
Experimental evaluation of anonymous protocols
under the JXTA middleware

Joan Arnedo-Moreno, Noemı́ Pérez-Gilabert, Marc Domingo-Prieto

Internet Interdisciplinary Institute (IN3)

Universitat Oberta de Catalunya

Carrer Roc Boronat, 117 , 7a planta 08018 Barcelona, Spain

jarnedo,nperezg,mdomingopr@uoc.edu

Abstract—JXTA is a peer-to-peer (P2P) middleware which
has undergone successive iterations through its 10 years of
history, slowly incorporating a security baseline that may cater to
different applications and services. However, in order to appeal to
a broader set of secure scenarios, it would be interesting to take
into consideration more advanced capabilities, such as anonymity.
There are several proposals on anonymous protocols that can be
applied in the context of a P2P network, but it is necessary to
be able to choose the right one given each application’s needs.
In this paper, we provide an experimental evaluation of two
relevant protocols, each one belonging to a different category
of approaches to anonymity: unimessage and split message. We
base our analysis on two scenarios, with stable and non-stable
peers, and three metrics: round trip-time (RTT), node processing
time and reliability.1

Keywords: peer-to-peer, JXTA, Java, anonymity, experimental

evaluation, onion routing, rumor riding.

I. INTRODUCTION

JXTA [1] is a technology that enables the deployment of

peer-to-peer (P2P) applications, allowing a set of heteroge-

neous devices to form groups and publish services in a self-

organized manner. JXTA has matured through its 10 years of

history, undergoing successive iterations that have improved

its capabilities. In the latest version at this date, JXTA 2.7 [2],

available since March 2011, special emphasis was made to

a long forgotten topic: security. Special care has been taken

to ensure that now its is possible to effectively use secure

endpoint connections, by means of secure sockets, providing

an adequate degree of privacy and authentication.

Once a satisfactory security baseline has been established

with these additions, it would be interesting to move forward

towards providing support for more complex scenarios, which

require advanced security services. An example of them is

message anonymity, which may consider privacy a necessary

but not sufficient requisite, and goes in the opposite direction

regarding authentication. Alas, in order for messages to remain

truly anonymous, it is not enough that the system just hides

source message information to the users at the upper protocol

layers, or such data is managed only by a trusted entity. It must

not be actually possible for anybody within the P2P network

to discover the message source and/or destination, regardless

1This work was partly funded by the Spanish Government through
projects TSI2007-65406-C03-03 ”E-AEGIS”, TIN2011-27076-C03-02 ”CO-
PRIVACY” and CONSOLIDER INGENIO 2010 CSD2007-0004 ”ARES”.

of their role. Providing complete anonymity at all levels may

greatly benefit several kind of applications and services, such

as auctioning or evaluation systems, since participation may

be encouraged by hiding the user’s identity.

Currently, there is a broad selection of anonymity protocols

which may cater to a P2P middleware such as JXTA, each

one using a quite different approach to this problem. However,

proposals tend to be evaluated from a qualitative standpoint,

their exclusive goal being hiding the identity of participants

in a communication exchange, at whatever the cost. In fact,

anonymous protocols have a high cost, and comparing them

to non-anonymous communications would not be fair, but,

nevertheless, it is important to assess whether such cost may

be too high under some scenarios or application constraints.

In the cases where a quantitative analysis exists, the differing

methods (simulation based on logs or theoretical models,

experiments using filesharing middlewares, instead of service

oriented ones) make it difficult to make a clear comparison

between them. Therefore, the only way to be sure which

protocol would better suit JXTA is by actual experimentation

under this particular middleware.

In this paper we present a quantitative analysis of two

significative protocols, each using a different approach. The

contributions of this paper are twofold. First and foremost, it

provides an empirical study of the protocols’ behavior under

the JXTA middleware and its ability to integrate differing

anonymous protocols when they operate within the context of

a service oriented peer group. This provides an insight about

its capability to efficiently incorporate anonymity services

into its structure and assess which protocol may be more

adequate to JXTA’s idiosyncracies. Finally, this study can also

be considered a general analysis of the chosen anonymous

protocols on an even playing field: using exactly the same

P2P substrate and lower level protocols and under the same

set of conditions, something which, up to our knowledge, is

seldom found in the current literature on this topic.

