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Abstract. The temperature distribution of human body tissues, when electromagnetic waves
are applied, is studied with the help of the bioheat equation, which is characterised by several
thermal parameters, such as thermal conductivity, perfusion frequency or metabolic heat. There
are also electromagnetic parameters, such as electrical conductivity and dielectric constant.
Besides, therapy parameters, such as the applied power should be considered. If the values of
all these parameters are known, the time evolution of the temperature can be determined. Some
of these values can be found in specialised databases, and others are unknown but approximate
values can be obtained by reasonable estimations. The outcome of simulations depends heavily
on the parameter values. Surface temperature helps in providing better estimates of the
parameter values. Once these parameters are identified, medical analyses can be performed
to assess the dosimetry of the radiation so that it does not damage tissues, for example. The
surface temperature is obtained from a sequence of thermographic images. Based on these
experimental data, an algorithm is applied to find the values of the needed parameters. The
model is simulated iteratively, adjusting the parameters at each step, reducing the approximation
error between the simulation and the data. This is an optimization problem that belongs to
the realm of inverse problems. It can be solved using techniques based on the gradient concept,
however, this problem can be ill-conditioned, so probabilistic or evolutionary algorithms are
also used. In this paper, the simulation is made using a method based on Legendre wavelets.
It is proposed that the subsequent optimization is made using an evolutionary algorithm, that
has shown great robustness in the problems where it has been applied. As far as known, it has
never been applied to the bioheat equation. This is the aim of this work.

Keywords: bioheat equation, invers problem, Legendre wavelets, Evolutionary Centers Algorithm

1. INTRODUCTION
The knowledge of the distribution of temperatures inside the human body allows to evaluate the effect
of a physical therapy on the internal tissues or find the appropriate dose so that no tissue is damaged.
There are different mathematical models to know this distribution of temperatures. Some of them are
are Pennes equation [1], the Cattaneo-Vernotte equation [2] [3] and the dual-phase lag equation [4]. All
of them incorporate several parameters that represent the different physical processes involved.

The most common is the realization of simulations with typical values of these parameters, coming
from small samples, obtained in some cases, from animal studies. For this reason, the available values
show great variability, so that the results obtained are not reliable. In addition, the parameters also show
variability between the individuals under study. In order to find better values, adapted to different
individuals, it is necessary to carry out temperature measurements on the skin surface. Currently,
high-resolution thermographic cameras are available, which are well suited for these measurements.
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Additionally, their image analysis software allows recording curves of temperature evolution with respect
to time. This is the data to be processed. This work has been developed in several phases:

• In first place, the different physical processes involved have been analyzed and the governing
equations have been derived, based on Pennes equation [1].

• The partial differential equations have been converted into a system of ordinary differential equations
through finite differences approximation for partial derivatives.

• Since the stimulus used is discontinuous in time, a resolution method known as Legendre Wavelets
is used. Numerous applied examples of this technique have been found in the literature ([17], [18],
[19], [20] and [21]), which have been useful for developing tools.

• Finally, the surface temperature calculated from this method allows us to find the optimal values of
the parameters.

Different methods of performing this optimization have been found in the literature, which have
been applied to the bioheat equation. Some of them are based on the derivative concept, for example
Conjugate Gradient [5] and Levenberg-Marquardt [6]. Other methods are of the random or evolutionary
type, which have greater robustness in ill-conditioned problems: Simulated Annealing [7], Markov Chain
Monte Carlo [8], Genetic Algorithm [9]. In this work the use of an evolutionary algorithm, Evolutionary
Centers Algorithm (ECA) method is proposed [24]. As far as it has could be known, this algorithm has
not been applied to bioheat equation yet. In order to test this method, an artificial dataset has been
created, simulating the system and adding Gaussian noise. The ECA method has been applied to identify
the parameters. The differences between the original values of the parameters and the estimates obtained
with this technique are not significant.

2. EXPERIMENTAL DATA
2.1. Diathermy device
The diathermy device is used in physical therapy in order to apply heat to the tissues, mainly to the
musculoskeletal system. Its operation is based on the different electrical conductivities of the tissues when
they are crossed by radio frequency waves. Essentially, a diathermy device is a UHF wave generator,
with these clearly differentiated blocks: signal generator, power amplification, antenna and display. The
signal generator is an FM modulator with a carrier frequency of 433 Mhz. Since this wave is not enough
powerful to produce the desired therapeutic effects, it is necessary to amplify it up to a power of about
100 W. This is the signal that will be delivered to the antenna. which is a modified half dipole antenna,
so it has a total length of L = λ/2 = 75 cm. This antenna is inside a header. Inside this header there is
also a reflector element, which is a metal plate that concentrates the electromagnetic energy towards the
therapy area. The therapy distance is about 10 cm from the center of the antenna, which is equivalent to
about 5 cm from the surface of the header. Although the antenna works in the near field zone (distance
less than or similar to λ), the equations of the dipole antenna in the far field (distance much greater than
λ) provide relatively simple formulas that allow an estimation reasonable of the applied fields. It is also
worth mentioning that, despite being a dipole antenna, it has a slightly modified geometry at its ends
that does not affect the basic operation described here.

The antenna is considered to be aligned with the Z axis, and its center coincides with z = 0. It is fed
with a current intensity I(z) given by the expression (see figure 1.a):

I(z) =

{
Im · cos

(
2πz
λ

)
−λ

4 ≤ z ≤ λ
4 s

0 otherwise
(1)

If spherical coordinates (r, ϕ, θ) and azimuth symmetry (independence with respect to ϕ) are considered
(see figure 1 .b), the electric field of radiation can be expressed (see [10]):

E⃗(θ) = Eθ θ̂ =
j120e−j 2πr

λ

r
Im

cos(π2 cos θ)

sin θ
θ̂ (2)

And the power density is given by:
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P (θ) =
120I2m
πr2

(
cos(π2 cos θ)

sin θ

)2

(3)

where the presence of the reflector inside the header has been taken into account, with a factor of 2
in the electric field and a factor of 4 in the power density (Image Method).

Figure 1. Antenna analysis:a) antenna current distribution; b) spherical coordinates.

