
A study on practices against malware in free
software projects

Ignacio Colomina, Joan Arnedo-Moreno, Robert Clarisó
Estudis d’Informàtica, Multimedia i Telecomunicació

Universitat Oberta de Catalunya
Barcelona, Spain

{icolomina,jarnedo,rclariso}@uoc.edu

Abstract—Many popular applications are developed using
a free software model, through the collaborative effort of a
community which makes the source code available for free.
Unfortunately, malicious third parties may attempt to take
advantage of this combination of popularity and openness by
introducing software components that infect end-users who install
the application. To reduce this security risk, several technical
procedures and community management practices can be used
during software development and distribution. This paper studies
these procedures in the free source domain and evaluates their
application in two widely-used open source projects, Symfony
and Chromium.

Index Terms—free software;open source; software develop-
ment; security; malware;collaboration

I. INTRODUCTION

Nowadays, many popular applications are developed under
the Free Software banner, a movement that advocates that
programs should be used, studied, modified, copied and re-
distributed with almost no restrictions. In order to achieve this
goal, such applications are developed as open source, usually
through the collaborative effort of a developer community.
Even though such communities may sometimes be conformed
at its core by a tightly knit set of programmers, the very nature
of free software allows any individual to selflessly contribute.

From a security standpoint, the free software development
model offers a great advantage over its closed alternative [1],
[2], as it allows any individual to freely inspect the code
and look for bugs or vulnerabilities, so they can be quickly
corrected by the developer community or the finder himself.
The bigger the community, the greater the probability of
finding and fixing errors in a timely manner. This is considered
an advantage since it is a well known fact that security through
obscurity, the approach often used by closed software, simply
does not work at all [3].

Unfortunately, as far as security is concerned, there are
three main scenarios where the freedom to study, modify and
distribute source code becomes a liability. The first one appears
when a malicious developer detects but does not disclose the
vulnerability, hoping to exploit it at a later time. In the second
scenario, a malicious developer submits a vulnerability or
malicious component to the project code repository, hoping it
goes unnoticed and becomes distributed in an official release.
In the third scenario, a malicious party pretends to offer a
copy or mirror of the original application, but offers malware

instead. It is the developer community’s responsibility to
prevent these scenarios from ever happening, on the risk of
losing its reputation.

Up to date, several dimensions of open source software
development have been thoroughly studied, such as the de-
velopment process of the most popular open source projects,
e.g. Apache and Mozilla in [4], or the quality of the code being
produced, e.g. [5] or [6]. However, the malware perspective in
the context of open source has not been previously considered.
In this paper, we present a study and evaluation on the proce-
dures to avoid malware in the free software domain. Given
the number of distinct free software applications available
nowadays, two particular widely-used open source projects
have been chosen for this study, Symfony and Chromium. This
study is based on the case study research methodology in order
to get results about the strength of its communities.

The remainder of the paper is organized as follows. First,
Section II introduces the security risks in open source projects
regarding malware and the related word. Then, Section III
proposes several procedures that can be used to minimize
the risk of malicious software appearing in the code base.
Section IV presents two case studies of open software projects
where the procedures are analyzed. Finally, Section VI draws
conclusions from the results of the case studies.

II. PROBLEM DESCRIPTION

In this paper, we study how to develop and distribute a free
software project which is free from malicious software, i.e.
malware. We consider the most abstract notion of malware,
which can be defined [7] as “a set of instructions that run in
your computer and make your system do something that an
attacker wants it to do”. This is a generic concept which covers
a wide variety of threats, e.g. rootkits, trojans, . . . However, we
do not focus on the goals of this malware or the techniques
it uses to operate, hide or infect systems. Instead, our aim is
aiding in the prevention of them reaching the project code base
and the end users.

Our problem description considers two different factors as
far as malware propagation is concerned. First, we analyze
the inherent vulnerabilities of free software projects because
of its “free software” nature. Then, we study the role of the
developer community in this process.



Other threats, such as compromising the server hosting the
project source code to inject malware [8] are not considered
in this work, as they may occur in any project regardless of
the development model.