This paper is structured as follows. In Section II, a brief

overview of the chosen anonymous protocols is provided. Sec-

tion III presents the experimental testbed and the parameters

chosen for the analysis. The results of such analysis are shown

and then discussed in Section IV. Finally, Section V draws

some conclusions and provides insights on future work.

2012 15th International Conference on Network-Based Information Systems

978-0-7695-4779-4/12 $26.00 © 2012 IEEE

DOI 10.1109/NBiS.2012.28

52

II. PROTOCOLS OVERVIEW

A survey of the most popular anonymous protocols can be

found in [3]. The protocols are organized using a taxonomy

based on three main categories, based on their approach to

achieve anonymity: unimessage, split message and replicated

message. The analysis gives special emphasis to the two

former categories, and quickly dismisses the third one as

too costly, since, directly citing the study, “the cryptographic

overhead is accordingly tremendous”. Therefore, for our study,

a significative protocol from only these two categories has

been chosen. This section provides a general overview of each

protocol, so it is easier to understand their idiosyncracies and

the main differences between each approach. Nevertheless,

a much more in depth description of each protocol can be

obtained from the original sources.

A. Unimessage protocol

In unimessage protocols, the original message is sent as a

single entity through a random sequence of proxies before

it reaches the destination. The original data is handled in

such a manner that none of the proxies are able to discern

whether a message has been received from the the original

source or another proxy. The same happens regarding the final

destination whenever the message is forwarded.

For our study, we have chosen the onion routing protocol

[4], using a fundamental path-based approach, in a similar

vein as the one used by the well known Tor infrastructure

[5]. The main reason being that it is the most popular kind of

anonymous protocol, not only from this category, but between

all of them.

Under this approach, the proxies are labelled Onion Routers
and a path of Onion Routers is pre-constructed by the sender

before the message is sent. The message is repeatedly en-

crypted in a manner that, during transit towards the destination,

a single encryption layer can be taken out, one at a time, at

each Onion Router. Each time a layer is peeled off, only the

identity of the next hop is disclosed, but whether this next hop

is the final destination or not is unknown to the Onion Router.

Thus, at each hop, the message gets nearer to the destination,

but, given a message at any stage of the transmission, it is

not possible to know the identities of both the sender and the

destination. This behavior is summarized in Figure 1.

Fig. 1. Onion Routing message forwarding mechanism (S: Sender, D:
Destination).

B. Split message protocol

This category groups protocols which don’t send the original

message as a single entity, but split into different parts which

are sent across the network and must be somehow recollected.

This is usually achieved using threshold systems [6], where a

secret is split into n parts, which are distributed through the

network. It is enough that t parts (t < n) are gathered to

be able to recover the original secret. This idea is directly

applied to messages, which take the role of the shared secret,

distributed among the peers. The peer which is able to recover

the secret is the one that finally transmits the data, acting on

behalf of the actual sender, and thus hiding its identity.

From the different available protocols using this approach,

Rumor Riding [7] has been chosen, being the most recent one

at this date. Its behavior is summarized in Figure 2. When a

peer, the initiator I , wishes to issue an anonymous message,

an AES [8] symmetric key is generated and used to encrypt the

query. Both the key and the ciphertext are arranged into dif-

ferent packets, called rumors, which are separately forwarded

across the network following a random walk algorithm. The

rumor’s Time-To-live (TTL) is adaptatively chosen so there is

a high probability that, at some time, they will have crossed

the same peer. That peer, the sower SI , is able to decrypt

the ciphertext and retrieve the original query. Then, SI acts

on behalf of the initiator, probabilistically flooding the query

across the network until it reaches any peer able to process

it, the responder R. Since queries are related to document

retrieval, more than one responder may exist.

Fig. 2. Rumor Riding protocol messaging (I: Initiator, R: Responder).

