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Abstract: Cardiovascular diseases (CVDs) are one of the most prevalent causes of premature death.
Early detection is crucial to prevent and address CVDs in a timely manner. Recent advances in
oculomics show that retina fundus imaging (RFI) can carry relevant information for the early diagnosis
of several systemic diseases. There is a large corpus of RFI systematically acquired for diagnosing
eye-related diseases that could be used for CVDs prevention. Nevertheless, public health systems
cannot afford to dedicate expert physicians to only deal with this data, posing the need for automated
diagnosis tools that can raise alarms for patients at risk. Artificial Intelligence (AI) and, particularly,
deep learning models, became a strong alternative to provide computerized pre-diagnosis for patient
risk retrieval. This paper provides a novel review of the major achievements of the recent state-of-the-
art DL approaches to automated CVDs diagnosis. This overview gathers commonly used datasets,
pre-processing techniques, evaluation metrics and deep learning approaches used in 30 different
studies. Based on the reviewed articles, this work proposes a classification taxonomy depending on
the prediction target and summarizes future research challenges that have to be tackled to progress
in this line.

Keywords: healthcare; artificial intelligence; deep learning; medical imaging; retinal fundus image;
retinal photography analysis, oculomics; convolutional neural networks, cardiovascular diseases

1. Introduction

Artificial Intelligence (AI) models have been playing an increasing role in medical
research imaging in the last two decades. For diagnostic imaging alone, the number of
publications on AI has increased from about 100–150 per year in 2007–2008 to 1000–1100
per year in 2017–2018 [1]. The progress of computing systems during the last years has
allowed deep learning (DL), a sub-field of AI, to become a feasible methodology to analyze
complex sources of data, such as medical images. There are multiple applications where
deep learning has achieved impressive results: mammography mass classification [2], brain
lesion segmentation [3], skin lesion classification [4], COVID-19 prediction [5], etc. The
authors in [6] provided a wide review covering the main architectures, techniques and
applications of DL applied to medical image analysis.

Within medical imaging techniques, retinal photography analysis has gained popu-
larity due to its noninvasive and cost-effective nature [7]. Retinal fundus images (RFI) are
obtained from the projection of the rear part of the eye (fundus) onto a 2D plane using
a monocular camera. Different biomarkers and eye structures can be identified from a
RFI, playing an important role in identifying retinal abnormalities and diseases, such as
glaucoma, diabetic retinopathy (DR), macular edema degeneration, etc. In recent years,
deep learning applied to oculomics has aroused great interest in the scientific community.
Studies on the identification and prediction of ocular biomarkers of systemic diseases are
becoming increasingly interesting for researchers in the field [8]. Deep learning techniques
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are providing insights about eye–body associations through retinal morphology analysis
to enhance the understanding of complex disorders, such as musculoskeletal diseases [9],
traumatic brain injury [10], cardiovascular disease [11], renal impairment [12], Alzheimer’s
disease [13] or anemia detection [14].

Cardiovascular diseases (CVDs) remain a leading cause of death globally [15]. Ac-
cording to the World Health Organization, an estimated 17.9 million people died from
CVDs in 2019, representing 32% of all global deaths. According to this report [16], in 2015,
15.2 million deaths were produced by stroke and ischemic heart disease solely, 85.1% of
the total deaths provoked by cardiovascular events. Most cardiovascular diseases can be
prevented by addressing risk factors, both individual, such as chronological age, gender,
smoking status, blood pressure and body mass index (BMI), or metabolic, such as glucose
and cholesterol levels [17]. Detecting CVDs as early as possible is critical for efficient clinical
treatment, and this is where deep learning models can be incorporated into the diagnostic
process. The motivation behind this paper is focused on surveying the main contributions
of this automated diagnosis of CVDs from RFI.

The proposed overview aims to provide a glance into the current state-of-the-art
of DL strategies to assess cardiovascular diseases by analyzing retinal fundus images.
Moreover, this study intends to highlight the main obstacles to face in these applications
and possible future work to be performed for new DL-based research methods for CVDs
diagnosis. Section 2 covers the domain knowledge regarding the review topic, analyzing
cardiovascular risk and delving into deep learning models and retinal fundus image
structures. Analyzed materials and methods are reviewed in Section 3, where commonly
used datasets, pre-processing techniques and metrics are explained. Section 4 gathers the
literature review of selected studies along with comparisons on the automated diagnosis of
cardiopathies. Finally, the review results and conclusions are presented in Section 5.

2. Domain Knowledge
2.1. Classification of Cardiovascular Diseases

In essence, cardiovascular diseases can be defined as a set of conditions that may
affect the structures or behavior of the heart and vascular system, causing malfunction and
even death. There are different types of CVDs: (https://www.webmd.com/heart-disease/
guide/diseases-cardiovascular) Accessed on 25 November 2022.

• Arrhythmias: Irregular or abnormal heartbeat that can bring on an uneven heartbeat
or a heartbeat that is either too slow or too fast.

• Aorta Disease and Marfan Syndrome: This disease is produced when the aorta walls
are weak. This can put extra stress on the aorta, which increases the risk of a deadly
dissection or rupture.

• Cardiomyopathies: Diseases related to the heart muscle when it is unusually big,
thick or stiff. The heart cannot pump blood as well as it should.

• Congenital Heart Disease: Abnormalities in one or more parts of the heart or blood
vessels before birth that may appear for different reasons: genetics, virus, alcohol or
drug exposure during pregnancy.

• Coronary Artery Disease: Produced when plaque builds up and hardens in the
arteries that provide the heart vital oxygen and nutrients. That hardening is also called
atherosclerosis.

• Deep Vein Thrombosis and Pulmonary Embolism: When blood clots, normally
formed in deep veins, such as the legs, can move in the blood flow to the lungs,
provoking blocked points in the bloodstream.

• Heart Failure: It is produced when the heart does not pump as strongly as it should
and may provoke swelling and shortness of breath.

• Heart Valve Disease: The valves are located at the exit of each of the four heart
chambers. They keep blood flowing through the heart. Examples of heart valve
problems include:

https://www.webmd.com/heart-disease/guide/diseases-cardiovascular
https://www.webmd.com/heart-disease/guide/diseases-cardiovascular
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– Aortic stenosis: The aortic valve narrows. It slows blood flow from the heart to
the rest of the body.