A. Free software and its impact in security

The original freedoms that define the notion of free software
were established by the Free Software Foundation1:

1) The freedom to execute a program for any purpose.
2) The freedom to study how the program works and

modify its functionalities.
3) The freedom to redistribute copies of the program.
4) The freedom to redistribute modified copies of the

program.
These freedoms may offer to users, developers and compa-

nies some interesting opportunities in comparison to closed
or private software does due to the fact that source code
can be analyzed freely. In fact, freedoms 2 and 4 require
source code access to be effective. The main advantages can
be summarized as:

• Developers can benefit from the changes and improve-
ments of other developers.

• Users can use (for free) quality software developed with
the knowledge of many developers.

• Companies can implement business models which they
were unavailable with private software.

Despite all these advantages, free software can open a door
to malware, mainly through the open source code. On that
regard Payne C analyzes the open source code feature in
[2], stating that having many developers working in the same
project can help to detect malware since there are a lot of
eyes guarding the code. On the other hand, he also states that
a malicious developer could study source code without dealing
with binary files in order to insert malware, infect the code
and then redistribute his copy to infect other people. In other
words, an attacker would use the free software features as a
channel to spread malware. Besides, there is another important
aspect which is discussed both in [2] and [5]: that having a
high number of developers working in the project does not
mean that many qualified eyes are looking for vulnerabilities
through source code, since many of the developers do not
always have the necessary or required experience to do it.

B. Free software communities and security

Communities are the entities by which developers can
collaborate in a free software project and communicate with
other people involved in it. At the beginning of this movement,
communities only made possible for developers to share code
and work together. Nowadays, they act as organizations which
manage and direct the collective effort of all collaborators.
Some of the functions communities usually carry out are the
following:

• Roles: Members of communities usually have defined
roles which specify their privileges and responsibilities.

1http://www.fsf.org

• Access control: Source code is usually stored on dis-
tributed repositories where users have to login before
accessing it.

• Protocols and promotion: Communities usually include
protocols by which developers and other members can
promote into new and more important roles.

• Authority: Many times, the group of most committed
contributors (Core Team) are in charge of making deci-
sions about the project. Of course, other members can
express their opinion.

There are many factors which could explain why communi-
ties have evolved into these complex organizations. However,
the most important reason is security. Section II-A explained
that free software features may help attackers to study source
code and infect it without having to deal with binary files.
That is the reason why communities become organized, and
especially their security features become really important.

In order to protect access to source code and monitor who
reads and modifies it, communities must be equipped with
technical and social mechanisms (roles, security and the other
ones mentioned in the last paragraph) which act as a deterrent
against attackers: The stronger the communities, the fewer the
attackers who will be able to infect them. Both technical and
social mechanisms are really important since one of them
cannot live without the other. For instance, if a community has
good network security but poor member promotion, a member
could hide his malicious intentions and hack the project from
within.

Fig. 1. The Cathedral and the Bazaar.

Eric Raymond’s simile in [9] about The Cathedral and the
Bazaar is a great example to understand how communities
organize themselves. Figure 1 shows the Cathedral (a metaphor
of closed source projects) as an entity where only members
in it can collaborate in the project and external people have
no access at all. On the other hand, the Bazaar (a metaphor
for open source) acts as an entity where anybody who wants
to collaborate is welcome. Nevertheless, current communities
get the features both of the Cathedral and the Bazaar to make
organizations that improve security and control and, at the
same time, allow developers around the world to join the
project by following a set of rules before starting to collaborate
(Figure 2).

In this direction, [10] considers a community chart as an
onion model. Onion layers which are next to the onion nucleus
represent high responsibility roles and the other ones which
are far from the nucleus represent low responsibility ones.



Fig. 2. Protected but accessible community.

That is the way which many communities use to make a
promotion protocol where members can promote from remote
layers to nearby layers. With this model, new developers and
users can join communities (following the features of the
bazaar) but only members who prove their professionalism
get more responsibilities and can become Core team members
(following the features of the cathedral).

Figure 3 shows an example of such an onion model com-
munity with five layers. New members join the community
in the outermost layer, which grant them minor privileges
within the project. As the member gathers trust from the
community through useful contributions, it becomes promoted
to the inner layers, which grant him additional privileges and a
higher degree of trust in his actions. In the end, the committer
becomes an experienced member of the community and may
join the inner layer, becoming a Core Team member.

