since they are frequent in real-life
scenarios. For instance, when monitoring a zone affected by a natural disaster, travel times between
nodes may take longer than usual due to possible road blockages. Despite its relevance in real-life
situations, the TOP with random travel times has been rarely considered so far. The introduction of
random travel times, in combination with a user-defined threshold for the maximum length of any
route, carries out reliability issues in any node configuration to be visited, that is, any given solution
will be feasible just with a certain probability. In effect, some route failures might occur, in cases in
which the random travel times tend to be higher than expected, due to a vehicle not being able to
reach its final destination before the deadline provided by the threshold. In those cases, our model
assumes that all collected rewards in that failed route are not consolidated at the destination node
and, therefore, they are lost. Real-life applications such as aerial vehicles and self-driving electric
vehicles with a limited driving range of batteries are considering the mentioned assumption since
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after losing the battery charge, all the collected rewards would be lost. Plenty of applications re-
garding smart cities, humanitarian logistics, wildfire surveillance, etc., are built on the considered
assumptions. Because of these reliability issues, given a solution (set of planned routes), neither
an exact nor a heuristic method alone can provide an accurate estimate of its expected reward. To
achieve an accurate estimate the solution proposed by the optimization component has to be sim-
ulated to account for the effect of the random travel times on its reliability level and the associated
reward (Faulin et al., 2008).

In this paper, we propose a simheuristic algorithm to tackle the TOP with random travel times
and reliability issues. Simheuristics are flexible simulation–optimization approaches that make an
iterative use of simulation during the searching process of a metaheuristic algorithm. Hence, they
can provide reliability and reward estimates on any “promising” solution provided by the meta-
heuristic component even before the searching process is over (Gonzalez-Martin et al., 2018; Rabe
et al., 2020). In the last years, simheuristics have been used to solve stochastic optimization prob-
lems in multiple fields, ranging from logistics and transportation to manufacturing (Juan et al.,
2018). The optimization component of our simheuristic is based on the combination of a biased-
randomized (BR) heuristics (Quintero-Araujo et al., 2017) and a variable neighborhood search
(VNS) framework (Hansen and Mladenović, 2014; Gruler et al., 2020).

In order to validate the quality of the solutions provided by our simheuristic algorithm (Sim-
BRVNS), we also use the sample average approximation (SAA) method (Shapiro et al., 2009). The
application of the SAA is limited to small instances since the SAA typically relies on the solution
of stochastic programming models of combinatorial problems, which are solved by CPLEX in our
case. Combinatorial problems such as TOP are hard to be solved even for deterministic models
using a direct solver. We apply the SAA method since (i) the results provided by the SAA-CPLEX
combination are similar to the ones provided by the simheuristic, which can be applied to be com-
pared with our approach; and (ii) they show the limitations of other methods when dealing with
large-scale instances of the stochastic TOP. Finally, we apply a hybrid algorithm (SAA-BRVNS)
that combines the SAA method and the optimization component of the proposed simheuristic.

The remainder of this research is structured as follows. In Section 2, we review the literature of
TOP; Section 3 presents a formal definition of the deterministic TOP as an introductory and then
introduces our stochastic TOP; Section 4 proposes and describes three solution approaches that
have been applied to solve the model; in Section 5, the computational experiments and the final
results are discussed. To conclude, suggestions for future works are presented in Section 6.

2. Literature review on the team orienteering problem

A useful literature review on the orientering problem (OP) is provided by Vansteenwegen et al.
(2011) who discuss many of its variants. The authors conclude that most of the applications re-
ported in the literature focus on activities such as the routing of technicians, city logistics, athlete
recruitment, or military logistics, which require very fast and effective solving approaches. They also
consider that current solving methods are too time-consuming for solving large-sized instances in
practical applications. Regarding TOP, most of the existing articles assume deterministic versions
of the problem. However, real life is plenty of uncertainty (e.g., varying weather conditions, un-
expected obstacles on the road, etc.). In effect, whenever historical data are available for each of
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the random elements in the considered system, the best-fit probability distribution (or an empirical
one) can be used to model the associated random behavior. In addition, there are just a limited
number of previous works that consider stochastic versions of the TOP, which use the integration
of optimization with simulation (Gosavi, 2015).

2.1. Deterministic TOP

Theoretical papers mostly involve deterministic versions of the TOP. Thus, for instance, Archetti
et al. (2007) solve a TOP using two variants of a generalized tabu search algorithm and a VNS
algorithm. According to their numerical experiments, the latter provides better results than the for-
mer. Similarly, Ke et al. (2008) propose an ant colony optimization algorithm to solve the TOP.
The authors prove that the combination of different randomized methods can reduce computing
times when searching for near-optimal solutions. Also, Vansteenwegen et al. (2009a) develop a
guided local search that combines different heuristics. The authors highlight the need for includ-
ing a diversification procedure to improve solutions. Vansteenwegen et al. (2009b) present an iter-
ated local search metaheuristic to solve the TOP with time windows. They reach solutions with
an average gap of 1.8% compared to some benchmarks. Souffriau et al. (2010) solve the TOP
by employing a path relinking heuristic. These authors reach promising results with an average
gap of 0.04% with respect to some benchmarks. Inspired by a real-life application, Tricoire et al.
(2010) deal with a multiperiod TOP. They propose a VNS algorithm integrated with an exact algo-
rithm. First, they solve the classic version of the TOP and then compare their solutions with some
benchmarks. Their approach provides solutions with an average gap of 1.0%. In a similar fash-
ion, Souffriau et al. (2013) solve the TOP by combining an iterated local search framework with
a greedy randomized adaptive search procedure. The authors provide solutions with an average
gap of 5.2%.