– Mitral valve insufficiency: Caused by a malfunction in the mitral valve that may
end up in a lung fluid backup due to blood leaking.

– Mitral valve prolapse: The mitral valve does not close correctly between the left
upper and left lower chambers.

– Pericarditis: Often provoked by an infection, the lining around the heart is
inflamed.

– Rheumatic Heart Disease: This condition is most common in children. The heart
valves are damaged due to rheumatic fever, causing an inflammatory disease.

– Stroke: Reduction or block of the blood to the brain, depriving the correct contri-
bution of oxygen and nutrients. For instance, a blocked artery or a leaking blood
vessel can lead to a stroke event.

• Peripheral vascular disease: Involving any abnormality that directly alters the circu-
latory system, e.g., leg artery diseases may affect blood flow to the brain, ending up in
a stroke.

The list of risk factors for having a cardiovascular event is extensive: high blood
pressure, smoking, high cholesterol, diabetes, inactivity, being overweight or obese, family
history of CVD, etc. (https://www.nhs.uk/conditions/cardiovascular-disease/) Accessed
on 25 November 2022.

2.2. Deep Learning Approach

Deep learning techniques have been gradually introduced in several fields, including
bioinformatics, the domains of which comprise branches such as omics, biomedical signal
processing and medical imaging.

Deep learning methods are based on artificial neural networks, which are slightly
inspired by biological neural organization, where the neurons are processing units orga-
nized in connected layers. These computational structures learn how to perform certain
tasks just by considering a relatively large set of input examples without being specifically
designed for the task. Their generalization capabilities are input-dependent, meaning that
with the same network structures, the learned task might be different if the input example
set is different. Specifically, deep learning uses deep neural network concepts where the
approach is based on layer specialization. Each network layer gathers concrete knowledge
that is afterward shared among specific layers to impulse the general learning process. This
general idea generates very different network architectures, such as deep belief networks
(DBN), recurrent neural networks (RNN), convolutional neural networks (CNN) (example
in Figure 1), etc., which are specially oriented to specific problem solving: classification,
segmentation, prediction, etc.

Depending on the context, different deep learning strategies can be followed:

• Supervised learning: The quality of deep neural network performance is strongly
influenced by the number of labeled/supervised images. The more images are in
the training dataset, the higher the accuracy achieved by the model. To solve the
problem of a lack of input data, a commonly used option is transfer learning. This
approach tackles the small training size problem by pre-training the model using
different natural examples, based on the premise that first network layers learn similar
features and the later layers are the problem-specialized ones.

• Unsupervised learning: The model learns common associations and structures within
the input set. Sometimes there is access to a large dataset of unlabeled data that can be
exploited in a semi-supervised or self-supervised way. The main idea is to use these
data during the training process to increase the model’s robustness, sometimes even
surpassing the supervised cases [18].

• Semi-supervised learning: The data used to perform certain learning tasks are both
labeled and unlabeled. It typically incorporates a small size of labeled data in combi-

https://www.nhs.uk/conditions/cardiovascular-disease/
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nation with large amounts of unlabeled data. The difficulties here are that unlabeled
data can be exploited if they provide information relevant to label estimation that is
not present in the labeled data or cannot be easily obtained. This learning method
requires the information to be determinable [19].

Figure 1. Example of a commonly used convolutional neural network used in medical image analysis.
VGG16 architecture proposed by [20] and applied to task classification. Image source [7].

2.3. Retinal Fundus Images

Researchers and practitioners have realized the many possibilities offered by retinal
imaging and its ability to provide information on retinal vasculature. Moreover, it is the
only internal vascular system that can be observed in a noninvasive condition of the human
body. Disease-related information can be extracted from fundus images. Thus, RFIs have
been used in the medical field to reveal many important systemic diseases of the human
body that cause specific reactions in the retina.

A RFI is a projection of the fundus captured by a monocular camera on a 2D plane.
These images make it possible to detect visible abnormalities and lesions in the eye quickly
and with little associated cost. For instance, features such as exudates, microaneurysms
and hemorrhages are visible pathological signs of diabetic retinopathy. An example of a
retinal fundus image with marked features is shown in Figure 2.
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Figure 2. Retinal fundus image with marked main retinal features and abnormalities, typical signs of
diabetic retinopathy (DR). Image source [21].

3. Materials and Methods
3.1. Article Search and Selection Strategy

The overall search approach was based on data-mining terms from scientific databases.
Concretely, we used GoogleScholar (https://scholar.google.es) and PubMed (https://
pubmed.ncbi.nlm.nih.gov/), accessed from 25 October to 10 November 2022. In both
databases, the same search criteria were applied: open-access articles written in English
from 2018. The search was performed from the exact terms: “deep learning”, “retinal
images”, “cardiovascular diseases”.

The records excluded surveys or reviews. Only articles and proceeding papers were
accepted. From them, only the topic relevant were kept by exploratory inspection. After
the filtering process, this literature review includes 30 studies that will be detailed in the
following sections. The proposed methodology can be seen in Figure 3.

Figure 3. Proposed methodology overview.

https://scholar.google.es
https://pubmed.ncbi.nlm.nih.gov/
https://pubmed.ncbi.nlm.nih.gov/
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3.2. Datasets

This section details an overview of widely used datasets in deep learning applications.
Concretely, the datasets used in the studies of this review are listed in Table 1. The table
lists out datasets, the number of images contained, image size, label description and the
main task they are used for. Only public datasets and datasets with restricted distribution
(via request) are mentioned in the table.

Table 1. Overview of public/restricted access retinal image datasets used in cardiovascular dis-
ease applications.