As mentioned above, the header distance is r = R = 10 cm with a polar angle of θ = 90o, because
this position gives the maximum magnitude for the electric field. Under these assumptions, the following
expressions are obtained

Emax = |E⃗(θ)| = 120Im
R

= 1200Im
V

m
(4)

P (θ) =
120I2m
πR2

= 3.82 · 103I2m
W

m2
(5)

The current intensity Im depends on the power delivered to the antenna by the electronics of the
diathermy device, which can have a value up to Pmax = 100 W. If the situation is represented by a
one-in-one mesh electrical circuit, the signal generation is an alternating voltage source Vg (f = 433
MHz) in series with an impedance Zg (Thévenin equivalent). The antenna is represented as a radiation
impedance Zr ≈ 75 Ω. The mesh current is Im. From this intensity it is easy to find the power delivered
to the antenna or radiated power Pmax, from where it can be solved for Im and, consequently, Emax can
be estimated:

Pmax = ZrI
2
m → Im =

√
Pmax

Zr
→ Emax = 1200 ·

√
100 W

75 Ω
≈ 1400

V

m
(6)

When the electromagnetic wave has left the antenna, it propagates through the air until it reaches the
surface of the skin in the area where the therapy is applied. It is a change of material, as the wave coming
from the air penetrates into a human tissue (dermis). Therefore, there is a process of reflection/refraction
of electromagnetic waves that will be considered later.

2.2. Measurement process
A thermal imaging sequence of one knee has been digitized, at an image rate of every 5 seconds,
for 20 minutes. A FLIR T6600 camera was used. Diathermy therapy was applied for the first 10
minutes, to visualize the process of warming of the region of interest. The diathermy device was then
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removed for the remaining 10 minutes, so that the return to steady state can be studied. In fact, this
electromagnetic wave can be modeled by a discontinuous electric field E⃗(r⃗, t), which can be expressed as
follows (ω = 2πf = 2π · 4.33 · 108 rad/s = 2.72 · 109 rad/s):

E⃗(r⃗, t) =

{
E⃗o(r⃗) cos(ωt) 0 ≤ t ≤ 600 s
0 600 s ≤ t ≤ 1200 s ∨ t ≤ 0

(7)

The following measurement elements have been defined, which can be seen in Figure 2:

• Therapy measurements: El1, El4 and Bx1 are showing the process of warming/cooling.

• Control measurements: El2 and El3 are giving the evolution of the basal temperature of the patient
throughout the process

Figure 2. Measurements in the thermographic sequence.

2.3. Evolution of surface temperature over time
It can be seen, in Figure 3, the mean values of all these measurements plotted over time. It is important
to note here that the camera was turned on one minute before the diathermy treatment device was turned
on and then the described experiment was performed. This is the reason why during the first 60 seconds
the system stays in the basal state, goes up to 660 seconds and goes down again between 660 and 1260
seconds. In other words, it has a gap of 60 s.

Control measures El2 and El3 have average values of 32.0 oC and 32.6 oC, respectively, both with
standard deviation s = 0.13 oC. However, therapy measures behave very differently. Initially, they show
a certain inertia to change with respect to their basal value, approximately 32 oC, for the first minute.
After this time, they increase significantly in the next 4 minutes. This growth is reduced for the next 5
minutes, until the diathermy device is removed. After 10 minutes the temperature drops, returning to
the steady state, that is, to the basal state, but slower than the rise. For example, if a linear fit is made
for Bx1, with data between 60 s and 300 s, the following expression is obtained:

T = 1.602 · 10−2(t− 60) + 32.176 (8)

where T is the temperature in oC and t is time in seconds. The correlation coefficient is r = 0.9984.
It means, for this example, that the temperature is increased by 0.016 oC/s = 0.96 oC/min ≈ 1 oC/min.
Then, after that, the mechanism of regulating body temperature is slowing growth. If it did not exist,
the temperature would rise indefinitely and tissues would burn.
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Figure 3. Evolution of temperature measurements.

3. MATHEMATICAL MODEL
3.1. Bioheat equation and boundary conditions
The simplest model for temperature evolution inside a tissue is obtained by energy balance. Without
loss of generality, the one-dimensional form is considered here. The basic idea is that the power per unit
volume is obtained by adding different terms:

ρc
∂T

∂t
=
∑
i

qi(z, t) (9)

where ρ is the density of tissue and c is its specific heat. Positive terms correspond to warming, while
negative terms correspond to cooling. All terms that have physical interest are considered below. The
first of these is the diffusion term, which is represented by. According to the Fourier law , the heat flux
that is transferred by diffusion fulfills the relationship:

Q = −k∂T
∂z

(10)

where k is the thermal conductivity of tissue. Therefore, the power per unit volume due to the diffusion
can be expressed as follows:

qd(z, t) =
−∂Q
∂z

=
−∂
(
−k ∂T

∂z

)
∂z

= k
∂2T

∂z2
(11)

On the other hand, there is internal heat generation due to metabolism, which is represented by
qm(z, t) , which can be considered uniform and constant throughout the tissue, so it can be written:

qm(z, t) = Ao (12)

If an electric field E⃗ is externally applied, another term qe(z, t) must be added, and can be expressed:

qe(z, t) =
σ|E⃗|2

2
(13)

This field E⃗ depends on the electrical permittivity ε and the electrical conductivity σ. It will be
explained in more depth below.

Finally, the cooling effect of the blood circulation is considered. In the first approximation it is
assumed a form similar to the Newton Law :

qb(z, t) = ρbcbωb(Tb − T ) (14)
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where ωb is the blood perfusion frequency, ρb its density, cb its specific heat, and Tb its temperature.
The product of the first three values is called the blood perfusion coefficient b:

b = ρbcbωb (15)

ρ, c, k, b and Ao are known as thermophysical tissue parameters, whereas εr and σ are the
electrical tissue parameters.