Verbeeck et al. (2014) present a time-dependent OP and propose an algorithm that combines the
ideas of an ant colony optimization with a time-dependent local search algorithm. This method
provides solutions with a gap of 1.4%. Vidal et al. (2016) solve a vehicle routing problem with
profits, which has many similarities with a TOP. These authors propose a neighborhood search that
reaches solutions with an average gap of 0.1%. They also highlight the benefits of hybrid solving
approaches. Paolucci et al. (2018) introduce a hybrid problem combining a vehicle routing problem
and the TOP. The objective is to determine the assignment of locations to vehicles to maximize the
collected rewards. In this work, a metaheuristic approach based on a cluster-first and route-second
decomposition is proposed. Then it uses a VNS, including a simulated annealing acceptance rule.
Estrada-Moreno et al. (2020) introduce a biobjective TOP with a soft constraint associated with the
driving range. This work investigates a BR algorithm that penalizes the cost of the routes exceeding
the driving range. The BR algorithm considering penalties outperforms the results obtained by
other methods for the hard-constrained TOP. In the other work, Ruiz-Meza et al. (2021) discuss
the tourism industry. In this research, they consider TOP to construct the group routes with the
goal of maximizing the group of travelers’ preferences. They propose metaheuristics to solve the
problem, and in the end, the results are compared with the available solutions of an exact method.
Sankaran et al. (2022) discuss the TOP with multiple depots. In this work, an attention-based
model is presented to solve the problem, and they also validate the solution approach by comparing
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the results with the ones provided by heuristics, machine learning, and exact solvers on several
reconnaissance scenarios. In the end, the results show that the data generation approach presented
is highly effective.

2.2. Stochastic OP and stochastic TOP

Concerning the stochastic OP, Ilhan et al. (2008) introduce uncertainties in the collected profits,
while Campbell et al. (2011) solve an OP with time windows where both travel and service times are
stochastic parameters. In these works a descendant VNS based on the best improvement is consid-
ered. Likewise, Papapanagiotou and Montemanni (2014) discuss the OP with stochastic travel and
service time. In this work, a Monte Carlo approximation is applied to estimate the objective func-
tion. In the end, by comparing the results with the ones achieved by other analytical ways, Monte
Carlo approximation is able to find better solutions. In a similar work, Papapanagiotou et al. (2015)
consider the stochastic OP with probabilistic travel and service times, and the performance of dif-
ferent hybrid objective function evaluators are compared. The final results show that Monte Carlo
sampling is working better in comparison with other evaluators. Zhang et al. (2017) analyze the
probabilistic tour problem, where each location has a probability of requiring a visit. As usual,
the objective is to select the nodes to be visited in order to maximize the expected profit. Also,
Chou et al. (2018) present a Monte Carlo sampling technique as a part of a heuristics method for a
stochastic OP. In this work, the availability of customers with a certain probability is considered as
a stochastic challenge in the orienteering problem. They show that Monte Carlo sampling is a fast
and efficient way to use in heuristics solvers. Also, Liao and Zheng (2018) develop an algorithm that
considers tourists’ behaviors to design routes for a daily tour. A simulation–optimization algorithm
solves an OP under time-dependent stochastic environments. De Carolis et al. (2018) focus on an
OP to solve a routing problem using underwater unmanned aerial vehicles. They consider stochas-
tic external disturbances, which could increase the length of the route. Then, a regression model is
used to perform a probabilistic prediction for defining the navigation route. In other work, Bian
and Liu (2018) present an OP with stochastic travel and service times. This work considers a dy-
namic method where, after each customer’s visit, the state of the remaining time budget is updated
for reoptimizing the routing plan.

With respect to the stochastic TOP, only few articles have been published so far, most of them
referring to random rewards. Thus, for example, Erdoǧan and Laporte (2013) consider a TOP
version in which service times are not deterministic, but they define a finite number of scenarios
for random service times. Similarly, Afsar and Labadie (2013) use column generation to analyze
a TOP with stochastic rewards. In a similar work, Panadero et al. (2017) discuss the stochastic
TOP with random customer service times or travel times. A simheuristics algorithm consists of
the metaheuristics, and Monte Carlo simulation (MCS) is applied to solve the proposed problem.
Also, Bayliss et al. (2020) discuss the stochastic TOP with dynamic rewards and stochastic travel
times. To solve this problem, a learnheuristic, consisting of BR heuristics and a learning module,
is applied. A simulation during the search process is also applied to achieve the dynamic rewards.
In the context of surveillance drones, Panadero et al. (2020b) present a simulation–optimization
algorithm for solving the stochastic TOP with random travel times. The authors explore the
relevance of combining heuristics with simulation to solve stochastic TOPs. However, they do not
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explore other alternative methodologies such as SAA. In recent years, Thayer and Carpin (2021)
consider the stochastic TOP with random travel times. In this work, they use an adaptive algorithm
based on the Markov decision process. For a given deadline and the current position of vehicles in
the solution path, it should decide whether the vehicle continues its route or choose a shortcut to
avoid missing the deadline. They also apply an MCS to determine how to discretize the temporal
dimension in order to reduce the number of states and the number of variables in the associated
optimization program. In Rabe et al. (2021), the authors discuss the hospital logistics during the
COVID-19 crisis. This study considers the transportation of needed health elements as well as
considering a stochastic TOP model with random travel times. Eventually, their proposed model
is solved by employing a BR simheuristics algorithm. Finally, Panadero et al. (2021) address the
smart cities and the recent technologies implemented in the vehicles, such as telecommunication
systems, Internet-based technologies, and satellite services, to improve the efficiency of vehicles.
In this work, a real-time TOP is considered due to the need for online decision making in a smart
city, and an agile optimization algorithm based on fast BR heuristics and a parallel computing
approach is presented as the solution approach.

3. Problem formal description

In this section, first we consider the mathematical model of the deterministic TOP. Then we extend
the model to a two-stage model and present an stochastic formulation.