Name #Images Size Labels Application

Public Access

DRIVE [22] 40 768× 584 33—Normal, 7—
Mild early DR

Vessel segmenta-
tion, DR diagnosis

Messidor-1 [23] 1200 1440× 960, 2240×
1488, 2304× 1536

Macular Edema,
DR diagnosis

Messidor-2 [24] 1748 1440× 960, 2240×
1488, 2304× 1536

0-None, 1-Mild,
2-Moderate,
3-Severe, 4-
Proliferative

DR prediction

STARE [25] 400 700× 605 Vessel segmenta-
tion

HRF [26] 45 3504× 2336 15—healthy, 15—
DR, 15—glaucoma

Vessel segmenta-
tion, DR diagnosis,
Glaucoma assess-
ment

Kaggle/EyePACS [27] 9963 DR scale of 0–4 DR diagnosis

Restricted Access

E-Optha [28] 463
2544 × 1696,
1440 × 960,
2048× 1300

7—exudates
and 35—no
lesion 148—
microaneurysms/
small hemor-
rhages and 233—
no lesion

DR diagnosis

SEED [29] 235 43—
Glaucomatous

Glaucoma assess-
ment

SiNDI [30] 5783
5670—
Healthy, 113—
Glaucomatous

Glaucoma assess-
ment

SCES [31] 1751 CVD assessment

SiMES [32] 1488 CVD assessment

BES [33] 8585 CVD assessment

The rest of the datasets used in the research articles are shown in Section 4, are
private domain datasets from clinic studies and hospitals, and their detailed features are
not available.

3.3. Pre-Processing Techniques

Within medical imaging, the RFI area is quite controlled and not so exposed to ambient
noise, so they are usually inputs of high quality. However, fundus images are usually pre-
processed to make more robust models and better predictions. Figure 4 shows examples
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of the main pre-processing operations used in the reviewed studies, having the original
Figure 4a as a reference.

Within image color transformations, grayscale conversion (Figure 4b) is one the most
common operations used when trying to reduce the number of input channels and thus
reduce the computational load in the architecture. Moreover, in some DL models, having a
single color input increases the contrast and produces improvements in the model perfor-
mance.

Contrast enhancement is also another commonly used technique to emphasize the
main image features. Among several methods, Contrast-Limited Adaptive Histogram
Equalization (CLAHE) stands out as one of the most widely used. It was first proposed
in [34]. It is an easy-to-implement technique that addresses global histogram equalization
problems using local image statistics. This technique is usually used in offline steps due to
its expensive computational cost. However, its use enhances interesting retinal features,
such as microaneurysms and small hemorrhages.

Noise reduction is also an extended technique applied in DL to increase image quality
in the sense of decreased abnormal signals within the image that may slow down the
training process. Among the known methods, Gaussian and median filtering are the most
commonly used in the literature reviewed. The median filter is used to preserve useful
details in the image, usually edges. It considers each pixel in the image, sorting them using
a NxN mask. It replaces the pixel value with the median of the values covered by the mask.
An example of this method can be seen in Figure 4f. The Gaussian filter also is applied
to reduce detail and image noise. The output is the result of blurring an input image by
means of a Gaussian function applied at the pixel level.

Normalization is used to change the range of the pixel intensity value. It can also be
called contrast stretching. Min-Max Normalization scales and translates the values of the
image so that they are linearly mapped into the interval between [α, β] (inclusive), where α
and β are the lower and upper range boundaries, respectively. An example can be seen in
Figure 4e.

When images are too light or too dark, Gamma correction is a method that allows the
brightness of an image to be adjusted. The Gamma-adjustment can be expressed as defined
in Equation (1):

O = (
I

255
)

1
γ · 255, where γ


if γ < 1 : darker image
if γ > 1 : lighter image
if γ = 1 : no effect

(1)

where O is the output (pixel value [0, 255]), I is the input image (pixel value [0, 255]) and γ
is the gamma factor. An example of the Gamma adjustment can be seen in Figure 4d.

Data augmentation is a mechanism that consists of physically manipulating a sample
image by applying image transformations to produce more inputs. This technique prevents
overfitting during the training phase under a lack of input samples. The hypothesis here is
that a greater amount of information can be learned by the network through augmentations
from the original images [35]. Classical augmentation operations are random cropping,
horizontal and vertical flipping, and Red-Green-Blue (RGB) intensity channel modification,
to name a few. Examples of data augmentation are shown in Figure 4g–i.

The straight use of RFI in DL models increases the computational cost due to the
high-resolution characteristic, especially in very deep architectures. For this reason, in most
of the studies, images are usually scaled (resized) before being introduced into the model,
always trying to maintain the image aspect ratio.
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(a) Original RFI (b) Grayscale (c) CLAHE

(d) Gamma Adjustment (e) Min-Max Normalization (f) Median Filtering

(g) Vertical flip (h) Rotation (i) Random Crop

Figure 4. Pre-processing techniques commonly used in retinal images used in cardiovascular disease
applications. (a) Original retinal image. (b) Color transformation: grayscale. (c) Contrast-Limited
Adaptive Histogram Equalization. (d) Gamma correction with γ = 2.5. (e) Min-Max normalization
with [α, β] = [50, 200]. (f) Noise removal: median filtering with N = 29. (g–i) Data augmentation
examples: Vertical flip, 45º rotation and random crop, respectively.

3.4. Evaluation Metrics

Deep learning algorithms should incorporate evaluation methods so the model per-
formance can be evaluated and measured. Table 2 lists the metrics used in the reviewed
articles. Commonly, the evaluation metric selected depends on the deep-learning task
type. For instance, metrics such as accuracy, specificity sensitivity or Area Under Receiver
Operating Characteristic are used as performance indicators for a classification application
and the Dice index is normally used to measure the segmentation performance in RFI.
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Table 2. Overview of evaluation metrics used in cardiovascular disease applications. TP stands for
true positives, FP stands for false positives, FN stands for false negatives and TN for true negatives.

Metric Formula Description

Accuracy Acc = (TP+TN)
(TP+FP+TN+FN)

Indicates the global ratio of correct predic-
tions either positive or negative

Precision/PPV Pr = TP
(TP+FP)

Also known as Positive Predictive Value. Is
the average of the retrieved samples that
were relevant

Sensitivity/Recall/TPR Se = TP
(TP+FN)

Also know as True Positive Ratio, indicates
the ratio of the relevant samples that are
successfully identified.

