
Data Utility Evaluation Framework for Graph
Anonymization

Jordi Casas-Roma
Internet Interdisciplinary Institute (IN3)
Universitat Oberta de Catalunya (UOC)

CYBERCAT – Center for Cybersecurity Research of Catalonia
Barcelona, Spain
jcasasr@uoc.edu

Abstract—Anonymization of graph-based data is a problem

which has been widely studied over the last years and several

anonymization methods have been developed. Information loss

measures have been carried out to evaluate the noise introduced

in the anonymized data. However, there is no consensus about

how to evaluate perturbation and data utility in privacy-

preserving and anonymization scenarios, where released datasets

contain some noise to hinder re-identification processes. Thus,

it is quite complex to compare different methods or algorithms

in literature. In this paper we propose a framework to evaluate

and compare anonymous datasets in a common way, providing

an objective score to clearly compare methods and algorithms.

Index Terms—Privacy-preserving, Anonymity, Evaluation

framework, Data utility, Social networks, Graphs

I. INTRODUCTION

Currently, data mining processes require large amounts of
data, which often contain personal and private information of
users and individuals. Although basic processes are performed
on data anonymization, such as removing names or other key
identifiers, remaining information can still be sensitive as well
as useful for an attacker to re-identify users and individuals.
To solve this problem, methods which introduce noise to
the original data have been developed in order to hinder
the subsequent processes of re-identification. However, the
noise introduced by the anonymization processes may affect
data by reducing its usefulness in subsequent processes of
data mining. It is necessary to keep the main properties of
data to ensure the data mining process is not altered by the
anonymization process.

Anonymization processes should allow the analysis per-
formed in the anonymized data to lead to results as equal
as possible to the ones obtained when applying the same
analysis to the original data. Nevertheless, data modification
is contrary to data utility. The larger data modification, the
less data utility. Thus, a good anonymization method hinders
the re-identification process while causing minimal distortion
to the data.

Owing to what we have mentioned in the previous para-
graph, several measures have been designed to evaluate the
goodness of the anonymization methods. Generic informa-
tion loss measures evaluate to what extent the analysis on
anonymized data differs from the original data. Each mea-
sure focuses on a particular property of the data and it is
application-independent. We assume that if these metrics show
little variation between original and anonymized data, then
the subsequent data mining processes will also show little
variation between original and anonymized data. Furthermore,

we can also use measures specifically designed to quantify
perturbation on real-world specific problems, such as com-
munity detection (i. e. clustering) or information flow.

However, there is no standard or common way to evalu-
ate data utility or information loss. Usually, several authors
use different generic information loss measures to quantify
perturbation on anonymized data. Hence, it is very hard (or
even impossible) to compare information loss and data utility
among different methods and algorithms, since each work
of literature uses specific (and usually different) metrics to
evaluate the perturbation or noise in anonymous graphs.

In this paper we propose a common framework to evaluate
data utility and information loss on privacy-preserving data
publication processes. Specifically, we use generic informa-
tion loss measures and clustering-specific ones on graph
formatted data in order to provide a clear comparison among
an original graph and several perturbed (i. e. anonymous)
graphs.

A. Notation
Let G = (V,E) be a simple graph, where V is the set

of nodes and E the set of edges in G. We use vi 2 V to
denote node i and (vi, vj) 2 E to indicate an edge connecting
nodes vi and vj . We define n = |V | to denote the number of
nodes and m = |E| to denote the number of edges. We use
G = (V,E) and eG = (eV , eE) to indicate the original and the
anonymized graphs, respectively.

B. Roadmap
This paper is organized as follows. We review the state of

the art of anonymization in networks in Section II. Our frame-
work is introduced in Section III. Then, we discuss metrics
related to generic information loss measures in Section IV and
a methodology to compare clustering-specific information loss
measures in Section V. Finally, brief examples of our results
are presented in Section VI, while Section VII concludes the
research and points future work directions.

II. RELATED WORK

The two main objectives of an anonymization process are:
(1) to preserve the privacy of users or individuals who appear
in a dataset, hindering the re-identification processes, and (2)
to preserve data utility on anonymized data, i.e., minimizing
information loss.

