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Abstract

One of the most important recent developments in computing is the growth in distributed systems, these systems are  
designed to ensure features as self-organization, availability, scalability, fault-tolerance, consistency among others. With 
the huge success of Internet and its continuous development and the fast progress in the domains of processors, hard-
drives and networks, new paradigms of information and computing systems emerged in response to new ways for users to 
interact,  communicate,  collaborate and use data. A whole new vision have come to light to offer  new systems more  
optimized, robust and aware of the needs and requirements of the future.

Data Grids, cloud computing and peer-to-peer networks are some of the distributed systems that appears as a result of the 
enormous research done in this domain. They are aimed to specific fields and requirements, however they share a lot of  
common aspects and interests.  Data Grids are more used to exploit  resources to execute computational tasks, Cloud 
computing provide large data centers and services to end users in return of an amount of fees and finally peer-to-peer 
networks are destined to applications sharing disk space and bandwidth.

To address the lacks of cloud computing, desktop grids and peer-to-peer networks to use non-dedicated resources for  
general  purpose computing,  contributory  computing system emerged.  This  new system is  responsible  of  aggregating 
resources that will  be used as a platform where services can be deployed allowing a collective use of them. Offering  
services is the main goal of a community implementing contributory computing. CoDeS [22] is a distributed collaborative 
systems that  has  been  designed and  implemented  to  prove the  technical  feasibility  of  this  new concept.  It  offers  a  
mechanism  for  service  deployment,  a  resource  discovery  mechanism,  and  an  availability-aware  resource  selection 
mechanism. All these mechanisms allow the creation of contributory communities. However, it doesn't have a mechanism 
for distributed storage. This research is aimed to find a solution for a distributed storage system adapted for CoDeS. By  
studying how DSSs work and how they are implemented, we can conclude how we can implement a DSS compatible with  
CoDeS requirements.
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1. Introduction

1.1. Background and Motivation 

Storage has always played an important role in computing. At the beginning, storage systems were destined to individual  
machines, however with the rapid evolution of storage hardware and network technologies, new challenges and new needs 
arouse. The main goal of DSSs is to aggregate several resources in a simple domain or all over the Internet to exploit them 
in  order  to  overcome their  underutilization  and  to  offer  means  for  collaboration  between  the  different  users  of  the 
distributed system.

These systems need to ensure some features to be able to respond to the requirements of this new paradigm. One of these  
features is self-organization. To minimize the manual administration required for such systems, the distributed system must 
be designed to be capable of automatically handling administration tasks and adapting the system according to utilization 
patterns. Another feature is availability. Even if the data is shared among several machines, the user must see it as if it 
were in its own machine, thus it must offer simple interfaces for end user applications to access data and services in the  
same way as in the case of a single machine. Scalability - when we talk about distributed systems, we talk about thousands 
of interconnected machines all over the world, these machines can join and leave the system whenever they want. The  
system must not only ensure a good degree of performance in the case of a limited number of machines but must maintain  
this degree of performance in the case of the joining of an increased number of machines. Fault tolerance - the system 
must be capable of handling machines disconnection and systems failures by keeping a stable state of the system and  
without the knowledge of end users, in other words these failures need to be transparent for the user. Consistency – DSS 
must ensure consistency even in the presence of events which challenge it such as concurrent updates. There are two  
types of consistency: strong and optimistic. The primary aim of strong consistency is to ensure data is viewed and always 
remains in a consistent state. In the case of optimistic consistency, the primary purpose is to keep data consistent without  
imposing the restrictions associated with strong consistency. These are only examples of features offered by DSSs and this 
document will introduce others.

DSSs  have  evolved  from  providing  a  means  to  store  data  remotely,  to  offering  innovative  services  like  publishing, 
federation,  anonymity  and  archival.  This  document  will  present  a  taxonomy  for  DSSs  and  for  each  element  of  the 
taxonomy, we'll provide its description and the existing solutions that implemented it. We'll present also the solution that 
we consider suitable to be integrated with CoDeS and the proofs that we've elaborated in order to support our suggestion.

1.2. DSS for Contributory Computing 

1.2.1. General Definition 

CoDeS [22] is a contributory computing system which is a new model of distributed systems, it's responsible of aggregating 
resources that will be used as a platform where services can be deployed. These later will  be used collectively by the 
community.  Offering  services  is  the  main  goal  of  a  community  implementing  contributory  computing.  The  idea  of 
contributory computing has been developed to overcame the limits of others distributed systems as cloud computing, grid  
computing, desktop grids, volunteer computing or peer-to-peer systems.

To contribute resources to the community, several policies have been defined to describe how much resource could be used 
and how much time they could be available. For example, users could allow a fixed amount of resources that will  be  
available as soon as their host is connected to the network. Members of the community are free to decide which policy they 
want to apply and they can stop their contribution whenever they want. Another point that need to be taken into account in 
a contributory system is the fact that resources are not strictly dedicated and not always available. Giving that contribution  
depends on members will, they all have to share common motivations to achieve the community objectives. The amount of 
resources allowed to each member is not restricted, because the resources of the community are considered to be used 
collectively and not individually. 

A contributory community relays only on the resources shared by its number, thus there are not dedicated and centralized  
hosts. It must work in a decentralized mode knowing that each nodes could be disconnected at any time. The members  
need to bear in mind that for the contributory system to work they imperatively must share enough resources for the  
services to work.

There are several scenarios where a contributory community could be built. Classification of these kinds of systems are 
based upon two factors: the membership policy and the services that could be deployed. The first factor means that we can 
decide that membership will only be authorized for a specific group of people, the second factor on the other hand refers to  
the type of service that could be deployed, in other words, we can allow the deployment of every type of services or we can 
restrain the deployment to a specific kind of services beforehand upon entrance in the community. 
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The implementation of the contributory system is a  middlewear  that  must be installed in each node and will  handle  
autonomously  the  aggregation  and  the  management  of  the  contributed  resources.  Users  can  control  the  amount  of  
resources that they want to share and when to do it, thanks to this middlewear. Additionally, this later offers a service 
deployment platform.

1.2.2. Example Scenarios 

The main scenario that the storage system has to enable is service deployment in a contributory community managed by 
CoDeS. 

There are two main cases where files are involved: 

• Service Specification: 
◦ The specification that is required by CoDeS in order to deploy a service. 

▪ Details specified in [22]. 
◦ Needed by ServiceManagers [22] to deploy services. 

▪ There are a number of SMs per service. 
▪ Each one needs to know the Service Specification and act in consequence. 

• All need to know the same. 
◦ Can change over time (e.g. change a service configuration parameter like number of replicas, activate or  

deactivate the service). 
◦ Small. 
◦ Read/modify whole file at once. 

• Executable files 
◦ Needed by worker nodes to execute a service [22]. 
◦ Immutable (new versions should have different names). 
◦ Variable size (could be very large). 
◦ Read whole file at once. 

1.2.3. Features 

Here are the features of a DSS for a contributory system: 

• Exploitation of unused resources: all resources of a single machine are not used totally all the time and there is a 
significant  amount  of  resources  unused for  long  periods.  A  contributory  system will  resolve  this  problem by 
manipulating these resources when they are not used. 

• No need for  investment  in  dedicated resources:  giving that  all  the resources needed are contributed by the 
community. 

• Amount of resources adaptable to load: the amount of resources available in the community will be proportional to  
the amount of resources contributed by its members, thus the system need to ensure an equilibrium to prevent an 
overload of the community. 

• Collective use of resource: the main goal of the community is to reach its objectives by offering a platform for 
service deployment, thus members need to be aware that these services are not meant for individual use but for a 
collective use. 

1.2.4. Requirements and Challenges 

In the current version of CoDeS there is only a centralized storage system, used to help proving the feasibility of the other  
modules responsible for the distributed deployment services system. The main objective of this research is to provide a 
distributed storage system that will replace the existing one and will help in the design and development of a complete  
distributed contributory system. To provide a distributed storage system, we need to bear in mind a set of functional and 
non functional  requirements  that define a contributory computing system and which represent the boundaries of the 
system. In the following paragraphs, we'll present the set of the two type of requirements. 

Here are the non functional requirements and challenges of a DSS for a contributory system: 

• Self-organization and self-management: management and configuration of the DSS will be restrained only to each 
node. The function of each node must be decided autonomously by the contributory software. Nodes must be able  
to join and leave the community in a transparent way. 
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• Decentralization: it's forbidden to decide that a node will be used as a central point of the system. Each node  
could support any task and it can be selected dynamically and autonomously by the system. 

• Failure tolerance: The DSS must deal with the fact that any node has the right to leave the community at any time  
even if it's responsible for a service. 

• Scalability: The DSS must be able to scale up to a lot number of nodes and guarantee a good quality of service. 
• Data  availability:  The DSS must  ensure  the  availability  of  its  data.  The response  time to  get  data  must  be 

reasonable  in  accordance  with  the  resources  available  in  the  community.  Replication,  reactive  repair  and 
prediction are mechanisms used by the system to ensure availability. 

• Ability to deal with Internet-distributed resources: the system must be able to deal with long latencies and reduce 
bandwidths. 

• Ability to deal with heterogeneous resources: The resources contributed may differ from their capacity to their  
behavior. The system must be able to select the fitting resources for each task among all those that form the  
community. 

• Security and privacy: Monitoring maliciously interactions and user activity or access illegitimate data are some of 
the security failures  that  the system need to  deal with.  It  must incorporate mechanisms that  guarantee the 
security and privacy of its users. 