Specificity/FPR Sp = TN
(TN+FP)

Also know as False Positive Ratio, is the
ratio of identified negative samples that are
actually negative.

F1-measure F1 = 2TP
2TP+FP+FN

Represents the harmonic mean of the preci-
sion and recall

AUROC/AUC

Area Under Receiver Operating Character-
istic. Relates TPR against FPR. It depicts the
prediction capability of a classifier system
as its discrimination threshold is varied

AUPRC

Area Under Precision-Recall Curve. Relates
Precision and Recall providing a single
number that summarizes the information in
the PR curve

Sørensen–Dice coefficient DSC = 2|X∪Y
|X|+|Y|

The Sørensen–Dice coefficient, or simply
Dice score index, is a statistic metric used to
compare the similarity of two samples

R²

The coefficient of determination, or R
squared, is a statistical variable that rep-
resents the ratio of the variation in the de-
pendent variable that is predictable from
the independent variable(s)

CRAE Center Retinal Venular Equivalent. Ex-
pressed in µm

CRVE Central Retinal Arteriolar Equivalent. Ex-
pressed in µm

4. Automated Diagnosis of Cardiopathies

Descriptions of the studies reviewed are provided in this section. Broadly speaking,
DL methods are able to extract patterns of information from RFI. During the training
process, a group of images from the dataset is fed as input to the model. The information
contained in the image is computationally decomposed and analyzed through the layers
of network architecture until it reaches the network output. In the initial layers, basic
structures within the image, such as edges or colors, are learned. The deeper layers of
the network are dedicated to learning more complex retinal information, such as veins,
exudates, micro-hemorrhages, etc. In the case of supervised learning, the error in the output
is computed with the label associated with the input image and back propagated to the
initial layers by adjusting the weights that regulate each layer. After the training phase,
the rest of the dataset is used to evaluate the generalization capability of the network. The
quantity and quality of the input dataset are determinants for the accuracy capability of the
network. This is why the pre-processing operations we saw in Section 3.3 are so important.
To increase the number of input images (data augmentation) or to provide a cleaner input
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image through noise reduction or contrast enhancement processes will make the network
learn the characteristics of each image better.

The cardiovascular damage diagnosis approach is different in each article, varying not
only in the clinical analysis approach but also in the deep learning techniques, datasets,
strategies, etc. Therefore, we propose a classification of the articles in the following subsets:

• Extracting biomarkers: Methods oriented to cardiovascular anomalies detection but
only focused on retinal biomarker extraction.

• Prediction risk factors: Approaches to predict risk factors at the individual (chronolog-
ical age) or metabolic (coronary artery calcium, hypertension) levels that may result in
cardiovascular damage.

• Prediction of cardiovascular events: Direct cardiovascular events (stroke, ictus).

4.1. Automated Methods for Extracting Biomarkers

Relevant deep-learning approaches regarding vascular feature segmentation are de-
tailed in this section. The quantitative measurement of retinal vessels is important for the
diagnosis, prevention and therapeutic evaluation of cardiovascular system-related diseases.
Retinal vessels are composed of arteries, arterioles, venules and capillaries. Certain abnor-
malities in vessel function and geometry, such as vasoconstriction, narrowing and refraction
of small arteries and arterioles, have been related to cardiovascular events (left ventricular
failure, stroke) and nephropathy, such as hypertension [36]. These retinal vascular changes
can be measured from the point of view of different parameters, as can be seen in Table 3.

A proposal for a deep-learning method to quantify retinal microvasculature and vessel
segmentation is given in[37]. They extended a U-net architecture into multiple branches in
order to simultaneously segment the vein, artery and optic disc. The U-net architecture was
proposed in [38] and is based on a symmetrical encoder and decoder structure used for
image segmentation. The first is responsible for extracting features from input images, while
the decoder reconstructs the images for the final output. The performance of the model
achieved an AUC of over 90% for both vein and artery segmentation in different datasets.

Motivated by the challenging problems when segmenting coronary arteries, [39]
tries to mitigate the low performance in classic unsupervised methods and the time-
consuming need for manual annotation. They propose a transfer learning approach based
on Generative Adversarial Networks (GAN) [40]. A GAN architecture is based on two
neural networks that compete with each other to be more accurate in their predictions.
They run unsupervised and use a zero-sum cooperative game framework to learn. After
training the GAN mode for coronary artery segmentation, they were also able to transfer
the knowledge to an unlabeled digital subtraction angiography (DSA) dataset by using a
U-Net architecture. The GAN-proposed network reported an accuracy of 0.953 compared
to a classical U-Net performance of 0.921.

Another contribution of retinal vessel segmentation is described in [41]. This paper
proposes a complex model based on U-net and an attention mechanism, which through
this mechanism, the network can recalibrate the features, selectively emphasize the useful
features and suppress the bad ones. The model was able to report over 0.98% AUC in the
DRIVE and STARE datasets.

Further, also based on U-Net architecture, paper [42] proposed a method to measure
vascular branching complexity using an ensemble model of U-Nets to segment the mi-
crovasculature and thus calculate vascular density and fractal dimension (FD). On the test
set, the model achieved an 82.1% Dice similarity coefficient, 97.4% pixel-wise accuracy,
0.99% AUC for FD and 0.88 for vascular density.
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Table 3. Retinal vascular parameters and their influence in target end-organ damage and CVD [36].

Retinal Parameter Change Outcome

Tortuosity Retinal arteriolar tor-
tuosity Increased

Current blood pres-
sure and early kidney
disease

Decreased
Current blood pres-
sure and ischemic
heart disease

Retinal venular tortu-
osity Increased Current blood pres-

sure

Fractal dimension
(FD) Retinal vascular FD Increased Acute lacunar stroke

Decreased
Current blood pres-
sure, lacunar and
incident stroke

Suboptimal
Chronic kidney dis-
ease and coronary
heart disease

Bifurcation Retinal arteriolar
branching angle Decreased Current blood pres-

sure

Retinal arteriolar
branching asymme-
try ratio

Increased Current blood pres-
sure

Retinal arteriolar
length: diameter ra-
tio

Increased
Current blood pres-
sure, hypertension
and stroke

Retinal arteriolar
branching coefficient
(optimal ratio)

Increased ischemic heart disease

Retinal arteriolar op-
timal parameter (de-
viation of junction
exponent)

Decreased Peripheral vascular
disease.

