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Abstract. In this paper we present a multi-stage classifier for magnetic
resonance spectra of human brain tumours which is being developed as
part of a decision support system for radiologists. The basic idea is to
decompose a complex classification scheme into a sequence of classifiers,
each specialising in different classes of tumours and trying to reproduce
part of the WHO classification hierarchy. Each stage uses a particular
set of classification features, which are selected using a combination of
classical statistical analysis, splitting performance and previous knowl-
edge. Classifiers with different behaviour are combined using a simple
voting scheme in order to extract different error patterns: LDA, decision
trees and the k-NN classifier. A special label named “unknown” is used
when the outcomes of the different classifiers disagree. Cascading is also
used to incorporate class distances computed using LDA into decision
trees. Both cascading and voting are effective tools to improve classi-
fication accuracy. Experiments also show that it is possible to extract
useful information from the classification process itself in order to help
users (clinicians and radiologists) to make more accurate predictions and
reduce the number of possible classification mistakes.

1 Introduction

'H Magnetic Resonance Spectroscopy (MRS) [1] is attracting much attention for
non-invasive diagnosis of brain tumours. These tumours currently present a diffi-
cult clinical problem: the oncologist needs to know the type of cell from which the
cancer originates, as well as the “grade”, or degree of malignancy, before choos-
ing appropriate therapy. Some benign tumours respond well to surgery, whereas
more aggressive types that are essentially incurable may respond temporarily
to palliative treatment. Radiological examination by MRI does not usually give
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conclusive diagnoses, and an incorrect diagnosis could result in the patient fail-
ing to receive life-saving treatment. Consequently, the current “gold standard” is
stereotactic biopsy followed by histopathology. Biopsy of the brain is expensive,
unpleasant for the patient and sometimes has severe side effects, with even occa-
sional deaths. There is thus much interest in MRS, which is a totally non-invasive
method - nothing is injected or biopsied. 'H MRS of brain tumours can be per-
formed with many hospital MRI instruments, after slight modification. It gives
a spectrum in which the peaks represent signals from hydrogen atoms in chem-
icals within the tumour. Different tumour types contain characteristic patterns
of chemicals, and there are also patterns associated with greater or lesser degrees
of malignancy. However, visual interpretation of these spectra is difficult, with
many ambiguous cases, and few doctors are trained in it. Consequently, clinical
MRS is little used at present, and there have been many attempts to develop
automated classification procedures. Hitherto, these have only worked with ar-
tificial datasets in which the spectra are drawn from a few well-characterised
tumour types [2| Bl [4]. Our study is the first, to our knowledge, to tackle the
“real world” problem in which an unknown brain tumour can represent any pos-
sible tumour type or grade, and to make classifications according to the standard
WHO categories.

There are some fundamental problems when developing an automatic proce-
dure for classifying brain tumour spectra. There is a long list of tumour types
[5], some of which are very rare. In addition, some diagnostic criteria are of
fundamental importance (e.g. “is it benign or malignant?”) whereas others are
of merely academic significance. Furthermore, some spectra are less satisfactory
than others, either for technical reasons or because the tumour itself contains
areas of cyst or haemorrhage. Developing a classifier that can take a spectrum
from any undiagnosed tumour and assign it unequivocally to the appropriate
class, may therefore not be possible. But this is not necessarily an important
goal as in most cases there will be much useful evidence from factors such as
the clinical presentation or the anatomical MRI that narrow down the diagnos-
tic possibilities. We have therefore approached this as a multi-stage problem.
Ideally, the system would: reproduce the WHO classification grading structure:
perform well when the number of samples is low; use previous knowledge about
the problem; be robust when the training data might contain errors, since the
“gold standard” pathology classification is not always 100% accurate; and fi-
nally, help the users to extract relevant information from the classifier, rather
than provide (possibly more accurate) “black box” classifiers that they cannot
understand. In addition we need a method for selecting the best points or regions
of the spectra for classification, since an MR spectrum is a vector of between
512 and 4096 spectral intensities.

