
An open source browser-based
software tool for graph drawing

and visualisation

Master Thesis

submittet to the Department of IT, Multimedia

and Telecommunications of the

Universitat Oberta de Catalunya

in partial fulfillment of the requirements

for the academic degree of

Master in Free Software

by

Veit-Dieter VOGT

Supervisor / Tutor
Prof. C. Garrigues Olivella

2014

Declaration

Hereby I certify that I have conducted this Master Thesis

independently and used no other than the specified

resources.

Veit-Dieter Vogt

Table of Contents

Abstract...1

1 Introduction..3

2 Graph Drawing and Visualisation..5

3 Methodology..21

3.1 In-detail description of the data analysis..23

3.1.1 Identifying the candidates...24

3.1.2 Reading existing reviews..24

3.1.3 Comparing the leading programs...25

3.1.4 In-depth analysis of the top candidates....................................26

4 I R C A..27

4.1 Identify..27

4.2 Read Reviews..28

4.3 Comparison..30

4.3.1 Functionality..30

4.3.2 Market share...30

4.3.3 Support / Maintenance / Longevity / Reliability........................31

4.3.4 Flexibility / Customisability..33

4.3.5 Licence...35

4.3.6 Other cirteria...36

4.4 Analysis in-depth..37

4.5 Conclusion..39

5 Software Development..41

i

5.1 Unified Modeling Language (UML)..43

5.1.1 Use Cases Diagram...45

5.1.2 Sequence Diagram...48

6 Documention of the software tool..51

6.1 Installation in 4 steps..51

6.2 Workspace, Toolbar and Properties...58

6.3 The Menu Bar...60

6.4 Graph edit options..68

6.5 To Do List..76

6.6 General Features...76

7 References...81

Appendix A..89

The BSD 3-clauses licence..89

Appendix B..95

The MIT licence..95

Appendix C..97

The Mozilla Public Licence Version 2..97

Appendix D..111

The GNU General Public Licence Version 2..111

Appendix E..127

The GNU General Public Licence Version 3..127

Appendix F..157

Public Domain..157

ii

Table of Figures

Picture 1: Portrait of Leonard Euler by Emmanuel Handmann 1753...................5

Picture 2: City Map of Königsberg..6

Picture 3: Marked Bridges..6

Picture 4: First Step of Abstraction...6

Picture 5: Second Step of Abstraction..6

Picture 6: Non-planar Graph...9

Picture 7: Planar Graph..9

Picture 8: Graph with many crossings..10

Picture 9: Graph with less crossings...10

Picture 10: Planarised Graph..10

Picture 11: Symmetric Graph..11

Picture 12: Proximity Drawing...12

Picture 13: Graph drawn as Tree..13

Picture 14: The same graph drawn in an other manner.....................................13

Picture 15: Straight-line graph drawing..13

Picture 16: L-, T- and Z-shape rectagular graph drawings.................................15

Picture 17: Force-directed graph drawing..16

Picture 18: 3D graph drawing...18

Picture 19: Labeled Graph..19

Picture 20: Example of an Use Cases Diagram...46

Picture 21: Use Cases Diagram of the software tool..47

Picture 22: Example of a Sequence Diagram...49

iii

Picture 23: Sequence Diagram of the software tool...50

Picture 24: Greedy installation initial picture...52

Picture 25: Not all requirements are fulfilled...53

Picture 26: All requirements fulfilled..54

Picture 27: Nothing to do..54

Picture 28: Data for administration not completed...55

Picture 29: Data input completed..55

Picture 30: Admin account created successfully..56

Picture 31: Installation is finished...56

Picture 32: Greedy login window..57

Picture 33: User data inserted..57

Picture 34: The initial screen of greedy..58

Picture 35: Toolbar and Properties turned off...59

Picture 36: Toolbar with item "Edges" choosen..60

Picture 37: Menu bar with item Files selected..62

Picture 38: Menu bar with item Edit choosen...63

Picture 39: View item of the menu bar..64

Picture 40: Menu item Algorithms selected..65

Picture 41: Item Options in the menu bar selected..66

Picture 42: List of template graphs...66

Picture 43: Graph K5 selected from list..67

Picture 44: Item Help in menu bar selected with information about the licence.68

Picture 45: New node created..69

Picture 46: A new graph was created...70

Picture 47: Dijkstra algorithm selected in the Algorithms item...........................71

iv

Picture 48: A new Dijkstra grid was generated...72

Picture 49: The start node is marked (green node in upper left corner).............73

Picture 50: After the end node (red node in lower right corner) was marked the

calculation starts (gray and yellow nodes)..74

Picture 51: Calculation of the shortest path is finished (red nodes)...................75

v

List of Tables

Table 1: Identification of the Libraries...28

Table 2: Data which indicate the market share of the libraries...........................31

Table 3: Support information about the libraries...33

Table 4: Licences of the libraries..35

Table 5: Licence compatibility...36

Table 6: Feature list of libraries...38

Table 7: Used libraries and their licences...77

vi

vii

Abstract

Abstract

One objective of this master thesis was to find and evaluate open source tools

or libraries for graph visualisation which are qualified for educational purposes.

This tool should be capable for a prospective graph theory course.

The open source libraries have to support graph drawing and visualisation and

can run in a browser. First there was a comprehensive search where a lot of lib-

raries were found. Not all of them are under an open source licence, these were

filtered off. Secondly these libraries which are written in a computer language

which can not run in a browser were separated. These, written in Javascript,

which remain subsequently were evaluated to find out which one is the best for

this task. The result was that d3.js is that library which has the greatest func-

tional range, best flexibility and could be easily customised.

The second intension was to develop an open source software tool where d3.js

was included as graph drawing and visualisation library. The software was writ-

ten in Javascript so that it can run browser-based. With this tool the students

ought to do their exercises and homework. In order not to begin from scratch

and develop the entire software, tools and work which are already had been

developed and which can be found in the internet was used and integrated. But

there was one essential condition to acquit: These tools or software snippets

must be under an open source licence and all the licences must be compatible!

Finaly the graph drawing and visualisation editor was presented.

1

2

1 Introduction

1 Introduction

Graph visualisation is an interesting field of mathematics. With graph visualisa-

tion one can show the relationships among the elements of interest. These rela-

tionships can be unidirectional or bidiredional, which means that these relations

can have one way from one element to an other only, or the elements have

interrelations. It is not only of academic interest, but also referes to many

aspects of our real-life briefly. With graph visualisation scientists can show the

manifold links among users of social networks, clarify the connections of PCs,

servers and other network devices among a computer network, or even the

internet, illustrate the biological structures of a united cell structure, point up the

neural structure of a brain or biological formation. Software dependencies of a

complex software meshwork could be elucidated. Graph visualisation can also

show the organisational hierarchies in human and animalistic societies, as there

are enterprises, residents of a city or an entire nation and of a flock or a swarm.

There are many other fields of application in industry and science.

Since Big Data is a buzzword in IT, data visualisation is more necessary than

before. Today it is no problem to aquire such an amount of data that humans

can not interprete these data without visualisation. Graph visualisation plays a

major role in this context.

One intension of this master thesis was to find and evaluate open source tools

or libraries for graph visualisation which are qualified for educational purposes,

i.e. for teaching a graph theory course. After a comprehensive search these lib-

raries which do not fit the requirements are filtered off. Adjacent the remaining

3

1 Introduction

libraries were evaluated which one is the best for a graph drawing and visualid-

ation tool.

The second goal was to develop a software tool for the intended graph theory

course which can run in a browser. The students ought to download this tool

from the UOC's virtual campus. With this software tool they will than do their

exercises and homework.

In order not to begin from scratch and develop the entire software, tools and

work which have already been developed and which can be found in the inter-

net was used and integrated. But there was one essential condition to acquit:

These tools or software snippets must be under an open source licence and all

the licences must be compatible!

4

2 Graph Drawing and Visualisation

2 Graph Drawing and Visualisation

A Review of the current research

Around 1736 some citizen of Königsberg

(today Kaliningrad) asked whether it was pos-

sible to make a city tour by using every bridge

exactly one time only. Königsberg at that time

had 7 bridges. The mathematician Leonard

Euler (1707 – 1783) attented to this question.

Euler gave some thoughts to this problem and

established hereby the mathematical section of

graph theory. He took a city map of Königs-

berg, marked the bridges and then he drew an

abstracted map of the city and at the end he

drew points and lines to finish the abstraction.

He figured out, that for a solution every point

must have an equal number of incoming and outgoing ways. Which means that

the number of connections of a point must be even. But some of the points have

odd connections so that his definite answer was that it is not possible to take

this city tour.

5

Picture 1: Portrait of Leonard Euler
by Emmanuel Handmann 1753

2 Graph Drawing and Visualisation

The pictures 2 to 5 illustrates Euler's way of abstraction of the Königsberg

bridges problem. (All pictures taken from en.wikipedia.org)

Today these points and lines are called nodes and edges. Graph theory

developed in the last centuries to a veritable research field in mathematics. With

the increasing number of nodes and edges in a graph it was more and more

unreal to understand a graph without visualising them, because humans do

understand things better if they can see them. By graph visualisation it is pos-

6

Picture 2: City Map of Königsberg Picture 3: Marked Bridges

Picture 4: First Step of Abstraction
Picture 5: Second Step of
Abstraction

2 Graph Drawing and Visualisation

sible to show the different relationships among the elements of interest. These

relationships can be unidirectional or bidirectional, which means that the rela-

tions can be one-way or see-saw.