Here are the functional requirements : 

• Save files of variable size
◦ Large files: immutable 
◦ Small files: mutable 
◦ “Atomic” modification: 

▪ The reader is certain that the retrieved version is the last one can be done e.g. by modifying all replicas 
at once or by reading with quorum. 

◦ Read whole file at once. 

Another aspect that needs to be respected when designing the DSS is the high level design of CoDeS which focus on  
properties as modularity and extendability. The prototype of CoDeS was implemented in order to prove the feasibility of the 
concepts  and  mechanisms  defining  a  contributory  distributed  system.  Thanks  to  the  two  properties  modularity  and 
extendability, it is possible to implement easily different mechanisms in the prototype and incorporate easily changes and 
improvements on existing ones. The language selected for the implementation of the prototype is Java because it can 
handle  heterogeneous  nodes  thanks  to  its  Java  Virtual  Machine.  Additionally,  it's  an  object-oriented  language,  which 
naturally leans toward modularity. The prototype lays over Freepastry [29] which is an open-source implementation of  
Pastry [13] intended for deployment in the Internet. Pastry is an overlay network which allow us to create a decentralized 
distributed system and offers a set of functionalities to ensure communication between the nodes, handling the joining and 
leaving of nodes, creation of routing tables for each node, failure tolerance. Freepastry offers also an implementation of  
PAST's DHT [8] to handle a distributed storage system. All these elements concerning the current sate of the prototype and 
the design choices that have been made for CoDeS, will be considered as boundaries that delimit the possible solutions 
that could be  proposed as a DSS for CoDeS.

1.3. Objectives and Approach 

The main goal of this research is to provide a DSS for CoDeS. The aim of the state of the art that we've done for this  
research is to help us to find an existing solution that could correspond to our needs or, at least, some mechanisms that we 
could use to propose our own solution for a DSS.

The DSS that we intend to integrate must cope with the requirements of a contributory distributed system and in the 
following sections we've presented a lot of existing solutions that use mechanisms that correspond to these requirements.  
Mechanisms that ensure features as scalability, consistency, availability, fault tolerance, security and self-organization. In 
the  next  sections,  we've  presented  also  a  decomposition  of  a  DSS in  layers  that  contains  the  different  components 
constituting the system. We've described which elements from the taxonomy we've selected and which mechanisms from 
the survey could be implemented in our distributed storage system.

1.4. Contributions 

The main contributions of this research can be summarized in the following categories. 

State of the art of the existing distributed storage system

In the state of the art, we've studied the existing storage systems and we've depicted them using a taxonomy (describing 
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the different elements composing a DSS) to be able to analyze each element and see how they handle each feature. For 
each element of the taxonomy, we provide a definition and which solutions implement it.  This way,  we were able to 
separate the solutions suitable for our research and the ones that aren't. 

Test and evaluation of freepastry's DHT

Thanks to the state of the art, we've been able to conclude that PAST is the best existing solution that could be used or 
adapted for CoDeS. To be sure that Freepastry's [29] implementation of PAST is the right answer for our needs , we've 
designed a series of tests that has helped us evaluating how Freepastry handles each one of the functional and non 
functional  requirements  and  if  it  can  be  integrated  without  modifications  in  CoDeS  or  additional  modifications  or  
developments are needed in order to do so.

1.5. Outline

The rest of the document is organized as following: section 2 presents some works related to DSS and introduces the 
taxonomy used to select the best solution for this research. Section 3 presents the selected solution and describes the tests  
and evaluations that we've done to prove the validity of the suggestion. Finally, section 4 concludes this paper.
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2. Distributed Storage System for CoDeS

2.1. Overview

In this section, we discuss studies related to DSSs. To be able to study the existing solutions in a detailed manner, we've  
based our study in a taxonomy that present each element constituting a distributed storage system and each feature 
characterizing it. For each concept, we've presented the solutions that implement it. This way, we were able to split the  
complexity of a DSS into small elements and analyzed each one of theme to select the best solution according to our needs 
and requirements.

2.2. Related Work

The work of [20] presents a taxonomy for distributed storage systems. This taxonomy finds distributed storage systems to 
offer  a  wide  array  of  functionalities,  employ  architectures  with  varying  degrees  of  centralization  and  operate  across 
environments  with  varying  trust  and  scalability.  Furthermore,  taxonomies  on  automatic  management,  federation, 
consistency and routing provide an insight into challenges faced by DSSs and the research to overcome them. The paper  
continues by providing a survey of distributed storage systems which exemplify topics covered in the taxonomy. Another 
interesting taxonomy is the one presented by [21]. The authors discuss the key concepts behind Data Grids and compare 
them with other data sharing and distribution paradigms such as content delivery networks, peer-to-peer networks and 
distributed  databases.  They  also  provide  comprehensive  taxonomies  that  cover  various  aspects  of  architecture,  data 
transportation, data replication and resource allocation and scheduling. Finally, they map the proposed taxonomy to various 
Data Grid systems not only to validate the taxonomy but also to identify areas for future exploration.

2.3. Taxonomy

The taxonomy presented in this document is based on the two taxonomies described in [20] and [21]. The first taxonomy 
introduces several topics related to DSSs and it  classifies them according to the following criterion: Function, Storage 
Architecture, Operating Environment, Usage Patterns, Consistency, Security, Autonomic management, Federation, Routing 
and Network Overlay. The second taxonomy is split into four sub-taxonomies. The first sub-taxonomy is from the point of  
view of organization. The second one deals with the transport technologies used within the distributed system. This not  
only covers well-known file transfer protocols but also includes other means of managing data transportation. A scalable,  
robust and intelligent replication mechanism is crucial to the smooth operation of a distributed system and the third sub-
taxonomy presented takes into account concerns of distributed system environments such as meta-data and the nature of  
data transfer mechanisms used. The last sub-taxonomy categorizes resource allocation and scheduling research and looks 
into issues such as locality of data.

We  found  the  three  first  sub-taxonomies  presented  by  [21],  to  be  very  pertinent  as  a  description  of  the  different 
components of a DSS and they could be seen as a layered architecture. On one hand, by separating the different elements,  
we devise the complexity of the system and we can concentrate on specific topics. On the other hand, we can see how 
components can interact and collaborate with each other. Our taxonomy is based on these three sub-taxonomies and we've 
added topics from the first taxonomy that are absent from the second. These topics were added into their corresponding 
sub-taxonomy.

2.3.1. Organization

Figure 1 shows a taxonomy based on the various organizational characteristics of DSSs. These characteristics are present in 
different ways in different systems.

2.3.1.1. Function

In this section, we'll discuss application functional requirements of a DSS. The different functions that a DSS could offer are 
the following: Archival, General Purpose File System, Publish/Share, Performance and Custom.

Archival are meant to provide the end user with the ability to store and retrieve data. Thus it ensures consistent non 
volatile storage by achieving reliability even in the presence of failure. Achieving reliability, even in the event of failure,  
supersedes all other objectives and data replication is a key instrument in achieving this. Systems in this category are  
rarely required to make updates, their workloads follow a write-once and read-many pattern. Updates to an item are made 
possible by removing the old item and creating a new item and whilst this may seem inefficient, it is adequate for the 
expected workload. Examples of storage systems in this category include PAST [8] and CFS [2].
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General Purpose File System is used to provide users with a file system like interface to achieve persistent non volatile 
storage. The applications access data stored as if it were in the local system. Most of systems based on this kind of systems 
are based on the POSIX API standards allowing existing applications to utilize storage without the need for modification or a  
re-build. Systems which fall into this category include Ivy [11], Pastis [23], Farsite [1], GPFS [15] and Coda [14].

Publish/share are more  destined for  publish  and share operation where  persistence is  not  as  much important as  the 
popularity of a document. There are two types of publish/share storage systems, the one which offer anonymity and the  
one which ensure file sharing. In the case of the first one, the most important aspect is the anonymity of the document and 
the person who published it, examples of systems which fall into this category include Free Haven [7] and Freenet [5].  
Concerning the second one is to provide the capability to share files amongst users, examples of systems that offer this 
functionality are Napster [24] and Gnutella [25], these later are not present in our survey because they are not relevant for  
our research needs.

Performance is  more  aimed for  distributed  systems that  require  high  performance  access  and  retrieval  of  data.  The 
majority of systems falling in this category follow the specifications recommended by parallel file systems. Nodes in this  
system are interconnected by a high bandwidth and stripe data to aggregate bandwidth. Systems which fall  into this 
category include PVFS [3], GPFS [15] and Frangipani [17].

Custom systems possess a unique set of functional requirements and may be elaborated by combining the above systems. 
Examples of systems that may fit in this category are OceanStore [9], Freeloader [18] and Bayou [6].

Figure 1: Organization

2.3.1.2. Storage Architecture

In this section we'll concentrate our attention into the organization of nodes into a DSS and how this architecture may 
influence behavior and functionality. We can split this topic in two main categories which are client-server and peer-to-peer 
architectures. In the first one, node can play the role of servers or clients, they can't be both. Whereas, nodes into a peer-
to-peer architecture can play at the same time the role of a server and a client.

In a client/server architecture, the server is responsible for providing different services to clients. The advantage of this  
architecture is that the only nodes responsible for administration, management and optimizations are the server nodes.  
The servers are in charge of security, consistency, backup and responding to clients requests which could ensure a good 
level of performance for a few numbers of nodes. However, for a DSS aimed for millions, servers constitute a single point of  
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failure.