Decision trees [6] allow us to build classifiers that partially fulfil all these
requirements. Previous experiments [7] with MR spectra show that different
classifiers make different mistakes. This can be exploited using a simple vot-
ing scheme which labels as “unknown” those samples where different classifiers
disagree. An advantage of combining several classifiers in a multi-stage scheme
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is that different features (i.e. points or regions of the spectra) may be used at
different levels. Several classifiers may be used to establish a minimum threshold
to ensure class, or “unknown” and, when two classifiers disagree, this fact may
be used to find (or indicate the possibility of) mixtures of two or more classes.

This paper is organised as follows: Section 2] describes the structure of the
tumour classification problem and the available data sets and pre-processing.
Section [3] describes the classifiers used and the multi-stage scheme. Section @ de-
scribes the experiments and Section [f] summarises the conclusions and proposes
future work.

2 Classification of MR Spectra

2.1 Data

The spectra were acquired at three clinical centres: Institut de Diagnostic per la
Imatge (IDI) Bellvitge, Spain, Centre Diagnostic Pedralbes (CDP) Barcelona,
Spain, and St. George’s Hospital (SGH), London, U.K. One short echo *H (20
or 30 ms) spectrum was acquired for each patient. Prior to entering the spectra
into the analysis, strict quality control and validation procedures were applied
to all the data. Following biopsy, the pathology slides for each case was ex-
amined by a panel of neuro-pathologists to provide a consensus diagnosis (see
http://carbon.uab.es/INTERPRET /cdap.html). Only those tumour classes for
which we had at least 4 representatives were used. This resulted in the following
classes of spectra: 81 astrocytomas (18 grade II, 6 grade III, and 57 grade IV),
32 metastases, 37 meningiomas, 6 oligodendrogliomas, 6 lymphomas, 5 primitive
neuroectodermal tumour (pnets), 4 schwannomas, 4 haemangioblastomas and 14
samples from normal volunteers. Figure [l shows a plot of a typical spectrum.

2.2 Pre-processing

All spectral processing (from raw signal to processed spectrum) was carried
out automatically using a set of stand-alone programs developed (in C) for the
decision support tool. The intensities in frequency region known to represent the
major peaks was extracted from each spectrum and the resulting vector (of 512
intensity values) was then normalised to have norm Ly = 1. We do not use all
512 points, because only those in range [0.5, 4.2] ppmﬂ are considered to have
relevant information for tumour classification, giving a total of 195 variables,
from v151 (4.2 ppm) to vsgs (0.5 ppm).

3 Combining Classifiers

Combining classifiers with different bias-variance decomposition behaviour, can
reduce both bias and variance and thus improve classification error [§]. In this

! the ppm scale defines the positions of the peaks with respect to a predefined reference.



Classifier Combination for In Vivo Magnetic Resonance Spectra 285

30000

Cho spectra
25000 J
20000

mlo

ﬂ Cr

15000 A
/\/U \ ) / \ NAA

10000 f

5000 N/J I W W”\\A& "

-5000

Fig. 1. A typical spectrum from a grade II astrocytoma, showing the position
of the peaks representing myoinositol (mlo), choline (Cho), creatine (Cr) and
N-acetylaspartate (NAA).

paper we describe how we build a sequence of classifiers each specialising in
a concrete problem, and combine them in a way that allows the extraction of
different information about the samples being classified. We decided to develop
a multi-stage classification system that reproduces the hierarchical structure
of the WHO tumour classification that is used by clinicians. Three different
types of classifiers are used: linear discriminant analysis (LDA) [9], decision
trees [6] and the nearest neighbour classifier (k-NN) [T0]. These classifiers were
chosen because LDA is simple and interpretable (it is easy to show results and
reasons), and good for small sample set sizes. Nevertheless, it may not be very
accurate depending on the complexity of the boundaries defined by the different
tumour classes and whether or not these overlap, or are mixtures. Decision trees
are also simple and interpretable (when using orthogonal splits). They have
a good generalisation performance and may include a priori knowledge about
the problem being solved. Finally, the k-NN classifier is very simple and fast
when the number of samples and data dimensionality are small. No training is
needed, and as the number of samples is small, no special techniques for reducing
nearest neighbour cost are required. Experiments show that the optimal value
for k is very sensitive to the number of samples available for each class, so we
try several values for k£ choosing the smallest k yielding a good generalisation
error. Other methods (support vector machines or neural networks, for example)
generally require more samples than we have available or do not allow the users
to interpret results easily.
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Fig. 2. Cascading and voting architecture for each classification stage. The LDA
classifier and the decision tree (DT) are cascaded and then combined with the
k-NN classifier using a simple voting scheme (V).