3.1. The deterministic TOP

In this subsection, the deterministic mathematical formulation of TOP is explained. The pre-
sented model is based on the formulation proposed by Evers et al. (2014). The network is
represented by a directed graph G = (N ′, A) consist of N ′ nodes, and A arc connections. The set
N ′ = {0, 1, 2, . . . , n + 1} consists of node 0 (origin depot), node n + 1 (destination depot), and
N = {1, . . . , n} intermediate nodes, and A = {(i, j)/i, j ∈ N ′, i �= j} is the set of the connection
routes between the nodes. Let us assume D is the set of homogeneous vehicles, and each vehicle
d ∈ D starts its route from the origin depot, serves some of the intermediate nodes, and at the
end, it goes to the destination depot. In the deterministic definition of TOP, we assume that
the traveling time of each route is predefined (ti j = t ji > 0). Each vehicle starts moving on a
route, and it can serve only some nodes since each vehicle has a limited time to travel (tmax),
and before the end of its journey time must reach the end point. Serving the intermediate nodes
for the first time gives rise to achieving a reward ui ≥ 0, and the goal is to maximize the total
rewards collected by all vehicles. Note that the origin and destination depots have no associ-
ated rewards. For each arc (i, j) ∈ A and each vehicle d ∈ D, we consider the binary variable
xd

i j , which is equal to 1 if vehicle d walks through edge (i, j), and takes the value 0 otherwise.
Likewise, the variable yd

i is introduced to indicate the position of node i in the tour made
by vehicle d . Based on these definitions, the mathematical model of the deterministic TOP is
the following:
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max
∑
d∈D

∑
(i, j)∈A

u jxd
i j (1)

s.t.
∑
d∈D

∑
i∈N ′

xd
i j ≤ 1 ∀ j ∈ N (2)

yd
i − yd

j + 1 ≤ (1 − xd
i j )|N| ∀i, j ∈ N ∀d ∈ D (3)

∑
(i, j)∈A

ti jxd
i j ≤ tmax ∀d ∈ D (4)

∑
i∈N ′

xd
i j =

∑
h∈N ′

xd
jh ∀d ∈ D ∀ j ∈ N (5)

∑
j∈N

xd
0 j = 1 ∀d ∈ D (6)

∑
j∈N

xd
jn+1 = 1 ∀d ∈ D (7)

yd
j ≥ 0 ∀ j ∈ N ∀d ∈ D (8)

xd
i j ∈ {0, 1} ∀i, j ∈ A ∀d ∈ D. (9)

Equation (1) denotes the objective function to be maximized. Constraints (2) ensure that each
node should be serviced at most once. Constraints (3) prevent the construction of subtours. Con-
straints (4) state that the total travel time of each vehicle should not be more than its threshold.
Constraints (5) is a flow balance constraint, and ensure that any arrival to a node has to be com-
pensated with a departure. Constraints (6) and (7) state that all the vehicles should come out from
the original depot (node 0), and after traveling their routes, arrive to the destination depot (node
n + 1). Finally, constraints (8) and (9) refer to the nature of yd

j and xd
i j variables.

3.2. Stochastic TOP model

In the stochastic version of the TOP, we assume that the travel times between the nodes are not
deterministic, and each arc (i, j) ∈ A is defined by a travel time, ti j = t ji > 0 that follows a best-fit
probability distribution function with mean E[ti j ] > 0. If a vehicle cannot complete the planned
route before the deadline, it will lose all the rewards earned during its travel. We are assuming here
that all the partial rewards are valid only if the vehicle reaches the destination node before the end of
its travel time. The goal is to maximize the expected profits of the routes given a time distribution:

max{ f (x) := E[F (x, t)]}, (10)
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where F (x, t) is the utility (or reward) function obtained from a particular tour x and travel time
realizations t, and E[F (x, t)] represents the expected reward with respect to the distribution of t
(since ti j is a random variable, we define the probability distribution of t as a specified distribu-
tion function P). Also, we assume that t is well represented by a set of scenarios S with given
probabilities π such that

∑
s∈S πs = 1 and the probability of each scenario is equal to 1

|S| . Let us

introduce positive variables, rds, that compute the total rewards that vehicle d ∈ D has reached in
the scenario s ∈ S. Also let lds be binary variables that take the value 1 if vehicle d ∈ D in scenario
s ∈ S cannot complete its route within the time frame, and takes the value 0 otherwise. Based on
these definitions, the stochastic TOP is modeled as

max
1

|S|
∑
s∈S

∑
d∈D

rds (11)

Constraints (2), (3), (5), (6), (7), (8), and (9)∑
(i, j)∈A

ts
i jx

d
i j ≤ tmax + Blds ∀s ∈ S ∀ d ∈ D (12)

rds ≤
∑

(i, j)∈A

u jxd
i j ∀ s ∈ S ∀ d ∈ D (13)

rds ≤ B(1 − lds) ∀ s ∈ S ∀ d ∈ D (14)

rds ≥ 0 ∀ s ∈ S ∀ d ∈ D (15)

lds ∈ {0, 1} ∀ s ∈ S ∀ d ∈ D. (16)

The objective function (11) maximizes the expected reward of the routes solution. In the stochas-
tic TOP, the capacity constraints (12) compute the time used by vehicle d in traversing its route
in a particular scenario s. If the route total time exceeds the given threshold tmax for a particular
scenario s, the variable lds is activated and then extra time B (a large value) is allowed for such
particular scenario.

Two sets of constraints are employed to model the fact that the reward for a particular route
could be either the sum of the reward collected at each node visited by vehicle d , or 0, if the total
time exceeds the maximum time allowed. The right-hand side of constraints (13) computes the total
reward collected by vehicle d along the route. Since rds is maximized in the objective function, the
optimization will favor rds to achieve the highest value. However, if the route of vehicle d in scenario
s exceeds the total time, constraints (14) will be active and force the reward rds to be 0. Constraints
(15) and (16) refer to the nature of the extra variables added in the stochastic TOP.

3.3. The two-stage approach

The stochastic model presented fits as a two-stage problem. The decision in the first stage is to
find the routes,that is, a path or a tour, through a graph. In the second stage, the rewards under
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the different scenarios are assessed. In order to compute the rewards, the recourse action allows an
extra time if the time limit constraint for each vehicle is not satisfied, and then the vehicle receives
no rewards in such a particular scenario. The aim of the two-stage problem is to find a tour such
that the first-stage constraints are satisfied by considering the second-stage constraints, and finally
the goal is to maximize the total expected rewards for each vehicle in the tour.

4. Alternative approaches for solving the stochastic TOP

In this section, three solution approaches are presented for solving the stochastic TOP: the SAA
algorithm, a simheuristic approach (Sim-BRVNS), and a hybrid model that combines the meta-
heuristic used in our simheuristic approach with the SAA algorithm. All these solution approaches
are designed to solve optimization problems. In this paper, we consider a simulation part for the
SAA method in order to generate sample observations for the travel times.