Anonymization methods and graph assessment depend on
the type of data they are intended to work with. In this paper,
we will work with simple, undirected and unlabelled graphs.
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A. Anonymization

We categorize anonymization methods on graph formatted
data into three main categories [6]:

• Graph modification approaches: These methods
anonymize a graph by modifying (adding and/or
deleting) edges or nodes in a graph. There are two
basic approaches: (1) The simplest way alters the graph
structure by removing and adding edges randomly. It
is called randomization or random-based approach. (2)
Another way consists of edge addition and deletion
to fulfill some desired constraints, i.e. anonymization
methods do not modify edges at random, they modify
edges to meet some desired constraints. For example,
k-anonymity-based approaches modify graph structure
(by adding and removing edges) in order to get the
k-anonymity value for the graph.

• Generalization approaches (also known as clustering-
based approaches): These methods cluster nodes and
edges into groups. Then, they anonymize each group into
a super-node to publish the aggregate information about
structural properties of the nodes [12]. The details about
individuals can be hidden properly, but the graph may
be shrunk considerably after anonymization, which may
not be desirable for analyzing local structures.

• Differentially private approaches: These methods refer to
algorithms which guarantee that individuals are protected
under the definition of differential privacy [8]. Differ-
ential privacy imposes a guarantee on the data release
mechanism rather than on the data itself. The goal is
to provide statistical information about the data while
preserving the privacy of users.

We will focus on graph modification approaches, which
preserve local structures and keep the details of the data for
clustering processes.

Randomization methods are based on introducing random
noise in the original data. For graphs, there are two main
approaches: (a) Rand Add/Del that randomly adds and deletes
edges from the original graph (this strategy keeps the number
of edges) and (b) Rand Switch that exchanges edges between
pairs of nodes (this strategy keeps the degree of all nodes
and the number of edges). Naturally, edge randomization can
also be considered an additive-noise perturbation. There are
several works on graph randomization in literature, such as
[11], [18], [19], [3].

Another widely adopted strategy for graph modification
approaches consists of edge addition and deletion to meet
desired constraints, usually to achieve a certain level of
privacy. For instance, take the k-anonymity concept that was
introduced by Sweeney [17] for the privacy preservation on
relational data. It states that an attacker cannot distinguish
among k different records although he managed to find a
group of quasi-identifiers. Consequently, the attacker cannot
re-identify an individual with a probability greater than 1

k . The
k-anonymity model can be applied using different concepts
when dealing with networks rather than relational data like
in our case. A widely used option is to consider the node
degree as a quasi-identifier, which corresponds to k-degree
anonymity [14]. It is based on modifying the network structure
(by adding and removing edges) to ensure that all nodes

satisfy this condition. There are several works in literature
on constrained anonymization, for instance [21], [22], [12],
[5], among many others.

B. Graph assessment

Several generic measures have been used to quantify the
structure’s properties in graph formatted data. Authors usually
use these measures and compare the values obtained by the
original and the anonymized data in order to quantify the noise
introduced by the anonymization process. When we quantify
the information loss as described above, we talk about generic
information loss measure.

Hay et al. [11] utilized five structural properties from
graph theory for quantifying network structure. For each
node, the authors evaluate closeness centrality, betweenness
centrality and path length distribution. For the graph as a
whole, they evaluate the degree distribution and the diameter.
The objective is to keep these five measures close to their
original values, assuming that little distortion is involved in
the anonymized data. Ying and Wu [18] and Ying et al. [19]
used both real space and spectrum based characteristics to
study how the graph is affected by randomization methods.
The authors focused on four real space characteristics of
the graph and on two important eigenvalues of the graph
spectrum. The real space characteristics are: the harmonic
mean of the shortest distance, the modularity, the transitivity,
and the sub-graph centrality. Since graph spectrum has close
relations with many graph characteristics and can provide
global measures for some network properties, the authors also
consider the following two spectral characteristics: the largest
eigenvalue of the adjacency matrix and the second smallest
eigenvalue of the Laplacian matrix. Alternatively, Zou et al.
[22] defined a simple method for evaluating information loss
on undirected and unlabelled graphs. The method is based
on the difference between the original and the anonymized
graph edges, cost(G, eG) = (E[ eE)� (E\ eE). Liu and Terzi
[14] used clustering coefficient and average path length for
the same purpose. Hay et al. [12] examined five properties
commonly measured and reported on network data: degree,
path length, clustering coefficient, network resilience and
infectiousness.