At each stage, two classifiers are built: a k-NN classifier and a decision tree.
The results of both classifiers are combined using a voting scheme with a very
simple rule: if both outcomes agree, the label will be the outcome of the voting
scheme, otherwise, generate “unknown”. The basic idea of combining £-NN and
decision trees is to exploit their different behaviour to improve classification per-
formance. Since they try to solve the same problem using different approaches,
they may make different mistakes. When enough data is available, LDA is used
with decision trees as the first stage of a cascading ensemble [11]; the latter uses
the class distances and transformed points computed by LDA. Figure B shows
the combined cascading and voting scheme used at each stage of the classifica-
tion system. Cascading can be thought of as the process of asking a sequence
of experts to give a decision. The cheapest (simplest) expert is consulted first
and then the information that it provides is passed to the next expert in the
sequence, and so on. The second expert decides whether to use this additional
information or not.

3.1 Feature Selection

It is known that different points from the spectra provide plausible biochemi-
cal explanations for discriminating between tumour classes. We use this “prior”
knowledge to select the points used as classification features. Trying to build a
classification system using LDA or the k-NN classifier using the 195 input vari-
ables is pointless: data dimensionality is too high and the number of samples for
several classes is too small. It is important to include only those variables which
are relevant to the classification problem. A classical correlation analysis may
be used to find the points with higher discriminating properties. A decision tree
can also be used to find other classification variables that remain hidden using
correlation analysis: at each stage we take the data set containing the samples
from the classes being classified, and a limited depth decision tree (three or four
levels is enough for such small data sets) is built without any pruning. For each
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split we rank classification features according to its splitting performance, and
(depending on the stage and data set being considered), the first or the two first
classification features are selected. Then, all these variables that have statistical
significance for classification purposes are checked with an expert spectroscopist
and those that cannot represent known metabolites are discarded. This approach
has been successfully used previously Ml [7].

3.2 The “Unknown” Class

As described in the previous section, when the two classifiers of the same stage
disagree, the outcome of the classifier is “unknown”. This value may also be used
to label those predictions made by a decision tree with a small margin. This
margin is defined for each leaf as the probability of making a right prediction
minus the probability of making a mistake. Therefore, the new labelling rule for
a leaf 7 is

15(t) = {li(t) if P{ti(z) =y} — P{ti(x) £y} > €

g “unknown” otherwise.

where t;(x) is the computed label using majority voting. This allows us to discard
those samples that fall in leaves which contain elements from several classes. The
value for € depends on the number of classes and it is determined empirically. A
similar approach has been successfully used in [12].

4 Experimental Results

The classification system was split into four stages: 1) discriminates between
tumour and normal samples, 2) tries to classify tumour samples as benign or
malignant, 3) tries to separate malignant tumours according to their malignancy
grade and in 4) several classifiers are built for each malignancy grade in order
to discriminate between WHO tumour classes. Each experiment was carried as
follows: at each stage, the original data set containing all samples related to
such stage is split using N-fold cross-validation (NFCV) with N = 10 following
the recommendations of [9] for small size data sets. This process is repeated
five times and all results are averaged, resulting in a total of 50 experiments at
each stage. Decision trees were built using entropy as the splitting criterion and
pruned back using tree size and misclassification error as complexity measures.