4.1. The sample average approximation method

This subsection provides the general framework of the SAA method adapted for solving the
stochastic TOP. As mentioned earlier, the resulting objective function for our stochastic TOP is
Equation (10). To evaluate the objective function f (x), the expected value of the linear function
F (x, t) should be computed. There is always a potential problem in solving stochastic problems.
For continuous distributions, these expectations become multivariate integrals. Computing these
integrals can be approached by discretization. For discrete distributions, it requires solving a
large number of linear problems for each realization of the uncertain parameter (Shapiro, 2006).
To deal with this potential problem, we use the SAA method that is based on randomization
by Monte Carlo sampling techniques. This method has been applied to a variety of problems
(Shen et al., 2011).

The core idea of the SAA is (i) to convert the original stochastic problem into a finite number of
deterministic-equivalent subproblems (e.g., by generating random values for each stochastic term in
the problem); (ii) to solve each of the deterministic subproblems using standard approaches (either
of exact or approximate nature); and (iii) to analyze the distribution of the solutions obtained in the
previous step (e.g., using the average value of the obtained solutions as an estimate of the expected
value of the stochastic problem). Note that the deterministic subproblems are generated from the
random scenarios using the probability distribution function of the stochastic parameters. If some
conditions of the problem are met, the method is able to solve the problem with an acceptable level
of accuracy (Shapiro, 2006). Figure 2 illustrates the different steps of SAA algorithm, which are
described in detail below.

In the SAA scheme, M random independent samples each of size S are introduced, that is,
(t j

1, t j
2, . . . , t j

S ) for j = 1, 2, . . . , M. The samples are generated from the probability distribution
function of the travel times (P). The probability of each sample is 1

|S| . The larger the size of S, the
better the approximation. However, increasing this number also increases the computation time of
solving the problem (Kleywegt et al., 2002).
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Fig. 2. Flowchart of the SAA algorithm.
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The expectation E[F (x, t)] can be estimated as follows:

Z = 1
|S|

∑
s∈S

F (x, t j
s ). (17)

Equation (17) estimates the objective function for solving the SAA subproblems that should be
maximized. The process of solving several subproblems with different samples is repeated M times,
and each time results in a candidate solution. In every iteration, a random sample should be chosen
and the corresponding subproblem is solved. Finally, the optimal solutions are x̂1

S, x̂2
S, . . . , x̂M

S and
Z1

S, Z2
S, . . . , ZM

S are the optimal objective functions. The average of the optimal objective functions
of M subproblems is

Z̄S,M = 1
M

M∑
m=1

Zm
S . (18)

It is proved that Z̄S,M is a statistical approximation for the upper bound on the Z∗ (Mak et al.,
1999). For estimating the lower bound, we choose a candidate solution x̂ (an optimal solution pro-
vided by solving the SAA problem). The value of the true objective function for x̂ is a lower bound
for the optimal objective function (Mak et al., 1999). By generating and solving S

′
independent ran-

dom samples t1, t2, . . . , tS′ with a very large scenario size S
′
>> S, following the same probability

distribution function, the lower bound is computed as

Z
¯ S′

,M
(x̂) = 1

S′

S
′∑

s=1

F (x̂, ts). (19)

Using all candidate solutions for estimating the lower bound, the solution that has the highest
value is

x̂∗ ∈ arg max{Z
¯ S′

,M
: x̂ ∈ {x̂1, . . . , x̂M}}. (20)

The variances of the upper and lower bounds are estimated as follows:

σ̂ 2
Z̄S,M

= 1
M(M − 1)

M∑
m=1

(Zm
S − Z̄S,M )2 (21)

σ̂ 2
Z
¯ S′

,M
(x̂∗ ) = 1

S′ (S′ − 1)

S
′∑

s=1

(F (x̂∗, t) − Z
¯ S′

,M
(x̂∗))2

. (22)

The evaluation of the optimal gap and its variance for the solution x̂∗ are

Z̄S,M − Z
¯ S′

,M
(x̂∗) (23)

σ̂ 2
Z̄S,M−Z

¯ S′
,M

(x̂∗ ) = σ̂ 2
Z̄S,M

+ σ̂ 2
Z
¯ S′

,M
(x̂∗ ). (24)
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The algorithm stops when the optimal gap is sufficiently low, and the achieved optimal solu-
tion is the best solution to the problem. Otherwise, a larger sample size S should be selected and
the algorithm is repeated. The SAA algorithm replicates until the maximum number of iteration
is reached.

4.2. Our Sim-BRVNS simheuristic algorithm

Simheuristics refer to a particular type of simulation-based optimization technique that combines
simulation with heuristics or metaheuristics to solve optimization problems with stochastic compo-
nents in their objective function or constraints. Simheuristics assume that high-quality solutions to
deterministic versions of the optimization problems are likely to be high-quality solutions to their
stochastic counterparts, at least up to a certain degree of variability in the random elements. But
it does not necessarily imply that the best deterministic found solution outperforms other high-
quality deterministic solutions under an uncertain scenario. Thus, simheuristics use a metaheuris-
tic component to generate high-quality solutions for the deterministic version of the problem, and
then it performs a simulation on the most promising deterministic solutions to estimate the value
of the objective function in a stochastic scenario. The simulation part helps identify the uncertain
character of the system as well as investigate the problem complexity by computing the statistics.
Simheuristic has been successfully applied in different fields. For instance, Gonzalez-Martin et al.
(2018) propose using simheuristics to solve an arc routing problem with stochastic demand. Their
approach combines MCS with a BR heuristic. In another work, Panadero et al. (2020b) present
a simheuristic approach to solve the stochastic TOP of unmanned aerial vehicles. A simulation
incorporated into a VNS metaheuristic is considered as the simheuristic solution to this problem.
Keenan et al. (2021) present a strategic oscillation simheuristic for the time-capacitated arc routing
problem with stochastic demands.

In order to solve the stochastic TOP described in the previous section, a simheuristic approach is
proposed. It combines a biased-randomized variable neighborhood search (BRVNS) metaheuristics
to generate deterministic solutions, with MCS to deal with the stochastic nature of the problem. As
discussed in Panadero et al. (2020a), the VNS offers a well-balanced combination of efficiency and
relative simplicity and can be easily extended to a simheuristic. Figure 3 illustrates the flowchart of
the main steps on our solution approach, based on three stages, which are described next.