Graph visualisation today is not only of academic interest. With graph visualisa-

tion you can show the manifold links among people using social networks, or it

could clarify the connections of computers, servers and other devices in a com-

puter network, or the internet in total. Graph visualisation illustrates the biolo-

gical structures of a united cell structure, points up the neural structure of a

brain, or a biological formation. Graph visualisation elucidates software depend-

encies of a complex software meshwork, or the line drawings of electronic cir-

cuits. Graph visualisation can also show the organisational hierarchies in

human and animalistic societies, enterprises, residents of a city or an entire

nation and of a flock or a swarm.

The research field of graph drawing and visualisation is separated into several

section problems:

• planarity testing and embedding

• crossings and planarisation

• symmetric graph drawing

• proximity drawing

• tree drawing algorithms

• planar straight-line drawing algorithms

• planar orthogonal and polyline drawing algorithms

• spine and radial drawing

7

2 Graph Drawing and Visualisation

• circular drawing algorithms

• rectangular drawing algorithms

• simultaneous embedding of planar graphs

• force-directed drawing algorithms

• hierarchical drawing algorithms

• three-dimensional drawing algorithms and

• labeling algorithms.

The following review will report the current research of graph drawing and visu-

alisation and will reveal open questions in the sections.

Planarity testing and embedding

The characterisation of a planar graph was written in the 1930s [Kur30], but it

took a long time since 1970 [HT74] to find a linear-time solution. Why are planar

graphs so interesting? They have several interesting properties. Planar graphs

are sparce and 4-colorable [AH77]. Their inner structure can be described very

easy and the less crossings a graph has the better is its readability for humans.

Therefore the testing of planarity of a graph is an interesting research field.

There are some algorithms for testing the planarity. All linear-time algorithms fall

into two categories. One category is called cycle based and the other one ver-

tex addition algorithm. The cylce based technique is that a cycle splits the graph

into two sections, an inner and an outer section. The technique of the vertex

addition algorithms is to beginn with smaller planar graphs and than adding ver-

tices to build the final graph [HT08]. Depth First Search (DFS) is a technique

which is common to all planarity testing methodes. It is a special method to vistit

8

2 Graph Drawing and Visualisation

all vertices of a graph in specified order. Recognising a planar graph is a main

problem. Is a graph certified as non-planar it is called a Kuratowski subgraph

isolation [CMS08]. Scientists have developed dynamic algorithms to determine

the planarity of a graph (Lempel-Even-Cederbaum [LEC67], Shih-Hsu [SH99]

and Boyer-Myrvold [BM04]). Computing planar embeddings means that vertices

and edges are added or deleted to construct the final graph [DBTV01].

In planarity testing there are some constraints in simultaneous planarity testing,

clustered planarity testing and decomposition-based planarity testing.

Crossings and planarisation

Another problem is that the bigger the graph and the more crossings it has the

lesser is the readability. Crossing minimisation is an optimisation problem in

graph drawing. This problem was first examined by Turan during World War II.

There are some algorithms which try to solve the problem, but it is still an open

problem. Crossing minimisation is as well of commercial interest. In VLSI (very

large scale integration) design it is necessary to have as less crossings as pos-

sible. More wire crossings imply more costs of the chip. The planarisation

method [BTT84] is the current approach to the crossing minimisation problem.

9

Picture 6: Non-planar Graph Picture 7: Planar Graph

2 Graph Drawing and Visualisation

This method consists of two steps. The first step is to draw a planar subgraph

which has as many edges as possible. All edges which are not contained in this

drawing will then be inserted in the next step. Whenever a crossing is produced,

a dummy vertex will be inserted to eliminate the crossing. After all edges have

been inserted a planar drawing algorithm will than compute the layout. At the

end the dummy vertices will be deleted.

One of the open problems in crossing minimisation is

the determination of the crossing numbers of the final

graph [PT00]. Another problem is the approximability of

crossing minimisation.

Symmetric graph drawing

Drawing a graph symmetrically is in most cases preferred by humans over a

planar graph drawing [KK89]. Therefore symmetry graph drawing is another

10

Picture 8: Graph with many crossings Picture 9: Graph with less crossings

Picture 10: Planarised
Graph

2 Graph Drawing and Visualisation

important section in graph drawing and is based on fundamental aesthetic cri-

teria. The goal is it to find besides the trivial symmetry a non-trivial symmetry of

a graph [CLY01]. Symmetries are related to the automorphisms of a graph. A

symmetry can be rotational or reflective or a combination of both. An auto-

morphism group of a graph defines these combinatorial symmetries. But not

every automorphism can be drawn as a symmetric graph. A goal of symmetric

graph drawing is to determine the automorphisms of a graph which can be

drawn symmetricaly.

Drawing a graph „very very symmetric“ is one of

the open problems. If there are two drawings of

a graph with the same symmetry that one is

preferred which has the more elaborated sym-

metry but the scientists are far away from

designing an algorithm to draw a graph „very

very symmetric“.

Proximity drawing

Proximity graph drawing is another question in graph visualisation. A geometric

graph which is drawn straight-line and build by a group of nodes where pairs of

nodes are connected is called a proximity graph when they have a defined prox-

imity. Depending on the definition of closeness, the same set of nodes could

lead to a variety of proximity graphs. Motivated by numerous scientific applica-

tions [GO04] [Tou05] [CPZ04] scientists try to efficiently compute different types

of proximity graphs of a given set of nodes. The goal is to design an efficient

algorithm for computing a proximity graph drawing which is called the proximity

11

Picture 11: Symmetric Graph

2 Graph Drawing and Visualisation

drawability problem.

Research area of proximity graph drawing is far

from solving the problems. There are many

questions which are unanswered. For example:

minimum weight drawings [MS92], Delaunay

and Voronoi drawings [SIII00], ß-drawings

[Rad88], sphere of influence drawings

[HJLM93], rectangle of influence drawings

[LLMW98] and other proximity rules. Today this section of proximity graph draw-

ing follows two research directions: One is the question of proximity drawings

and ad-hoc networks, and the other question is that of proximity drawings and

geometric checkers.

Tree drawing algorithms

For the purposes of representation of relational informations a tree drawing of a

graph is suited. In such a tree a node represents an entity and an edge that of

the association between the entities. These hierarchical informations could be a

program nesting tree, an organisation chart, an activity tree, a knowledge-rep-

resentation isa hierarchy, a structure of a website, an evolutionary tree, a

molecular drawing, or indexes of databases. Typically an algorithm for tree

12

Picture 12: Proximity Drawing

2 Graph Drawing and Visualisation

drawing is based on the understanding

of the structure of the tree. Also aes-

tethic aspects are important for tree

drawing because the readability and

under-standebility depends on an aes-

thetical

drawing. Several types of approaches are used

to descibe the different hierarchical informa-

tions. They are the level-based approach

[BJL02], the path-based approach [GR03a], the

ring circular layout approach [GADM04] and the

separation-based approach [RS07]. There are

special algorithms to draw binary trees too. A

binary tree is a tree where every node has one

or two children only [Mac03].

Planar straight-line drawing algorithms

Already in the 1930s investigations had been under-

taken to do planar straight-line drawings [SR34]. The

results had shown, that every planar graph allows a

planar straight-line drawing. Today there are two

major algorithms to draw graphs straight-line: The

shift method [dFPP90] and the realizer method

[Sch90], an improved method of realizer was intro-

duced later [BFM07].

13

Picture 13: Graph drawn as Tree

Picture 14: The same graph
drawn in an other manner

Picture 15: Straight-line
graph drawing

2 Graph Drawing and Visualisation

Planar orthogonal and polyline drawing algorithms

Drawing a planar orthogonal graph has the advantage that the graph has no

crossings and the angles between the edges are 90° or 180°. But on the other

side it also has the disadvantage that the graph can have a degree of a max-

imum of 4 only. Drawing a graph planar orthogonal is of industrial interest

because VLSI design uses planar orthogonal graph drawing for the routing of

the wires on a chip. More general are the polyline drawings of a graph. In this

kind of drawing the edges can have angles of 45° and the multiple. These

graphs than can have degrees of more than 4. There are different algorithms to

draw an planar orthogonal graph: The network flow technique [GT02] and the

mixed-model algorithm [GM98].

Spine and radial drawing

Directed graphs which edges are parallel straight lines are called spine draw-

ings of graphs. Drawings of directed graphs where the edges are concentric

circles are called radial drawings. These two kinds of graph drawings belong to

the family of layered graph drawing. One of the problems is the point-set

embeddability which is investigated in computational geometry [Bos02]. Also not

solved are some theoretical connetions between spine and radial drawings.

Problems in graph theory and compu-tational geometry are unanswered too

[DDLW05] [Sug02].

Circular drawing algorithms

If the following three conditions are fulfilled, a graph drawing is called a circular

graph drawing: a. the graph is partitioned into clusters, b. the nodes of each

14

2 Graph Drawing and Visualisation

cluster are placed onto the circumference of an embedding circle and c. each

edge is drawn as a straight line. For the calculation of circular graph drawings

there are two efficient algorithms [Bra97] [DMM97]. The scientists could show

that these algorithms work very well in applied practices and produce drawings

with a low number of edge crossings [ST06].

Rectangular drawing algorithms

A graph where the vertices are drawn as points and the edges are drawn as

horizontal or vertical lines only and the graph is a planar graph, than this graph

drawing is called a rectangular graph drawing. This drawing has practical

applications in VLSI floorplannings like chip design or architecture [NR04].