With all these assumptions, energy balance equation (9) can be written as

ρc
∂T

∂t
= qd(z, t) + qm (z, t) + qe (z, t) + qb (z, t) (16)

If equations from (11) to (14) are substituted into the before equation, it is obtained the Bioheat
equation:

ρc
∂T

∂t
= k

∂2T

∂z2
+ b (Tb − T ) +Ao +

σ|E⃗|2

2
(17)

In order to express this equation in a more compact form, it is divides the entire equation by ρc and
the following magnitudes are defined:

τ =
ρc

b
, α =

k

ρc
, q(z, t) = Ao +

σ|E⃗|2

2
(18)

This is the form of the Bioheat equation with which it has been working:

∂T

∂t
= α

∂2T

∂z2
+
Tb − T

τ
+
q (z, t)

ρc
(19)

In the basal state (absence of electromagnetic energy), tissue is in steady state , so It can be written:

∂T

∂t
= 0 (20)

and the Bioheat equation is becoming an ordinary differential equation:

α
∂2T0
∂z2

+
Tb − T0

τ
+
Ao

ρc
= 0 (21)

where To(z) is the solution of the above equation, and which has a relatively easy analytical solution
to find from the boundary conditions seen below. It is the temperature at which the tissue is per t < 0.
In addition, it is the initial condition for the next phase, i.e.:

T (z, 0) = T0(z) (22)

Once the initial condition has been considered, the boundary conditions need to be defined. First of
all, at z = 0 which is the border of tissue with outside, a convection heat transfer occurs, that is given
by the equation:

− k
∂T (0, t)

∂z
= h (Ta − T (0, t)) (23)

where h is the convection heat transfer coefficient and Ta is the external temperature. For
convenience, It is defined B = h

k , so this equation is converted in:

∂T (0, t)

∂z
= −B (Ta − T (0, t)) (24)

Similarly, at z = L, which is the deeper part of tissue, assuming it is thick enough, it is well suited
for the adiabatic condition:

∂T (L, t)

∂z
= 0 (25)
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3.2. Tissue parameters and electromagnetic model
Tissue parameters and electromagnetic model are available from an online database for human tissue
parameters from IT’IS Foundation,a non-profit organization dependent from the Swiss Federal Institute
of Technology (ETH) at Zurich [12]. Some of the typical values of thermophysical parameters estimated
by several methods are shown in Table 1 [16]. It is also important to give the value of the convective
heat transfer coefficient h and the external temperature T are 10 W

oC·m2 and 23.7 oC respectively.

Table 1. Representative thermal parameters values

Tissue c( J
C·kg ) k( W

oC·m) ρ( kg
m3 ) b(W·oC

m3 ) τ(s) α(m
2

s ) Ao(
W
m3 )

Blood vessel 3651 0.51 1046 - - 1.34 · 10−7 488
Bone-cancellous 2292 0.29 1210 932 2976 1.05 · 10−7 227
Bone-cortical 1244 0.30 932 - - 1.32 · 10−7 0
Cartilage 3354 0.50 1099 2429 1518 1.36 · 10−7 591
Fat 2065 0.21 909 1626 1154 1.12 · 10−7 395
Ligaments/tendons 3364 0.44 1174 2161 1828 1.11 · 10−7 526
Muscle-skeletal 3322 0.49 1103 1930 1899 1.34 · 10−7 748
Skin 3250 0.43 1114 3687 982 1.19 · 10−7 452

Next, the electromagnetic term is considered in depth. Revision of Maxwell’s equations is necessary.
Maxwell equations for isotropic non-magnetic lossy material with conductivity σ and relative dielectric
permittivity εr are considered [11]. If sinusoidal and planar waves are considered, with electric field
oriented overX direction and magnetic field oriented over Y direction, and after making some calculations,
wave equations are obtained:

∂2Ex

∂z2
= γ2Ex ,

∂2Hy

∂z2
= γ2Hy (26)

where γ is the propagation constant and γ2 = −ω2µoεrεo(1− j tan δ) and δ is the loss angle. The
solution of the equation 26) can be expressed in closed form as

Ex = E+e
−γz + E−e

γz , Hy =
−jγ
ωµo

(E+e
−γz − E−e

γz) (27)

The first term of the equation (27), that is E+e
−γz, is known as progressive wave because it

represents a wave which is traveling towards positive z. Conversely, the second term is known as
regressive wave because it’s a wave that travels in the opposite direction. If there are only progressive
waves and electric field is divided by magnetic field, it is obtained the characteristic impedance for
this material. Its expression is:

η =
jωµo

γ
(28)

Once the expressions for both electric and magnetic fields are available, it can be defined the power
density vector, known also as Poynting vector, defined as:

P⃗ =
Re(E⃗ × H⃗∗)

2
(29)

Electromagnetic heating of tissues Qe can be quantified as the rate of reduction for the module of the
power density vector P , which is expressed mathematically as a derivative of P over z, with a change of
sign:

Qe = −dP
dz

(30)

It can be shown that
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Qe =
J⃗ · E⃗
2

=
σ|E⃗|2

2
(31)

Real human body has several discontinuities or material changes. Let’s consider that at z = zi there
are two different tissues with parameters γi and ηi at left, and γi+1 and ηi+1 at right. Electric and
magnetic fields must be continuous:

Ex(z
−
i ) = Ex(z

+
i ) , Hy(z

−
i ) = Hy(z

+
i ) (32)

Each slab of tissue can be viewed like a piece of transmission line, as you can see in the figure 4. For
example, in the first place is skin, with length ls and parameters ηs and γs. After, follows fat, with
length lf and parameters ηf and γf . Next, it is muscle, with length lm, and parameters ηm and γm.
Finally, it is bone, width length lb, and parameters ηb and γb. As it can be seen in the figure (4), the
positions of their lower ends are, respectively, zs, zf ,zm and zb = L.