A contribution to retinal vessel detection has been made in [43]. The main motivation
is to have available retinal microvasculature for further analysis, such as vessel diameter
and bifurcation angle quantification. They propose a custom implementation called Faster
Region-based Convolutional Neural Network (Faster-RCNN). Briefly, this architecture is
composed of three modules: A feature network to generate feature maps from the input
image. A separately trained network, Region Proposal Network (RPN), generates bounding
boxes that contain different features or objects extracted from feature maps, and a Detection
Network, which takes input from both the RPN and feature network to detect the expected
features. They report a capability of extracting the true vessels of the retina with a sensitivity
of 92.81% and 62.34% Positive Predictive Value (PPV).

A list of the main characteristics of the reviewed methods is shown in Table 4.
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Table 4. Automated methods for extracting biomarker characteristics.

Ref. Application Architectures Metrics Result Dataset Pre-Processing

[37] Vessel
segmentation U-net AUC >0.90 (AUC)

UK Biobank
(420), 21

datasets (4015),
but filtering
images with

labels: Macular
edema,

Hypertensive,
pathologic

myopia and DR

CLAHE

[39] Vessel
segmentation

SC-GAN and
U-Net

Acc, Precision,
recall, Dice

score
0.953 (Acc) DRIVE

Grayscale,
Median-
filtering,
CLAHE

[41] Vessel
segmentation

Custom
U-Net-based

AUC, Acc,
sensitivity,
specificity

0.98 (AUC) DRIVE, STARE

[42] Retinal vessel
detection U-Net AUC, Acc

(DICE score)

0.99 (AUC) in
FD, 0.88 (AUC)

in vascular
density

UK BioBank
(97895)

[43] Vessel detection Fast RCNN

Sensitivity,
Positive

Predictive
Value (PPV)

0.92
(sensitivity)

HRF, DRIVE,
STARE,

MESSIDOR,
(450)

CLAHE

4.2. Automated Prediction of Cardiovascular Risk Factors

There are certain health conditions, not only at the metabolic level but also at the
individual level, such as age or lifestyle, that are indicators of cardiovascular risk. These
biomarkers are considered a proxy and are essential in the diagnosis of cardiovascular
disease. One of the most successful predictors of cardiopathies is the presence and degree
of DR. Recent studies show that age (p < 0.002), gender (p < 0.039) and DR (p < 0.00001)
are significantly different in patients with a high CAC score (≥ 400, considered the proper
predictive tool according to the American College of Cardiology [44]) with respect to
patients with a CAC score below 400 [45].

Consequently, one of the first proxies used for assessing CVD with deep learning
was diabetic retinopathy disease prediction. It often appears from type 1 and 2 diabetes
complications due to retinal blood vessel deterioration and might be a potential risk factor.

In [46], the authors applied a deep learning model based on the InceptionV3 architec-
ture [47] for the detection of DR and also diabetic macular edema reporting an AUC of 0.991
tested on EyePACS and 0.990 in MESSIDOR-2. Later on, in [48], the authors proposed a
hybrid model combining a custom CNN model for future extraction feeding a decision tree
classification model [49] to predict DR. The classification method discriminated between
healthy fundus images and having DR, identifying relevant cases for medical referral. They
reported testing results on the MESSIDOR-2 and E-Ophtha databases of 0.94 and 0.95 AUC
scores, respectively. They used heat maps to provide what areas in the image influenced
the model to produce the output. Moreover, in study [50], the authors proposed a cus-
tom CNN model for binary classification (YES/NO) to predict DR from RFI, where they
achieved an accuracy of 89%. Another contribution in article [51] proposed a deep learning
method to detect referable/vision-threatening DR, in addition to possible glaucoma and
age-related macular degeneration (AMD). By adapting a Visual Geometry Group (VGG)
architecture [20], they report an AUC of referable DR of 0.93%. For vision-threatening DR,
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the AUC was 0.958%; for possible glaucoma, the AUC was 0.942%; and for AMD, the AUC
was 0.931%. Focused on DR screening and other eye-related diseases, the work proposed in
paper [52] trained a deep learning algorithm pointing out the multi-ethnic nature of the pa-
tients contributing to all the datasets used during training and validation. The architecture
used consisted of eight modified variants of the VGG-19 CNN, two for DR, two for AMD,
two for glaucoma, one for assessing quality images and one for rejecting invalid non-retinal
images. They report over 0.93% AUC for any retinal disease. In the work proposed in
article [53], the authors combined the use of a U-Net for semantic segmentation of the blood
vessels and a deep residual network (ResNet-101 [54]) for severity classification on both
vascular and full images. Vessel reconstruction through harmonic descriptors is also used
as a smoothing and de-noising tool. They report that at least 93.8% of DR (No-Refer vs.
Refer) classification can be related to vasculature defects. In [55], the authors implement
a DL method to asses Retinopathy of Prematurity (ROP), being a leading cause of child
vision loss and possible future cardiovascular complications. They established an ROP
scale of 1-9 to score the retinal vascular abnormality, reporting an AUC of 0.96% for ROP-1
on the test set. They use two DL models in a row: the first a U-net to segment the vessels
over the original RFI. The second one to classify disease severity by an InceptionV1 net [56].

Retinal change detection is useful for predicting biomarkers related to cardiovascular
and chronic disease. The evaluated studies have shown that retinal photography-based
deep-learning methods can be implemented for biomarker estimation. Poplin and col-
leagues proposed a DL model to predict cardiovascular risk factors with reasonable ac-
curacy: age (within 3.26 years), gender (0.97 AUC), smoking status (0.71 AUC), HbA1c
(within 1.39%) and systolic blood pressure (within 11.23 mmHg) [57]. Given the good
results, they tried to also predict future major cardiac events (within 5 years) with an AUC
of 0.70. They draw attention maps for each risk factor to identify the anatomical regions that
the algorithm might have been using to make its predictions. Similar studies were reported
in paper [58]. They use a deep learning model to predict cardiometabolic risk factors: age,
sex, blood pressure, HbA1c, lipid panel, sex steroid hormones and bioimpedance measure-
ments. The architecture proposed was MobileNet-V2 [59], known to be a light and fast DL
model boosted by transfer learning with ImageNet [60]. Another contribution was made in
[61], where the authors proposed a DL method to measure the retinal-vessel caliber with
RFI. The model achieved comparable estimations with expert practitioners relating vessel
caliber and CVD evidence, including biomarkers such as BMI, blood pressure, glycated
hemoglobin and total cholesterol. Deep learning model measurements agreed with high
similarity with experts having correlation coefficients between 0.82 and 0.95.