There are two types of client/server architecture, globally centralized and locally centralized. The former use one server as  
the principal node in charge of providing services and servicing requesting clients, the later is based on a set of servers to 
alleviate  the  overload  on  the  unique  server.  Locally  centralized  architecture  scale  better  and  achieve  availability  by 
replicating data among the set of servers. However, the system still have the limits of a client/server architecture giving  
that it's based on limited set of servers which are responsible for the whole distributed storage system functionalities. 
Examples of systems that fall into this category include PVFS [3], Bayou [6] and Coda [14].

As a response to the limits of a client/server architecture appeared a new paradigm named peer-to-peer. Peer-to-peer 
architectures are more suitable for untrusted environments, highly dynamic and constituted by thousands of distributed 
machines. In this architecture a node could play the role of a server, a client or both at the same time. The advantages  
offered by peer-to-peer systems are high scalability, self-organization and availability. However, they are more exposed to 
more  threats  from  misbehaving  nodes  compared  with  a  controlled  client/server  environment,  administration  and 
management of this kind of architecture is more complex and the response time for clients' requests could be slower if the 
mechanisms used for localization, replication and consistency are not optimized.

There are three main categories of peer-to-peer architectures, Globally centralized, Locally centralized, and Pure Peer-to-
peer. The Globally centralized architecture uses a central server for data localization, when a user needs to locate a certain  
data, she requests this information from the central server, once she get the location of the node which contain the data,  
she retrieve it directly from the node. The inconvenient in this case is the poor level of scalability and that the server  
represents  a  Single  Point  of  Failure.  Examples  of  systems  that  fall  into  this  category  include  Napster  [24].  Locally 
centralized architecture emerged in response to the limits of Globally centralized architectures, they use a set of nodes with 
high performance called super nodes which play the role of severs. The main functionality of these servers is to provide  
clients with information related to data location and availability. The use of a set of servers alleviates some of the limits of a  
single server but are not optimized for a large scale dynamic distributed system. Examples of systems that fall into this  
category include OceanStore [9], Farsite [1], CFS [2], GPFS [15] and Frangipani [17]. Finally, pure peer-to-peer architecture 
doesn't dispose of specific servers, each node could play the role of a server which makes peer-to-peer systems very 
adaptable in a highly dynamic environment where node can join and leave at will. As we've already said, the advantages of  
pure peer-to-peer  are related to  its  capacity for  adaptability  and to  be optimized for large scale distributed systems. 
However, there are few points that make the design and implementation of a peer-to-peer system very complex. The nodes 
participating in  this  kind  of  systems doesn't  have the  same level  of  performance,  storage capacity  and   bandwidth, 
therefore peer-to-peer systems need to have mechanisms that take into account this asymmetry in the network. Security  
mechanisms as authentication and authorization need to be applied in order to reduce the number of threats that the 
system is exposed to. Self-organization is another important point that needs to be taken into account when designing a  
pure peer-to-peer system to reduce complexity of the system. Examples of systems that fall into this category include Ivy 
[11], Pastis [23], PAST [8], Freenet [5] and Free Haven [7].

As we've seen the choice of the architecture has a major impact on the system functionalities and how it could manage the 
different features offered as scalability, consistency and security. Client/Server architectures are more suited for controlled 
environments, where scalability is not required and the important feature is quality of service. In the contrary, peer-to-peer  
architectures are more suited for highly dynamic environments and very large scale distributed storage systems where 
scalability and security are very important.

2.3.1.3. Scope

The scope of a distributed storage system can correspond to a limited set of nodes in a single domain (intra-domain) where 
the environment is more controlled and security concerns are restricted inside the boundaries of the domain. Or it can be 
aimed at a very large environment constituted by several domains (inter-domain), this time the system is often relied on 
untrusted nodes and it's highly dynamic. Examples of systems that fall into intra-domain category include Frangipani [17],  
Freeloader [18] and bayou [6] and examples of systems that fall into inter-domain category include Ivy [11], Pastis [23],  
PAST [8], OceanStore [9], Farsite [1], Freenet [5], CFS [2] and Free Haven [7].

2.3.1.4. Operating Environment

In this section we will discuss the environment that the distributed storage system will operate in. This section concentrates 
more specifically in security aspects and how the reputation of the nodes are seen by the system in order to add specific  
mechanisms to ensure security in all possible environments. There is three main types of environments: Trusted, Partially 
Trusted and Untrusted. 
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Trusted environments are mostly controlled and restricted environment where all the nodes are trusted. Administration 
tasks are limited to the boundaries of the domain and they are simpler than the ones used in large scale systems with  
untrusted nodes. As the system is very controlled there is no need to worry about unpredictability which alleviate the 
workload required for an untrusted environment. Examples of systems that fall into this category include Frangipani [17], 
Freeloader [18].

Partially  Trusted environments are formed by trusted and untrusted nodes.  They are limited by the boundaries  of an 
organization and users are only personnel within the organization. These restrictions limit the types of attacks that threaten 
the environment to the ones coming from misbehaving personnel or someone who got access to a machine inside the  
organization. The system needs to offer mechanisms to avoid these kinds of misbehaviors to ensure a high level of security.  
In this category of environments, the network is a shared resource and the DSS needs to be able to work in harmony with 
other systems, avoiding interference and conflicts with them. Examples of systems that fall into this category include Ivy  
[11], Farsite [1] and Coda [14].

Untrusted  environment  are  more  suited  for  large  scale  systems  where  all  nodes  are  untrusted  and  where  network 
infrastructure is shared and open to everyone. In this environment nodes behavior is very unpredictable thus the impact on 
workload which explains  the presence of  failures.  A huge number of  attacks  threaten this  type of  environments  and  
mechanisms need to be developed in order to minimize the threats and ensure a good level of security. Examples of 
systems that fall into this category include Pastis [23], PAST [8], OceanStore [9], Freenet [5], CFS [2] and Free Haven [7].

Operating environment has a major influence on system design and the predictability of workload. Consequently, it must  
be taken into account in the design of a DSS and the mechanisms offered by this later.

2.3.1.5. Management

The management of distributed storage systems can be done automatically by mechanisms designed to adapt the system 
to the dynamism and unpredictability of the environment or can be managed manually by administrators. The complexity 
of large distributed storage system require the intervention of administrators to ensure the stability of the system by doing 
tasks such as resource monitoring, user authorization and data replication. However, research is leading to autonomic or 
self-organizing, self-governing systems. Examples of systems that fall into the managed category include Farsite [1] and 
Frangipani [17]. Examples of systems that fall into the autonomic category include Pastis [23], PAST [8], OceanStore [9],  
Freenet [5], CFS [2], Free Haven [7], GPFS [15] and Coda [14].

2.3.1.6. Virtual Organization

A Virtual Organization is formed when different organizations pool resources and collaborate in order to achieve a common 
goal. A VO defines the resources available for the participants and the rules for accessing and using the resources and the 
conditions under which the resources may be used. DSS are formed by VOs and therefore the design of VOs reflects the 
objectives of the distributed system. 

A collaborative system is when resources are aggregated for a single goal. Users share their unused resources to allow a  
better exploitation of the distributed system in order to achieve the goal of the collaborative community. Examples of 
systems that fall into this category include Ivy [11], Pastis [23], PAST [8], Farsite [1], Freenet [5], CFS [2], Frangipani [17],  
Freeloader [18], Coda [14] and Bayou [6]. In systems more controlled, regulated systems are more suited where a single  
organization defines rules for accessing and sharing resources. Examples of systems that fall into this category include  
GPFS [15]. Another type of organization is based on economics principles where providers make available resource for end 
users in exchange of fees. Examples of systems that fall into this category include OceanStore [9]. A reputation based 
distributed system corresponds to  a  system based on a reputation mechanism that  allow the  system to know which 
machines to trust and to which it can give more privileges. Examples of systems that fall into this category include Free 
Haven [7].

2.3.2. Data Transport

The data transport mechanism is one of the fundamental technologies underlying a distributed system. Data transport 
involves not just movement of bits across resources but also other aspects of data access such as security, access controls  
and management of data transfers. A taxonomy for data transport mechanisms is shown in Figure 2.

2.3.2.1. Function

Data  transport  in  distributed  storage system can  be modeled  as  a  three-tier  architecture:  Transfer  protocol,  Overlay 
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network and File I/O mechanism. 

3.3.2.4.1. Transfer protocol

The bottom layer corresponds to the one responsible of the exchange of data between two nodes, it takes care of simple bit  
movement between two hosts on a network. These protocols are common languages used by two nodes in a network to 
initiate and control data transfers. Examples of protocols that fall into this category include FTP, GridFTP, TCP (PVFS [3]),  
TCP/UDP (PAST [8], Freenet [5], FreeLoader [18]) and RPC (Coda [14]).

3.3.2.4.2. Overlay Network

The second tier is the overlay network which adds specific functionalities to applications over the Internet protocol to  
respond to specific needs. It's mainly used for locating and routing data between different nodes of the distributed system. 
It  provides services such as storage in the network,  caching of data transfers for better reliability and the ability  for 
applications to manage transfer of large data. Examples of systems that fall into this category include Pastry [13], Tapestry  
[19], Chord [16] and CAN [27]. 