Figure 4. Tissue model like transmission line

It could be applied (32) at each discontinuity to get an equation system, but it’s better to work with
impedance and reflection coefficients. Let’s consider a tissue discontinuity at point z = zi. At left (z < zi)
there is the tissue i, with a propagation constant γi and characteristic impedance ηi, whereas at right
(z > zi) there is another tissue i + 1, with propagation constant and characteristic impedance γi+1 and
characteristic impedance ηi+1, respectively. Let’s begin with left tissue. The electric field Ex(z) can be
expressed as follows:

Ex(z) = E+
i e

−γiz + E−
i e

γiz (33)

If common factor is taken, we have:

Ex(z) = E+
i

(
e−γiz +

E−
i

E+
i

e−γiz

)
= E+

i (e−γiz + ρie
γiz) (34)

where ρi is the reflection coefficient, defined as follows:

ρi =
E−

i

E+
i

(35)

As for the magnetic field, It is expressed:

Hy(z) =
E+

i

ηi
(e−γiz − ρie

γiz) (36)

The Impedance function is defined as is defined as the quotient between the electric field Ex and
the magnetic field Hy. Its expression is:

Zi(z) = ηi

(
e−γiz + ρie

γiz

e−γiz − ρieγiz

)
= ηi

(
1 + ρie

2γiz

1− ρie2γiz

)
(37)
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Similarly, for the tissue i+ 1 its expression is:

Zi+1(z) = ηi+1

(
1 + ρi+1e

2γi+1z

1− ρi+1e2γi+1z

)
(38)

This function must be continuous at point z = zi, so it can be written

Zi(z
−
i ) = Zi+1(z

+
i ) (39)

Taking it into account equations (37), It can be solved for ρi:

ηi

(
1 + ρie

2γizi

1− ρie2γizi

)
= Zi+1(z

+
i ) = Zi+1 → ρi =

(
Zi+1 − ηi
Zi+1 + ηi

)
e−2γizi (40)

These equations were applied to the electromagnetic model. Equations (38) and (40) were applied
successively to each tissue change, starting at the bottom, where ρb = −1 is assumed (there isn’t dissipated
power). Once the reflection coefficients at each discontinuity, the incident electric fields E+

i can be
calculated. The electric field E+

a delivered by the antenna must be estimated based on its physical
characteristics. E+

s , E
+
f , E

+
m, E

+
b are obtained from the equation (32). Once these fields are obtained,

the electric field Ex(z) can be expressed as follows:

Ex(z) =


E+

s (e−γsz + ρse
γsz) 0 ≤ z ≤ zs

E+
f (e−γfz + ρfe

γfz) zs ≤ z ≤ zf
E+

m(e−γmz + ρme
γmz) zf ≤ z ≤ zm

E+
b (e−γbz − eγbz) zm ≤ z ≤ L

(41)

As an application, numerical values have been given to the example to perform a simulation:

• Skin ls = 1.60 · 10−3 m = 1.6 mm

• Fat lf = 1.44 · 10−2 m = 1.44 cm

• Muscle lm = 2.00 · 10−2 m = 2.00 cm

• Bone lb = 4.00 · 10−3 m = 4.00 mm

The electromagnetic properties that have been taken into account can be seen in table (2). It has
been added propagation constant γ and characteristic impedance η.

Table 2. Electromagnetic properties for the example (f = 433Mhz)
Tissue ϵr σ (Ω−1 ·m−1) γ (m−1) η (Ω)
Air 1 0 9.09j 377
Skin 46.1 0.702 18.7 + 64.5j 49.0 + 14.2j
Fat 11.6 8.22 · 10−2 4.50 + 31.3j 107.3 + 15.4j
Muscle 56.9 0.805 19.4 + 71.2j 44.8 + 12.2j
Bone 22.3 0.241 4.86 + 33.3j 100.9 + 14.7j

In a previous section it has been seen that the electric field coming from the antenna has a magnitude
Ed = 1386 V

m ≈ 1400 V
m . Reflection coefficient ρi and incident electric field E+

i are summarized at table
(3). It has been calculated the electric field Ex and the magnetic field Hy as a function of depth, shown
at figure 5. Both are continuous functions, but electric field is an increasing function with a maximum
value Emax = 405 V

m at surface. It has been calculated also the electromagnetic heating Qe as a function
of depth. It is observed (figure 6.a) that is a discontinuous function because electrical conductivity is also
discontinuous . It has important values in two areas, which correspond to the skin and muscle tissue,
because these tissues are more conductive than others. In order to make this graph more meaningful, its
value has been divided by the factor ρc for each tissue (figure 6.b), where ρ is the tissue density and c is
its specific heat. It gives the rate of temperature increase as a function of time. At the surface, it gives
0.016 oC/s, which is consistent with experimental data.
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Table 3. Reflection coefficient and incident electric field
Tissue Reflection coefficient ρi Incident electric field E+

i (V
m)

Air ρa = −0.463− 0.413j E+
a = −194.5− 1048.7j

Skin ρs = −0.009− 1.35j E+
s = −117.4 + 1204.1j

Fat ρf = 0.075− 0.036j E+
f = −328.9− 182.7j

Muscle ρm = −1.01− 0.01j E+
m = −167.8 + 78.8j

Bone ρb = −1 E+
b = −341.8 + 203.4j

Figure 5. Electric and magnetic fields as a function of depth.

Figure 6. Electromagnetic heating Qe and temperature rate increase

4. DIRECT PROBLEM SOLUTION
This section explains how to find the solution of the proposed mathematical model with typical values
of its parameters, which are found in databases or in the literature. This is called Direct Problem.
Once the solution T (z, t) is obtained, the surface temperature T (0, t) is calculated, which will then be
compared with the information obtained from the thermographic camera. The process started with the
basal state, which gives the initial conditions, and then see how to calculate the temperature at any later
time.

4.1. Basal state solution
Since the basal state provides the initial conditions of the problem, the first step that will be taken is to
determine it. If single-tissue model is considered, i.e., equation (21), with its boundary conditions (24)
and (25) with t = 0, It has analytical solution, since Ao does not depend on z, so this boundary problem
can be studied as an ordinary differential equation with constant coefficients. Its solution has this form:
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To(z) = Tb +
Aoτ

ρc
+ C sinh(

z − L√
ατ

) +D cosh(
z − L√
ατ

) (42)

The boundary condition at z = L implies that C = 0. The boundary condition at z = 0 let to find
the value of D, which results:

D =
B(Ta − Tb − Aoτ

ρc )

B cosh( L√
ατ

) + 1√
ατ

sinh( L√
ατ

)
(43)

To(0) can be calculated substituting the before equation into equation (42) and taking z = 0. The
result is given by the formula:

To(0) = Tb +
Aoτ

ρc
+

B(Ta − Tb − Aoτ
ρc )