A DL-based biomarker predictor model is proposed in article [62]. They indepen-
dently trained 47 VGG16 models to predict 47 systemic biomarkers: demographic factors
(age and sex), relevance to CVD (blood pressure, body composition, renal function, lipid
profile, diabetes-related measures and C-reactive protein), the predictable capability from
hematological parameters and blood data, such as biochemical, liver and thyroid markers.
Moreover, they used saliency maps to provide algorithm attention information.

When it comes to cardiovascular disease, age is undoubtedly a factor to be taken into
account. The work in [63] contributed to predicting biological age from RFI and evaluated
the performance of this marker in the risk stratification of mortality and major morbidity in
general populations. They used a VGG classifier to implement this approach to measure
aging with experimental results (c-index = 0.70, sensitivity = 0.76, specificity = 0.55). Their
analysis includes saliency maps to provide regions of model attention. In the same line,
in article [64], the authors proposed the use of retinal age gap as a predictive biomarker
(predicted - chronological age) for CVD using Xception [65] implementation, reporting a
correlation of 0.80 (p < 0.001) and a mean absolute error (MSA) of 3.55. Additionally, they
related RAG to regression models with arterial stiffness and incident CVD, ensuring an
increased risk when age reached 1.21.

Past studies showed that coronary artery calcium (CAC) had a low ability to pre-
dict cardiovascular events [66]. In practice, it could be a good predictor, but these study
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showed that 2% of the sampled population had a cardiovascular event, and one-third of
the middle-aged and 100% of the older individuals of the total population had coronary
calcification. However, later studies claim CAC scoring is a significant method for pre-
dicting cardiovascular events [67], especially among individuals without diabetes [45]. To
mitigate the presence of coronary calcification in a large part of the population, CAC score
stratification is performed by Agatston units (AU), where a CAC score lower than 100 AU
involves low risk, between 100 and 400 AU is moderate risk and greater than 400 AU is
high risk. Automated prediction DL-based methods using RFI are of special interest since
CAC score measurement needs the use of Computed Tomography (CT) scans, which are
expensive and involve radiation risks. These methods intend to predict cardiovascular risk
by stratifying the CAC score.

The work described in [68] used InceptionV3 architecture to evaluate the high ac-
cumulation of CAC using RFI. Fundus images and CAC scans were taken on the same
day. They discriminate no CAC vs. CAC>100 with an AUC of 82.3% and 83.2% using
unilateral and bilateral RFI, respectively. They also used a setting combining DL prediction
with other risk factors, such as age, gender and hypertension, and combined them into a
regression model to increase the prediction. They tested the algorithm with different inputs:
fovea inpainted, vessels inpainted, unilateral RFI and bilateral RFI, where the last one
provided better results. Heat maps are provided to show areas of interest in the input data.
The RetiCAC framework was proposed in [69]. They implement a DL method to predict
the presence of CAC from fundus images. They found that the CAC score assessment
model performed better than the prediction of other risk factors alone (AUC 0.742). From
here, they proposed a CV risk stratification system with comparable performance to a CT
scan: RetiCAC score (based on a probability score derived from the DL model). Another
contribution of CAC assessment is detailed in article [70]. The authors proposed an auto-
mated hybrid method to predict, from fundus images, whether the CAC score surpasses a
threshold set to 400 defined by experts. They defined a pipeline combining independent
results from both a VGG16 model (trained on RFI) and classic machine learning classifiers
(trained on clinical data: age and presence of DR) to predict (CAC < 400/CAC > 400). They
reported complementary results, proposing two applications that can benefit from the
combination of image analysis and clinical data: an application for clinical diagnosis (75%
Recall) and an application for image retrieval of large databases (91% Precision).

Abnormalities of the retinal vasculature may reflect the degree of microvascular
damage due to hypertension, atherosclerosis or both, which may end up in cerebrovascular
and cardiovascular complications [71]. With this motivation, the authors of [72] proposed
a prediction model to evaluate biomarkers, such as hypertension, hyperglycemia and
dyslipidemia. They trained an InceptionV3 architecture achieving promising results: an
AUC of 0.88 for predicting hyperglycemia, of 0.766 for predicting hypertension and of
0.703 for predicting dyslipidemia. Moreover, they also trained the network to predict other
risk factors (age, gender, drinking/smoking habits, BMI, etc.) directly related to CVD,
reporting AUCs over 0.68 in all of them. Another contribution predicting hypertensive
patients was proposed in [73]. They implemented a custom deep learning architecture
called Deep Neuro-Fuzzy network (DNFN), where the input data are based on a feature
vector previously extracted from the RFI images. The structure of the DNFN is based on
two stages: in the initial one, a deep neural network where the input and hidden layers
are in charge of learning the output layer for classifying, and in the second stage, where a
fuzzy logic optimization process computes the system objective. The classification accuracy
reported by the model was 91.6%.

Coronary artery disease, also known as atherosclerosis, was used in article [74] as a
biomarker related to CVD. The purpose of this study was to develop a deep learning model
based on Xception architecture, which predicted atherosclerosis by using RFI. The model
was validated in two phases: First, participants with RFI plus carotid artery sonography
were used to train the deep model for the prediction of atherosclerosis. Predictions are
independently made with one RFI at a time. A custom DL-FAS metric was obtained from
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the final averaged prediction on each eye. DL-FAS was used for validation if future CVDs
can be predicted from subjects with only RFI (carotid artery sonography unavailable). The
final results showed an AUC of 0.713 and an accuracy of 0.583. Attention maps are provided
to reflect the main interest image region of the model. Later on, a coronary artery disease
prediction model was developed in article [75]. They use retinal vascular biomarkers to
predict coronary artery disease using CAD-RADS as a proxy for cardiovascular disease.
They do not use the RFI to directly feed the network. Instead, they extract features from the
pre-processing stage that were the inputs of the model as a feature vector. They compare the
performance of the net over traditional machine learning (ML) methods outperforming the
results, obtaining above AUC 0.692 in all the cases. Table 5 lists the above-mentioned works.