3.3.2.4.3. File I/O mechanism

A File I/O mechanism allows an application to access remote files as if they are locally available. This mechanism presents  
to the application a transparent interface through APIs that hide the complexity and the unreliability of the networks.  
Systems using this feature include Ivy [11], Pastis [23], Farsite [1], GPFS [15] and Coda [14].

 
 

Figure 2: Data Transport
2.3.2.2. Security

In  a  DSS,  security  is  a  very  important  requirement  which  goal  is  to  ensure  proper  authentication,  file  integrity  and 
confidentiality. Security in DSSs can be divided into three main categories: authentication, authorization and encryption of  
data. Authentication can be based on either passwords or symmetric or asymmetric public key cryptographic protocols. The 
second category is authorization which is used to limit the access of users to specific directories or files. This category 
could be split  into two sub categories: Coarse-grained and fine-grained. The first one uses methods such as UNIX file 
permissions to restrict the number of files that are accessible to the user. The second one is more restrictive even for  
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authorized users, it's meant for applications that have strict controls on the distribution of data. Fine-grained access control  
methods that may be employed to achieve these requirements include time- and usage-limited tickets, Access Control Lists 
(ACLs),  Role Based Access Control  (RBAC) methods and Task-Based Authorization Controls  (TBAC).  Finally,  during data 
transfers encryption could be used. The most known mechanism of data encryption is through SSL (Secure Sockets Layer).

Security Ivy PAST PASTIS

Cryptographic keys x x x

ACL x

Reputation x

2.3.2.3. Fault-tolerance

The system must be capable of handling machines disconnection and systems failures by keeping a stable state of the  
system and without the knowledge of end users, in other words these failures need to be transparent for the user. 
 

2.3.2.4. Transfer mode

The last category is the transfer mode that can be used in the DSS. Traditional modes that could be supported by the 
mechanism  are:  Block,  Stream  and  Compressed.  However  in  the  case  of  large  data  transfer,  there  could  be  some 
restrictions  related  to  protocols  such  as  FTP  and  TCP  which  were  initially  designed  for  low  bandwidth,  high  latency 
networks.  Therefore,  several  optimizations  have  been  suggested  for  improving  the  performance  of  data  transfers  in 
distributed environments by reducing latency and increasing transfer speed. Some of them are listed below:

• Parallel data transfer: is the ability to use multiple data streams over the same channel to transfer a file. This also 
saturates available bandwidth in a channel while completing transfer.

• Striped data transfer: is the ability to use multiple data streams to simultaneously access different blocks of a file  
that is partitioned among multiple storage nodes (also called striping). This distributes the access load among the 
nodes and also improves bandwidth utilization.

• Auto-resizing of buffers: is the ability to automatically resize sender and receiver TCP window and buffer sizes so  
that the available bandwidth can be more effectively utilized.

• Container operations: is the ability to aggregate multiple files into one large dataset that can be transferred or 
stored more efficiently. The efficiency gains come from reducing the number of connections required to transfer 
the data and also, by reducing the initial latency.

These enhancements are grouped under bulk transfer mode.

2.3.3. Data Replication and Storage

The main goal of a DSS is to offer to users means to exploit unused distributed disk space and to store and retrieve data in 
a  more  flexible  way than in  the  case  of  one single  machine.  These features  are  available  thanks  to  the  concept  of 
replication which ensure scalability of the collaboration, reliability of data access and perseverance of bandwidth.

The replica manager is in charge of the creation and management of replicas according to the demands of the users and 
the availability of storage, and a catalog or a directory keeps track of the replicas and their locations. Applications can 
request the catalog to know the number and the locations of available replicas of a specific data. The manager and the  
catalog can be split in two different entities or can be merged into one entity. The replication mechanism can be triggered 
as a response to user requesting replication or as response to the manager decision to replicate some data.

The important elements of a replication mechanism are therefore the architecture of the system and the strategy followed 
for replication.
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Figure 3: Data Replication

2.3.3.1. Data Replication Architecture

3.3.2.4.1. Model

The model chosen for a distributed storage system will determine the organization of the nodes in the network and how 
replication will be implemented in the system. A centralized system for example will have a centralized server in charge of 
replication which will be the first one to be updated and it will propagate the updates to the other nodes. Examples of  
systems that fall into this category include OceanStore [9], PVFS [3] and Coda [14]. In the case of a decentralized system, 
replicas will be distributed over different nodes of the network which will need synchronization mechanisms to ensure that  
all replicas are up to date. Examples of systems that fall into this category include Ivy [11], Pastis [23], PAST [8], Farsite [1],  
Freenet [5], CFS [2], Free haven [7] and Freeloader [18].

3.3.2.4.2. Topology

Topology is what defines how the nodes will be organized, we can distinguish three groups: Hierarchy, Flat and Hybrid. 
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Hierarchical topologies have tree-like structure in which updates propagate through definite paths. Examples of systems 
that fall into this category include OceanStore [9], Farsite [1] and PVFS [3]. Flat topologies are found within P2P systems 
and progression of updates is entirely dependent on the arrangements between the peers. These can be both structured 
and unstructured. Examples of systems that fall into this category include Ivy [11], Pastis [23], PAST [8], Freenet [5] and  
CFS [2]. Hybrid topologies can be achieved in situations such as a hierarchy with peer connections at different levels.

3.3.2.4.3. Storage Integration

The  relation  between  replication  and  storage  is  very  important  and  has  a  direct  impact  on  scalability,  robustness, 
adaptability and applicability of the replication mechanism. Tightly-coupled replication mechanisms are tied to the storage 
architecture on which they are implemented. The replication system controls the file system and I/O mechanism of the local  
disk. Such systems more or less try to behave as a distributed file system such as NFS (Network File System) as they aim to 
provide transparent access to remote files to applications. Intermediately-coupled replication systems have control over the 
replication mechanism but not over the storage resources. The file systems are hosted on diverse storage architectures and 
are controlled by their respective systems. However, the replication is still initiated and managed by the mechanism, and 
therefore it  interacts  with  the storage system at a  very  low-level.  In  the previous cases replication is  executed in  a  
transparent way to users and applications, however theses later could be responsible for replication, in this case we talk 
about Loosely-coupled replication mechanisms. The mechanism exerts no control over the file system. Such mechanisms 
interact with the storage systems through standard file transfer protocols and at a high level.

3.3.2.4.4. Transfer protocol

In this paragraph we'll talk about the data transport protocols used within replica management systems. There is two types 
of transfer protocols: open and closed. The former ones are meant for systems where users and applications can replicate 
data independently from the replication management system. However, in this case users and applications have to update  
the replicas locations in the catalog as they transferred data outside the replication management system. In the case of  
closed protocols access to the replicas is restricted to their client libraries.

3.3.2.4.5. Metadata

Metadata contains information related to the data stored all over the distributed storage system. This way users can query  
for  data using attributes  that are more familiar  to  them. Metadata can have two types of attributes:  one is  system-  
dependent  metadata,  which  consists  of  file  attributes  such  as  creation  date,  size  on  disk,  physical  location  and  file 
checksum and the other is user-defined attributes which consist of properties that depend on specific applications. There is 
two ways to update metadata: actively and passively. The first one is achieved by the replica management system. The  
second one is triggered by the users when they create new replicas, modify existing ones or add a new file to the catalog.  
Examples of systems using this feature Ivy [11] and Pastis [23].

3.3.2.4.6. Replica Update Propagation

Generally, data is updated in one location and these updates are propagated afterward to the rest of replicas. There is two 
modes for replica update propagation: synchronous or asynchronous mode. The advantage of the synchronous mode is that 
the probability of having out of date replicas is very low as all the replicas are updates just after one the replica has been 
updated, however the disadvantage is that this mechanism can be expensive as it can take long time to update all the  
replicas. Asynchronous updating can be epidemic, the primary copy is changed and the updates are propagated to all the 
other replicas or it can be on-demand wherein replica sites subscribe to update notifications at the primary site and decide 
themselves when to update their copies.

3.3.2.4.7. Catalog Organization

Catalogs can be organized as trees, they can be organized on the basis of document hashes as has been the case in P2P 
networks or finally by storing the catalogs within a database as in the case of RSB. Examples of systems using this feature 
Ivy [11], Pastis [23] and CFS [2].

2.3.3.2. Replication Strategy

Replication strategies determine when and where to create a replica of the data. These strategies are guided by factors 
such as demand for data, network conditions and cost of transfer.
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3.3.2.4.1. Method

This section refers to whether the strategies are static or dynamic. In dynamic strategies, decisions are made according to 
changes in demand and bandwidth and storage availability however it induce overhead due to larger number of operations  
that they undertake as these are run at regular intervals or in response to events. Dynamic strategies are able to recover 
from failures such as network partitioning. As the performance in dynamic strategy could be influenced by the overload of  
the mechanism to ensure replication, it is more advisable to use a static strategy if the resource conditions are fairly stable  
in a distributed system over a long time.

3.3.2.4.2. Granularity

Granularity corresponds to the level of subdivision of data that the strategy works with. In the case of replication of multiple 
files at the same time, we talk about the granularity of datasets. Another level of granularity is the one dealing with  
individual files. Finally, some strategies deal with smaller subdivisions of files such as objects or fragments.

3.3.2.4.3. Objective Function

Possible objectives of a replication strategy are to maximize the locality or move data to the point of computation, to 
exploit popularity by replicating the most requested datasets, to minimize the update costs or to maximize some economic  
objective such as profits gained by a particular site for hosting a particular dataset versus the expense of leasing the 
dataset from some other site. Preservation driven strategies provide protection of data even in the case of failures. Another 
possible objective function for a replication strategy is to ensure effective publication by propagating new files to interested 
clients.