Once the query has been processed, the response is sent

back from R to I using a similar strategy. However, this

time the response is encrypted using I’s public key prior to

rumor generation. Then, a new pair of rumors is forwarded

until they have crossed a new sower, SR. However, the

53

response is not recovered at SR, but the response rumors are

directly submitted to SI . From SI , both rumors independently

backtrack the path the query rumors took at the start of the

protocol, until they converge at I , which is the only peer able

to recover the plaintext response.

III. EXPERIMENT DESCRIPTION

The chosen testbed to deploy our experiments was Planet-

Lab [9], an open, globally distributed network service platform

surpassing the mark of 800 nodes spanning over several

countries. Because of its attractive features, PlanetLab has

practically gained the status of a standard for conducting

large scale experiments between nodes spread across the

Internet. Nevertheless, to get the best out of it, some of its

limitations must be previously taken into account and some

good practices have to be followed [10]. The details on how

the chosen anonymous protocols were adapted to the specifics

of the JXTA platform at its service layer can be found in

our previous work [11], [12]. Our experiments were directed

towards assessing three metrics: RTT, processing time required

by the protocol algorithm at each node whenever a message

is received, and reliability, measured as amount of messages

lost given the total number of messages sent.

Each experiment was divided into a set of 10 individual

tests. For each test, a JXTA peer group, composed by 32

peers, was created, in such a manner that individual peers

were deployed in separate nodes at random locations. Such

number of peers was chosen according to the typical maximum

value for peer group size in a JXTA network [13]. Using

this approach, we could test the behavior of the peer group

under different network configurations, using different sets

of nodes. Anonymous requests between peer group members

were randomly generated according to a parameter p, with a

value between 0 and 1. Each individual test in an experiment

was divided in 250 time slots, each slot 5 seconds long.

During a time slot, peers had a p probability to actually send

a request to a random node. By increasing and decreasing

the value of p, we could increase and decrease the expected

amount of requests in the network at a given time, but still

maintaining a random aspect, instead of generating them at a

fixed predictable rate. Each test is considered concluded when

the last response is actually received (which may happen some

time after the 250th slot). We ran experiments for values of

p = 0.2, 0.4, 0.6, 0.8 and 1.0.

The respective values for number of time slots and slot

length were chosen by executing some preliminary tests using

different values and taking initial measurements on expected

RTT. From these tests, we could estimate a value that guar-

anteed that, in most cases, messages were sent at a rate that

would not clutter requesting nodes with too many pending

unanswered requests. In addition, we observed that PlanetLab

nodes tended to become unresponsive after some time, and

therefore, it was difficult to guarantee that most peer group

members would remain active for long test lengths. From

these observations, we decided to limit each individual test

to about 20 minutes long, and wait about 5 seconds between

requests. It must be admitted that the chosen values cannot

be used as a generalization for any application environment,

since PlanetLab nodes are shared with other applications,

executed by other researchers at the same time, which may

affect its behavior. However, since the goal of our study is

comparing the protocols, and not actually measuring its overall

performance, we considered it is good enough that they are just

always executed under equal and fair, but minimally sensible

and justifiable, conditions.

Once the basic experiment layout was established, we

deemed interesting to execute them, given a protocol and a

value of p, using two scenarios that took into account some

of the PlanetLab nodes’ idiosyncrasies. Depending on the

scenario, the way nodes were chosen for each individual set

in an experiment slightly differed, allowing us to focus on a

particular metric and emulate a different environment.

The first scenario assumed that peers are usually stable.

They are not always online and can, in fact, disconnect from

the network, but they tend to do it in an orderly manner and

such occurrence is very rare nevertheless. This scenario is

built by carefully looking up and choosing a selected set of

responsive nodes before the set is executed, emulating a much

more controlled peer group. From our previous experience

using Planetlab, we have detected that, due to the heavy

sharing of nodes, a non negligible number of them tend not

to be sufficiently stable, stopping being responsive at random

intervals or disconnecting for an indefinite amount of time.