On a chip with sections which produces heat these sections should not be adja-

cent so that the heat dissipation can work sufficently [She95]. Another practical

application is the floorplanning of buildings. For example should the cafeteria

not be adjacent to laboratories where it is deald with poisonous chemicals

[FW74]. There are several drawing algorithms in practice which deliver good

results [KH97] [LL90].

Simultaneous embedding of planar graphs

In cases where not only one graph could explain the relations between the ver-

15

Picture 16: L-, T- and Z-shape rectagular graph drawings

2 Graph Drawing and Visualisation

tices there are two or more graphs which share some or even all vertices

needed to describe the situation. This is called a simultaneous embedding of

planar graphs. The question than is how could these graphs be best displayed.

Because there are various scenarios which need different layouts not only one

algorithm could satisfy all particular layouts. For a proper layout the scientists

have to take into account the readability and the mental map preservation.

These two criteria are often contradictory. The readability is an aspect of aes-

tethic, e. g. the minimal number of crossings. The mental map preservation

could be achieved by keeping the vertices of consecutive graphs at the same

position. Optimising the one is to downgrade the other. It is essential to keep a

balance. Simultaneous embeddings of graphs have much applications in sci-

ences: software engineering, databases, or social networks. Also in industry the

simultaneous graph embeddings are of interest. VLSI design uses such

algorithms to solve the optimisation problem of chip placement [MOS98]. In this

section there are many open problems.

Force-directed drawing algorithms

If there are forces between the vertices of a graph it is to

bespoken of force-directed graphs. These forces could be

repulsive or attractive between vertices which are adja-

cent.

Force-directed algorithms have a long history in this

research field. Already in the 1960s algorithms to calculate

force-directed graph drawings were introduced [Tut63].

In the last years there had been good progress and many

16

Picture 17: Force-
directed graph
drawing

2 Graph Drawing and Visualisation

improved algorithms had been implemented [Ead84] [FR91]. But these

algorithms work good for graphs with only a few vertices but not if the graphs

have hundreds or even thousands of vertices. One of the obstacle is that the

physical models have more than one minimum and even with sophisticated

mechanisms it is not possible to get good layouts for bigger graphs. Since the

late 1990s there had been introduced better algorithms which now can handle

graphs with thousands of vertices. These layouts consist of a series of simple

graphs so that the readability of the whole composition is acceptable [Wal03]

[GGK04]. Also some algorithms do not use Euclidean geometry, but the surface

of a sphere or a torus [KW05]. The newer scalable algorithms which can handle

large dynamic graphs with thousands of vertices are used in many applications

[Mun97].

Hierarchical drawing algorithms

A special case of a directed graph is a hierarchical graph drawing. Examples for

hierarchical graphs are the organisation of an enterprise, function calls of a

software, object-oriented class diagrams or a PERT chart of a project manage-

ment. The major algorithm for drawing hierarchical graphs is the Sugiyama

method [STT81]. In the last years there had been many modifications and

enhancements of this framework [dNE02] [SM95a] [UBSE98]. But all these

alternatives have their special applications and limitations. There are attempts

to draw hierarchical graphs in 3D [GT97] [HN05a]. One of several approaches

to overcome these limitations is the UPL system [CGMW11]. So-called radial

level drawings are another alternative method for visualisation of a social net-

work [BKW03]. The cycle style of drawing was also introduced to avoid the top-

17

2 Graph Drawing and Visualisation

to-bottom leveling [BBBL08].

Three-dimensional drawing algorithms

In most cases it is sufficient to draw a

graph in two dimensions. But for special

applications a drawing in three dimen-

sions is better. These applications could

be VLSI design [LR86], software engin-

eering [WHF93] or information visual-

isation [WM08].

3D drawings have made great advant-

ages in the last years by better hard-

ware and increasing computer power. So-called grid-drawings, that are graph

drawings where the vertices have integer co-ordinates only, ensure a minimum

of grid spacing and the readability is better if the nodes would be too adjacent.

Another aspect of 3D drawing is straight-line crossing-free graph drawing.

Orthogonal drawings have edges which are parallel to one of the axis and they

guarantee a good angular resolution. In VLSI design it is important to minimise

the space for the chip to avoid dissipation of space. There are still many open

problems in 3D graph drawing but with increasing computer power the scientists

had made good progress in the last decades.

Labeling algorithms

Automated labeling edges and nodes is a major problem in graph drawing.

Labeling has for example applications in cartography [RMM+95] and geo-

graphic information systems (GIS) [Fre91].

18

Picture 18: 3D graph drawing

2 Graph Drawing and Visualisation

In cartography the labeling is elevated into an art over the decades and auto-

matic labeling never will reach a sufficent placement.

But in some cases like real-time placement in on-line

GIS, oil exploration [Zor90] or internet-based map-

ping it has acceptable qualitiy. At present time the

semi-automated labeling systems are the best

approach. They produce an initial labeling and adja-

cent it will be improved manually. By increasing com-

puter capabilities the automated labeling will make

further advances.

Conclusion

In graph drawing and visualisation the scientists have made good progress in

the last decades. The theoretical basics in information technology has been

augmented in the last sixty years. Some new languages in artificial intelligence

have been developed to better support the implementation of algorithms for

graph drawings. The efficiency of the algorithms has been improved over the

time and the computational capabilities progressed with seven-league boots.

But still there are several questions without an answer. The research field of

graph drawing and visualisation is still an interesting field of research and will

show some appealing and instructive changes over the next years.

Note: All pictures in this chapter are taken from [Tam13]

19

Picture 19: Labeled Graph

20

3 Methodology

3 Methodology

In this Master Thesis we searched for documents about the libraries, evaluate

them and decided which of them is the best for developing our tool. This first

part is a document approach.

The second part of the research work is a design and creation approach. Here

we develop a tool for the intended graph theory course of the UOC.

Stol and Babar [SB10] listed 20 Open Source Software evaluation methods.

Some of them are industry driven and do not cover the intentions for the special

purpose here. Others are very comprehensive and sophisticated; these are not

suited to be taken into account in this research work because it would take too

long to get familiar with these methods. Among the remaining there are the

papers of Cruz, Wieland and Ziegler [CWZ06], the paper QSOS initiated by

Atos Origin [Atos13] and the online paper of David Wheeler [Whe11] which

describe methods for evaluations of free software / open source software. A first

glance at these three papers showed that many points of the different methods

are similar to the method described by D. Wheeler. All three methods look very

much alike and only differ in some special points. The QSOS method (see

www.qsos.org) is under an open source licence and provides a plug-in for Fire-

fox. This tool could ease and facilitate the evaluation process.

[ADDENDUM: End of May the European Commission anounced the open

source project OSSmeter (https://joinup.ec.europa.eu/elibrary/case/ossmeter-

platform-automatically-assess-monitor-and-compare-oss-packages). From the

description: “Evaluating whether an open source software package meets the

requirements for a specific application, or determining the best match from a list

21

3 Methodology

of packages, requires information on both the quality and the maturity of the

software, as well as understanding whether the software is continuing to evolve

and if there is a substantial and active community of users and developers......”

For this research work it is too late to take this project into account and include

more information, but furhter research should not disregard it.]

Our decision therefore was to evaluate the software according D. Wheeler's

IRCA method. For a detailed description see below. Regrettably we have not

found any papers where researchers report that they had used Wheeler's

method and we only found two papers where researchers describe their evalu-

ation process of open source software. These are the papers of Graf and List:

An Evaluation of Open Source E-Learning Platforms Stressing Adaptation

Issues [GL05] and of Fleischfresser: Evaluation von Open Source Projekten:

Ein GQM-basierter Ansatz [Flei07]. Due to this low number of references it is

not possible to speak of a state-of-the-art in this research field.

David A. Wheeler elaboratedly described in his paper “How to Evaluate Open

Source Software / Free Software Programs.” a general 4-step process for eval-

uating programs. He calls this method “IRCA”. IRCA is a short form of: Identify

the candidtes, Read existing Reviews, Compare the leading programs and Ana-

lyse the top candidates in more depth. This method will be used to evaluate the

open source candidates for graph visualisation. In this paper Wheeler described

14 criteria of evaluation. Not all of them may be relevant for UOC to use the

open source software / libraries in a graph theory course. In this paper he gives

specific informations on how to evaluate open source software / free software

(OSS/FS). Wheeler developed this process so that anyone can compare

OSS/FS side-by-side with proprietary software and determine which of the can-

22

3 Methodology

didates best meets one's needs. After an introduction about open source soft-

ware, other approaches for evaluation and a short overview over the IRCA pro-

cess, he goes into depth in the following four chapters. In chapter two he

declares the process step of identifying the candidates and gives some tips. In

chapter three he recommends to read reviews about the candidates. Briefly

compare the leading program's attributes to your needs is the title of chapter

four. This chapter is very detailed. In 14 subchapters he describes important

attributes to be considered including functionality, cost, market share, support,

maintenance, reliability, performance, scaleability, useability, security, flexibility /

customisability, interoperability, and legal / licence issues. The last step in his

method is to perform an in-depth analysis of the top candidates which the

author discusses in chapter 5. Chaptert 6 terminates Wheeler's paper. Therein

he recommends some hints how to present the results of the evaluation.

3.1 In-detail description of the data analysis

David Wheeler called his method the IRCA method. IRCA is short for the four

steps of which the method consists:

1. Identify the candidates

2. Read existing Reviews

3. Compare the programs' basic attributes and

4. Analyse the top candidates in depth.

But before the researcher begins with step one, it has to be clear what require-

ments the candidates must comply with. Wheeler strongly recommends that the

researcher who evaluates free software / open source software according his

23

3 Methodology

method must have a basic idea of what his needs are, i.e. the researcher

should have a list where all the requirements of the candidates are listed and

according to which the search and evaluation will be geared to.