• First, a feasible initial solution is generated using a constructive heuristic. Due to the particular-
ities of the TOP problem, the heuristic has to consider the following aspects: (i) the origin and
destination nodes are not necessarily the same; (ii) it is not compulsory to visit all the nodes;
and (iii) the collected reward—and not just the savings in time or distance—must be also con-
sidered during the construction of the routing plan. The heuristic works by generating an initial
“dummy” solution in which a route connects each location with the origin and destination de-
pots. Afterward, these dummy routes are iteratively merged. In this phase, the heuristic tries to
merge as many routes as possible, as long as the total travel time of the routes does not exceed the
threshold defined for each route. In order to merge these routes, a list of potential merging arcs,
sorted from higher to lower efficiency, is generated. The efficiency associated with an arc (i, j) is
given by ei j = α · si j + (1 − α) · (ui + u j ), where si j = ti(n+1) + t0( j) − ti j represents the time-based
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Fig. 3. Flowchart of the Sim-BRVNS algorithm.
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savings obtained with the merge, and ui + u j is the aggregated reward. The parameter α ∈ (0, 1)
depends on the heterogeneity of nodes in terms of rewards, and it needs to be empirically tuned.
Thus, in a scenario with high heterogeneity, α will be close to 0. On the contrary, α will be close to
1 for homogeneous scenarios. To automatically tune α for each scenario, the constructive heuris-
tic is executed 10 times for a range of values from 0 to 1, with α incremented by 0.1 in each new
run. Once this merging process is completed, the initial solution initSol is generated.

• Second, the BRVNS metaheuristics improve the current solution by using MCS in iterative runs
in order to search the solution space and generate a new starting point, and subsequently ex-
ploring the neighborhood of this new solution by applying a local search procedure in search of
a better solution. The process is repeated until the maximum execution time (tmax) is met. The
simulation runs are used to obtain rough estimates of the solution behavior under stochastic con-
ditions, which allows us to generate a pool of “elite” solutions. Specifically, the process starts by
shaking the base solution (baseSol) to generate a new solution (newSol). This step consists in
a destruction–reconstruction procedure that randomly deletes a percentage of routes from the
baseSol. The degree of destruction to be applied in the shaking phase depends on the value of a
parameter (k), which starts at 1% and slowly increases at each iteration until it reaches the maxi-
mum level of destruction (100%). In each new iteration, the destruction level is increased by 1%.
This value is reset every time the base solution is updated. To reconstruct the solution, we employ
a BR version of the aforementioned constructive heuristic, transforming it into a probabilistic
one. As proposed in Grasas et al. (2017), a geometric probability distribution, driven by a single
parameter β1 (0 < β1 < 1), is employed to induce a biased (nonsymmetric) randomization effect.
For experimentation purposes, after a fine-tuning process, we have set the β1 value to 0.3. Next,
the algorithm starts a local search procedure around the newSol, where two local searches are ap-
plied. During the first local search a 2-opt procedure (Croes, 1958) is applied to each route until it
cannot be further improved. Also, for a given set of nodes, a fast-access data structure (e.g., a hash
map) is employed to save the best-found-so-far route. Then, a second local search is performed.
This second local search tries to improve the routes by inserting new nonserviced locations—as
far as no constraint is violated. In order to that, a subset of locations (between 5% and 10% of
them) are randomly removed from the new solution. Then, the deterministic insertion algorithm
proposed by Dang et al. (2013) is used. We transformed this algorithm into a BR algorithm by as-
signing probabilities to the different nodes to be selected. Again, a geometric distribution is intro-
duced to randomize the selection process. As before, we set the parameter of this second geometric
distribution to β2 = 0.3. When this local search process has been completed, a new solution (new-
Sol) is returned. So far, this newSol is deterministic. In order to deal with the stochastic nature of
the problem, each time that a newSol improves the baseSol in terms of deterministic reward, this
newSol is sent through a fast simulation process to estimate its expected reward under uncertainty
conditions. Moreover, this simulation process provides feedback that can be used by the meta-
heuristic to better guide the search. Indeed, the selection of the base and best solutions is driven by
the results of the simulation process. If the stochastic reward of newSol outperforms the one of the
baseSol, the latter solution is updated and the parameter k (percentage of destruction) is reset to
1%. In the same way, if the stochastic reward of the newSol outperforms the one of the best-found-
so-far solution (bestSol), the latter is updated and added to the pool of elite solutions. From this
stage, a reduced pool of elite solutions is obtained. Finally, if the algorithm has not reached the
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maximum computing time allowed (tmax), the previous steps are repeated in order to generate new
elite solutions.

• Once the previous steps have been completed, before reporting the final results, an intensive MCS
is carried out to assess better the solutions of the pool of elite solutions. This allows us to obtain
more accurate estimates on their expected rewards. Since the number of generated solutions dur-
ing the search can be large and the simulation process is time-consuming, we limit the number of
MCS iterations to be executed. For our approach, the number of iterations for the exploratory
and intensive MCS stages were set to 200 and 10,000, respectively.

4.3. SAA-BRVNS algorithm

To combine the SAA and BRVNS, a hybrid algorithm is proposed. In this algorithm, the funda-
mentals of SAA are preserved. As it is explained in Section 4.1, the SAA method consists of two
steps. In the first step, the stochastic problem should be solved for a number of iterations. In each
iteration, the model is solved by getting new values for the stochastic parameter produced by the
probability distribution function. The output of the first step is building the best solution in the best
replication. In the second step, a refinement of the first step output should be done. In this step, the
problem must be solved by considering a very large number of scenarios. At the end, the solution
of the first and second steps, which are called upper bound and lower bound, should be saved. The
goal is to minimize the gap between these two bounds. In the hybrid algorithm, instead of using any
optimization solver (CPLEX has been used in the plain SAA implementation) to solve the stochas-
tic optimization problem, we use the presented BRVNS algorithm forcing to have a single-scenario
problem (i.e., |S| = 1). At each iteration of the first step, the optimization problem is solved with
the BRVNS heuristic instead of CPLEX. In the second step, the refinement procedure is carried out
by the simulation element of the algorithm.