B cosh( L√
ατ

) + 1√
ατ

sinh( L√
ατ

)
cosh(

L√
ατ

) (44)

4.2. Model discretization
The next step is to solve the problem for t > 0. In order to make the explanation simpler , single-tissue
model is considered. Previous to discretization, terms in equation (19) must be grouped. If it is defined
the expression:

Θ(z, t) =
ρcTb
τ

+Ao +
σ|E⃗(z, t)|2

2
(45)

then equation (19) is transformed as follows:

∂T (z, t)

∂t
= α

∂2T (z, t)

∂z2
− T (z, t)

τ
+

Θ(z, t)

ρc
(46)

A discretization has been performed by the finite difference method only in the part of the spatial
coordinate z, with step ∆z = L

N , but the time t has been left as a continuous variable. This discretization
can be expressed as:

T (i∆z, t) = Ti(t) (47)

where i=1,2..., N-1 are the indexes of each node. Let’s discretize each term of equation (46) separately,
taking in account that vector form is considered. Each term in the equation is replaced by the expression
to the right of each arrow:

• T (z, t) → T̄ (t) column vector with N-1 components Ti(t)

• ∂T (z,t)
∂t → dT̄ (t)

dt column vector with N-1 components dTi(t)
dt

• Θ(z,t)
ρc → column vector with N-1 components again, but now Θi(t) = Θ(i∆z, t), i=1,2..., N-1

The whole term α∂2T (z,t)
∂z2 − T (z,t)

τ is transformed as ¯̄A ·T̄ (t)+Θ̄a, where
¯̄A is an (N-1)-order tridiagonal

square matrix and Θ̄e is a column vector with N-a1 components with all zero elements except the first.
Their structure are explained below. Let’s see. If the second order partial derivatives are approximated
by a finite differences formula:

∂2T (i∆z, t)

∂z2
≈ Ti+1(t)− 2Ti(t) + Ti−1(t)

∆z2
(48)

then

α∂T (i∆z, t)

∂z2
− T (i∆z, t)

τ
≈ αTi+1(t)

∆z2
−
(

2α

∆z2
+

1

τ

)
Ti(t) +

αTi−1(t)

∆z2
(49)
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These equations are correct for i=2,3..., N-2. For i=1, it is necessary an expression for To(t), which

can be derived if a finite differences approximation for ∂T (0,t)
∂z is considered:

∂T (0, t)

∂z
=

−3To(t) + 4T1(t)− T2(t)

2∆z
→ T0(t) =

4T1(t) + T2(t)

3 + 2B∆z
+

2B∆zTa
3 + 2B∆z

(50)

If equation (50) is substituted into equation (49) for i = 1, and after doing a bit of algebra:

α∂T (∆z, t)

∂z2
− T (∆z, t)

τ
= −

[
1

τ
+

α

∆z2

(
2 + 4B∆z

3 + 2B∆z

)]
T1(t)+

α

∆z2

(
2 + 2B∆z

3 + 2B∆z

)
T2(t)+

2αBTa
(3 + 2B∆z)∆z

(51)
Similarly, for i=N-1, It is necessary an expression for TN (t), which can be derived if a finite differences

approximation for ∂T (L,t)
∂z is considered:

∂T (Z, t)

∂z
=

3TN (t)− 4TN−1(t) + TN−2(t)

2∆z
→ TN (t) =

4TN−1(t)− TN−2(t)

3
(52)

If equation (52) is substituted into equation (49) for i =N-1, and after doing some algebra:

α∂T (Z, t)

∂z2
− T (Z, t)

τ
=

2α

3∆z2
TN−2(t)−

(
1

τ
+

2α

3∆z2

)
TN−1(t) (53)

In summary, these linear relationships for α ∂T
∂z2 − T

τ can be expressed in matrix form ¯̄A · T̄ (t) + Θ̄a as
follows:

• Rows from i=2 to i=N-2:

aij =

 −
(

2α
∆z2 + 1

τ

)
j = i

α
∆z2 j = i− 1 ∨ j = i+ 1
0 otherwise

(54)

• Row i=1:

a1j =


−
[
1
τ + α

∆z2

(
2+4B∆z
3+2B∆z

)]
j = 1

α
∆z2

(
2+2B∆z
3+2B∆z

)
j = 2

0 otherwise

(55)

• Row i=N-1:

aN−1,j =


2α

3∆z2 j = N − 2
−
(
1
τ + 2α

3∆z2

)
j = N − 1

0 otherwise
(56)

Θ̄a is defined as follows:

Θai =

{ 2αBTa

(3+2B∆z)∆z i = 1

0 otherwise
(57)

It is got a first order ordinary differential equations system , which in our case is linear. If Ψ(t) is
defined as:

Φ̄(t) = Θ̄a +
Θ̄(t)

ρc
(58)

the resulting system is:

dT̄ (t)

dt
= ¯̄A · T̄ (t) + Φ̄(t) (59)
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The simplest approach to solving this system is to use finite differences to discretize time derivatives
(Euler method), but the most common is to apply more accurate and stable methods. In recent times,
methods have been developed that are based on the possibility that the vector function to be found is
a linear combination of discontinuous orthogonal functions with different degrees of resolution, called
Wavelets, so that they can mathematically represent systems in which the energy supply is discontinuous
over time. For example, it is the case of a heat equation with an energy source that turns on at maximum
power for a certain time, say 10 min, and turns off for the remaining 10 min. If the properties of the
wavelets are applied, it is possible to transform a differential equation or a system in algebraic equations
whose unknowns are the coefficients by which the basis functions will be multiplied to get the solution
of the differential equation. This system will be linear if the original system is linear ([17], [18], [19], [20]
and [21]).