Fig. 3. Onion model for a project community

III. PROCEDURES AND BEST PRACTICES

Under a free software model, it is very important to have a
set of procedures which can help to build strong communities
and provide trust. This research is based on a list of procedures
in order to evaluate the security of the two chosen communities
(Symfony and Chromium). These procedures are important

because they provide an easy way to know how secure a
community is. This section first introduces how the procedures
have been chosen and then describes them in detail.

A. Selection of procedures

The procedures proposed in this work have been inspired
by the safeguards elements of the MAGERIT v2 standard for
risk analysis, management and control (ISO1779) [11]. The
categories for these safeguards are the following:

• Access control and privilege management.
• Organizational security.
• Action log.
Procedures are classified according to a level of importance:

normal or high. This classification captures the risk of the
absence or a failure in the implementation of the procedure.
That is, normal procedures improve the degree of security but
may not be as severe or as easy to exploit as high importance
procedures.

B. Procedure description

The list of our proposed procedures and their descriptions
are listed in Table I.

IV. CASE STUDIES

The use of case studies to make this research can help to
know how much strong communities are by analyzing whether
they carry out the procedures or not. As it is mentioned in II-B:
The stronger the communities the fewer the attackers who will
be able to infect them. The main features of this research are
the following:

• Case studies will be exploratory studies.
• The instance of each case study will be a community of

a free software project.
• The procedures defined in this research will be used as

a conceptual framework in order to generalize these case
studies to other projects.

• The source of information for analysing communities will
be the Internet, and more precisely, the project web portal.

The chosen projects for this research are the following:

Symfony: A PHP framework which contains classes and
libraries to develop web applications following the Model-
View-Controller paradigm.

• Distribution license: MIT
• Project web page: http://www.symfony.com/

Chromium: An Internet browser which main aim is to be
fast, secure and stable.

• Distribution license: The Chromium part developed by
Google was released with BSD license and the other
parts were released with several open source licenses
such as MIT, LGPL, Ms-PL or the combined license
MPL/GPL/LGPL

• Project web page: http://www.chromium.org/Home



Procedure Description Risk level
Access control and privilege management

P.1 A source code repository is used to keep track of versions. The repository is either centralized or, if it is distributed,
it has a master branch used by all developers

High

P.2 A group of members controls who accesses the repository and their actions High
P.3 There is a protocol to grant access to the repository managed by the community Core Team High
P.4 The Core Team decides which changes are included in a new release High
P.5 There are security mechanisms which guarantee the integrity of downloadable packages and source code High

Action log
P.6 Developers have to follow code conventions Normal
P.7 Procedures to control software quality (e.g. unit testing) are in place High
P.8 There is a ticket software to record who changes source code and why High
P.9 There is a procedure to revise new functionalities and changes made by other developer members High
P.9.1 The review procedure is performed by members of the Core Team High
P.9.2 The project includes a different branch for unrevised code before it is merged with the master branch High
P.9.3 The procedure includes a connection between the ticket software and the P.9.1 review Normal
P.10 A procedure is used in order to systematically produce a release High
P.11 There is a system to generate version names which identifies their aim (A, A.B, A.B.C) Normal

Organizational security
P.12 Community hierarchy follows an onion model High

TABLE I
LIST OF PROPOSED SECURITY PROCEDURES FOR FREE SOFTWARE PROJECTS

These projects were selected because they are interesting,
with a wide user base both among individuals and industry and
have not been previously studied from a scientific perspective.

A. Procedure assessment criteria

The assessment of procedures was carried out by assign-
ing a value for each procedure, depending on whether the
community properly performs a it or not. Fortunately, free
software projects provide guidelines to new contributors, with
information about the organization of the community, the
code contribution process, member privileges, etc. We used
this information to assess each procedure in Symfony and
Chromium.

After each procedure was properly assessed, it was evalu-
ated according to the following criteria:

• Procedure has not been found or the community does not
apply the procedure. Value: Not satisfied

• Procedure has been found but not properly applied by the
community. Value: Partially satisfied

• Procedure has been found and the community correctly
implements it. Value: Satisfied

B. Procedures assessment results

Table II summarizes the procedure evaluation results for
each community. Unsurprisingly, since the projects under
study are widely used and being actively developed, both
of them satisfy most procedures. However, it is interesting
to notice that, even for these high-profile projects, not all
procedures are fully accomplished. Table III identifies the
issues where some procedures failed to be satisfied.