5. Computational experiments

This section presents the numerical instances that have been solved by three aforementioned
methods to compare their efficiency and accuracy in solutions. The SAA is employed in Python
in combination with the solver CPLEX in its version 12.9. The implementation is available at
https://github.com/apages/SampleAverageApproxTOP. For the SAA-CPLEX, a total of 25 sce-
narios were considered, when the number of replications is set to be 10. Also, the total number of
scenarios for evaluating the second stage of SAA is set to be 1000. The maximum computational
time for solving the instances with SAA is limited to 10,000 seconds. Regarding the Sim-BRVNS, it
was implemented using the Java programming language, and executed five times per instance—each
one using a different seed for the pseudo-random number generator—and only the best solution
across these runs is kept. The number of runs for the exploratory and intensive MCS stages were
set to 200 and 10,000, respectively. Finally, in the SAA-BRVNS, 10 replications are considered for
the first step, and as in the SAA-CPLEX algorithm, the number of scenarios for the first and sec-
ond steps are set as 25 and 1000, respectively. The maximum computational time for solving each
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Fig. 4. Comparison of solutions obtained by CPLEX and BRVNS with BKS for deterministic TOP.

instance is 2000 seconds. All tests were run on a workstation with a multicore processor Intel Xeon
E5-2630 v4 and 32 GB of RAM.

5.1. Solving the deterministic TOP

To evaluate the performance of the proposed solution approaches for the stochastic TOP, we used
the classical TOP benchmark presented by Chao et al. (1996). This benchmark is widely used in
the literature to test the performance of algorithms whose purpose is to solve the classical version
of the TOP. The benchmark is divided into seven different subsets, which include a total of 320
instances. Each instance is characterized by the following nomenclature pa.b.c, where a represents
the identifier of the subset; b is the number of vehicles; and finally, c symbolizes the maximum
driving range. For our experiments, we have selected six instances from each of the seven subsets.
We considered only instances with a “sufficient” driving range—one that allows us to reach the
most distant node in the instance. Also, for instances sharing the same network, we selected the
one with the largest number of vehicles available. Before solving the stochastic version of the
TOP, we analyzed the two deterministic solution approaches (CPLEX and the BRVNS algorithm)
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performance. To compute the deterministic solutions using the BRVNS algorithm, we have exe-
cuted the algorithm disabling the simulation parts (fast and intensive simulation process). Thus,
this allows the algorithm to consider only the deterministic counterpart of the solution during the
search space exploration. Figure 4 depicts an overview of the results. In this box plot, the vertical
axis represents the gap obtained with respect to the best-known solution (BKS) reported by Vidal
et al. (2016). Note that the BRVNS algorithm reaches the BKS for all of the instances in sets 1, 2,
3, 5, and 6, obtaining a 0.0% gap. Regarding the remaining classes, the BRVNS algorithm obtains
average gaps of less than 0.25% in very short computing times, which proves that our BRVNS
algorithm is highly competitive for the deterministic version of the TOP.

5.2. Solving the stochastic TOP

In this section, the SAA-CPLEX method, our BRVNS simheuristic algorithm, and the hybrid SAA-
BRVNS are applied to solve the stochastic TOP. We used the data set proposed by Chao et al. (1996)
with some modifications as follows: the deterministic travel times are used as the expected values
of the random travel times, which follow a log-normal probability distribution—which constitutes
a “natural” and flexible choice for modeling random variables. In a real scenario, historical data
could be used to determine the most appropriate distribution for modeling the travel times. The
log-normal distribution has two parameters: the location parameter, μ, and the scale parameter,
σ , which relate to the expected value E [Ti j ] and the variance Var[Ti j ], respectively. Equations (25)
define how these parameters have been modeled. We assume that Ti j ∼ LogNormal (μi j, σi j ), with
E [Ti j ] = ti j and Var[Ti j ] = c · ti j , being c > 0 a parameter that determines different levels of uncer-
tainty. It is expected that the more the value of parameter c is toward zero, the more the problem
will incline toward the deterministic state, and by increasing the value of c, the problem will con-
verge to the stochastic state. We have considered three different levels of uncertainty: low (c = 0.05),
medium (c = 0.25), and large (c = 0.75):

μi j = ln
(
E [Ti j ]

) − 1
2

ln
(

1 + Var[Ti j ]
E [Ti j ]2

)

σi j =
∣∣∣∣∣
√

ln
(

1 + Var[Ti j ]
E [Ti j ]2

)∣∣∣∣∣.
(25)

Tables 1–3 show the results obtained for the tested samples by considering three different levels
of variability. The first column of these tables defines the instance, while the second column reports
the total number of nodes in each set, including the origin and destination nodes. The third column
(Reward in a deterministic environment) provides the BKS for the deterministic version of the prob-
lem (c = 0), while the following two columns display the expected cost obtained when the deter-
ministic solution is evaluated under a stochastic scenario, and its associated reliability, respectively.
The reliability measures the robustness of the stochastic solution. In this context, reliability com-
putes the percentage of routes that are completed without violating the driving-range constraint in
the stochastic environment. To compute the Reward in a stochastic environment, we have executed
just the algorithm disabling the simulation part (fast simulation process), and we have applied the
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Fig. 5. Comparison of the gaps (in %) with respect to the BKS for the deterministic TOP.

“intensive” simulation process to the best deterministic solution. The following three columns give
the solutions, reliability, and computing times, in seconds, for the SAA-CPLEX method. Similarly,
in the next columns, the same information is reported for the proposed simheuristic algorithm and
the SAA-BRVNS. Finally, the last columns show the obtained gaps of the proposed methods with
respect to the stochastic cost of the deterministic solution, and also the gaps between the solutions
by different methodologies. The results show that, on average, both the SAA-CPLEX and the SIM-
BRVNS algorithms outperform the stochastic cost of the deterministic solution (column a) in all
the tested scenarios. However, on average, the SAA-BRVNS approach does not reach the stochastic
cost of the deterministic solution for any variance levels.

Figure 5 depicts a summary of the obtained results by all algorithms, where the vertical axis of
the box plot represents the gap obtained with respect to the best deterministic solution (Reward in
a deterministic environment). Note that the Reward in a deterministic environment (c = 0) value can
be seen as a reference upper bound for the expected cost under stochastic conditions. In effect, as
the travel time variability increases, the total achievable rewards tend to be lower since more route
failures will occur.