III. FRAMEWORK

It is important to emphasize that these generic information
loss measures only evaluate structural and spectral changes be-
tween original and anonymized data. That is, these measures
do not evaluate the data mining processes on anonymized
data, and as such, they are general or application-independent.
The analysis of specific and application-dependent quality
measures is an open problem. We consider in this paper the
case of an application in clustering.

Although it is possible to compare space and time com-
plexity of these works using the Big O notation, it is not
possible (or at least, not easy) to compare data utility and
information loss among relevant works in literature, since
they are evaluated using different methodologies and metrics.
Our objective is to provide a common framework to quantify
information loss on graph perturbation processes. To do so,
we will use generic information loss (GIL) measures and
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Fig. 1: Experimental framework. Each dataset is anonymized
from eG1 to eGp using some anonymization method. Next, we
compare the original and perturbed data using GIL measures
in order to quantify the noise introduced on the data. Then, we
do the same with real clustering processes and SIL measures.

specific information loss (SIL) measures based on clustering
processes.

As we have mentioned previously, in Section II, our
framework is focused on graph modification approaches. All
aforementioned methods share some properties that we use
to evaluate the data utility in our evaluation framework.
Specifically, the vertex set remains the same on perturbed
graphs, i. e. V = eV and n = en. However, the edge set changes
due to the randomization or constraint modification process,
i. e. E 6= eE, while the number of edges is usually modified
during the anonymization process, i. e. m 6= em. The number
of edges on perturbed graphs could be greater than the original
one, i. e. m < em, or smaller, i. e. m > em. Mainly, it depends
on algorithm’s edge modification technique, which could be
based on edge addition or edge removing.

Our experimental framework is shown in Figure 1. First,
we apply perturbation to graph datasets using some graph
modification approach. Each dataset is perturbed from eG1 to
eGp of edge set. Then, we evaluate original and perturbed data
using GIL measures for quantifying network structure (details
in Section IV). Next, we apply the clustering processes both
on original and perturbed data and we use clustering-based
specific measures (Section V) to evaluate the results.

IV. GENERIC INFORMATION LOSS MEASURES

We use different generic measures for quantifying net-
work structure. These generic measures are used to compare
both the original and the anonymized data to quantify the
noise introduced in the perturbed data by the anonymization
process. These generic measures evaluate some key graph’s
properties, which are relevant according to [4]. They evaluate
the graph structure, so they are general or, in other words,
application-independent. Information loss was defined by the
discrepancy between the results obtained from the original
and the anonymized data. In our experiments we use several
graph measures based on structural and spectral properties. In
the rest of this section we review the measures used.

Average distance (AD) is defined as the average of the
distances between each pair of nodes in the graph. It measures

the minimum average number of edges between any pair of
nodes. Formally, it is defined as:

AD(G) =

P
i,j dij�n
2

� (1)

where dij is the length of the shortest geodesic path from vi
to vj , meaning the number of edges along the path.

Another used measure is edge intersection [22], [14] (EI).
It is defined as the percentage of original edges which are
also in the anonymized graph. Formally:

EI(G, eG) =
|E \ eE|

max(|E|, | eE|)
(2)

Clustering coefficient [14], [12], [10], [7] (C) is a measure
widely used in literature. The clustering coefficient of a graph
is the average:

C(G) =
1

n

nX

i=1

C(vi) (3)

where C(vi) is the clustering coefficient for node vi. The
clustering of each node is the fraction of possible triangles
that exist. For each node the clustering coefficient is defined
by:

C(vi) =
2T (vi)

deg(vi)(deg(vi)� 1)
(4)

where T (vi) is the number of triangles surrounding node vi,
and deg(vi) is the degree of vi.

Transitivity [18], [19], [7] (T) is the fraction of all possible
triangles present in the graph. Possible triangles are identified
by the number of triads (two edges with a shared node), as
we can see in Equation 5.

T (G) =
3⇥ (number of triangles)

(number of triads)
(5)

Betweenness centrality [11] (BC) is a centrality measure,
which calculates the fraction of number of the shortest paths
that go through each node. This measure indicates the cen-
trality of a node based on the flow among other nodes in the
graph. A node with a high value indicates that this node is
part of multiple shortest paths in the graph, which will be a
key node in the graph structure. We define the betweenness
centrality of a node vi as:

BC(vi) =
1

n2

X

s,t

gist
gst

(6)

where gist is the number of geodesic paths from vs to vt that
pass through vi, and gst is the total number of geodesic paths
from vs to vt.