That’s the main reason nodes must be carefully harvested

before they are deemed useful for this scenario. Our main

goal by building this ideal context was focusing on the impact

of network load on the protocols’ behavior, since the amount

of dropped messages should be low, and thus, many packets

actually coexist in the network at any given interval of time

as the value of p increases. In addition, this scenario would

mimic a controlled environment, for instance, an enterprise

service accessed by a very specific set of peers, owned by a

single organization or a coordinated sysadmin team.

As far as the second scenario is concerned, instead of

considering PlanetLab node instability a hinderance, we seized

the opportunity to use this behavior to compare the protocols

under a ”free for all” approach, in an unpredictable envi-

ronment, where peers may become unstable at any moment

and drop from the network without previous notice. This

scenario is much more focused towards analyzing protocol

reliability under a dynamic environment, imitating a much

more ad hoc environment, were peer ownership uncertain. It

must be remarked, however, that in this scenario, peers are not

purposely unstable, or an actively harmful behavior is forced

on them. Simply, their stability is not guaranteed at all.

Given this experiment configuration, a total of 200 tests

were executed (2 protocols * 2 scenarios * 5 transmit proba-

bilities * 10 network layouts). After its execution, the data of

about 200000 messages was recollected for each scenario and

used to analyze the RTT and reliability metrics. As far as the

analysis of processing time is concerned, the amount of data

for each case was in the range of about 2-6 million individual

54

measurements, depending on the scenario and protocol.

IV. EXPERIMENTAL RESULTS

In this section, we show the results of the experiments

and discuss some of our conclusions extracted from the data

analysis, using a separate section for each metric analysis. In

each one, we also highlight the assumed, given the claimed

protocol strengths and flaws, and actual protocol behavior for

each scenario. In those cases where results did not match

the initial assumptions, we further investigated the protocol

behavior and we hypothesize about the probable reasons.

All results are shown using box-and-whiskers diagrams,

since, given that tests encompass different network topolo-

gies, we deem it is more interesting to assess its variability.

Nevertheless, the specific average values are listed in an

adjoining table, given each transmit probability, converted to

a percentage format from the value of p for each experiment.

The horizontal line in each box corresponds to the median

value.

A. Round Trip Time measurements

The resulting RTT values extracted from the experiments,

for both protocols, are shown in Figure 3. The left hand chart

shows the results for the stable scenarios whereas the right

hand one shows the non-stable one. In this case, the given

transmit probability makes it possible to assess how different

degrees of traffic congestion affect the RTT values. It must be

noted that, even though both figures look similar at first glance,

their actual range of values in the y axis differ. The non-stable

scenario has a much higher range, as could be expected.

From the figure, it can be cleraly seen that Onion Routing

has a much lower RTT value for all cases, as well as a

quite low variability, whereas Rumor Riding needs more time

(about 5 times in some cases) to fully finish a query-response

exchange. In fact, it is interesting that Onion Routing keeps

a quite stable behavior regardless of network traffic, or at

least, the RTT increase is negligible. However, the behavior of

Rumor Riding is quite the opposite. The main reason we found

for this difference is the fact that Rumor Riding tend to depend

on a high number of hops, and, in fact, to some aspects linked

its required processing time, that will be shortly explained.

B. Processing Time measurements

As each message travelled across the network, being routed

through different peers, we measured the amount of time it

took to process the message since the moment it is received

to the moment it is forwarded to a new peer. The results

are shown in Figure 4. The charts have also been divided

according to different transmit probability values, since as the

amount of messages travelling across the network at the same

time increases, so does the size of some data structures where

look up operations are executed by the message processing

algorithms. Nevertheless, it is worth noting that this circum-

stance is much more prevalent in the Rumor Riding algorithm

than in the Onion Routing one.

Analyzing this benchmark is specially interesting since

one of the main presumed advantages of the Rumor Riding

protocol is relying on symmetric key cryptography, more

specifically the AES algorithm. The authors explicitly state

that this approach is 100 times faster than using asymmetric

algorithms, as is the case in Onion Routing. Even though the

expected amount of hops is higher in this protocol, having

a big advantage in the required processing time at each hop

is their main bet to outperform Onion Routing. Therefore, it

should be one of the key features in a fair comparison between

both protocols. However, from the previous RTT results, it

seems such theoretical advantage does not pay off in an actual

implementation. In fact, as far as processing time is concerned,

the Rumor Riding algorithm is a bit slower overall. This is

even more surprising given the fact that in the JXTA design

and implementation of its algorithm some performance tweaks

were considered [12] in the look up method on data structures.