4.3. Legendre wavelets:function approximation and operational integration matrix
Let’s consider a function f(t) defined over the interval [0,1]. Let’s build the approximation function f̂(t):

f̂(t) =

2k−1∑
n=1

M−1∑
m=0

cmnψmn(t) (60)

where the basic functions ψmn(t) are Legendre polynomials of order m defined over the interval[
n̂−1
2k
, n̂+1

2k

]
and n̂ = 2n− 1, n = 1, 2, 3, ..., 2k − 1, which are defined by the expression:

ψmn(t) =

{ √
m+ 1

22
k
2 Pm

(
2kt− n̂

)
n̂−1
2k

≤ t ≤ n̂+1
2k

s

0 otherwise
(61)

The interval [0,1] is being divided into 2k−1 width sub-intervals 1
2k−1 , and in each one has a base of

Legendre polynomials, scaled by a factor
√
m+ 1

22
k
2 and delayed t = n̂

2k
, which allows to approximate

any function defined in the interval [0,1], although it could be discontinuous. If the first M polynomials
of Legendre are used into each interval, The coefficients cmn are calculated with the formula:

cmn =

∫ 1

0

f(t)ψmn(t)dt (62)

If the way in which the base functions have been defined is taken into account and the variable
χ = 2kt− (2n− 1)t is changed, the following expression is obtained:

cmn =

√
m+

1

2
2

−k
2

∫ 1

−1

f

(
χ+ 2n− 1

2k

)
Pm (χ) dt (63)

The last expression is calculated with a Gauss-Legendre formula of degreeM , where wi are their weighting
coefficients and χi are their knots:

cmn =

√
m+

1

2
2

−k
2

M∑
i=1

wif

(
χi + 2n− 1

2k

)
Pm (χi) dt (64)

The expansion in terms of basic functions can be expressed in vector form in the following way:

f(t) =

2k−1∑
n=1

M−1∑
m=0

cmnψmn(t) = C̄t · ψ̄(t) (65)

where C̄ is a column vector with M · 2k−1 elements, grouped in sequences of M elements, formed by
the coefficients of expansion. For convenience, it is written in a transposed way:

C̄t =

c01c11c21...cM−1,1︸ ︷︷ ︸
M

c02c12c22...cM−1,2︸ ︷︷ ︸
M

... c0,2k−1c1,2k−1c2,2k−1 ...cM−1,2k−1︸ ︷︷ ︸
M

 (66)
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On the other hand, ψ̄(t) is also a column vector with M · 2k−1 elements, grouped in sequences of M
elements, in this case formed by the basic functions of the expansion. Expressed in the form of a row
vector:

ψ̄t =

ψo1ψ11ψ21...ψM−1,1︸ ︷︷ ︸
M

ψo2ψ12ψ22...ψM−1,2︸ ︷︷ ︸
M

... ψ0,2k−1ψ1,2k−1ψ2,2k−1 ...ψM−1,2k−1︸ ︷︷ ︸
M

 (67)

A simple example of wavelet expansion is the Heaviside u(t) function:

u(t) =

{
0 t < 0
1 t ≥ 0

(68)

Due to the orthogonality of Legendre polynomials, all coefficients are zero, except all those
corresponding to m = 0. In vector format, these coefficients are:

Ḡt =
1

2
k−1
2

1, 0, 0, ...︸ ︷︷ ︸
M

, 1, 0, 0, ...︸ ︷︷ ︸
M

, ..., 1, 0, 0, ...︸ ︷︷ ︸
M︸ ︷︷ ︸

2k−1

 (69)

so u(t) can be expressed:

u(t) = Ḡt · Ψ̄(t) (70)

If this function is delayed 1
2 , that is, if the function u

(
t− 1

2

)
is considered, the first half of the

coefficients of its expansion is canceled. Conversely, if it is considered u(t)− u
(
t− 1

2

)
, the second half is

canceled. All this allows to write:

u(t)− u

(
t− 1

2

)
= H̄t · Ψ̄(t) (71)

where the coefficients H̄t are:

H̄t =
1

2
k−1
2

1, 0, 0, ...︸ ︷︷ ︸
M

, 1, 0, 0, ...︸ ︷︷ ︸
M

, ..., 1, 0, 0, ...︸ ︷︷ ︸
M︸ ︷︷ ︸

2k−2

0, 0, ...︸ ︷︷ ︸
M

, 0, 0, ...︸ ︷︷ ︸
M

, ..., 0, 0, ...︸ ︷︷ ︸
M︸ ︷︷ ︸

2k−2

 (72)

The basic functions vector ψ̄(t) has the following operational property (see [16]):∫ t

0

ψ̄(t′)dt′ = ¯̄P · ψ̄(t) (73)

where ¯̄P is the integration operational matrix, which has M · 2k−1 rows by M · 2k−1 columns, block
triangular matrix with many zeros. Let’s describe it. First, it has a factor 1

2k
that multiplies the matrix.

On the main diagonal there are 2k−1 blocks which are equal tridiagonal matrices ofM×M (it is indicated

with ¯̄L. Above the main diagonal it has equal matrices ofM×M equal to (it is indicated with ¯̄F ). Below
the main diagonal there are equal matrices of M ×M formed entirely by zeros ((it is indicated with ¯̄0).

For example, if k = 2 we will have that the matrix ¯̄P has the structure:

¯̄P =

( ¯̄L ¯̄F
¯̄0 ¯̄L

)
(74)

Each of these blocks are going to be described now. As discussed above, blocks ¯̄L are tridiagonal
matrices. The main diagonal is formed by zeros, except for the first element, which is 1, that is, L11 = 1
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if i = 2.3, ...,M . The upper diagonal contains M − 1 elements that are calculated using the expression
(i = 1, 2, ...,M − 1):

Li,i+1 =
1√

4i2 − 1
(75)

The lower diagonal containsM−1 elements that are calculated using the expression (i = 1, 2, ...,M−
1):

Li,i+1 =
−1√
4i2 − 1

(76)

On the other hand, blocks ¯̄F are made up by zeros, except for F11 = 2.