4.1 Stage 1: Tumour Vs. Normal

Separating tumours from normal samples is the easiest stage. It is well known
that, unless the voxel (volume from which the spectra is acquired) has been
placed in a region where an aggressive infiltrating tumour is mixed with brain
parenquima, tumour samples have little or no N-Acetylaspartate (NAA) which
is shown by a peak at 2.0 ppm. In addition, tumours have much higher choline
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levels (shown by a peak at 3.22 ppm). When a decision tree was used for feature
selection, two regions were detected as the most important for separating the
two groups: the NAA peak and the Creatine peak (around 3.03 ppm). Thus,
we selected variables vagp (Choline), va1o (Creatine), and vz (NAA). Using a
k-NN classifier with k = 1, a 99.3% classification accuracy is achieved, showing
that this first stage can be fully automated with almost no intervention by
the radiologist. Two of the samples were misclassified: S1 and S2. When the
spectra were visually inspected it appeared that this may have been due to
the fact that the voxel from which the spectra were obtained included a large
proportion of normal brain parenquima (due to voxel mispositioning). A decision
tree was also built using the same points. In this case, classification accuracy
is 99.2%, and two samples are misclassified: S1 again, and a normal sample
misclassified as tumor (S3). Decision trees always use vags to separate tumors
from normal samples. If we combine the outcomes of the two classifiers, only
one sample remains unclassified, S1. For the other two samples, the generated
label is “unknown”, as both outcomes disagree. This fact can be used to alert
the spectroscopist to place the voxel in another position.

4.2 Stage 2: Malignant Vs. Benign Tumours

All samples labelled as tumour by the previous classifier are used to build a new
classifier which tries to determine whether a tumour is malignant or not. Menin-
giomas and schwannomas are benign tumors, the rest are malignant or have
malignant potential. We also have several tumors which are in the borderline
(haemangioblastomas), and it would be useful to identify them. However, there
are only four samples of these. Since haemangioblastomas are considered benign
tumors, but with uncertain malignant potential, we decided to treat them as
benign and delay final classification to an optional third stage. Six points were
used as classification features: vaqq4 (2.36 ppm, glutamate, glutamine and macro-
molecules), v172 (3.74 ppm, glutamate, glutamine, alanine), va1p (2.98 ppm, cre-
atine), vig1 (3.38 ppm), vis9 (3.99 ppm) and wvsps (1.22 ppm, lipid/lactate).
We tested several values for k, and k = 3 produced the best classification per-
formance. LDA and decision trees were tested alone but also in a cascading
ensemble. Table[Il shows the results for this stage. Notice that cascading reduces
decision tree misclassification error noticeably.

4.3 Stage 3: Malignancy Grade

The third stage tries to establish the malignancy grade for those samples clas-
sified as malignant tumours by the previous stage. We do not try to separate
benign tumours into meningiomas, schwannomas and haemangioblastomas be-
cause we only have 4 samples of the two last tumour classes as compared with
the 37 meningiomas, and the results we obtain are completely biased towards
accurately classifying meningiomas, even if we force equal a priori probabili-
ties. This will be accomplished when new samples are available. Determining
the degree of malignancy is important, because it gives an indication of the
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Table 1. Left table: classification accuracy for each classifier, the cascading
ensemble and the resulting voting scheme. P is the percentage of samples not
classified as “unknown”, and E is the misclassification error. Right table: con-
fusion matrix for the voting scheme. 3 is the percentage of tumours classified as
a class that really belong to such class.

classifier P E - -
fi class  |benign|malignant|unknown|total
LDA — 10.1682 -
benign 139 31 48 218
NN (k=3) | — [0.1235 :
malignant| 12 582 38 632
Tree — 10.0894
total 151 163 86 850
LDA + Tree — 10.0788 3 921% | 94.9%
Voting scheme|89.9%]0.0563 ° 0

patient outcome, and may determine the treatment prescribed. We use three
malignancy grades commonly accepted, labelled low, medium and high. Low
grade (WHO grade II) consists of low-grade astrocytomas, oligo-astrocytomas
and oligo-dendrogliomas. Medium grade (WHO grade III) consists of astrocy-
tomas (and anaplastic oligoastrocytoma, but we do not have enough samples to
include them in our experiments). Finally, high grade (WHO grade IV) includes
metastasis, glioblastomas, pnets and lymphomas. Results are shown in Table 2]
The variables selected for this stage are vig1, v201, V309, V317, V264 and vig7.