The second centrality measure is closeness centrality [11]
(CC), which is described as the inverse of the average distance
to all accessible nodes. Closeness is an inverse measure of
centrality in which a larger value indicates a less central node,
while a smaller value indicates a more central node. Formally,
we define the closeness centrality of a node vi as:

CC(vi) =
nP
j dij

(7)
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And the last centrality measure is degree centrality [11]
(DC). It evaluates the centrality of each node associated with
its degree. That is, the fraction of nodes connected to it. A
higher value indicates greater centrality in the graph. The
degree centrality of a node vi is depicted in Equation 8.

DC(vi) =
deg(vi)

m
(8)

The last three centrality measures described above evaluate
the centrality of each node of the graph from different
perspectives. These measures give us a value of centrality
for each node. To assess the perturbation introduced in the
graph by the anonymization process, we compute the vector
of differences for each node between the original and the
anonymized graph. Then, we compute the root mean square
(RMS) to obtain a single value for the whole graph. We
calculate the difference of the centrality measures between
the original and the anonymized graph as follows:

✏(G, eG) =

vuut 1

n

nX

i=1

(gi � egi)2 (9)

where gi is the value of the centrality measure for the node vi
of G, and egi is the value of the centrality measure for the node
vi of eG. In our experiments we use Equation 9 to compute
a value representing the error induced in the whole graph by
the anonymization process in the centrality measures.

We also focus on the largest eigenvalue of the adjacency

matrix A (�1) [18] where �i are the eigenvalues of A
and �1 � �2 � . . . � �n. The eigenvalues of A encode
information about the cycles of a graph as well as its diameter.
The spectral decomposition of A is:

A =
X

i

�ieie
T
i (10)

where ei is the eigenvector corresponding to �i eigenvalue.
The number of nodes, edges and average degree are not

considered parameters to assess anonymization process, since
anonymization methods analysed in this work keep these
values constant.

V. SPECIFIC INFORMATION LOSS MEASURES

Variations in the generic graph properties are a good way
to assess the information loss but they have their limitations
because they are just a proxy to the changes in data utility we
actually want to measure. For instance, the average distance
or the diameter could remain constant while the topology
of the network completely changes at the node level. What
we are truly interested in is, given a data mining task at
hand, quantify the disparity in the results between performing
the task on the original network and on the anonymized
one. We chose clustering because it is an active field of
research, which provides interesting and useful information
in community detection for instance. Therefore, the extracted
clusters/communities of nodes are the data utility we want to
preserve.

G eG

Original clusters

c(G)
Precision

index

Perturbed clusters

c( eG)

Anonymization

process a

Clustering

method c
Clustering

method c

Fig. 2: Framework for evaluating the clustering-specific infor-
mation loss measure.

A. Clustering

In this work we want to analyse the utility of the perturbed
data by evaluating it on different clustering processes. Like
generic graph measures, we compare the results obtained both
by the original and the perturbed data in order to quantify the
level of noise introduced in the perturbed data. This measure
is specific and application-dependent, but it is necessary to
test the perturbed data in real clustering processes.

We considered the following approach to evaluate the
clustering assignment made by a given clustering method c
using a particular graph perturbation method a: (1) apply
a to the original data G and obtain eG = a(G); (2) apply
c to G and eG to obtain the cluster assignments c(G) and
c( eG); and (3) compare c(G) to c( eG), as illustrated in Figure
2. In terms of information loss, it is clear that the more
similar c( eG) is to c(G), the less information loss. Thus,
clustering-specific information loss metrics should measure
the divergence between both cluster assignments c(G) and
c( eG). Ideally, if the anonymization step was lossless in terms
of data utility, we should have the same number of clusters
with the same elements in each cluster. When the clusters do
not match, we need to quantify the divergence.