5.3. Discussion

Regarding the proposed methods and Fig. 5, it is concluded that the solutions of our proposed
simheuristics method are much better than the solutions provided by SAA-CPLEX and SAA-
BRVNS in all different variance levels. As it is shown in Fig. 5, in the lowest level of variance
(c = 0.05), our simheuristic offers an average gap of 11.05% with respect to the Reward in a deter-
ministic environment, while the average gap of 15.50% and 37.25% are visible for the SAA-CPLEX

© 2023 The Authors.
International Transactions in Operational Research published by John Wiley & Sons Ltd on behalf of International Federation
of Operational Research Societies.
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and the SAA-BRVNS, respectively. For a higher variance level(c = 0.25), the average gap for our
simheuristic algorithm is about 19.16%, while the one provided by SAA-CPLEX and SAA-BRVNS
are about 21.86% and 48.83%, and for the highest variance scenario (c = 0.75) the average gap
of the simheuristics algorithm is about 23.72%, while the one provided by the SAA-CPLEX and
SAA-BRVNS are 28.20% and 72.59%, respectively. Also note that, on average, the reliability of our
simheuristic algorithm outperforms the two other solution approaches for all the tested scenarios.
Additionally, the results prove that although the SAA-CPLEX method can be used to solve the
stochastic TOP, the computational time employed is much greater than the total computational
time of simheuristics. Finally, the results provided in the tables show that the SAA-BRVNS algo-
rithm is not performing well enough since the SAA relies on the solution of relaxed problems of
the stochastic model. The objective function value of the relaxed problem is expected to give in-
dications of the quality of the solution when it is assessed in a stochastic environment. However,
the use of the heuristic to solve the relaxed problem relies on working with an extreme relaxation,
which uses a single scenario. The quality of these estimates is not reliable. Therefore, it is difficult
to find promising solutions in a short computational time. It can be concluded that, however, the
SAA method can provide promising solutions with a significant execution time, but combining it
with BRVNS is not satisfactory.

The results allow us to state that, at least in the context of the studied problem, the Sim-BRVNS
simheuristic outperforms the SAA-CPLEX and SAA-BRVNS methods, in terms of solution qual-
ity (reward), reliability, and computational time. The key differentiating factor of the simheuristics
algorithm is the interaction between the simulation and optimization processes. In the simheuris-
tics, the simulation module evaluates solutions as the optimization module generates them so that
the latter can refine the searching process. In the SAA approach, the size of scenarios included at
each iteration is limited by the capacity of the solver used since the curse of dimensionality prevents
to solve more representative models with a large number of scenarios. Additionally, the results
prove that although the SAA method can be used to solve small-sized instances of the stochas-
tic TOP, its efficiency is reduced when considering large-scale instances. In contrast, simheuris-
tic algorithms can efficiently deal with large-sized instances in short computing times. Finally, in
problems with stochastic constraints, like the one discussed in this paper, stochastic programming
approaches can be complemented with an a posteriori simulation if accurate estimates are to be
obtained.

6. Conclusions and future work

In this paper, we analyzed the stochastic TOP with three powerful simulation–optimization meth-
ods. There is a large number of studies that applied metaheuristics to solve such problems. So
far, however, few papers have compared stochastic programming methods with simheuristics in a
detailed numerical experiment as the one presented in this paper. First, we applied the CPLEX
commercial optimizer as well as our BRVNS algorithm to solve the deterministic TOP. The results
have been compared with the BKSs from the literature to validate the effectiveness of our BRVNS
algorithm in the deterministic scenario. Then, the stochastic version of the TOP has been addressed
using a simheuristic (Sim-BRVNS) as well as two variants of the SAA method (SAA-CPLEX and
SAA-BRVNS). The log-normal probability distribution has been employed to model the random

© 2023 The Authors.
International Transactions in Operational Research published by John Wiley & Sons Ltd on behalf of International Federation
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travel times. Our results suggest that the SAA method can solve small-sized instances, but it is
not able to solve the large-sized instances efficiently. Additionally, the combination of SAA and
BRVNS cannot provide affordable solutions as well. On the other hand, our simheuristic algorithm
can solve stochastic problems with large number of nodes in short computing times. The results
also show that the simheuristic algorithm outperforms the SAA method even in the instances with
small number of nodes with short computing times.

The following research lines can extend this work: (i) to develop similar comparative studies for
other stochastic optimization problems, for example, vehicle routing, arc routing, scheduling, facil-
ity location, etc.; (ii) consider other stochastic programming tools apart from the SAA method; and
(iii) analyze how both the SAA method and simheuristics can consider goals other than expected
values (i.e., other statistics, multiobjective perspective, etc.).
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Hansen, P., Mladenović, N., 2014. Variable neighborhood search. In Search Methodologies. Springer, Berlin. pp. 313–337.
Ilhan, T., Iravani, S.M., Daskin, M.S., 2008. The orienteering problem with stochastic profits. IIE Transactions (Institute

of Industrial Engineers) 40, 4, 406–421.
Juan, A.A., Kelton, W.D., Currie, C.S., Faulin, J., 2018. Simheuristics applications: dealing with uncertainty in logis-

tics, transportation, and other supply chain areas. Proceedings of the 2018 Winter Simulation Conference. IEEE,
Piscataway, NJ, pp. 3048–3059.

Ke, L., Archetti, C., Feng, Z., 2008. Ants can solve the team orienteering problem. Computers & Industrial Engineering
54, 3, 648–665.

Keenan, P., Panadero, J., Juan, A.A., Martí, R., McGarraghy, S., 2021. A strategic oscillation simheuristic for the time
capacitated arc routing problem with stochastic demands. Computers and Operations Research 133, 105377.

Kleywegt, A.J., Shapiro, A., Homem-de Mello, T., 2002. The sample average approximation method for stochastic dis-
crete optimization. SIAM Journal on Optimization 12, 2, 479–502.

Liao, Z., Zheng, W., 2018. Using a heuristic algorithm to design a personalized day tour route in a time-dependent
stochastic environment. Tourism Management 68, 284–300.

Mak, W.K., Morton, D.P., Wood, R.K., 1999. Monte carlo bounding techniques for determining solution quality in
stochastic programs. Operations Research Letters 24, 47–56.

Panadero, J., Ammouriova, M., Juan, A.A., Agustin, A., Nogal, M., Serrat, C., 2021. Combining parallel computing and
biased randomization for solving the team orienteering problem in real-time. Applied Sciences 11, 24, 12092.