3.3.2.4.4. Consistency

This section discusses various mechanisms employed by DSSs to ensure data remains consistent even in the presence of 
events which challenge it such as concurrent updates. There two types of consistency: strong and optimistic. The primary  
aim of  strong consistency is  to  ensure  data  is  viewed and  always  remains  in  a  consistent  state.  To maintain  strong  
consistency, locking mechanisms need to be employed, it  must also respect ACID (Atomic,  Consistency, Isolation and 
Durability) principles. In the case of optimistic consistency, the primary purpose is to keep data consistent without imposing 
the restrictions associated with strong consistency. Optimistic consistency allows multiple readers and writers to work on 
data without the need for a central locking mechanism. Examples of systems using this feature Ivy [11] and Pastis [23].

3.3.2.4.5. Conflict Resolver

In DSS the data is shared between all the participants in the network, therefore conflicts caused by concurrent update may 
occur, especially in multiuser read/write systems. The system must offer mechanisms that can, on one hand prevent this  
kind of problems and on the other hand be in charge of detecting the presence of conflicts and resolve them to ensure a  
stable state of the data in the system. Examples of systems using this feature Ivy [11] and Pastis [23].

3.3.2.4.6. Availability

Even if the data is shared among several machines, the user must see it as if it were in its own machine, thus it must offer 
simple interfaces for end user applications to access data and services in the same way as in the case of a single machine.  
Examples of systems using this feature PAST [8] and CFS [2].

3.3.2.4.7. Scalability

When we talk about distributed systems, we talk about thousands of interconnected machines all over the world, these  
machines  can  join  and  leave  the  system whenever  they want.  The system must  not  only  ensure  a  good  degree of 
performance in the case of a limited number of machines but must maintain this degree of performance in the case of the 
joining of an increased number of machines.

2.4. Analysis of existing solutions

We'll  start with the existing DSSs that don't correspond to a contributory distributed system and are meant for other  
specific area and requirements.
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2.4.1. OceanStore

The first solution is OceanStore [9] which is a utility infrastructure designed to span the globe and provide continuous 
access  to  persistent  information.  Such  a  utility  is  highly-available  from anywhere  in  the  network,  employ  automatic  
replication for disaster recovery, use strong security by default, and provide performance that is similar to that of existing 
LAN-based networked storage systems under many circumstances. However, the main goal of OceanStore is to offers all  
these features to customers in exchanges of a monthly fee. Additionally, OceanStore architecture is based on dedicated 
servers able to participate in protocols for distributed consistency management. OceanStore consider that most of the 
servers are working correctly most of the time.

2.4.2. Farsite

Farsite [1] is a secure, scalable file system that logically functions as a centralized file server but is physically distributed 
among a set of untrusted computers. Farsite provides file availability and reliability through randomized replicated storage; 
it ensures the secrecy of file contents with cryptographic techniques. Farsite’s intended workload and its expected machine 
characteristics are those typically observed on desktop machines in academic and corporate settings. These workloads 
exhibit high access locality, a low persistent update rate, and a pattern of read/write sharing that is usually sequential and  
rarely  concurrent.  Even  if  Farsite  doesn't  require  a  lot  of  manual  administration  of  the  distributed  system,  it  needs 
administrators intervention to authenticate new users and machines as they join the system. Finally, it does not efficiently 
support large-scale write sharing of files.

2.4.3. PVFS and GPFS

PVFS [3] is a parallel file system for Linux clusters. It's intended both as a high-performance parallel file system that anyone 
can download and use and as a tool for pursuing further research in parallel I/O and parallel file systems for Linux clusters.  
This solution doesn't correspond to a contributory distributed system because it needs a dedicated set of servers that will  
constitute the cluster,  furthermore It  must provide high bandwidth for  concurrent read/write operations  from multiple 
processes or threads to a common file. Another example of this kind of systems is GPFS [15] which is a parallel file system 
for cluster computers that provides, as closely as possible, the behavior of a general-purpose POSIX file system running on 
a single machine. It's meant to be used on supercomputers.

2.4.4. Freenet and Free Haven

Freenet  [5]  is  a  peer-to-peer  network  application  that  permits  the  publication  replication  and  retrieval  of  data  while 
protecting the anonymity of both authors and readers. Files are referred to in a location independent manner and are  
dynamically replicated in locations near requestors and deleted from locations where there is no interest. Another example 
that falls into this category is Free Haven [7]. In these two solutions the most important aspects are anonymity and the 
publication are based on the popularity of the shared data.

2.4.5. Frangipani

Frangipani [17] is a new scalable distributed file system that manages a collection of disks on multiple machines as a single 
shared pool of storage. It's highly available in spite of component failures. It requires minimal human administration, and 
administration doesn't become more complex as more components are added. However, it's meant to run in a cluster of  
machines that are under a common administration and can communicate securely which don't correspond to a contributory 
system.

2.4.6. FreeLoader

FreeLoader  [18]  aggregates  unused desktop storage space and I/O bandwidth into a shared cache/scratch space,  for  
hosting large, immutable datasets and exploiting data access locality. Freeloader is based on a secure environment and no 
malicious intent in the workstation users' part. The datasets are large, immutable files (write–once–read–many) ranging 
from several hundred megabytes to several gigabytes. Datasets are almost always held at a remote primary source (which  
is rarely modified) while users analyze their local copies. The primary sources are dedicated servers in the Freeloader  
network. This system is more meant for data intensive storage for scientists.

2.4.7. Coda

Coda [14] is  a distributed file system that is  resilient  to failures that typically  occur in a workstation environment. It  
provides  high  availability  through  the  use  of  two  distinct  but  complementary  mechanisms,  server  replication  and 
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disconnected operation. It's based on client/server architecture where servers are physically secure, run trusted system 
software and are monitored by operational staff.

2.4.8. CFS

The Cooperative File System (CFS) [2] is a peer-to-peer read only storage system that provides provable guarantees for the 
efficiency,  robustness,  and  load-balance  of  file  storage  and  retrieval.  CFS  does  this  with  a  completely  decentralized  
architecture that can scale to large systems. CFS servers provide a distributed hash table (DHash) for block storage. CFS 
clients interpret DHash blocks as a file system. CFS present interesting features that could be used in a DSS for CoDeS, 
however, it's meant for read only storage. It will be interesting to do further studies concerning this system to see if it's  
possible to adapt it to a multi user read/write storage system.

2.5. Selected solutions

In this section we'll discuss the existing solutions that share common aspects with a collaborative distributed system. With 
the help of some experimentation and further studies they have the potential to be adapted for a DSS running as a service  
in CoDeS.

2.5.1. PAST

PAST [8] share a lot of features with the DSS needed for CoDeS. It's a decentralized system which handles availability, 
scalability, persistence, self-organization and security. An important feature offered by PAST that could be used in CoDeS is 
the ability of selecting potential  nodes that will  store replicas and it  do this  taking into account a lot of  variables as 
geographic location, ownership, administration, network connectivity and rule of law. The routing scheme used by PAST is  
called Pastry [13] and it's a complete and efficient mechanism to reliably route requests to the appropriate nodes. 

However, PAST use a quota system to control users' contribution and resource use which doesn't correspond to CoDeS  
philosophy. Additionally, PAST may optionally use third party components called brokers which control how much storage 
must be contributed and/or may be used by users which also don't correspond to CoDeS requirements.

2.5.2. Pastis

Pastis [23] is a good example of a storage system that has been designed based on existing solution as PAST and routing 
mechanism as  Pastry  and  that  has  been  adapted  to  specific  needs.  For  our  distributed  storage  system,  it  could  be  
interesting to not use an existing solution or propose a new one but adapt an existing one to our specific requirements. 

Pastis introduces mechanisms to handle consistency. On one hand there is the close-to-open model which is implemented 
by retrieving the latest inode from network when the file is opened and keeping a cached copy until the file is closed. Any  
following read requests are satisfied using the cached inode. On the other hand it  presents a read-your-writes model 
guarantees that when an application opens a file,  the version of the file that it  reads is not older than the version it 
previously wrote. Once the file is opened, file updates are performed as in the close-to-open model. 

Pastis  ensures write access control  and data integrity through the use of standard cryptographic techniques and ACL 
certificates. Pastis does not currently provide read access control, but users may encrypt files' contents to ensure data 
confidentiality if needed.

2.5.3. Ivy

Ivy [11] is a decentralize system offering a multi/user read/write peer-to-peer file system. It uses DHash to implement a 
distributed storage system; it's based only on a set of logs, one log per participant which resolves problems as locking. It  
handles security by using cryptography and allowing users to choose which other nodes to trust. 

All these characteristics match the requirements of the storage system needed for CoDeS. However, aspects as write-read  
consistency and replication are not implemented in the current version of Ivy and if we want to use it for CoDeS, we need to 
do a study on how we can implement these features (important for our research) without impacting Ivy's performance.  
Additionally, we need to see how we can optimize Ivy to handle a big number of cooperating participants.
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3. Freepastry's implementation of PAST 

3.1. Overview 

In the state of the art, we have studied the existing distributed storage systems and we've classified them according to a  
taxonomy to be able to identify the features, the requirements and objectives of each solution. This way, we've been able  
to identify the solutions that weren't suitable for our research and the ones that could be used or adapted to cope with  
CoDeS requirements. The selected solutions are PAST, PASTIS and Ivy. In the previous section, we've explained the reasons 
behind these choices. Now we'll present the solution that we consider the most suitable for CoDeS. 