C. Evaluation of communities

Each non satisfied procedure reduces the effort required
by an attacker to get its malware distributed inside the free
software project. Even though all procedures are equally
important, as each addresses just a different kind of threat, it

Procedure Symfony Chromium
P.1 Satisfied Satisfied
P.2 Satisfied Satisfied
P.3 Partially satisfied Satisfied
P.4 Satisfied Satisfied
P.5 Partially satisfied Partially satisfied
P.6 Satisfied Satisfied
P.7 Partially satisfied Satisfied
P.8 Satisfied Satisfied

P.9.1 Satisfied Satisfied
P.9.2 Satisfied Satisfied
P.9.3 Satisfied Satisfied
P.10 Partially satisfied Satisfied
P.11 Satisfied Satisfied
P.12 Satisfied Satisfied

TABLE II
PROJECT ASSESSMENT SUMMARY

may be important to have an overview on the degree of security
in a free software project. For example, this could be useful
when comparing different free software projects, e.g. to select
the most suitable project to use among several candidates.

To this end, we propose a metric to approximately measure
the degree of security against malware in a free software
project. This metric is defined from the set of satisfied proce-
dures in the following way.

• Satisfied procedures add 1 point.
• Partially satisfied procedures add 0.5 points.
• Non satisfied procedures do not add any points.
This metric ranges from 0 (worst) to 14 (optimal). To

provide a qualitative view of this information, we may consider
qualifying them according to the following intervals:

• Optimal strength: 14 points
• High strength: [11 - 14) points
• Medium strength: [8 - 11) points
• Low strength: [6 - 8) points
• Critical strength: [0 - 6) points



Project Procedure Issue
Symfony P.3 No formal procedure to control access to the software repository.

P.5 No checksum available when downloading a bundle (ZIP, . . . )
P.7 Insufficient quality control measures (only functional and unit tests required).

P.10 No release calendar planned for new versions.
Chromium P.5 No checksum available when downloading a bundle (ZIP, . . . ).

TABLE III
SUMMARY OF ISSUES FOUND IN SYMFONY AND CHROMIUM

Using the previously mentioned rules, the metric for each
project is as follows:

Symfony:
• Partially satisfied procedures score: 4 * 0.5 = 2 points
• Satisfied procedures score: 10 * 1 = 10 points
• Total score: 10 + 2 = 12 points (High strength)

Chromium:
• Partially satisfied procedures score: 1 * 0.5 = 0.5 points
• Satisfied procedures score: 13 * 1 = 13 points
• Total score: 13 + 0.5 = 13.5 points (High strength)

V. DISCUSSION OF RESULTS

After knowing the results and qualification for each project,
it is the time to further discuss how an attacker could take
advantage of a procedure not being satisfied. each procedure
which is not completely satisfied is individually discussed.

A. Symfony

Procedure P.3 (Partially satisfied): Having a procedure
which acts as a way to become a committer can help a
community to protect itself against attackers. Although the
community Core Team revises all committed code there can
be committers with malicious aims who try to introduce
malware hidden in a new functionality or code change. By
establishing this procedure, future malicious committers can
be discovered before they are able to login into the software
repository.

Procedure P.5 (Partially satisfied) Symfony users can
download the software in a bundle (zip, tar, tar.gz, etc.).
However, this package does not include a verification
checksum such as SHA-1 [12] in order to check its integrity.
Users downloading the software through unofficial means
(e.g. a peer-to-peer site or a fake mirror) may receive an
altered bundle infected with malware.

Procedure P.7 (Partially satisfied) Although developers
have to build a functional and unit test to each code change
they do, a malicious committer could add malware through a
test. In order to avoid it, a community should have its own
testing software and all committers should use it to build tests.

Procedure P.10 (Partially satisfied) Symfony does not have
an release calendar for future releases. An attacker could
benefit from this absence by faking a new release, urging
users to download a malware-infected version of the project
source.

B. Chromium

Procedure P.5 (Partially satisfied) Just like in Symfony,
Chromium bundles do not include a verification checksum.
Therefore, users have no way of checking whether the soft-
ware they downloaded through unofficial channels has been
tampered.

C. Summary

In the projects under study, the potential vulnerabilities
could be exploited to release a fake version of the project
which can be used to spread malware. In particular, the
omission of procedure P.5 (integrity verification) can be used,
for instance, to seed a “mirror” of the project with an infected
version of a release.