Panadero, J., de Armas, J., Currie, C.S., Juan, A.A., 2017. A simheuristic approach for the stochastic team orienteering
problem. 2017 Winter Simulation Conference (WSC), Las Vegas, NV, pp. 3208–3217.

Panadero, J., Doering, J., Kizys, R., Juan, A.A., Fito, A., 2020a. A variable neighborhood search simheuristic for project
portfolio selection under uncertainty. Journal of Heuristics 26, 353–375.

Panadero, J., Juan, A.A., Bayliss, C., Currie, C., 2020b. Maximising reward from a team of surveillance drones: a
simheuristic approach to the stochastic team orienteering problem. European Journal of Industrial Engineering 14, 4,
485–516.

Paolucci, M., Anghinolfi, D., Tonelli, F., 2018. Field services design and management of natural gas distribution net-
works: a class of vehicle routing problem with time windows approach. International Journal of Production Research
56, 3, 1154–1170.

Papapanagiotou, V., Montemanni, R., 2014. Objective function evaluation methods for the orienteering problem with
stochastic travel and service times. Journal of Applied Operational Research 6, 16–29.

Papapanagiotou, V., Montemanni, R., Gambardella, L.M., 2015. Hybrid sampling-based evaluators for the orienteering
problem with stochastic travel and service times. Journal of Traffic and Logistics Engineering 3. http://www.jtle.net/
index.php.

Quintero-Araujo, C.L., Caballero-Villalobos, J.P., Juan, A.A., Montoya-Torres, J.R., 2017. A biased-randomized meta-
heuristic for the capacitated location routing problem. International Transactions in Operational Research 24, 5,
1079–1098.

Rabe, M., Chicaiza-Vaca, J., Tordecilla, R.D., Martins, L.C., Juan, A.A., 2021. Supporting hospital logistics during the
first months of the COVID-19 crisis: a simheuristic for the stochastic team orienteering problem. Winter Simulation
Conference (WSC), Phoenix, AZ, pp. 1–10.

© 2023 The Authors.
International Transactions in Operational Research published by John Wiley & Sons Ltd on behalf of International Federation

of Operational Research Societies.

 14753995, 2024, 5, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/itor.13302 by R

eadcube (L
abtiva Inc.), W

iley O
nline L

ibrary on [04/10/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

http://www.jtle.net/index.php
http://www.jtle.net/index.php


3060 J. Panadero et al. / Intl. Trans. in Op. Res. 31 (2024) 3036–3060

Rabe, M., Deininger, M., Juan, A.A., 2020. Speeding up computational times in simheuristics combining genetic algo-
rithms with discrete-event simulation. Simulation Modelling Practice and Theory 103, 102089.

Ruiz-Meza, J., Brito, J., Montoya-Torres, J.R., 2021. A grasp to solve the multi-constraints multi-modal team orienteering
problem with time windows for groups with heterogeneous preferences. Computers and Industrial Engineering 162,
107776.

Sankaran, P., McConky, K., Sudit, M., Ortiz-Peña, H., 2022. Gamma: graph attention model for multiple agents to solve
team orienteering problem with multiple depots. IEEE Transactions on Neural Networks and Learning Systems,
pp. 1–12. doi: https://doi.org/10.1109/TNNLS.2022.3159671.

Shapiro, A., 2006. On complexity of multistage stochastic programs. Operations Research Letters 34, 1–8.
Shapiro, A., Dentcheva, D., Ruszczynski, A., 2009. Lectures on Stochastic Programming: Modeling and Theory. Society

for Industrial and Applied Mathematics, Philadelphia, PA.
Shen, Z.M., Zhan, R.L., Zhang, J., 2011. The reliable facility location problem: formulations, heuristics, and approxima-

tion algorithms. INFORMS Journal on Computing 23, 3, 470–482.
Souffriau, W., Vansteenwegen, P., Berghe, G.V., Van Oudheusden, D., 2010. A path relinking approach for the team

orienteering problem. Computers & Operations Research 37, 11, 1853–1859.
Souffriau, W., Vansteenwegen, P., Vanden Berghe, G., Van Oudheusden, D., 2013. The multiconstraint team orienteering

problem with multiple time windows. Transportation Science 47, 1, 53–63.
Thayer, T.C., Carpin, S., 2021. A resolution adaptive algorithm for the stochastic orienteering problem with chance

constraints. International Conference on Intelligent Robots and Systems (IROS), Prague, pp. 6411–6418.
Tricoire, F., Romauch, M., Doerner, K.F., Hartl, R.F., 2010. Heuristics for the multi-period orienteering problem with

multiple time windows. Computers & Operations Research 37, 2, 351–367.
Vansteenwegen, P., Souffriau, W., Berghe, G.V., Van Oudheusden, D., 2009a. A guided local search metaheuristic for the

team orienteering problem. European Journal of Operational Research 196, 1, 118–127.
Vansteenwegen, P., Souffriau, W., Berghe, G.V., Van Oudheusden, D., 2009b. Iterated local search for the team orienteer-

ing problem with time windows. Computers & Operations Research 36, 12, 3281–3290.
Vansteenwegen, P., Souffriau, W., Van Oudheusden, D., 2011. The orienteering problem: a survey. European Journal of

Operational Research 209, 1, 1–10.
Verbeeck, C., Sörensen, K., Aghezzaf, E.H., Vansteenwegen, P., 2014. A fast solution method for the time-dependent

orienteering problem. European Journal of Operational Research 236, 2, 419–432.
Vidal, T., Maculan, N., Ochi, L.S., Vaz Penna, P.H., 2016. Large neighborhoods with implicit customer selection for

vehicle routing problems with profits. Transportation Science 50, 2, 720–734.
Zhang, M., Wang, J., Liu, H., 2017. The probabilistic profitable tour problem. International Journal of Enterprise Infor-

mation Systems (IJEIS) 13, 3, 51–64.

© 2023 The Authors.
International Transactions in Operational Research published by John Wiley & Sons Ltd on behalf of International Federation
of Operational Research Societies.

 14753995, 2024, 5, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/itor.13302 by R

eadcube (L
abtiva Inc.), W

iley O
nline L

ibrary on [04/10/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://doi.org/10.1109/TNNLS.2022.3159671