To make a suggestion, we needed to take into account the current state of the prototype, the solutions that we've select in 
the previous section and the boundaries defined by the set of requirements. The three selected solutions use a DHT to  
ensure the storage of data in the distributed system. PAST and Pastis are based on Pastry as an overlay network that 
ensures communication and transport between the nodes constituting the distributed system. Additionally, we've said that  
the prototype of CoDeS relays on Freepastry [29] to create a virtual ring that will  contain the different nodes and it's  
capable  of  managing  communication,  routing  and  transport.  Giving  that  Freepastry  offers  a  library  that  handles  the 
management of a DHT, it seems logic to us to consider PAST the more adequate between the three solutions selected.

3.2. Freepastry's PAST architecture 

In  the  next  paragraphs,  we'll  describe  the  packages  implemented  in  Freepastry [29] responsible  of  handling  PAST's 
operations. 

3.2.1. rice.p2p.past package

This package offers the core interfaces for handling PAST operations. In PAST interface for example, we can find the insert 
and lookup operations that  allow the storing and retrieval  of  an object  in the virtual  ring.  Thanks to Freepastry  [29] 
implementation, we can ensure a complete decentralization of the storage system (we don't need specific nodes to be 
responsible of specific tasks). All nodes have the same capabilities to store and retrieve objects. Freepastry offers also an 
important feature which is scalability but we need to test it in the case when the system is used for storage. An important 
aspect to test is if the PastContent can be constituted of small and large files, this is very important if we want to respect  
the functional requirements.

3.2.1.1. Past interface

This interface is exported by all instances of Past. An instance of Past provides a distributed hash table (DHT) service. Each  
instance  stores  tuples  consisting  of  a  key  and  an  object  of  a  particular  type,  which  must  implement  the  interface 
PastContent. Past is event-driven, so all methods are asynchronous and receive their results using the command pattern.

3.2.1.2. Methods

insert : Inserts an object with the given ID into this instance of Past. Asynchronously returns a PastException to command, 
if the  operation was unsuccessful.  If the operation was successful, a Boolean[] is returned representing the responses from 
each of the replicas which inserted the object.
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lookup : Retrieves the object stored in this instance of Past with the given ID. Asynchronously returns a PastContent object 
as the result  to  the provided Continuation,  or a  PastException.  This  method is  provided for convenience;  its  effect  is 
identical to a lookupHandles() and a subsequent fetch() to the handle that is nearest in the network. The client has the  
possibility  to  authenticate  the  object.  In  case  of  failure,  an  alternate  replica  of  the  object  can  be  obtained  via  
lookupHandles() and fetch(). This method is not safe if the object is immutable and storage nodes are not trusted. In this  
case, clients should use the lookUpHandles method to obtains the handles of all primary replicas and determine which  
replica is fresh in an application-specific manner. By default, this method attempts to cache the result locally for future use. 
Applications which do not desire this behavior should use the lookup(id, boolean, command) method.

lookupHandles : Retrieves the handles of up to max replicas of the object stored in this instance of Past with the given ID. 
Asynchronously returns an array of PastContentHandles as the result to the provided Continuation, or a PastException. 
Each replica handle is obtained from a different primary storage root for the the given key. If max exceeds the replication  
factor r of this Past instance, only r replicas are returned. This method will return a PastContentHandle[] array containing all 
of the handles. If we specify a specific handle, we can retrieve it for the given object stored on the requested node.

fetch : Retrieves the object associated with a given content handle. Asynchronously returns a PastContent object as the 
result to the provided Continuation, or a PastException. The client has the possibility to authenticate the object. In case of  
failure, an alternate replica can be obtained using a different handle obtained via lookupHandles().

3.2.1.3. PastContent interface

This interface must be implemented by all content objects stored in Past. The interface allows applications to control the 
semantics of an instance of Past. For instance, it allows applications to control which objects can be inserted (e.g., content-
hash objects only), what happens when an object is inserted that already exists in Past, etc.

3.2.1.4. Methods

checkInsert : Checks if an insert operation should be allowed. Invoked when a Past node receives an insert request and it 
is a replica root for the id; invoked on the object to be inserted. This method determines the effect of an insert operation on  
an object that already exists, it computes the new value of the stored object, as a function of the new and the existing  
object.

getHandle : Produces a handle for this content object. The handle is retrieved and returned to the client as a result of the  
Past.lookupHandles() method.

getId : Returns the Id under which this object is stored in Past.

isMutable : States if this content object is mutable. Mutable objects are not subject to dynamic caching in Past.

3.2.1.5. PastContentHandle interface

This interface must be implemented by all content object handles. This interface represents an object that is stored on a 
specific replica. Thus, the validity of a handle is sometimes very short, and applications should keep references to an object  
by Id rather than handle.

3.2.1.6. Methods
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getId : get the id of the PastContent object associated with this handle

getNodeHandle : get the NodeHandle of the Past node on which the object associated with this handle is stored

3.2.2. package rice.p2p.past.gc

This package is used to manage the deletion of objects in the distributed storage system using timeout. This package will  
allow us to handle storage space efficiently.

3.2.2.1. GCPast interface

This interface represents an extension to the Past interface, which adds support for garbage collection. Individual objects 
are each given timeout times. The timeout times are used to determine when space can be reclaimed. Applications must  
periodically invoke the refresh() operation on all objects which they are interested in. Otherwise, objects may be reclaimed 
and will be no longer available.

3.2.2.2. Attributes and Methods

INFINITY_EXPIRATION : Timeout value which indicates that the object should never expire. Note that objects with this 
timeout value will be deleted in the year 292473178. If this is a problem, applications should check for this value explicitly.

insert : Inserts an object with the given ID into this instance of Past. Asynchronously returns a PastException to command, 
if the operation was unsuccessful. If the operation was successful, a Boolean[] is returned representing the responses from 
each of the replicas which inserted the object. This method is equivalent to insert(obj, INFINITY_EXPIRATION, command) as 
it  inserts the object with a timeout value of infinity. This is done for simplicity, as well as backwards-compatibility for 
applications.

refresh : Updates the objects stored under the provided keys id to expire no earlier than the provided expiration time.  
Asyncroniously returns the result to the caller via the provided continuation. The result of this operation is an Object[],  
which is the same length as the input array of Ids.  Each element in the array is either Boolean(true), representing that the 
refresh succeeded for the corresponding Id, or an Exception describing why the refresh failed. Specifically, the possible  
exceptions which can be returned are:

• ObjectNotFoundException : if no object was found under the given key
• RefreshFailedException : if the refresh operation failed for any other reason (the getMessage() will describe the 

failure)

3.2.3. package rice.p2p.replication

This package is responsible for object replication. It will allow us to have availability of objects giving that a storage of an  
object will be done in multiple nodes. Additionally, it will allow us to handle failure tolerance giving that if a node fails, we'll  
be able to retrieve the object from another node. These two feature are very important for our research and need to be 
tested carefully.

3.2.3.1. Replication interface

This interface is exported by Replication Manager (RM) for any applications which need to replicate objects across k+1 
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nodes closest to the object identifier in the NodeId space. The 'closest' (to the object identifier) of the k+1 nodes is referred  
to as the 0-root in which the object is stored by default when not using the replica manager. Additionally the RM assists in  
maintaining the invariant that the object is also stored in the other k nodes referred to as the i-roots (1<=i<=k). In the RM 
literature, k is called the ReplicaFactor and is used when an instance of the replica manager is being instantiated.

3.2.3.2. Method

replicate :  Method which invokes the replication process.  This should not  normally  be called by applications,  as  the 
Replication class itself periodically invokes this process. However, applications are allowed to use this method to initiate a  
replication request.

3.2.3.3. ReplicationClient interface

This interface should be implemented by all applications that interact with the Replica Manager.

3.2.3.4. Methods

fetch : This method is invoked to notify the application that it should fetch the corresponding keys in this set, since the 
node is now responsible for these keys also.

setRange : This method is used to notify the application of the range of keys for which it is responsible. The application 
might choose to react to call by calling a scan(complement of this range) to the persistence manager and get the keys for  
which it is not responsible and call delete on the persistence manager for those objects.

scan : This method should return the set of keys that the application currently stores in this range. Should return an empty 
IdSet (not null), in the case that no keys belong to this range.

3.2.3.5. ReplicationPolicy interface

This interface represents  a policy for Replication,  which is  asked whenever the replication manager need to make an 
application-specific decision.

3.2.3.6. Method

difference : This method is given a list of local ids and a list of remote ids, and should return the list of remote ids which  
need to be fetched. Thus, this method should return the set B-A, where the result is a subset of B.

3.3. CoDeS Persistent Storage Module

CoDeS architecture is based on modules. Each module implements a part of the functionality of CoDeS, and they interact 
with each other in the local host to have access to their respective functionality. All the modules are present in every node 
executing  CoDeS.  Some  of  them  provide  their  functionality  by  cooperating  with  the  modules  in  other  nodes  using 
distributed mechanisms. To ensure extendibility, each module implement an interface that describes the behavior of the 
module. To use or interact with a module the other classes and modules only use the interface methods, this way the  
system  will  not  relay  on  a  specific  implementation.  This  kind  of  architecture  offers  flexibility  to  try  out  different  
implementations and use the one that best fits our needs. 