4.4. Solving the bioheat equation by Legendre Wavelets
An important application of this operational property is the integration of constant coefficients ordinary
linear differential equations systems, like (59) obtained from Bioheat equation (see [13]), which is a first
order system. First order equations case is analyzed in detail. In this case, a column vector of functions
with N elements is searched. A first order system is represented by the following matrix equations:

˙̄x = ¯̄A · x̄+ b̄ · u(t)
x̄(0) = (x01 x02 x03 ... x0N )

t
(77)

where u(t) is the function of Heaviside. In this case, it is looked for a solution of the form

x̄(t) = ¯̄F t ·Ψ̄(t), where ¯̄F t is an array with N rows andM ·2k−1 columns. Remember that u(t) = Ḡt ·Ψ̄(t).
If these expressions are substituted into the equation (77), we have:

˙̄x = ¯̄A · ¯̄F t · Ψ̄(t) + b̄ · Ḡt · Ψ̄(t) (78)

Now, all terms of the above equation are integrated. It’s obtained:∫ t

0

˙̄xdt′ =

∫ t

0

¯̄A · ¯̄F t · Ψ̄(t′)dt′ +

∫ t

0

b̄ · Ḡt · Ψ̄(t′)dt′ (79)

If Constants are taken out of each integral, it results:∫ t

0

˙̄xdt′ = ¯̄A · ¯̄F t ·
∫ t

0

Ψ̄(t′)dt′ + b̄ · Ḡt ·
∫ t

0

Ψ̄(t′)dt′ (80)

If equations (73) and
∫ t

0
˙̄xdt′ = x̄− x̄(0) = ¯̄F t · Ψ̄(t)− x̄(0) · Ḡt · Ψ̄(t) are taken into account, It’s got:

¯̄F t · Ψ̄(t)− x̄(0) · Ḡt · Ψ̄(t) = ¯̄A · ¯̄F t · ¯̄P ·Ψ(t) + b̄ · Ḡt · ¯̄P ·Ψ(t) (81)

If common factor Ψ̄(t) is removed , it is obtained:

¯̄F t − x̄(0) · Ḡt = ¯̄A · ¯̄F t · ¯̄P + b̄ · Ḡt · ¯̄P (82)

If terms are rearranged, we have:

¯̄F t − ¯̄A · ¯̄F t · ¯̄P = b̄ · Ḡt · ¯̄P + x̄(0) · Ḡt (83)

If all columns of ¯̄F t are placed one after the other, as a column vector with N ·M ·2k−1 elements, called
vec(¯̄F t), and the same is made with the second member of the equation, the previous matrix equation
becomes the following linear equations system :(

¯̄I − ¯̄P t ⊗ ¯̄A
)
· vec(¯̄F t) = vec(b̄ · Ḡ t · ¯̄P + x̄ (0 ) · Ḡ t) (84)
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where ¯̄I is an identity matrix of order N ·M · 2k−1 and ¯̄P t ⊗ ¯̄A is the Kronecker product of ¯̄P t i ¯̄A.
It’s got a system of N ·M · 2k−1 equations with N ·M · 2k−1 unknowns.

It is necessary to remember that a sequence of thermal imaging of a knee has been captured, at the
rate of one image every 5 seconds for 20 minutes. It means that the simulation time t ranges from 0 to
tm = 1200 s, but Legendre Wavelet ranges from 0 to 1. It is necessary to make a variable change for time
t in equation (46), so that the simulation interval is [0, 1] and the discontinuity of qe is at t = 1

2 . If the
new variable is τ , it is defined by:

τ =
t

tm
(85)

If chain rule is applied for time derivative:

∂T

∂t
=
∂T

∂τ
· ∂τ
∂t

=
1

tm

∂T

∂τ
(86)

so equation (46) is converted in:

1

tm

∂T (z, τ)

∂τ
= α

∂2T (z, τ)

∂z2
+
Ao

ρc
+
σ
∣∣∣E⃗(z, τ)

∣∣∣2
2ρc

+
Tb − T (z, τ)

τb
(87)

If this consideration is taken into account and the method of discretization explained above is applied,
It’s got the following equivalences:

∂T (z, τ)

∂τ
→ ˙̄T (τ)

α
∂2T (z, τ)

∂z2
→ α

(
¯̄AT̄ (τ) + Θ̄aḠ

tψ̄(τ)
)

Ao

ρc
→ ĀoḠ

tψ̄(τ)

ρc

σ
∣∣∣E⃗(z, τ)

∣∣∣2
2ρc

→ q̄eH̄
tψ̄(τ)

Tb − T (z, τ)

τb
→ q̄bḠ

tψ̄(τ)− T̄ (τ)

τb

(88)

These equivalences have been made based on what has been discussed in the previous sections, but it
is necessary to make some clarifications:

• ¯̄A and Θ̄a: They are expressed as It has been explained in subsection (4.2), equations (54) to (57).

• Āo is a constant column vector with its components equal to Ao

• q̄e and ēt: Equation (13) can be expressed as:

qe(z, t) =
σ
∣∣∣E⃗o(z)

∣∣∣2
2ρc

(
u(τ)− u

(
τ − 1

2

))
(89)

where u(t) is the Heaviside function. The factor
(
u(τ)− u

(
τ − 1

2

))
can be expanded by Legendre

Wavelets, using equation (71).It means that the discretization of qe(z, τ), that is, a column vector
whose components are qe(i∆z, τ), can be expressed as the product of the column vector q̄e by the
expansion Ḡt · Ψ̄(t), where the components of q̄e are

qe,i =
σ
∣∣∣E⃗o(i∆z)

∣∣∣2
2ρc

(90)
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• q̄b is a constant column vector with its components all equal to Tb

τb

• When the equation (87) is discretized and becomes a system of linear differential equations, T (z, 0)
becomes a column vector T̄ (0), which components are T (0)i = T (i∆z, 0).

A single tissue model is being considered, but a multilayer model, consisting of multiple superimposed
layers of tissue (dermis, fat, muscle, etc.) would be more realistic. A first approach to consider is
assumption. that the electromagnetic power density is discontinuous in space. In this way, the fact
that at different depths the electrical parameters are different would be represented. For example, this
proposal is made, with qeo = 0.015

oC
s :

qe(z)

[
oC

s

]
= qeo


1− 8.67z z ∈ [0, 0.0015] m (Dermis)
7.6z + 8.47(0.016− z) z ∈ [0.0015, 0.016] m (Fat)
4.2z + 52(0.036− z) z ∈ [0.016, 0.036] m (Muscle)
3(0.04− z) z ∈ [0.036, 0.04] m (Bone)

(91)

Under above considerations, Equation (87) is converted in this differential equation system:

˙̄T (τ)

tm
= α

(
¯̄AT̄ (τ) + Θ̄aḠ

tψ̄(τ)
)
+
ĀoḠ

tψ̄(τ)