3.1.1 Identifying the candidates

In this first step the researcher has to do a comprehensive search, preferably in

the internet, to find as many candidates as possible which roughly fulfill the

requirements. Wheeler had listed some recommendations which can be an

assistance for this search, e.g. a paper of the U.S. government and lists of so-

called GRAM and GRAS (GRAM = generally recognised as mature) (GRAS =

generally recognised as safe) software. At the end the researcher has to

deselect the software which is not adequate, so that only these candidates

remain, which absolutely accomplish with the researcher's needs.

3.1.2 Reading existing reviews

Wheeler's references are to visit the programs website, to read software com-

parisons to find the strengths and weaknesses of the candidates and he gives

some examples. In our case where we search for software tools and libraries

which can run in a browser and which have to be under an open source licence

there are no such reviews to find. The only comments about the candidates

which we had found are these in the forums. But these comments do not have

any scientific explanatory power.

24

3 Methodology

3.1.3 Comparing the leading programs

After the candidates that do not fulfill the requirements have been eliminated the

next step is a comparison. For this comparison, step three of the IRCA method,

Wheeler recommends to visit the projects web page. Most open source soft-

ware projects have such a web page where most of the informations about the

project can be found. There you will find the documentation of the software,

FAQs, mailing lists on which the researcher could subscribe to receive an

impression on “what is going on” in the software project and much more.

Wheeler lists here 13 facts to take into account for this comparison: functional-

ity, cost, market share, support, maintenance, reliability, performance, scalabil-

ity, usability, security, exibility/customisability, interoperability and legal / licence

issues. Not all of them are relevant for my research work. Costs, market share,

support, maintenance and scalability are of less or even no importance for this

special comparison. The attribute legal / licence issues were a prerequirement

to fulfill, a candidate which does not fit this KO criterion does not remain on the

list at this stadium. The other attributes: functionality, reliability, performance,

usability, security, exibility / customisability, interoperability will now be examined

in more depth. Therefore all necessary informations about the candidates will

be accumulated wherever it can be found resulting in a matrix which shows the

most important functionalities and features. The result of this matrix is that some

of the candidates will be cancelled, e.g. because of less features, or other

weaknesses.

25

3 Methodology

3.1.4 In-depth analysis of the top candidates

This fourth and last step of Wheeler's IRCA method is the most important step

because eventually a decision has to be made on which of the candidates fulfill

the requirements best for the intended graph theory course. For this step

Wheeler recommends to have a second but more in-depth comparison as in the

previous step. He also recommends a try-out of the software. For our research

work the functionality and the customisability are very important attributes. To

get these informations is fundamental. In this step we had a look for special fea-

tures which are important for the graph theory course: Labels, graph manipula-

tion and graph drawing algorithms. At the end of this ultimate decision we chose

the d3.js library, because this library is the most evolved one among the can-

didates, it has the greatest functionality and its customisability is best.

26

4 I R C A

4 I R C A

In this research work we had to find and compare libraries which can run with a

web-based framework in a browser.

These libraries have to be under an open source licence.

For this comparison we will operate like D. Wheeler suggested in his paper:

„How to evaluate Open Source Software / Free Software (OSS/FS) Programs.“

[Whe11].

4.1 Identify

Our first search quarried numerous libraries from which we firstly sorted out

those which are under proprietary licences.

Ten libraries which are under open source licences are left then.

The first six are written in Javascript and they can run in a browser.

Igraph is written in C, neo4j in Java and OGDF and PIGALE in C++, they can

not run in a browser, so that we did not investigate them any further.

The remaining libraries we subjected to a comprehensive comparison.

In Table 1 there are listed the libraries and some informations about them.

27

4 I R C A

Library URL Language Licence Latest
version

D3.js d3js.org Javascript BSD-
3clauses

3.4.1

graphdracula graphdracula.net Javascript MIT 0.0.3alpha5

jointjs jointjs.com Javascript MPLv2 0.8.0

jsdot code.google.com/p/jsd
ot

Javascript MIT 0.9

jsplumb jsplumbtoolkit.com Javascript MIT/GPLv2 1.5.5

Sigma.js sigmajs.org Javascript MIT 1.0.0

igraph igraph.sourceforge.net C GPLv2 0.6.5

neo4j neo4j.org Java GPL, but
community
edition only

2.0.0

OGDF ogdf.net C++ GPL 2012.7

PIGALE pigale.sourceforge.net C++ GPL 1.3.15

Table 1: Identification of the Libraries

4.2 Read Reviews

D3.js

Searching the internet for „d3.js review“ lead to more than 4.400.000 hits. This

first impression shows the high profile of d3. There are comments to find like:

„D3.js is way more than just another visualization framework.“ Many other com-

ments which praise d3 could be found.

Graphdracular

To find reviews about graphdracula is in contrast a difficult task because most

28

4 I R C A

hits concern „Graf Dracula“ and not the graph visualisation library. Beside the

graphdracula webpage there are almost a dozen pages where the library is the

theme.

Jointjs

For jointjs google delivers afterall 92.900 hits. It is a relatively unknown library.

Jsdot

Jsdot, which was a small project at google summer of code in 2009, has just

805 hits. It will not longer be developed further so that we leave it out of deeper

investigations.

Jsplumb

Jsplumb has 163.000 hits. The project started in November 2011 and has less

than 10 contributors. So we can say that it is a small project and the develop-

ment seems to be slow.

Sigma.js

Sigma.js is much more known. Google delivers approximately 16.200.000 hits.

Sigma.js is a new and lightweight library to draw graphs. The most reviews are

warm to sigma.js which had just reached version 1.0.0.

The only comments about the candidates which we found are these in the for-

ums. But these comments do not have any scientific explanatory power. The

only conclusion which can be drawn is an qualitative one: Are the voices major-

29

4 I R C A

itarian pro, which means the commentator does praise the software due to its

manifold features, or the commentator is contra, which means he/she criticises

the program due to some bad bugs, lack of features etc. But on the basis of the

number of comments it is possible to figure out the popularity of the software:

The more positive comments, the greater the popularity. And from the popularity

of a software it is legal to conclude to its market share.

4.3 Comparison

4.3.1 Functionality

On https://github.com/mbostock/d3/wiki/API-Reference you can find a very long

list of API-References. This list with allmost 620 entries in 39 sections shows all

the functions which are included in d3. We did not find an API-Reference for

graphdracula. The API-Reference for jointjs is just 77 entries long. This is not

that much. At the scantily project webpage of jsdot there is no information about

an API-Reference to find. The API list of jsplumb counts almost 300 entries. At

sigmas webpage there is no information about an API-Reference.

The functionality of the candidates is very diverse. While jsdot has only basic

functions, jsplumb is more developed. Independant of the negative information

about the APIs sigma is in the midfield, graphdracula has sophisticated graph

drawing functions, but the best functionality by far has d3.js.

4.3.2 Market share

It is hard to evaluate the market share of open source software because there is

no vendor which publishes sales volumes. But the numbers of releases and

30

4 I R C A

contributors could give a first impression about the popularity and the mighti-

ness of a forum and its activity are indices for the market share of an open

source program. In the following list we have summarised some information

which we found to indicate the market share.

d3.js graph
dracula

jointjs jsdot jsplumb sigma.js

Source github github github project
webpage

github github

developers /
contributors

67 6 10 5 7 2

releases

first
2011

Feb17
n. a. 2011

Feb27
n.a. 2010

Mar15
n.a.

numbers 164 1 7 2 22 1

latest 2014
Jan14

2011
Jun30

2014
Jan20

2009
Dec18

2013
Dec06

2014
Jan30

github
downloads

22065 332 641 392 1333 1793

Table 2: Data which indicate the market share of the libraries

D3.js is the project with the most developers / contributors, releases and down-

loads. This entitles to the assumption that d3.js is that library with the greatest

market share.

4.3.3 Support / Maintenance / Longevity / Reliability

An index for the support, maintenance, longevity and reliability can be the ver-

31

4 I R C A

sion number of the program and the activeness of its community. Also whether

there are demos / examples and tutorials.

D3.js has reached version 3.4.1 which is an indication for an long development

and the maintainer M. Bostock and the large community of contributors show

that the development of d3 will go on. There is a great community where ques-

tions of users are answered and the further development is discussed. On the

webpage there are numerous demos and examles and a lot of tutorials.

Graphdracula is still in the first steps of its development, it has just reached

0.0.3alpha5 and this release is two years old. There is no indication when it will

come up to version 1.0 and it is unclear how many contributors carry the devel-

opment on. There are two demos only and the documentation is in the source

code only.

Jointjs also has a low version number: 0.8.0. But there is an active community

so that there is a justifiable hope that its development will go on. On their

webpage there are 10 demos but the documentation is less.

Jsdot was a litte code project in 2009 and has reached version 0.9 but it will not

be developed any further. No demos are to be found on the homepage and the

documentation is rather small.

Jsplumb has overcome version number 1 and is now at 1.5.5. The webpage

gives the impression of professionality and there is an active community in its

forum. Some demos and a substancial documentation is on the webpage.

Sigma.js has just reached version 1.0.0. It is a relatively new library but its pop-

ularity is increasing. Sigma is one of several projects of the medialab at Sci-

ences Po in Paris. This leads the hope towards an ongoing development. On

sigmas webpage there are only 2 demos and the documentation is not so

32

4 I R C A

much.