Table 5. Automated prediction of cardiovascular risk factors characteristics.

Ref. Application Architectures Metrics Result Dataset Pre-Processing

[46]
DR, Macular

edema
prediction

InceptionV3
AUC,

sensitivity and
specificity

0.99 (AUC)

EyePACS
(128175): train,

EyePACS (9963)
and Messidor-2

(1748): test

[48] DR screening Custom
+Decision Tree

AUC,
sensitivity and

specificity
0.95 (AUC)

Total EyePACS
MESSIDOR,

E-Optha, (75137
in total)

Crop,
brightness and

contrast
adjustment, DA:

rotations

[50] DR assessment Custom CNN Acc 0.89 (Acc) Custom (150) Min–Max
normalization

[51] DR, Glaucoma,
AMD Adapted VGG

AUC,
sensitivity and

specificity

0.95 (AUC),
0.94 (AUC),
0.93 (AUC)

Several datasets
with more than
300,000 RFI just

for train

[52] DR, Glaucoma,
AMD VGG19

AUC,
Sensitivity and

Specificity
0.93 (AUC)

10 diff studies:
(76,730): train,
(112648): test

[53] DR assessment U-Net,
ResNet101 AUC 0.93 (AUC) IRIS

Grayscale,
CLAHE,
Gamma-

Adjustment

[55]
Retinopathy of

prematurity
detection

U-Net
AUC,

sensitivity and
specificity

0.96 (AUC) i-ROP Study
(4861)

[57] CVD diagnosis
Inception-v3 +
Ensembling of
10 iterations

AUC 0.70 (AUC)

Biobank
(48,101),
EyePACs

(23,6234): train,
Bionbank
(12,026),

EyePacs (999):
test
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Table 5. Cont.

Ref. Application Architectures Metrics Result Dataset Pre-Processing

[58] Biomarker
prediction MobileNet-V2 MAE, AUC, R2 0.97 (AUC),

0.78 (AUC)
Qatar Biobank

(12,000)

Gaussian filter,
Crop, DA: flip,

random
rotation, shift

[61]

CVD risk,
blood presure,

body-mass
index, total

cholesterol, and
glycated-

hemoglobin
level.

SIVA-DLS CRAEc, CRVE

SEED
(Singapore

Epidemiology
of Eye Disease),

BES (Beijing
Eye Study), UK

Biobank,
Kangbuk
Samsung

Health (KSH),
The Austin

Health Study
(Austin study).

[62] 47 biomarkers
prediction VGG16 AUC, R2 0.90 (AUC)

Two health
screening

centers in South
Korea, the BES,

SEED, UK
Biobank
(236,257)

CLAHE, DA:
random crop,
flip up-down,

rotation,
brightness, and

saturation

[63] BA prediction VGG-
c-index,

sensitivity,
specificity

0.76
(sensitivity)

KHS (129,236):
train, UK

Biobank: test

[64] Retinal Age
prediction Xception p-value and

MSA
0.80(p < 0.001),

3.55 (MSA)
UK Biobank

(19,200)

[68] CAC
assessment InceptionV3 AUC 0.83(AUC)

Seoul National
University
Bundang
Hospital
(44,184)

Crop DA: flip,
rotation

[69] CAC
assessment

Custom+
EfficientNet AUC 0.74 (AUC)

Biobank,
Shouth Korean

Datasets
(216,152)

CLAHE, DA:
random crop,

random
rotation

[70] CAC
assessment VGG16 Acc, Rec, Pre,

F1, CM
0.78 (Acc), 0.75
(Rec), 0.91 (Pre)

Endocrinology
Department,

Vall d’Hebron
University

Hospital (152)

Crop

[72]

Proxys:
hypertension,

hyperglycemia
and

dyslipidemia

InceptionV3 AUC, Acc
0.76 (AUC),
0.88 (AUC),
0.70 (AUC)

China dataset
(1222)

DA in minority
classes

[73] Hypertension
prediction DNFN Acc, Rec, Pre 0.91(Acc) fundusimage1000 Grayscale
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Table 5. Cont.

Ref. Application Architectures Metrics Result Dataset Pre-Processing

[74] Atherosclerosis
assessment Xception

AUROC,
AUPRC,
accuracy,

sensitivity,
specificity,

positive and
negative

predictive
values

0.71 (AUC)

Health
Promotion

Center of Seoul
National

University
Hospital
(15,408)

DA: Random
zoom,

horizontal flip

[75]
Coronary

Artery Disease
prediction

GraphSAGE Acc, Rec, Pre,
AUC 0.69 (AUC) Custom

4.3. Automated Prediction of Cardiovascular Events

Retinal fundus photography has been proposed for stroke risk assessment due to its
similarity between retinal and cerebral microcirculations [76]. A binary DL-based classifica-
tion method was developed to predict stroke event risk, achieving the best performance
with AUC ≥ 0.966. From a previous RFI pre-processing process, they fed the model with
two different input images: A templated image based on contrast normalization and
median-filtering transformations and a vessel image obtained from a U-Net segmentation
model. VGG19 architecture was used as a classification method. They also provide heat
maps with the predictions.

Stroke prediction has been another application of retinal image analysis with deep
learning algorithms. The authors of paper [77] proposed an Inception-Resnet-v2 [78] to
predict 10-year ischemic cardiovascular diseases (ICVD) from a Chinese population dataset.
The algorithm was able to achieve an AUC of 0.971 and 0.976 in internal validation and
0.859 and 0.876 in external validation.