To integrate freepastry's PAST in CoDeS, we'll  need to modify the PersistentStorageModule in order to implement PAST  
interface. This way, it will be able to use easily all the features offered by freepastry's PAST.
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3.4. Evaluation 

3.4.1. Test Environement 

We've tested Freepastry's [29] DHT independently from CoDeS. This way we've been able to check which requirements it  
can handle and in case of problems we were sure that they are related to Freepastry's mechanisms and not the ones from  
CoDeS. Another advantage of this approach is that we've narrowed causes of problems and we've been able to concentrate  
on one issue at a time.

For the tests, we've used a virtual machine running Ubuntu 12.04 (64 bit).  The hardware configuration of the virtual 
machine is as following :

• Processor : Intel Core i7-3610QM CPU 2.30GHz (we've allowed 8 processors)
• RAM 8030 Mo
• 100 Go of storage

The software configuration of the virtual machine is as following :

• JRE 6.
• Freepastry 2.1

We have used FreePastry’s simulation mode to create a whole community in a single JVM. Additionally, we've based our 
tests on the past tutorial program that we've found in Freepastry's web site. We've adapted it according to our needs to  
evaluate how Freepastry react regarding each one of our requirements.

FreePastry's Simulator is a Discrete Event Simulator. It's capable of executing freepastry applications without modification 
to the source code (Other than the initiation code: Such as the PastryNodeFactory). The code is executed faster than real-
time. The simulator uses a virtual clock, not the computer's clock. So if we have the CPU/memory, a simulated environment  
can run much faster than a real clock. Or if the simulated network is too large or resource intensive to be simulated in real-
time, then the accuracy won't be affected by insufficient resources, the virtual clock only advances when there are no 
immediate tasks to be executed. Contrary to the previous point, the simulator can be executed with the system clock. This  
may be useful to interactive applications that run on a "human" timescale. Because freepastry supports a "real-time" clock,  
in the case of a powerful enough computer, it's possible to simulate interactive applications such as games and real-time 
collaborative applications without using multiple physical machines and a real network. 

It  can also accept a  variety  of  topologies  for  network latency.  Freepastry  ships  with  3 topologies:  Euclidean  (Planar), 
Spherical, and GenericNetwork topologies. The Euclidean and Spherical topologies use geometric equations to determine 
latencies between nodes. The GenericNetwork accepts a latency matrix from a file that can be used to construct transit-
stub, or more complex topologies. 

The simulator simulates delay, and message loss in the case of churn (IE, a node failing with messages in it's queues). The 
ring grows really slowly if we use the modern consistency leafset/join protocols which are not necessary for the simulator. 
These protocol guarantee consistency in the face of temporary routing anomalies, which the simulator doesn't simulate.

The proximity is calculated based on the simulator used.  In the Euclidean and Sphere ones, it is taken from the geometrical  
distance. The GT-ITM topology takes it from a file. The unit is mills. In this last case, the way it works is that every time a 
message is simulated, it looks at the table from A to B, and sets a timer to deliver the message at that time. So if it takes  
multiple simulated hops, then the time it takes to arrive at the destination is the sum of all of the hops.

The simulator uses one thread for all of the nodes we are simulating. Rather than use a semaphore, it's recommend to  
schedule the events we want to occur in our simulation as events.

The basic idea behind the simulator is there are a bunch of tasks on a priority-queue sorted by the time they should be  
executed. To simulate network delay we lookup the delay between the sending/receiving node and schedule a task for that 
message to be delivered after that amount of time. At each simulation step, we look at the first element on the queue. If  
the time needs to be advanced to execute that task, we advance the time.
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3.4.2. Evaluation Results 

3.4.2.1. Storage 

3.3.2.4.1. Feature description

The first aspect that we've tested is the ability of storing and retrieving files in Freepastry's DHT [29]. We've started with 
the storage point because we consider that it represents the core feature of a DSS. Our goal from this tests is to check : 

• If Freepastry' DHT is capable of storing and retrieving files of different size, 
• The time needed to store and retrieve a file 

3.3.2.4.2. Test description

In order to answer the previous questions,  we've made some modifications  in Freepastry.  First of all,  we've modified  
PastContent class which represent an object that can be stored in the DHT. We've added a bite array that will contain the 
content of a file.

In order to join the overlay ring, a node needs to exchange several messages with nodes contained in the ring to notify 
theme of its presence and to create its own routing table. Once a node has successfully joined a ring, it will send some 
messages in order to update its routing table. The test program start with creating a virtual ring containing a fixed number 
of Freepastry nodes. The number of nodes is defined as a parameter of the program. We create a past application in each 
node. Once all nodes are created and ready, we pick a random past application on a random node in order to store a file  
(PastContent object) in the DHT and we keep the identifier of the object (as a key) for the retrieval section of the program.  
To test simultaneous storage and retrieval in Freepastry, we pick a fixed number of past applications each time to store and 
to retrieve files. Concerning the retrieval part, we pick a random application and we use past lookup method to search for  
an already stored key. This way we can test PAST when the node doesn't know the location of the node storing the data. 

3.3.2.4.3. Variables description

The variables that we took into account for the tests are : file size and number of storage and retrieval at the same time. 
Here are the parameters that we've set to do the following tests :

• direct_simulator_topology = gt-itm : simulator topology
• pastry_protocol_consistentJoin_max_time_to_be_scheduled : the amount of time it takes the transport layer to find 

a node faulty (=150000)
• p2p_past_messageTimeout : time out defined for past message. (=30000)
• there is no replication
• there is no cache system
• Number of nodes = 500.

We've used the GT-ITM topology for the simulator and we've used a text file containing the latencies between each pair of  
nodes. Giving that the simulator is a single threaded program and there is a lock at the time of storage, we've noticed that  
when we use the same environment for all nodes, we've some delay caused by concurrent access to IO operations. For  
several times we needed to wait for several nodes to finish their insert operation before getting the response concerning  
the operation. It seems that all nodes are being executed in the same thread. To resolve this problem and simulate a real  
system where nodes will be in different machines, we've created for each node a new environment which ensures a new 
thread for each node.

3.3.2.4.4. Analysis of the results
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According to the results above, we can note that the time needed for each node to insert or retrieve data is approximately  
the same. The cases when we have differences of the order of 5s for example, can be explained by the concurrent access 
of IO operations. We can notice also the effect of this later when we increase the number of files. When we try to insert 20 
or 40 files at the same time, there are more concurrent access to IO operations and it's reflected in the time needed for  
each data to be stored or retrieved. Another point that we can get from the results is that there is no much difference  
between the time needed to write an object to disk by the node storing the object “write time” and the time needed to call  
insert method by a random node and get the acknowledgement for the insert operation from the node storing the object. 

We need to note that in this tests, the nodes doesn't know the location of the data and there is some traffic required to  
locate the data before retrieving it. We need to note also that in this tests, we've used a thread per node to prevent the 
locking operation performed at the time of writing the data. If we had used a single thread, results will be different than the  
ones above because nodes will block each one another and we'll get the acknowledge response once several nodes had 
finished their insertion.

There is two ways to get an object from the node storing it. The first one is by calling the lookup method which will locate 
the node storing the object and will retrieve the data from it (this is the method that we've used for our tests). The second 
method is to use the lookupHandles to get the handles responsible for an object and use one of the handles to fetch the 
object from the node storing it. In order to select an appropriate handle, we can use the isAlive method to check if the  
handle is alive and after that use the proximity method to select the nearest node from the node requiring the object.

For the tests, we've used lookup method which doesn't chose the best downloading location to get an object. This approach 
is suited for small files but in the case of middle and big files it's better to use the second method because we'll be getting 
objects from the nearest node. For the test we considered that there is no churn, our main goal was to prove that is  
possible to store and retrieve files in freepastry's DHT. However, for a real environment, it's better to use the second 
method because it will allow us to check the availability of the data before trying to get it. Performance won't be affected 
because with the first way we search for the location of the object before downloading it and with the second way we  
search for the location of handles responsible for the object before downloading it directly from the node storing it.

3.4.2.2. Scalability

3.3.2.4.1. Feature description

Another important aspect that Freepastry's DHT  [29] needs to handle correctly is scalability.  We need to compare the 
results from the previous tests that are based on a limited number of nodes in the community and the ones where we've a  
big number of nodes. To say that scalability is handled correctly, the time needed for storage or retrieval must not be 
affected by the number of nodes in the ring.

3.3.2.4.2. Test description
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To test scalability, we'll use the same program as for the storage tests, the only difference is the number of nodes. Each 
time, we'll increase the number of nodes an see how the time needed for insertion or retrieval is affected.

3.3.2.4.3. Variables description

The variable that we took into account for the tests is : the size of the community. We've tested 500, 1000 and 2000 nodes 
and checked how the system reacts. 
Here are the parameters that we've set to do the following tests :

• direct_simulator_topology = gt-itm : simulator topology
• pastry_protocol_consistentJoin_max_time_to_be_scheduled : the amount of time it takes the transport layer to find 

a node faulty (=150000)
• p2p_past_messageTimeout : time out defined for past message. (=30000)
• there is no replication
• there is no cache system
• Number of nodes = 500, 1000 and 2000.

3.3.2.4.4. Analysis of the results
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Increasing the number of nodes in the ring have two direct impacts in the freepastry overlay network. The first one is the 
increase number of messages that will be exchanged between nodes to stabilize the network and the second one is the  
increase number of hopes needed to get or put an object. In a system that handles correctly scalability, these two aspects 
must be transparent regarding insertion and lookup operations. Indeed, the time needed for each operation will increase 
with the number of nodes but difference must not be considerable in order to ensure scalability.