Table 2. Left table: classification accuracy for each classifier, the cascading
ensemble and the resulting voting scheme (no cascading). Right table: confusion
matrix for the voting scheme (no cascading).

classifier P E class | low |medium| high |[unknown|total
LDA — 10.2154 low 57 0 8 55 120
kE-NN (k=5) | — 0.1815 medium| 4 0 17 9 30
Tree — 10.1108 high 8 0 451 41 500
LDA + Tree — 10.1231 total 69 0 476 105 650
Voting scheme|83.8%](0.0679 8 182.6% — |94.7%| — —

Notice that in this case cascading does not improve tree performance. The
reason is that we only have 6 samples for medium grade tumours and LDA
performs poorly. Furthermore, those samples do not form a cluster, so k-NN
makes also a lot of mistakes, and therefore, not any sample is labeled as medium
grade. Because grade III is an intermediate stage, classifying medium grade
tumours is often a problem even for the pathologists.

4.4 Stage 4: Tumour Class

The last stage of our classifier consists of two different classifiers. The first one
tries to separate low-grade tumours into oligos (both oligo-astrocytomas and
oligo-dendrogliomas) and astrocytomas. The second classifier tries to separate
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high-grade tumours in primary tumours and metastasis, and then primary tu-
mours in glioblastomas, lymphomas and pnets.

Low grade malignant tumours A very simple classifier for separating low-
grade astrocytomas and oligodendrogliomas was built using ves7, v172 and vig;.
Table Blshows the results for this classifier. Using only these three points, results
are very good. Cascading drops misclassification error of the decision tree from
0.12 to 0.08, even with a high misclassification error of the LDA classifier.

Table 3. Left table: Classification accuracy for each classifier, the cascading
ensemble and the resulting voting scheme. Right table: confusion matrix for the
voting scheme.

Elgf@ﬁﬁ i 0]1;1 class| astro | oligo |[unknown|total
NGy 010 astro| 64 0 8 72
Tree — o012 oligo] 4 | 16 8 |28
DA T Tres — 003 total| 68 16 16 100
Voting scheme|84.0%](0.0476 B_|94.1%]100.0% — —

High grade malignant tumours This is probably the most difficult question
nowadays related to tumour classification, since this is the most common tumour
group, and the different tumour types within it are those the radiologists most
easily confuse when using MRI. This classifier is in fact a two-stage classifier: the
first one tries to separate primary tumours from the rest (metastasis). The second
one tries to identify each one of the primary tumour classes (glioblastomas,
lymphomas and pnets). Due to the lack of space, we only show results for the
first classifier, which is in fact the hardest problem to solve. Furthermore, we only
have a few lymphomas and pnets, so our results are biased towards glioblastomas.
We used V317, V304, U242, U236, U215 and V220 Table [m shows the results for this
classifier. We decided to include the cascading ensemble into the voting scheme
results because 3 values are more balanced. Notice that these results are the
worst, as they correspond to the hardest problem we try to solve in this paper.

Table 4. Left table: Classification accuracy for each classifier, the cascading
ensemble and the resulting voting scheme. Right table: confusion matrix for the
voting scheme.

El](;sAszﬁer i 0 59 5 class  |primary|secondary|unknown|total
NN (E=5) | — [0.326 primary 278 3 59 340
Troe — 013 secondary| 62 32 66 160
LDA T Tree — 10218 total 340 35 125 500
Voting scheme|75.0%|0.1733 B 81.8% | 914% — —
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5 Conclusions and Future Work

In this paper we have presented a multi-stage classifier for classification of 'H
MR spectra from brain samples. Our goal was to build a classification system
which may help clinicians to take decisions and learn from the classification
process itself. Several conclusions may be drawn:

— The inherent hierarchical structure of the tumour classification problem is
well described using a sequential combination of classifiers.

— Each stage uses its own set of classification features reducing classification
cost and learning algorithm resilience.

— When the number of samples for each class is large enough, cascading im-
proves decision tree performance, using LDA as a first classifier.

— Combining several classifiers with different bias-variance behaviour under
a voting scheme allows us to have partial classification and a more robust
classification system.

Further work is in progress to improve the classification results, but also
to learn more about the classification process itself: which tumor classes are
misclassified more often, which stage is more critical, system response to rare
tumors, and so. Cascading not only at each stage but also between stages is
also an interesting subject of study. A completely independent test set is being
prepared to test the performance of the classification path developed, so we will
be able to check our classification system in a real scenario.
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