In [79], the authors implemented an ensemble-based framework, the architecture of
which was composed of a Generative Adversarial Network (GAN) that uses a U-Net model
as a generator to synthesize the images with high resolution. Afterward, an IncepcionV3
model was applied to predict the severity level of the CVD. The results show that an
ensemble classifier with a CNN model had the best performance, with an improved
accuracy of 91% for the different types of heart disease.

Multimodal approaches to predict CVD are also proposed. The work described in [80]
used a combination of source data integrating information from RFI and dual-energy X-ray
absorptiometry (DXA), demonstrating the improved use of combined information. A
DL-based technique based on ResNet architecture was used to distinguish the CVD group
from the control group with 75.6% accuracy. Independently, classical machine learning
classifiers achieved 77.4% accuracy on DXA data. The combination of both classifiers plus
a custom CNN achieved 78.3% accuracy.

Another deep-learning pipeline for CVD prediction was proposed in [81]. The study
presents a hybrid system that estimates cardiac indices, such as left ventricular mass (LVM)
and left ventricular end-diastolic volume (LVEDV), and predicts future myocardial infarc-
tion events. The system is composed of two main components: a multichannel variational
autoencoder (mcVAE) [82] and a ResNet architecture. First, the mcVAE is designed with
two pairs of encoders/decoders that train the network from RFI and cardiac magnetic
resonance (CMR) with a shared latent space. Second, the learned latent space is used
to train the ResNet model from CMR images reconstructed from the retinal images plus
the demographic data (age, gender, HbA1c, systolic and diastolic blood pressure, smok-
ing/alcohol habits, glucose and BMI) to estimate LVM and LVEDV. Finally, they predict
the myocardial infarction risk using logistic regression with 0.80 AUC, 0.74 sensitivity and
0.71 specificity.
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In the table below (Table 6), the list of reviewed methods is shown.

Table 6. Automated prediction of cardiovascular events characteristics.

Ref. Application Architectures Metrics Result Dataset Pre-Processing

[76] Stroke risk
prediction U-Net, VGG19

AUC,
sensitivity and

specificity
0.96 (AUC)

Singapore,
Sydney and

Melbourne and
SCES, SiMES,

SiNDI,
DMPMelb,SP2

DA: random
flipping and

rotation

[77] ICVD
Diagnosis

Inception-
ResNet-V2 AUC and R2 0.97 (AUC)

China and
Beijing

Research on
Aging, BRAVE

(411518)

[79] CVD diagnosis InceptionV3 Acc, F1 0.91 (Acc)
Biobank and

EyePACS,
STARE

[80] CVD diagnosis CNN-
ResNet+Custom Acc, Rec, Pre 0.75 (Acc) Qatar BioBank

(1805)
Crop,

Mean-filtering

[81]
Myocardial
infarction
prediction

Multichannel
variational

autoencoder,
CNN-ResNet50

AUC,
Sensitivity and

Specificity
0.80 (AUC) UK Biobank

(71515)

5. Conclusions

In this review, 30 recent works on the application of deep learning models to retinal
images for the prediction of cardiovascular disease have been described. The main paper’s
contributions are an updated (to the best of our knowledge) literature survey of the main
methods to automatically predict CVDs from RFI images, a review of the main datasets used
(with a specific focus on the main features of the publicly available ones) and a summary of
the available experimental results. We provide a taxonomy of these methods depending on
the target approach. Specifically. in the last two years, the number of publications on the
subject has been prolific, which proves the general interest of the research community in the
subject. Already, successful deep learning architectures in other fields are being migrated
and applied to medical image analysis, and medical and deep learning practitioners are
joining efforts, which is increasing the number of studies with promising results. The
reviewed methods use very different data sources and strategies to reach the diagnosis of
CVD. Therefore, it is difficult to compare the performance of each method from an objective
point of view.

There are still classical deep learning obstacles to avoid. Future challenges will deal
with data availability and model improvements. Even though some of the works reviewed
here had considerably large image datasets, data accessibility is still very limited. The
results in some of the works can be significantly improved by gathering more clinical
data (increasing the number of patients). Along the same line, there is sometimes a
lack of reproducibility in studies, which slows progress in similar research. Moreover,
there is a trade-off between computing consumption and image resolution; therefore,
all images are resized. Higher resolution in relevant discriminating information within
retinal images (thickness, dimension, tortuosity of the vessels, etc.) would increase the
model specialization capability. Finally, the black-box nature of the learning task involves
difficulty in clearly understanding which parts of the image influenced the predictions of
the networks. Applying deep learning models in real clinical settings would require better
explainable models attached to deep learning algorithms to provide enough evidence of its
decision-making process. It is necessary to isolate other pathological factors that may be
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influencing the decisions of DL methods in the diagnosis of cardiovascular events, such as
diabetic patients. Moreover, it is desirable that automated diagnosis systems could provide
an easily interpretable explanation behind their predictions that clinicians can understand
and trust.

Finally, the methods reviewed here are able to predict, in the best of cases, CVD,
tackling a binary classification problem. There is still a lot of effort to be made in the
future, so DL methods are able to classify the type of cardiovascular disease with the detail
provided in Section 2.1. Accurately categorizing the type of CVD is crucial for efficient
clinical treatment.
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CAC Coronary Artery Calcium
CLAHE Contrast Limited Adaptive Histogram Equalization
CMR Cardiac Magnetic Resonance
CNN Convolutional Neural Networks
CRVE Center Retinal Venular Equivalent
CRAE Central Retinal Arteriolar Equivalent
CT Computed Tomography
CVD Cardiovascular Diseases
DBN Deep Belief Networks
DL Deep Learning
DNFN Deep Neuro-Fuzzy Network
DR Diabetic Retinopathy
DSA Digital Subtraction Angiography
DXA Dual-energy X-ray Absorptiometry
FD Fractal Dimension
GAN Generative Adversarial Networks
LVEDV Left Ventricular End-Diastolic Volume
LVM Left Ventricular Mass
mcVAE Multichannel Variational Autoencoder
ML machine learning
RCNN Region-based Convolutional Neural Network
RFI Retina Fundus Image
RGB Red Green Blue
RNN Recurrent Neural Networks
ROP Retinopathy of Prematurity
VGG Visual Geometry Group
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