In the table below these results are sumed up:

d3.js graph
dracula

jointjs jsdot jsplumb sigma.js

demos /
examples

very
much

2 10 no some 2

tutorials /
documen-
tation

very
much

in code
only

yes less detailed less

Table 3: Support information about the libraries

All attempts to get in contact with the project maintainers via eMail asking for

commercial support failed. There had been no replies. We gather from that that

the projects do not offer commercial support for the libraries. The only support

available is that from the forums and from the community.

The quality of support can be infered from the activity of the community.

But to set up a rank order is rarely possible, because it depends on many

unpredictable factors.

4.3.4 Flexibility / Customisability

D3.js

On https://github.com/mbostock/d3/wiki/Tutorials there are a lot of tutorials for

d3.js on general and special themes, blogs, talks and videos, meetups and pub-

lications. If there is a function the user needs, which is not implemented, it is

easy to write a plug-in for d3.js. The flexibility and customisability of d3.js is very

33

4 I R C A

extensive.

Graphdracula

On http://www.graphdracula.net/documentation/ you may read about the doc-

umentation: „Don’t hesitate to dive into the source code! It is well described with

comments and the library archive also includes some example files worth

checking out.“ This means in other words: There is no documentation as that

which is included in the source code. For graphdracula there are no plugins as it

is to read here: „Dracula is a set of tools to display and layout interactive

graphs, along with various related algorithms.

No Flash, no Java, no plug-ins. Just plain JavaScript and SVG.“ [see

http://www.graphdracula.net] Flexibility and customisability of graphdracula is

therefore non-existent.

Jointjs

The documentation and available tutorials keep within a low limit: http://jointjs.-

com/tutorial. There are just 8 plug-ins listed on the webpage. Flexibility and cus-

tomisability of jointjs is small.

Jsdot

On the scantily project's webpage there are neither informations about an API-

Reference, documentation nor plugins to find. Due to the fact that the project

will not be developed further the flexibility and customisability of jsdot is non-

existent.

34

4 I R C A

Jsplumb

The documentation on http://jsplumbtoolkit.com/doc/home is very comprehens-

ive. But there is no information about plug-ins. Flexibility and customisability of

jsplumb is better than of jointjs but much less than of d3.js.

Sigma.js

On sigmas webpage there are neither informations about an API-Reference nor

plugins to find. But github lists 6 plugins. The tutorial is lean. Documentation is

one page only: https://github.com/jacomyal/sigma.js/wiki. The flexibility and cus-

tomisability of sigma is at the time out of recognition.

4.3.5 Licence

All libraries are under an open source licence as was the strict requirement.

The following table shows the licences.

d3.js graph
dracula

jointjs jsdot jsplumb sigma.js

licence BSD 3
clauses

MIT MPLv2 MIT MIT /
GPLv2

MIT

Table 4: Licences of the libraries

All licences are compatible with GNU GPLv2 and v3. See table below:

35

4 I R C A

BSD
3 clauses

MIT * MPL
v2

GPL
v2

GPL
v3

GPL v2 ✔ ✔ ✔ ✔ ✔

GPL v3 ✔ ✔ ✔ ✔ ✔

Table 5: Licence compatibility

The reader may read more information about all licences and the licence texts

in Appendices A to F at the end of this document.

4.3.6 Other cirteria

D. Wheeler listed some more criteria in his paper. There are costs, perform-

ance, scaleability, useability, security and interoperability. The most of them are

not relevant for this research. For instance costs: All libraries are under an open

source licence and therefore no licence fee is to pay. Of course there are costs

of installation and maintenance of the software but these costs are the same for

other (proprietary) software. Other criteria are the performance, the useability

and the security of the libraries which are dependent mainly on the program

which includes the libraries. In the end there is the interoperability. The program

which calls the library will run in a browser. Because it is an open source pro-

gram only these browsers which are under an open source licence as well will

be supported.

*The MIT licence is also known as X licence or as X11 licence.

36

4 I R C A

4.4 Analysis in-depth

All the above listed information about the candidates is of general interest. We

will now analyse the candidates for special features which are necessary for

graph drawing and visualisation.

First of all there is the question of labels for nodes and edges: Which labeling

does the library support? Eliptic, rectangle, polygon drawing of a node and

weight for an edge, color and caption for both?

Graph manipulation functionality is the next question: Do the candidates support

interactive zooming and interactive node moving? A very important question is

the question for the integrated graph algorithms or whether it is possible to

integrate graph drawing algorithms by plugins or any other mechanism.

The table below indicates these features.

Only graphdracula has implemented 4 graph drawing algorithms in its code.

These algorithms are: Path finding (Dijkstra), shortest path (Bellman-Ford),

max-flow-min-cut (Ford-Fulkerson) and string matching (Knuth-Morrison-Pratt).

This list shows the functionality of the candidates. It is clear to see that d3.js has

the most functions integrated and graph drawing algorithms can easily be inser-

ted by plug-ins. Here is the web-link for a first step to write plug-ins for d3.js:

http://bost.ocks.org/mike/chart.

Graphdracula and jsdot have no flexibility and / or customisability. Jsplumb has

a mean flexibility and customisability and that of jointjs and sigma is small.

37

4 I R C A

d3.js graph
dracula

jointjs jsdot jsplumb sigma.js

Labels

eliptic yes yes yes yes yes yes

rectangle yes yes yes yes yes no

polygon yes yes yes yes no no

weight yes yes yes no no yes

color yes yes yes yes yes yes

caption yes yes yes yes yes yes

Graph manipulation

interactive
zooming

yes no yes no yes no

interactive
node

moving

yes no yes yes yes no

Graph drawing

number of
supported
algorithms

support by
plug-ins

4
(see text)

n.s. n.s. n.s. n.s.

force
directed
drawing

yes yes yes no no by plug-in

hierarchical
drawing

yes no yes no yes no

tree drawing yes no yes no yes no

rectangle
drawing

yes n.s. n.s. no no no

Flexibility /
customisa-
bility

very great non-
existent

small non-
existent

mean small

Table 6: Feature list of libraries

38

4 I R C A

4.5 Conclusion

Jsdot's development is discontinued.

Graphdracula is still at the beginning and it is not clear whether it will develop.

There is one developer only and it seems that he has discontinued the develop-

ment.

Jointjs is a small project with just 10 developers and its flexibility is small.

Sigma.js is a new graph drawing project which may have a good future but its

current flexibility is small. Probably it will improve.

Jsplumb has also got only 7 developers but it seems the development will

improve its features.

Far away from the other candidates is d3.js. Its functionality and flexibility is

much better than all the other libraries which we investigated. It is easy to write

plug-ins for d3.js so any needed function can be integrated.

D3.js is our favorite to implement as library into the web-based framework.

39

40

5 Software Development

5 Software Development

To develope software it is necessary to choose a methodical approach.

There are different requirements for this approach:

• structure the development of a model to partial tasks and steps

• use special means of representation

• give a guidance for the realisation of the modeling

• support the quality assurance of the models or includes critetia for „good“

models

• as a general rule no algorithm (in mathematical meaning)

• support the relevant partial models and their integration

• efficiency

In the development of a model the following numerous steps including repeti-

tions and returns are generally used:

• definition of the object to model

• determination of the modeling purpose

• determination of the modeling environment / instruments of characterisa-

tion

• appointment of the rules for the abstraction

• determination of the reproduction of the reality to the modeling environ-

ment

• testing of the model

41

5 Software Development

There are different views for modeling of information systems:

Function view (also known as process view): Describes the functions and par-

tial functions prescinded from time and sequence.

Sequence view (also known as dynamic view): Describes what activities and

processes coincidentaly or consecutively execute prescinded from

the semantic of the data.

Data view: Describes the data which is treated or stored during a process or

information system prescinded from time and independent of the

sequence view.

Object view: Describes a process or an information system as an amount of

interacting objects prescinded from sequence, integration of data and

function view.

Organisation view: Describes the sequence of an organisational unit which is

part of a process or information system. The communication and

managerial authority correlations between the units are part of the

organisational structure.

Performance view: Describes the results of the process execution by product

models.

The purpose of such a model is:

1. To understand the reality (actual condition)

• to describe the benefit of the assumption

• to explore the forecast about the behaviour

• to evaluate / analyse the assignment of faults

2. To construct the reality (target state)

42

5 Software Development

• describing the requirements for the construction

• analysing / simulating the examination of the construction before realisa-

tion

• analysing potential / alternative representations of the reality

• co-ordinating the involved persons (customer, construtor, co-ordination

between different employees / organisations, which execute the realisa-

tion co-operative)

One of these modeling languages for specification, visualisation, construction

and documentation of (information) systems is the Unified Modeling Language

(UML)

5.1 Unified Modeling Language (UML)

UML is a standard of the OMG (http://www.omg.org/uml) . It is not a method ,

but a notation and semantics for specification, visualisation, construction and

documentation of models for business processes, object orientated software

development and other general systems.

Like in all other languages there is a language range that kind what terms are

part of the language and what denotation these terms have. This is the same

what we know from other languages. But there is an important difference: While

in other programing languages key words are real words, UML is a language

that consists of simple geometric symbols. In UML there are defined numerous

geometric forms like rectangle, arrows and ellipses and there are definitions of

43

5 Software Development

the denotation of these forms. UML knows rules how to combine these forms so

that they will result in something meaningful. With these models the software

developers can inspect a cut of an entire system, which important aspects will

be highlighted and which unimportant aspects will be disregarded. This model is

not a rebuild of the original, but a simplified description of the original with the

goal to better understand the original.