The original proposed algorithm relied on an even more time

consuming approach.

Carefully analyzing the peer behaviour, we have found two

possible explanations for these results. First and foremost,

the statement that using symmetric cryptography will soundly

outperform any asymmetric cryptography approach is, at least,

misleading under the context of message protocols, since a

pure asymmetric approach is seldom used. An hybrid ap-

proach, based on wrapped keys, is almost always implemented

instead [14]. This is the case for Onion Routing protocol. Even

though using the AES algorithm may be still faster, the advan-

tage is not by two orders of magnitude. In addition, the Rumor

Riding data processing model is a quite more complex than

in Onion Routing (messages are stored in a cache in order to

match previously processed rumors). At the end, cryptographic

operations only play a small, though important, part in the

algorithm. This consideration becomes of greater importance if

some of the operations in the JXTA messaging model (waiting

for connections, data encoding/decoding between layers, etc.)

are taken into account, apart from the processing algorithm

steps. Since they are even more costly than the overall time

required for cryptographic transformations, we have found

that any edge gained by using the AES algorithm becomes

negligible.

C. Reliability measurements

The results regarding protocol reliability, measured as the

number of replies received given the amount of requests sent,

are presented in Figure 5. In the stable scenario it is expected

that the amount of lost messages is much less than the stable

one. Even in the stable scenario, we found that connections

could be dropped because nodes, being shared, also transmit-

ted traffic related to other applications apart from our tests.

Nevertheless, that would be just the case in a real environment.

Peers would not be dedicated to a single application. Again,

the results show that Onion Routing’s performance is better,

specially in those cases with high traffic (higher transmit

probability values). It is remarkable that Onion Routing is able

to maintain a good reliability level even when operating under

55

Fig. 3. Round Trip Time experimental results

Fig. 4. Processing time experimental results

heavy load scenarios. Rumor Riding, even though it is assumed

to cater to dynamic environments, did not fare very well in

the unstable scenario.

V. CONCLUSIONS

In this paper, we used Planetlab to design and deploy a

testbed that allows to experimentally evaluate a set of effi-

ciency metrics, round trip-time, node processing time and re-

liability, in two anonymous protocol implementations adapted

to JXTA service access. Two scenarios were taken into account

to evaluate the protocols, one where nodes are very stable and

another where no preassumptions can be made on that regard.

After studying the results provided by the experiments, had

the final conclusions to be summarized in two brief sentences,

they would be ”newer does not mean better” and ”simplicity

beats complexity”. Even though Rumor Riding is a much

more recent and sophisticated protocol than Onion Routing,

a quantitative analysis regarding their efficiency in a broad

set of network configurations shows that the latter is more

appropriate as far as its deployment in a JXTA-based network

is concerned. Truth be told, before initiating our study, we ex-

pected a higher contention on some of the chosen benchmarks

and scenarios, and thus the study would enable us to identify in

which particular cases one protocol was better than the other.

The main reasons for this expectation were some of the claims

given in the original sources, which presented Rumor Riding

as a direct alternative to path based approaches. Mainly, that

message processing was presumed to be faster, being based

on symmetric cryptography, and more adaptable to dynamic

conditions during message forwarding from end-client to end-

56

Fig. 5. Lost messages experimental results

server. This protocol relied on these two presumed advantages

to provide an overall better performance, compensating the

need for a higher hop count before reaching the destination.

However, after the dust settled, Onion Routing just resulted

to be better in all scenarios. Given our results, it can be

concluded that it is not certainly by chance that it is one of

the most popular approaches to anonymous communications,

and this fact also translates to JXTA service access under

peer groups. Right now, the only matter open to discussion

would be a qualitative comparison from a pure anonymity

degree standpoint, assessing their respective vulnerabilities to

different attacks, but from an efficiency standpoint, the victor

is clear.