For this purpose, we used the precision index [2]. Assuming
we know the true communities of a graph, the precision
index can be directly used to evaluate the similarity between
two cluster assignments. Given a graph of n nodes and q
true communities, we assigned to nodes the same labels
ltc(·) as the community they belong to. In our case, the true
communities are the ones assigned to the original dataset (i.e.
c(G)) since we want to obtain communities as close as the
ones we would get on non-anonymized data. Assuming the
perturbed graph has been divided into clusters (i.e. c( eG)),
then for every cluster, we examine all the nodes within it and
assign to them as predicted label lpc(·) the most frequent true
label in that cluster (basically the mode). Then, the precision
index can be defined as follows:

precision index(G, eG) =
1

n

X

v2G

1ltc(v)=lpc(v) (11)

where 1 is the indicator function such that 1x=y equals 1
if x = y and 0 otherwise. Note that the precision index
is a value in the range [0,1], which takes value 0 when
there is no overlap between the sets and value 1 when the
overlap between the sets is complete. To be consistent with
the notion of error for the generic graph properties, we report
1 - precision index in the results tables so that the lower,
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Fig. 3: Examples of our framework results. The horizontal axis
presents the anonymization (randomization % or k-anonymity
value), while vertical axis indicates the value of the original
graph (leftmost point) and the evolution during anonymization
processes.

the better.
Regarding the clustering methods c, we propose 4 graph

clustering algorithms to evaluate the edge modifications tech-
niques. All of them are unsupervised algorithms based on
different concepts and developed for different applications and
scopes. An extended revision and comparison of them can be
found in Lancichinetti and Fortunato [13] and Zhang et al.
[20]. The selected clustering algorithms are:

• Fastgreedy (FG) [9], a hierarchical agglomeration al-
gorithm for detecting community structure based on
modularity optimization.

• Walktrap (WT) [15] that tries to find densely connected
sub-graphs, i.e. communities, in a graph via random
walks.

• Infomap (IM) [16] that optimizes the map equation,
which exploits the information-theoretic duality between
the problem of compressing data and the problem of
detecting significant structures in the graph.

• Multilevel (ML) [1], a multi-step technique based on a
local optimization of Newman-Girvan modularity in the
neighborhood of each node.

Even though some algorithms permit overlapping among
different clusters, we did not allow it in our experiments by
setting the corresponding parameter to zero, mainly for ease
of evaluation.

VI. APPLICATION EXAMPLES

In this section we briefly present some hypothetical results
obtained by our experimental framework1. The framework
expects two input graphs, G and eG, and it returns a score error
for each GIL metric and a precision score for each selected
clustering algorithm.

Usually, researchers are interested in comparing the original
graph to a set of anonymous graphs obtained from the original
one (i. e. eG1, . . . , eGp), by applying different percentages of
randomization or different k values in k-anonymity-based al-
gorithms. Not only may this help to understand the behavior of
the datasets, but also to choose the best parameter according to
privacy and data utility requirements. An example is presented
in Figure 3. For instance, the perturbation of average distance
on anonymization percentage in range [0, . . . , 25%] can be

1R Source code at: https://bitbucket.org/jcasasr/data-utility-framework/

seen in Figure 3a. It is clear to see how this metric evolves
during anonymization process. Therefore, it can help us to
choose right algorithm’s parameters to fulfill data utility and
privacy constraints. A similar example is presented in Figure
3b, where the precision score clearly shows the behavior of
two different methods over a set of k 2 [1, . . . , 10].

VII. CONCLUSIONS

In recent years several anonymization algorithms have
appeared to protect users’ privacy. However, it is quite difficult
to compare data utility among them, since each work usually
uses different measures to compute and evaluate information
loss. In this paper we have proposed a framework to eval-
uate data utility and information loss on privacy-preserving
graph data. We claim that some generic information loss
measures can be used to compute and evaluate information
loss. Nevertheless, metrics related to application-specific real-
world problems must be defined and used to compute and
compare data utility among methods and algorithms in litera-
ture. Our framework provides a standard way to compute both
metrics and can be easily used to perform comparisons among
graph modification techniques (including random-based and
constrained-based methods).

Many interesting directions for future research have been
uncovered in this work. It would also be interesting to consider
other specific information loss measures, such as those related
to information flow or remaining ratio of top influential users.
It would be also thought-provoking to extend this analysis to
other graph’s types (directed or labelled graphs, for instance).

ACKNOWLEDGEMENTS

This work was partly funded by the Spanish MCYT and the
FEDER funds under grant TIN2014-57364-C2-2-R “SMART-
GLACIS”.

REFERENCES

[1] Blondel, V. D., Guillaume, J.-L., Lambiotte, R., and Lefebvre, E. (2008).
Fast unfolding of communities in large networks. Journal of Statistical
Mechanics: Theory and Experiment, Vol. 2008(10), P10008.