13 types of diagrams are defined in UML. These diagram types are either struc-

ture diagrams or behaviour diagrams.

The following six diagram types are structure diagrams:

• classes diagram

• object diagram

• component diagram

• composition structure diagram

• distribution diagram

• packages diagram

Behaviour diagrams are the following seven diagrams:

• use case diagram

• activity diagram

• finite automation

• sequence diagram

• communication diagram

• timing diagram

44

5 Software Development

• interaction diagram

The modeling of software should aid to keep an overview. This diagram types

should describe the software from different views. All together they show an

overall picture of the software. Models are complied with requirements and are

based of elements of the UML. The language range is independent of program-

ing languages and platforms. The built models of software are hence independ-

ent of this technologies too.

UML is also suited as co-ordinating instrument. Every developer will understand

the UML models. Since UML is a graphical modeling language it is suited to

communicate to non-technical persons (management) too.

In the following we will restrict to show the use cases diagram and the

sequence diagram of the software tool we are developing.

Because JavaScript does not know the classes concept a classes diagram is

not possible.

5.1.1 Use Cases Diagram

A use cases diagram consists of a lot of use cases and describes the relations

between actors and use cases. A use cases diagram shows the externally vis-

ible behaviour of the system from the view of the users.

Use cases will be represented by ellipses which hold the name of the use case

and an amount of joint objects (actors). Any use case will be characterised in

text form, more or less detailed. The correspondent use cases and actors will

45

5 Software Development

be connected by lines. The system limits are symbolised by a frame.

Some use cases include further use cases, or will be extented by others.

Example of an use cases diagram:

In the software tool which we developed the students are the actors (and the

system administrator). The user and graph databases are used for user login

and logout and for up- and downloading graphs. Additionally there may be a

system administration tool via which the system administrator administrates the

system, e.g. the user and the graph databases (this is not part of our software).

The use cases of this software are:

• user login (includes the user database)

• editing a graph

• upload a graph (includes the graph database)

46

Picture 20: Example of an Use Cases Diagram

5 Software Development

• download a graph (includes the graph database)

• system administration

• user logout (includes the user database)

Editing a graph imbeds the following tasks:

Changing the features of nodes and edges like shape, line, text, style, colour

and weight.

Nodes can be arranged in force-directed or fixed graph layout.

Documenting a graph includes editing of text discribing a graph and embedding

of images.

The use cases diagram is shown here.

47

Picture 21: Use Cases Diagram of the software tool

5 Software Development

5.1.2 Sequence Diagram

A sequence diagram describes the chronology of interactions between a lot of

objects within a temporal limited context.

The objects will be visualised by rectangles from which the vertical life lines

originate, depicted by dashed lines. The messages will be described by hori-

zontal arrows between the life lines of the objects. At this arrows the messages

will be noted in the form: message(arguments). Messages which are answers

have the form: answer:=message(). Messages can also be allocated conditions

by the form: [condition] message(). Iterations of messages will be depicted by a

„*“ before the name of the message. Objects which are just active in interactions

will be marked by a bar in the life line.

An example is shown on the next page.

In this software there are the students as actors, the user database which

stores the allowed users and their passwords, the graph database where is

stored an amount of example graphs and the students graphs.

The intercations are:

• user login

• graph editing as loop of numerous minor tasks

• uploading a graph

• downloading a graph

• user logout

The sequence diagram is shown on the nextbut one page.

48

5 Software Development

49

Picture 22: Example of a Sequence Diagram

5 Software Development

50

Picture 23: Sequence Diagram of the software tool

6 Documention of the software tool

6 Documention of the software tool

The purpose of the graph tool is:

• Drawing and editing graphs

• Representation of graph theoretical structures

• Visual representation of graph algorithms

6.1 Installation in 4 steps

Prerequirements before installation:

• LAMP (XAMP) has to be installed. Instead of MySQL the user can also

install SQLite or PostgreSQL.

• Apache2 must be running.

• Extraction of greedy.tar.gz to /var/www/

• Directory /var/www/greedy, all subdirectories and files has to be owned

by www-data or current apache user respectively.

(command: chown -R www-data:www-data /var/www/greedy)

• The rights of /var/www/greedy/core/db have to be 777. If the users secur-

ity policies do not allow 777, 755 would be good too.

(command: chmod -R 777 /var/www/greedy/core/db)

After the user has extracted the files to /var/www/ he has to insert

“localhost/greedy” in a browser. The installation process will then start with an

initial picture.

51

6 Documention of the software tool

He than just has to click on the arrow to proceed. In step 1 all requirements will

be scanned. As long as not all requirements are fulfilled the user will see red

lights as is presented in the next picture.

52

Picture 24: Greedy installation initial picture

6 Documention of the software tool

When there are green lights only as seen in the following picture the user may

click to continue. Otherwise the displayed problems nust be resolved. This

steps have to be repeated as often as necessary by clicking on the arrow in top

right corner.

53

Picture 25: Not all requirements are fulfilled

6 Documention of the software tool

In step 2 in the current state, the user has nothing to do just click the arrow.

In further releases, the installation can support MySQL and/or PostgreSQL as

54

Picture 26: All requirements fulfilled

Picture 27: Nothing to do

6 Documention of the software tool

database systems too.

The data for administration has to be inserted in step 3.

As long as not all required data is inserted the user will get an error message

and cannot proceed to the next step.

After a click on “Submit” the user will see the next picture.

55

Picture 28: Data for administration not completed

Picture 29: Data input completed

6 Documention of the software tool

A click on OK will terminate the installation and the user can proceed after con-

firmation to the last step with the login to greedy.

Here the user has to insert his username and password.

56

Picture 31: Installation is finished

Picture 30: Admin account created successfully

6 Documention of the software tool

With the last click on “Login” the user will see the initial screen of greedy.

57

Picture 32: Greedy login window

Picture 33: User data inserted

6 Documention of the software tool

(The displayed graph is for testing purposes only, in the final version the work-

space will be blank.)

Now the user may begin to work with greedy.

6.2 Workspace, Toolbar and Properties

In the centre there is the workspace. Right and left of it you find the toolbar and

the area where the properties can be displayed and edited for the selected

node. Both can be turned off and on.See picture 35. (The property “Location”

cannot be edited, it is for information only.)

In the toolbar, which is an accordion mechanism, there are the items “General”

for selection of a graph element and to insert text or an image. Under the item

58

Picture 34: The initial screen of greedy

6 Documention of the software tool

“Nodes” the user can select a node, or choose one of the four node shapes:

circle, square, diamond or triangle, to create an new node. Under the item

“Edges” it is possible to select an edge, or to create a new edge as straight line

or jagged line. See picture 36.

On the right side of the workspace there is the properties area, where the name

of the graph can be altered and the node properties lable, tooltip, font, colour,

shape and size can be changed. Below the properties area there is a slider with

which the graph can be zoomed in and out (currently this feature is not enabled,

it is on the To-do-list, but instead the user can zoom in and out with the mouse

wheel).

59

Picture 35: Toolbar and Properties turned off

6 Documention of the software tool

6.3 The Menu Bar

In the menu bar above the workspace there are the items: File, Edit, View,

Algorithms, Options and Help.

The item “File” contains: “New” to create a new graph, “Open” and “Save” to

down- and up-load a graph from the graph database which can be located at

UOC, “Save as...” to save a graph with a different name, “Import” and “Export”

to load and save a graph on the local computer and “Logout” to quit greedy.

See picture 37.

Next is the item “Edit” where nodes, edges or “all” can be selected for demon-

stration purposes. See picture 38.

The third item in the menu bar is “View”. Here the toolbar and properties can be

60

Picture 36: Toolbar with item "Edges" choosen

6 Documention of the software tool

selected to be displayed or not. See picture 39.

“Algorithms” is the next item in the menu bar. Here the user can choose an

algorithm to apply to a graph. Currently only the Dijksta algorithm (shortest

path) is implemented (description see below). More algorithms can be integ-

rated easily. See picture 40.

The last but one item in the menu bar is the “Options” item. Here it is possible to

change a graph's drawing from fixed to force-directed. If the hook at “Fix selec-

ted node” is set and a force-directed graph is drawn and the user had moved a

node to another position than this node will be fixed at this position.

The third item in Options is “Generate graphs”. Here the user can choose tem-

plate graphs from a list. See pictures 41 and 42. As an example the graph K5 is

selected in picture 43.

The most right item in the menu bar is “Help”. Here the user will find the help

sytem (not yet fully integrated) and the information about the licence and a link

to it. See picture 44.

61

6 Documention of the software tool

62

Picture 37: Menu bar with item Files selected

6 Documention of the software tool

63

Picture 38: Menu bar with item Edit choosen

6 Documention of the software tool

64

Picture 39: View item of the menu bar

6 Documention of the software tool

65

Picture 40: Menu item Algorithms selected

6 Documention of the software tool

66

Picture 41: Item Options in the menu bar selected

Picture 42: List of template graphs

6 Documention of the software tool

67

Picture 43: Graph K5 selected from list

6 Documention of the software tool

6.4 Graph edit options

The following features are implemented in the graph editor:

The user can draw graphs interactively and

load graphs a. from server site database (central)

b. import / export (JSON format, jpeg format)

To create a new graph the user has to choose “Nodes” from the toolbar, select

one of the shapes and subsequently to click anywhere on the workspace. To

create more nodes these steps have to be repeated until all nodes are created.

See picture 45.