According to the results above, we can note that in the case of a small file (3.5 M), scalability doesn't have an important 
impact on the time needed for insertion or retrieval. The difference can be explained by the fact that there is more nodes  
and the number of hopes needed to get to  the destination node is  bigger.  In the charts above we can see that the  
difference is insignificant.

In the case of big files (56 M) and 5 operations at the same time, we can note the same results. However in the case of 
2000 nodes and 20 operations, we can see that the difference between the insert operations is of the order of 50s. This can 
be explained by the following facts :

• When we store  an object  using freepastry's  writing method,  we generate  bigger  files  than the  originals.  For  
example, for a file of 56M, we'll store a file of 111M.

• For the tests, we've used a single machine and to store 20 files of 56M, we write to disk 20 files of 111M at the  
same time. These concurrent writing operations will have an impact on the time needed to write a single file.  

In a real environment, the writing operations will be executed in several nodes and we won't have this delays related to 
concurrent access to IO operations.

We need to note that it wasn't possible to test the case of 40 files (56 M), because it requiters a lot of resources and the  
test machine wasn't able to execute the test.

3.4.2.3. Scalability and Multiple readers

Another aspect that we've tested is scalability in the case of multiple readers. This time we inserted 2 files in the DHT and 
tried to read these files several times at the same time. We've tested 10 and 20 reads at the same time and for different  
size of the ring : 500, 1000 and 2000.

3.3.2.4.1. Analysis of the results
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Thanks to the results above, we can see that scalability doesn't affect multiple readers. Indeed, there is a difference related 
to the number of nodes but it can be explained by the fact that the lookup method need more time to reach the node 
storing the data. However, we need to note that giving that all nodes read from the same node and the method that  
retrieve the file use a blocking IO mechanism to respond to a single request at a time which explain the time needed to  
answer the first node and the following.

This issue can be improved by modifying the get method and using multiple threads to attend a bigger number of requests.

3.4.2.4. Replication & Churn

3.3.2.4.1. Feature description

Replication is the mechanism that will ensure availability of data in case of nodes failure. Each time a data will be stored in  
the distributed storage system, it will be replicated according to a fixed number of replicas. Churn represents the factor of  
unavailability of nodes. These later can leave the ring whenever they want and the system must react in consequence to  
be able of handling the already stored data. Nodes send periodically messages to check if a node is still alive. When a node 
doesn't acknowledge of its presence, nodes exchange messages to update their routing tables and to locate a suitable  
replica for the data.

3.3.2.4.2. Test description

For this tests, we'll simulate churn to see how the system react in case of nodes failure and we'll check if replication works 
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correctly in freepastry. To test the performances of insertion and retrieval in the case of replication and churn, we've used 
the same part of the program (as in the previous tests) that is responsible of the creation of a ring, initializing each node,  
creating a past application for each node and inserting a number of files. The remaining part of the program will be in  
charge of destructing some nodes containing the stored files. Once these nodes have leaved the ring,  we pick some 
random past applications and we lookup for the handles of an already stored files. When the lookupHandles method get an  
array of the handles responsible for the file, we check for each handle if it's alive. finally, we use the fetch method with one 
of the alive handle to get the file. In the list of available handles, we can use the proximity method to select the nearest  
node to minimize the time needed for retrieval.

3.3.2.4.3. Variables description

The variables that we took into account for the tests are : the size of the community and the file size.
 
Here are the parameters that we've set to do the following tests :

• direct_simulator_topology = gt-itm : simulator topology
• pastry_protocol_consistentJoin_max_time_to_be_scheduled : the amount of time it takes the transport layer to find 

a node faulty (=150000)
• p2p_past_messageTimeout : time out defined for past message. (=30000)
• replication = 2
• there is no cache system
• Number of nodes = 500, 1000 and 2000.

3.3.2.4.4. Analysis of the results
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There  is  an  important  point  that  we  need  to  explain  concerning  these  results.  The  difference  between  the  figures 
concerning the time needed for insertion and retrieval in these tests and the previous ones, can be explained by the fact 
that in order to test churn in the simulator, we must use one environment for all nodes, thus a unique thread for all nodes. 
To test a node failure or departure, we've used the method environment.destroy(). When we clone the environment for all  
nodes, the destroy method seems to be taken into account by the other nodes and they exchange messages to stabilize 
the network but when we use a new environment for each node, the destroy method is ignored. Giving that there is a lock 
method used for IO operations, sometimes nodes doesn't send a response directly after the insertion operation but they are  
blocked until other nodes have finished their insertions. For example, if the time needed for an insertion is 90s for each 
node, sometimes we'll get the acknowledgement of the insertion operation after 180s for the three nodes at the same time. 
If there is other nodes that try to insert files at the same time as the previous nodes, they will wait for the three previous 
nodes to finish before trying to insert their files at the same time. This is why we can see sometimes 1100s for example for  
an insertion, in fact the real time needed in a real environment is 100s but giving the concurrent access to IO operation a 
node will wait for the other 10 nodes to finish their jobs before finishing his operation. 

According to the results above, if we take into account the remark from the previous paragraph, we can note that churn  
doesn't affect the availability of files, it's possible to continue retrieving data even in the presence of failure or departure of 
nodes. However, we can notice that the time of insertion or retrieval in the case of no churn is sometimes bigger than the  
time in the case of churn. This can be explained by the fact that in the presence of churn there will be some replicas 
missing before recreating another ones thus the lookuphandles method will return the available handles quicker. We've 
done the same tests for files of 56M and we've noticed the same behavior.

3.4.2.5. Versionning and Atomic modification

As we've seen in the previous tests, the writing method uses a blocking mechanism to treat one request at a time. This way  
it can ensure that modification will be atomic and concurrent writes won't be the source of conflicts.

In the chart below we can see that the time needed to insert an object in the case of churn for the first and the last node is 
20s but in the case of the other three nodes is 60s. In reality, the time needed to insert an object is 20s, but giving that 
there is a blocking mechanism, nodes 2, 3 and 4 have not been able to send the acknowledgement for the insertion until 
the three have finished (20s x 3 = 60s). Therefore, we can conclude that a blocking mechanism is used in the writing  
method and it ensures atomic modification.
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Another requirement that needs to be respected by freepastry's DHT in order to say that it could be used for CoDeS is  
versionning. We need to be able to insert different versions of a file. Natively, PAST implementation in freepastry doesn't  
handle multiple versions of a file. Thus, we've modified the code to be able to do it.
Freepastr's PAST uses the key of an object as its physical name. In order to be able to manage multiple versions, we've  
added to the physical name of the object a separator '°' and the time stamp of the insertion. The name of the file will be :  
key°timestamp instead of key. This way we can have multiple versions of a file. But this modification is not sufficient,  
because when the storage implementation will search the disk for a file named as the key it won't find it. Thus, we've  
modified the storage implementation to lookup for files which name start with the key and we select the one with the  
bigger time stamp. The time needed to lookup for the files in the disk is insignificant regarding the time needed to get an  
object, consequently it won't affect performances. This method allow us to have multiple versions but we can get only the 
last version. More modifications needs to be done in order to get a specific version.

3.4.2.6. Garbage collector

The garbage collector offered by freepastry [29] can be used to manage the deletion of objects in the distributed storage 
system using timeout. This package will  allow us to handle storage space efficiently. Individual objects are each given 
timeout times.  These are used to  determine when space can be reclaimed.  Applications must periodically  invoke the 
refresh() operation on all objects which they are interested in. Otherwise, objects may be reclaimed and will be no longer  
available.

3.4.2.7. Security

Freepastry API offers an interface named PastPolicy which represents a policy for Past. It's called whenever the local node is  
told  to  replicate  or  validate  an  item.  This  allows  for  applications  to  control  replication  and  object  validate  behavior, 
permitting behavior specific for mutable or self-authenticating data.
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4. Conclusion

The goal of this research was to provide a distributed storage system for CoDeS [22] a contributory computing model, 
where users form a community by contributing their resources to be used collectively in a decentralized and self-managed 
way.  For  this  purpose,  we've  studied  the  existing  distributed  storage  systems  and  we've  analyzed  each  element 
constituting  them and each feature characterizing them. During the analysis we've took into account the functional and 
non functional requirements for our research to be able to select the best solution.

We've considered that PAST [8] is the best distributed storage system that could be integrated in CoDeS because it shares 
a lot of common aspects with a contributory computing model. Additionally, it implementation is available in freepastry [29] 
which is the system used in CoDeS prototype. However, further tests needed to be accomplish in order to prove the validity  
of this solution. 

According to the tests and evaluations that we've done on freepastry's implementation of PAST, we can conclude that it can  
handle correctly the following features : scalability, availability, fault-tolerance and consistency. This solution is capable also 
of handling the functional requirements : storage and retrieval of different files size and atomic modifications. However, to  
be integrated with  CoDeS,  some improvements  need to  be done as  managing different  file  versions and security  by 
implementing an authentication mechanism. Additionally, we've seen that the solution is not capable of handling multiple  
reads at the same time which is an important aspect for distributed storage system giving that in the case of service 
deployment multiple nodes would request the same data at the same time. Finally, we've conducted the tests on a single 
server and we think that it could be interesting to compare this results with tests executed on a real test environment as 
Planetlab.
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