ρc
+ q̄eH̄

tψ̄(τ) + q̄bḠ
tψ̄(τ)− T̄ (τ)

τb
(92)

which can be transformed as follows:

˙̄T (τ)

tm
=

(
α ¯̄A−

¯̄Ismall

τb

)
T̄ (τ) +

(
αΘ̄a +

Āo

ρc
+ q̄b

)
Ḡtψ̄(τ) + q̄eH̄

tψ̄(τ) (93)

As in the previous section, solutions of the type T̄ (τ) = ¯̄F tψ̄(τ) are looked for. Similarly, applying
equation ((84)), it’s needed to solve this system:

(
¯̄Ibig
tm

− ¯̄P t ⊗

(
α ¯̄A−

¯̄Ismall

τb

))
vec(¯̄Ft) = vec

(
T̄ (0 )Ḡ t +

(
αΘ̄a +

q̄m
ρc

+ q̄b

)
Ḡ t ¯̄P + q̄eH̄

t ¯̄P

)
(94)

where ¯̄Ibig is an identity matrix of order (N −1) ·M ·2k−1, ¯̄Ismall is an identity matrix of order N −1.
The simulation of these equations has been performed with the following values of the physical

parameters: α = 1.05 · 10−7 m2

s , τb = 800 s, qm = 450 W
m3 , h = 22 W

m2·K , Ta = 23o C and Tb = 37o C. As
it has been said above, tm = 1200 s. After several tests, it has been chosen k = 3 and M = 9. The result
can be seen in figure 7. T (z, t) has been represented at different times. Figure 7.a represents the curves
when diathermy is applied, while figure 7.b represents the curves when the system is returning to rest.

Figure 7. Diathermy application and return to rest curves
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5. THE INVERS PROBLEM
It’s interesting compare the surface evolution between experimental data and simulation, figure 8 a and
b respectively. It’s noticeable that qualitative behavior is very similar. Some fine tuning of physical
parameters must be done in order to fit this two curves, that can be solved as an inverse problem. In
order to achieve this goal, some basic concepts are defined.

Figure 8. Comparison of surface temperature evolution: a) experimental data; b) simulation

5.1. Basic concepts
The numerical method explained above allows finding the values of the temperature on the surface of
the human body at P correlative instants, with time step ∆t = 5 s. These values Ti = T ((i − 1)∆t)
with i = 1, .., P can be represented in vector form as T̄ . This model depends on K parameters pj ,
with j = 1, ..,K, which can be represented too in vector form as p̄. Thus, the Bio-heat model can be
represented as a function T̄ = f(p̄) Ȧt the same correlative instant the temperatures are measured by the
thermographic camera. These values Θi = Θ((i−1)∆t), with i = 1, .., P , are also represented by a vector
Θ̄. If the model was accurate, It would be Θ̄ = f(p̄), but actually there is an error in the measurement
process, which can be represented by adding a vector term ε̄, that is Θ = f(p̄)+ε̄. The goal is to determine
p̄ so that the contribution of ε̄ is as small as possible in the least squares sense, that is, minimization of

||ε̄(p̄)||2 =
∣∣∣∣Θ̄− T̄ (p̄)

∣∣∣∣2 by some optimization algorithm. This article proposes an evolutionary algorithm
called Evolutionary Centers Algorithm (ECA) [24]. This method will described in the next section. As it
is explained in the reference article, the maximization of a function f(p̄) is considered, but its application
in the case of a minimization is straightforward, making a small transformation to the function.

5.2. Evolutionary Centers Algorithm
It is called population a set of parameter vectors, Ω = {p̄1, p̄2, p̄3, . . .} , called population. Here a
question arises: How does this population change to get a better estimate of the optimal vector? To
answer this question, the strategy of analyzing whether each vector in the population can be changed by
a new vector is used. To achieve this, for each vector p̄i of the population, a sample of the population,
U = {p̄i1 , p̄i2 , p̄i3 , . . .}, is randomly selected, and from this sample its ”mass center” is calculated. What
does it mean? The contribution to the ”mass” of the sample of the vector ū ∈ U is f(p̄), so it can be
written:

c̄i =

∑
ūεU f(ū) · ū∑
ūεU f(ū)

(95)

This point tends to approach where there is more ”mass concentration”, that is, where f(p̄) has larger
values. It would be an estimate of where the maximum is located. In order to get closer to the solution,
a random element of the sample, ūr ∈ U , is selected, from which the candidate t̄i is:

t̄i = p̄i + η · (c̄− ūr) (96)

where η is a random number between 0 and ηmax. If f(t̄i) > f(p̄i), then p̄i is changed by t̄i into the
population, which is updated. Otherwise, the population remains unchanged.
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6. RESULTS AND CONCLUSIONS
Equation (19) has been simulated using the method described in Section 4. The programming language
used to carry out the computations has been Julia programming language [1], into a Jupyter Notebook
IDE. In order to test this method, the model has been simulated with the following values:

α = 1.19 · 10−7 m2

s
, τb = 1000 s, qeo = 0.0150

oC

s
(97)

The evolution of surface temperatures has been found, and Gaussian noise has been added, with
zero-average and standard deviation s = 0.13 oC. The ECA algorithm has been applied with bounds:

α ∈ [0, 10−6], τb ∈ [100, 2000], qe ∈ [0.007, 0.030] (98)

In the Figure 9 can be seen the simulated and identified data and the difference between simulated
data without noise and identified data. It’s noticeable the little difference among them. The identified
parameters that have been obtained and its percent relative errors are shown below:

α = 1.28 · 10−7 m2

s
, τb = 913 s, qeo = 0.0155

oC

s
(99)

∆α

α
= 7.6%,

∆τb
τb

= 8.7%,
∆qeo
qeo

= 3.3% (100)

Figure 9. Comparison of simulated and identified data

These results are quite promising, since an acceptable identification of three parameters has been
obtained from a single temperature curve. the number of variables can be modified to analyze how
the uncertainty in the results is changed. Moreover, this technique can be assessed in other contexts
and compared with other techniques commonly used to solve inverse problems, such as regularization
techniques [26].
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