Truth be told, in the current analysis, peer groups were

quite static. Once a set of peers was chosen, it could be

possible that members dropped from the network (specially

in the non-stable scenario), but there was never a cycle of

never members. As further work, we deem interesting to

evaluate the behavior of anonymous protocols in groups with

a much greater degree of dynamism, were peers routinely join

and disconnect from the group, but following a typical peer

lifecycle, and not necessarily because they just entirely drop

from the network. We also found that, in some average values,

some statistical oddities appeared (some average values did

not linearly increase as the transmit probability did). This fact

deserves also further investigation.

Finally we also plan to give a chance to the third category

of anonymous protocols, replicated message-based ones, so

we can confirm that their overhead is actually too high or not.

Hordes [15] is a promising candidate for experimentation, an

hybrid approach that tries to alleviate the main shortcomings

in protocols from this category by using some of the perceived

strengths in path based approaches. It is one the few proposals

where the authors explicitly quantify its anonymity degree and

is quite complementary to unimessage protocols, being able to

withstand attacks which can be successful on them.

REFERENCES

[1] Sun Microsystems Inc., “JXTA v2.0 protocols specification”, 2007,
https://jxta-spec.dev.java.net/nonav/JXTAProtocols.html.

[2] Project Kenai, “JXSE: The Java Implementation of the JXTA Protocols”,
2011, http://jxse.kenai.com.

[3] Ren-Yi X., “Survey on anonymity in unstructured peer-to-peer systems”,
Journal of Computer Science and Technology, vol. 23, no. 4, pp. 660–
671, July 2008.

[4] Goldsclag D. Syverson P. and Reed M., “Anonymous connections and
onion routing”, Proceeding of the IEEE 18th Annual Symposium on
Security and Privacy, pp. 44–54, 1997.

[5] Mathewson N. Dingledine R. and Syverson P., “Tor: The second
generation onion router”, Proceeding of the 13th USENIX Security
Symposium, pp. 303–320, 1998.

[6] Yvo G. Desmedt and Yair Frankel, “Threshold cryptosystems”, in
CRYPTO ’89: Proceedings on Advances in cryptology, New York, NY,
USA, 1989, pp. 307–315, Springer-Verlag New York, Inc.

[7] Liu Y., Han J., and Wang J., “Rumor riding: Anonymizing unstruc-
tured peer-to-peer systems”, Parallel and Distributed Systems, IEEE
Transactions on, vol. 22, no. 3, pp. 464–475, 2011.

[8] FIPS Federal Information Processing Standard, “Advanced Encryption
Standard (AES)”, 2001.

[9] B. Chun, D. Culler, T. Roscoe, A. Bavier, L. Peterson, M. Wawrzoniak,
and M. Bowman, “Planetlab: An overlay testbed for broad-coverage
services”, ACM SIGCOMM Computer Communication Review, pp. 3–
12, 2003.

[10] N. Spring, L. Peterson, A. Bavier, and V. Pai, “Using PlanetLab for
network research: myths, realities, and best practices”, SIGOPS Oper.
Syst. Rev., vol. 40, no. 1, pp. 17–24, 2006.

[11] M. Domingo-Prieto and J. Arnedo-Moreno, “JXTAnonym: An
anonymity layer for JXTA services messaging”, IEICE Transactions
on Information and Systems, vol. E95-D, no. 1, January 2012.

[12] J. Arnedo-Moreno and N. Pérez-Gilabert, “Split message-based
anonymity for jxta applications”, in The Sixth International Conference
on Complex, Intelligent, and Software Intensive Systems (CISIS-2012),
2012, pp. Accepted, to be published.

[13] Deters R. Halepovic E., “The JXTA performance model and evaluation”,
2005, vol. 21, pp. 8377–390.

[14] J. Staddon B. Kaliski, “PKCS1: RSA Cryptography Specifications.
Version 2.0”, 1998.

[15] Shields C. Levine B.N., “Hordes: A multicast based protocol for
anonymity”, Journal of Computer Security, vol. 10, no. 3, pp. 58–70,
2002.

57