68

Picture 44: Item Help in menu bar selected with information about the licence

6 Documention of the software tool

Now the edges have to be created. The user has to choose “Edges” from the

toolbar, select “straight” and subsequently to click on the first node and by hold-

ing down the mouse button move to the second node to which the connection

shall go. Alternatively the user can select the straight icon to draw edges

between nodes. This steps have to be repeated until all edges are created. See

picture 46. By clicking anywhere in the workspace, holding down the mouse

button and moving, the graph can be moved interactively on the workspace.

The Dijkstra algorithm

This is a simple implementation of the Dijkstra algorithm in JavaScript by Neal

Bohlings. For further information see: http://www.nealbohling.com/2014/05/dijk-

stra-javascript-d3-js, http://en.wikipedia.org/wiki/Edsger_W._Dijkstra and

69

Picture 45: New node created

6 Documention of the software tool

http://en.wikipedia.org/wiki/Dijkstra's_algorithm

This algorithm finds the minimum distance between two nodes.

Initialy it generates a grid of nodes where the edges are weighted randomly. Not

all possible edges are created but only 75%, so that some connections do not

exist. After the user has selected the start and the end nodes, the algorithm

begins, "visited" nodes will turn gray, the node under current consideration yel-

low and when the calculation is completed, the path will be coloured red. A

status messages will be shown below, as well as information for any individual

node. See pictures 47 to 51.

70

Picture 46: A new graph was created

6 Documention of the software tool

71

Picture 47: Dijkstra algorithm selected in the Algorithms item

6 Documention of the software tool

72

Picture 48: A new Dijkstra grid was generated

6 Documention of the software tool

73

Picture 49: The start node is marked (green node in upper left corner)

6 Documention of the software tool

74

Picture 50: After the end node (red node in lower right corner) was marked the
calculation starts (gray and yellow nodes)

6 Documention of the software tool

75

Picture 51: Calculation of the shortest path is finished (red nodes)

6 Documention of the software tool

6.5 To Do List

Software one time will reach a stable version, which will be called as a general

rule version 1, but this does not mean that the development is finished. Soft-

ware development will never terminate, there are new features to implement,

bugs have to be fixed and much more is to do.

This software is not an exception.

Things to do:

• integrate more graph drawing algorithms

• improve labeling

• implement interactive zooming

• integrate gravity slider for force-directed graphs

• make template graphs editable

• make edges directed (right-, left- and bi-directed)

• predefine custom created graphs

• establish multiple graph tabs simultanously

• add user administration

• add custom settings

• complete the help support

6.6 General Features

An user authentication with login / password / course number and access rights

is integrated in the software tool.

Used libraries and their respective licences:

76

6 Documention of the software tool

Library Licence

D3.js BSD 3-clauses

jQuery.js MIT

jQuery.easyui.js GPLv3

easyloader.js GPLv3

filesaver.js MIT / X11

jason2.js Public Domain *

Table 7: Used libraries and their licences

All licences are compatible with the GNU GPL.

* Being in the public domain is not a license; rather, it means the material is

not copyrighted and no license is needed. Practically speaking, though, if a

work is in the public domain, it might as well have an all-permissive non-copyleft

free software license. Public domain material is compatible with the GNU GPL.

See http://www.gnu.org/licenses/license-list.en.html#GPLCompatibleLicenses

Short descriptions of the libraries (taken from en.wikipedia.org or the respective

web pages)

D3.js

D3.js (or just D3 for Data-Driven Documents) is a JavaScript library that uses

digital data to drive the creation and control of dynamic and interactive graphical

forms which run in web browsers. It is a tool for data visualization in W3C-com-

pliant computing, making use of the widely implemented Scalable Vector Graph-

ics (SVG), JavaScript, HTML5, and Cascading Style Sheets (CSS3) standards.

In contrast to many other libraries, D3 allows great control over the final visual

result. Its development was noted in 2011,[3] as version 2.0.0 was released in

August 2011. As of February 2014, the library is at version 3.4.3. Developers

77

6 Documention of the software tool

are Michael Bostock (maintainer), Jeffrey Heer, Vadim Ogievetsky, and com-

munity.

jQuery.js

jQuery is a cross-platform JavaScript library designed to simplify the client-side

scripting of HTML. It was released in January 2006 at BarCamp NYC by John

Resig. It is currently developed by a team of developers led by Dave Methvin.

Used by over 80% of the 10,000 most visited websites, jQuery is the most pop-

ular JavaScript library in use today. jQuery is free, open source software,

licensed under the MIT License. jQuery's syntax is designed to make it easier to

navigate a document, select DOM elements, create animations, handle events,

and develop Ajax applications. jQuery also provides capabilities for developers

to create plug-ins on top of the JavaScript library. This enables developers to

create abstractions for low-level interaction and animation, advanced effects

and high-level, theme-able widgets. The modular approach to the jQuery library

allows the creation of powerful dynamic web pages and web applications. The

set of jQuery core features — DOM element selections, traversal and manipula-

tion — enabled by its selector engine (named "Sizzle" from v1.3), created a new

"programming style", fusing algorithms and DOM-data-structures; and influ-

enced the architecture of other JavaScript frameworks like YUI v3 and Dojo.

jQuery.easyui.js

jQuery EasyUI framework helps you build your web pages easily.

• easyui is a collection of user-interface plugin based on jQuery.

• easyui provides essential functionality for building modern, interactive,

javascript applications.

• using easyui you don't need to write many javascript code, you usually

78

6 Documention of the software tool

defines user-interface by writing some HTML markup.

• complete framework for HTML5 web page.

• easyui save your time and scales while developing your products.

• easyui is very easy but powerful.

(taken from http://www.jeasyui.com)

easyloader.js

easyloader.js is a part of jQuery.js

filesaver.js

filesaver.js implements the HTML5 W3C saveAs() FileSaver interface in

browsers that do not natively support it. FileSaver.js is the solution to saving

files on the client-side, and is perfect for webapps that need to generate files, or

for saving sensitive information that shouldn't be sent to an external server.

taken from https://github.com/eligrey/FileSaver.js

jason2.js

JSON is a light-weight, language independent, data interchange format. See

http://www.JSON.org. The files in this collection implement JSON encoders /

decoders in JavaScript. JSON became a built-in feature of JavaScript when the

ECMAScript Programming Language Standard - Fifth Edition was adopted by

the ECMA General Assembly in December 2009. Most of the files in this collec-

tion are for applications that are expected to run in obsolete web browsers. For

most purposes, json2.js is the best choice. json2.js: This file creates a JSON

property in the global object, if there isn't already one, setting its value to an

object containing a stringify method and a parse method. The parse method

uses the eval method to do the parsing, guarding it with several regular expres-

79

6 Documention of the software tool

sions to defend against accidental code execution hazards. On current

browsers, this file does nothing, prefering the built-in JSON object.

Taken from https://github.com/douglascrockford/JSON-js

Structure of the file system:

Document root consists of these folders:

 core

 diagrams additional info about server saved diagrams

 install quick installation routine for php

 js Javascript files

 lib external libraries

 plug-ins js script for installable algorithms

 sys php files

 test internal test routines

 res

 css cascading style sheets

 icons open source icon libs

 themes files for layout of the UI

80

7 References

7 References

[AH77] K. Appel and W. Haken. Every planar map is four colorable, part I:
discharging. Illinois J. Math., 21:429–490, 1977.

[Atos13] www.qsos.org/2013/06/02/qsos-20-is-out, Version 2.0, 2013.

[BBBL08] Ch. Bachmauer, F. J. Brandenburg, W. Brunner and R. Fülöp.
Drawing recurrent hierarchies. Journal of Graph Algorithms and
Applications, 16(2):151–198, 2012.

[BFM07] N. Bochinon, S. Felsner and M. Mosbah. Convex drawings of 3-
connected plane graphs. Algorithmica, 47:399–420, 2007.

[BJL02] V. Buchheim, M. Jünger and S. Leipert. Improving Walker's
algorithm to run in linear time. In Michael T. Goodrich and Stephan
G. Kobourov, editors, Graph Drawing, (Proceedings of 10th
International Symposium on Graph Drawing, 2002), volume 2528
of Lecture Notes in Computer Science, pages 344–353. Springer,
2002.

[BKW03] U. Brandes, P. Kenis and D. Wagner. Communicating centrality in
policy network drawings. IEEE Transact. Vis. Comput. Graph.,
9(2):241–253, 2003.

[BM04] J. Boyer and W. Myrvold. On the cutting edge: Simplidies O(n)
planarity by edge addition. Journal of Graph Algorithms and
Applications, 8(3):241–273, 2004.

[Bos02] P. Bose. On embedding an outer-planar graph in a oiunt-set.
Computational Geometry, 23(3):303–312, 2002.

[Bra97] F. J. Brandenburg. Graph clustering I: Cycles of cliques. In Proc.
GD ’97, LNCS 1353, pages 158–168, 1997.

[BTT84] C. Batini, M. Talamo and R. Tamassia. Computer aided layout of
entity-relationship diagrams. Journal of Systems and Software,
4:163–173, 1984.

[CGMW11] M. Chimani, Ph. Hungerländer, M. Jünger and P. Mutzel. An SDP
approch to multi-level crossing minimization. In M. Müller-
Hannemann and R. F. Werneck, editors, ALENEX, pages 116–

81

7 References

126, SIAM, 2011.

[CLY01] H.-L. Chen, H.-I. Lu and H.-Ch. Yen. On maximum symmetric
subgraphs. In Graph Drawing, 8th International Symposium,
GD00, Colonial Wiliamsburg, VA, USA, Sept. 2000, Proceedings,
vol. 1984 of Lecture Notes in Computer Science, pages 372–383.
Springer, 2001.