[2] Cai B-J, Wang H-Y, Zheng H-R and Wang H (2010) Evaluation
repeated random walks in community detection of social networks. In:
2010 International Conference on Machine Learning and Cybernetics
(ICMLC). IEEE Computer Society, Qingdao, pp 1849-1854

[3] Casas-Roma, J. (2014). Privacy-Preserving on Graphs Using Random-
ization and Edge-Relevance. In V. Torra (Ed.), International Conference
on Modeling Decisions for Artificial Intelligence (MDAI) (pp. 204-216).
Tokyo, Japan: Springer International Publishing Switzerland.

[4] Casas-Roma, J., Herrera-joancomartı́, J., and Torra, V. (2015).
Anonymizing Graphs: Measuring Quality for Clustering. Knowledge
and Information Systems (KAIS), Vol. 44(3), pp. 507-528

[5] Casas-Roma, J., Herrera-joancomartı́, J., and Torra, V. (2016). k-Degree
Anonymity And Edge Selection: Improving Data Utility In Large
Networks. Knowledge and Information Systems (KAIS), Vol. 50(2),
pp. 447-474

[6] Casas-Roma, J., Herrera-Joancomartı́, J., and Torra, V. (2017).
A survey of graph-modification techniques for privacy-preserving
on networks. Artificial Intelligence Review, 47(3), 341-366.
http://doi.org/10.1007/s10462-016-9484-8

[7] Chakrabarti D and Faloutsos C (2006) Graph mining: Laws, generators,
and algorithms. ACM Comput Surv 38(1):2:1-2:69

[8] Dwork C (2006) Differential Privacy. In: Proceedings of the 33rd
International Conference on Automata, Languages and Programming
(ICALP). Springer-Verlag, Berlin, pp 1-12

[9] Clauset, A., Newman, M. E. J., and Moore, C. (2004). Finding com-
munity structure in very large networks. Physical Review E, Vol. 70(6),
66111.

[10] Girvan M and Newman MEJ (2002) Community structure in social and
biological networks. Proc Natl Acad Sci USA 99(12):7821-7826

RECSI XV: Sesión 4.Privacidad y Anonimato

127



[11] Hay M, Miklau G, Jensen D, Weis P and Srivastava S (2007) Anonymiz-
ing Social Networks. Report, University of Massachusetts Amherst

[12] Hay M, Miklau G, Jensen D, Towsley D and Weis P (2008) Resisting
structural re-identification in anonymized social networks. Proc VLDB
Endow 1(1):102-114

[13] Lancichinetti, A., and Fortunato, S. (2009). Community detection algo-
rithms: a comparative analysis. Physical Review E, Vol. 80(5), 56117.

[14] Liu K and Terzi E (2008) Towards identity anonymization on graphs.
In: Proceedings of the ACM International Conference on Management
of Data (SIGMOD). ACM Press, New York, pp 93-106

[15] Pons, P., and Latapy, M. (2005). Computing Communities in Large
Networks Using Random Walks. In Computer and Information Sciences
(ISCIS), Vol. 10, pp. 284293. Springer Berlin Heidelberg.

[16] Rosvall, M., and Bergstrom, C. T. (2008). Maps of random walks
on complex networks reveal community structure. Proceedings of the
National Academy of Sciences, Vol. 105(4), pp. 11181123.

[17] Sweeney L (2002) k-anonymity: a model for protecting privacy. Int J
Uncertain Fuzziness Knowl Based Syst 10(5):557-570.

[18] Ying X and Wu X (2008) Randomizing Social Networks: a Spectrum
Preserving Approach. In: Proceedings of the SIAM International Con-
ference on Data Mining (SDM). SIAM, Atlanta, pp 739-750

[19] Ying X, Pan K, Wu X and Guo L (2009) Comparisons of randomization
and k-degree anonymization schemes for privacy preserving social
network publishing. In: Proceedings of the 3rd Workshop on Social
Network Mining and Analysis (SNA-KDD). ACM Press, New York,
pp 10:1-10:10

[20] Zhang, K., Lo, D., Lim, E.-P., and Prasetyo, P. K. (2013). Mining
indirect antagonistic communities from social interactions. Knowledge
and Information Systems, Vol. 35(3), pp. 553583.

[21] Zhou B and Pei J (2008) Preserving Privacy in Social Networks
Against Neighborhood Attacks. In: Proceedings of the 24th Inter-
national Conference on Data Engineering (ICDE). IEEE Computer
Society, Washington, pp 506-515
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