This issue is quite easy to solve and it is already addressed
by a large group of free software projects, which provide in-
tegrity verification checksums for all their package downloads.
Some examples of projects which apply this best practice are:
the Apache HTTP server, the MySQL database server, the
SquirrelMail webmail client, the deployment tool Apache Ant,
the print system Cups, etc.

VI. CONCLUSION

Malware avoidance in open source software is still an open
problem, as it can be shown by several recent outbreaks such
as the mentioned in [13] and [14]. In fact, the projects in
our case study (Symfony and Chromium) illustrate that even
popular open source projects lack some simple safeguards that
protect against the introduction of malware.

Several factors contribute to the complexity of this problem.
First, there is no single “silver bullet”, a combination of
procedures must be used to address all potential risks. Second,
solutions require both technical measures (e.g. authentica-
tion required for commits to the code base, security of the
software repository) and community management measures
(e.g. layered community with different roles and levels of
privilege). And third, some procedures, like reviewing all
software patches submitted to the project, require a continuous
effort from the developer community.



As a future work, the following approaches should be taken
into account:

• From this research, design a procedure list which can
be standardized and used as a guideline to make strong
communities.

• To make an analysis about economic losses which could
generate a free software project because of not achieving
standardized procedures. For instance, by using eigenval-
ues and eigenvectors.

ACKNOWLEDGEMENTS

The author Ignacio Colomina would like to thank to
Ma Soledad Ferri Sellés for her advice in English grammar
and vocabulary.

REFERENCES

[1] J.-H. Hoepman and B. Jacobs, “Increased security through open
source,” Commun. ACM, vol. 50, no. 1, pp. 79–83, jan 2007. [Online].
Available: http://doi.acm.org/10.1145/1188913.1188921

[2] C. Payne, “On the security of open source software,” Information
Systems Journal, vol. 12, no. 1, pp. 61–78, 2002. [Online]. Available:
http://dx.doi.org/10.1046/j.1365-2575.2002.00118.x

[3] A. Kerckhoffs, “La cryptographie militaire,” Journal des sciences mili-
taires, vol. IX, 1983.

[4] A. Mockus, R. T. Fielding, and J. D. Herbsleb, “Two case studies of
open source software development: Apache and Mozilla,” ACM Trans.
Softw. Eng. Methodol., vol. 11, no. 3, pp. 309–346, 2002.

[5] I. Stamelos, L. Angelis, A. Oikonomou, and G. L. Bleris, “Code
quality analysis in open source software development,” Information
Systems Journal, vol. 12, no. 1, pp. 43–60, 2002. [Online]. Available:
http://dx.doi.org/10.1046/j.1365-2575.2002.00117.x

[6] L. Zhao and S. Elbaum, “Quality assurance under the open
source development model,” Journal of Systems and Software,
vol. 66, no. 1, pp. 65 – 75, 2003. [Online]. Available: http:
//www.sciencedirect.com/science/article/pii/S016412120200064X

[7] L. Z. Ed Skoudis, Malware. Figthing malicious code. Prentice Hall,
2004.

[8] S. Anthony. (2012, 03) Github hacked, millions
of projects at risk of being modified or deleted.
[Online]. Available: http://www.extremetech.com/computing/
120981-github-hacked-millions-of-projects-at-risk-of-being-modified-or-deleted

[9] E. S. Raymond, The Cathedral and the Bazaar. O’Reilly, 2001.
[10] M. Aberdour, “Achieving quality in open source software,” IEEE Soft-

ware, vol. 24, no. 1, pp. 58–64, 2007.
[11] M. of Civil Services of Spain. EAR / PILAR - entorno de análisis

de riesgos. [Online]. Available: https://www.ccn-cert.cni.es/index.php?
option=com wrapper&view=wrapper&Itemid=187&lang=es

[12] NIST, “FIPS PUB 180-1: Secure hash standard,” 1995, http://www.itl.
nist.gov/fipspubs/fip180-1.htm.

[13] D. Goodin. (2011, 08) Kernel.org linux repository rooted in hack
attack. [Online]. Available: http://www.theregister.co.uk/2011/08/31/
linux kernel security breach/

[14] M. Pithia. (2011, 10) Is your website accused of phising? Phishing sites
on the rise due to web application vulnerabilities. [Online]. Available:
http://info.brandprotect.com/Blog/bid/64544