[CMS08] M. Chimani, P. Mutzel and J. M. Schmidt. Efficient extraction of
multiple Kuratowski subdivisions. In Seok-Hee Hong, Takao
Nishizeki, and Wu Quan, editors, Graph Drawing (GD 2007),
volume 4875 of LNCS, pages 159–170. Springer, 2008.

[CPZ04] M. A. Carreira-Perpinan and R. S. Zemel. Proximity graphs for
clustering and manifold learning. In Neural Information Processing
Systems, NIPS 2004, 2004.

[CWZ06] D. Cruz, T. Wieland and A. Ziegler: Evaluation Criteria for Free /
Open Source Software Products Based on Project Analysis.
Software Process Improvement and Practice, pages: 107-122,
2006.

[DBTV01] G. Di Battista, R. Tamassia and L. Vismara. Incremental convex
planarity testing. Information Computation, 169:94–126, August
2001.

[DDLW05] E. di Giacomo, W. Didimo, G. Liotta and S. K. Wismath. Curve-
constrained drawings of planar graphs. Computational Geometry:
Theory and Applications, 30:1–23, 2005.

[dFPP90] H. de Fraysseix, J. Pach, and R. Pollack. How to draw a planar
graph on a grid. Combinatorica, 10(1):41–51, 1990.

[DMM97] U. Dogrusoz, B. Madden and P. Madden. Circular layout in the
graph layout toolkit. In Proc. GD ’96, LNCS 1190, pages 92–100,
1997.

[dNE02] H. A. D. do Nascimento and P. Eades. A focus and constraint-
based genetic algorithm for interactive directed drawing. HIS,
pages 634–643, 2002.

[Ead84] P. Eades. A heuristic for graph drawing. Congressus
Numerantium, 42:149–160, 1984.

82

7 References

[Flei07] T. Fleischfresser: Evaluation von Open Source Projekten: Ein
GQM-basierter Ansatz. Diplomarbeit, Freie Universität Berlin,
2007.

[FR91] T. Fruchterman and E. Reingold. Graph drawing by force-directed
placement. Softw. – Pract. Exp., 21(11):1129–1164, 1991.

[Fre91] H. Freeman. Computer name placement. In D. J. Maguire, M. F.
Goodchild and D. W. Rhind, editors, Geographical Information
Systems: Principles and Applications, pages 445–456. Longman,
London, 1991.

[FW74] R. L. Francis and J. A. White. Facility Layout and Location,
Prentice-Hall, New Jersey, 1974.

[GADM04] S. Grivet, D. Auber, J.-P. Domenger and G. Melancon. Bubble tree
drawing algorithm. In International Conference on Computer
Vision and Graphics, pages 633–641. Springer Verlag, 2004.

[GGK04] P. Gajer, M. T. Goodrich, and S. G. Kobourov. A fast multi-
dimensional algorithm for drawing large graphs. Computational
Geometry: Theory and Applications, 29(1):3–18, 2004.

[GL05] S. Graf and B. List: An Evaluation of Open Source E-Learning
Platforms Stressing Adaptation Issues. In ICALT, pp. 163-165.
2005.

[GM98] C. Gutwenger and P. Mutzel. Planar polyline drawings with good
angular resolution. In S. Whitesides, editor, Graph Drawing (Proc.
GD 98), volume 1547 of Lectures Notes Comput. Sci., 167–182.
Springer Verlag, 1998.

[GO04] J. E. Goodman and J. O'Rourke, editors. Handbook of Discrete
and Computational Geometry, 2nd Edition. CRC Press, 2004.

[GR03a] A. Garg and A. Rusu. Area-efficient order-preserving planar
straight-line drawings of ordered trees. International Journal of
Computational Geometry and Applications, 13(6):487–505, 2003.

[GT02] M. T. Goodrich and R. Tamassia. Algorithm design: foundations,
analysis and Internet examples. John Wiley and Sons, Inc., New
York, NY, 2002.

[GT97] A. Garg and R. Tamassia. GIOTTO: A System for visualizing

83

7 References

hierarchical structures in 3D. In S. North, editor, Graph Drawing:
Symposium on Graph Drawing, GD '96, volume 1190 of Lecture
Notes in Computer Science, pages 193–200, Springer Verlag,
1997.

[HJLM93] F. Harary, M. S. Jacobson, M. J. Lipman and F. R. Morris. On
abstract sphere of influence graphs. Mathematical and
Computater Modelling, 17(11):77–83, 1993.

[HN05a] S.-H. Hong and N. S. Nikolov. Hierarchical layouts of directed
graphs in three dimensions. In P. Healy and N. S. Nikolov, editors,
Graph Drawing: Proceedings of 13th International Symposium, GD
2005, volume 3843 of LNCS. Springer Verlag, 2005.

[HT08] B. Haeupler and R. E. Tarjan. Planarity algorithms via PQ-trees
(extended abstract). Electronic Notes in Discrete Mathematics,
31:143–149, 2008.

[HT74] J. Hopcroft and R. E. Tarjan. Efficinet planarity testing. J. ACM,
21(4):549-568, 1974.

[KH97] G. Kant and X. He. Regular edge labeling of 4-connected plane
graohs and its applications in graph drawing problems, Theoretical
Computer Science, 172, pp. 175–193, 1997.

[KK89] T. Kamada and S. Kawai. An algorithm for drawing general
undirected graphs. Inform. Process. Lett., 31:7–15, 1989.

[Kur30] K. Kuratowski. Sur le probleme des courbes en topologie. Fund.
Math., 15:271–283, 1930.

[KW05] S. G. Kobourov and K. Wampler. Non-Euclidean spring
embedders. IEEE Transactions on Visualisation and Computer
Graphics, 11(6):757–767, 2005.

[LEC67] A. Lempel, S. Even and I. Cederbaum. An algorithm for planarity
testing of graphs. In Theory of Graphs: Internat. Symposium
(Rome 1966), pages 215-232, New York, Gordon and Breach,
1967.

[LL90] Y.-T. Lai and S. M. Leinwand. A theory of rectangular dual graphs,
Algorithmica, 5, pp. 467–483, 1990.

[LLMW98] G. Liotta, A. Lubiw, H. Meijer and S. H. Whitesides. The rectangle

84

7 References

of influence drawability problem. Comput. Geom. Theory and
Applications, 10(1):1–22, 1998.

[LR86] F. T. Leighton and A. L. Rosenberg. Three-dimensional circuit
layouts. SIAM J. Comput., 15(3):793–813, 1986.

[Mac03] B. MacLennan. Molecular combinatory computing for
nanostructure synthesis and control. In Proceedings 3rd IEEE
Conference on Nanotechnology, volume 2 of IEEE Press, pages
179–182, 2003.

[MOS98] P. Mutzel, T. Odenthal and M. Scharbrodt. The thickness of
graphs: A survey. Graphs and Combinatorics, 14:59–73, 1998.

[MS92] C. Monma and S. Suri. Transitionsin geometric minimum spanning
trees. Discrete Comput. Geom., 8:265–293, 1992.

[Mun97] T. Munzner. H3: Laying out large directed graphs in 3D hyperbolic
space. In L. Lavagno and W. Reisig, editors, Proceedings of IEEE
Symposium on Information Visualization, pages 2–10, 1997.

[NR04] T. Nishizeki and M. S. Rahman. Planar Graph Drawing, World
Scientific, Singapore, 2004.

[PT00] J. Pach and G. Toth. Which crossing number is it, anyway? J.
Comb. Theory Ser. B, 80(2):225–246, 2000.

[Rad88] J. D. Radke. On the shape of a set of points. In G. T. Toussaint,
editor, Computational Morphology, pages 105–136. North-Holland,
Amsterdam, The Netherlands, 1988.

[RMM+95] A. H. Robinson, J. L. Morrison, P. C. Muehrcke, A. J. Kimerling
and S. C. Guptill. Elements of Cartography. John Wiley & Sons,
Inc., 6th edition, 1995.

[RS07] A. Rusu and C. Santiago. A practical algorithm for planar straight-
line grid drawings of general trees with linear area and arbitrary
aspect ratio. In Proceedings 11th International Conference on
Information Visualisation, pages 743–750. IEEE Computers
Society, 2007.

[SB10] K.-J. Stol and M. A. Babar: A comparison framework for open
source software evaluation methods. In: Open Source Software:
New Horizons. Springer Berlin Heidelberg, pages: 389-394, 2010.

85

7 References

[Sch90] W. Schnyder. Embedding planar graphs on the grid. In Proc. 1st
ACM-SIAM Sympos. Discrete Algorithms, pages 138–148, 1990.

[SH99] W. K. Shih and W. L. Hsu. A new palanrity test. Theor. Comp. Sci.,
223, 1999.

[She95] N. Sherwani. Algorithms for VLSI Physical Design Automation, 2nd
edition, Kluwer Academic Publishers, Boston, 1995.

[SIII00] K. Sugihara, M. Iri, H. Inagaki and T. Imai. Topology-oriented
implementation – an approach to robust geometric algorithms.
Algorithmica, 27(1):5–20, 2000.

[SM95a] K. Sugiyama and K. Misue. Graph drawing by the magneting
spring model. Journal of Visual Languages and Computing,
6(3):217–231, 1995.

[SR34] E. Steinitz and H. Radermacher. Vorlesung über die Theorie der
Polyeder. Julius Springer, Berlin, Germany, 1934.

[ST06] J. M. Six and I. G. Tollis. A framework and algorithms for circular
drawings of graphs. Jrnl. Of Discrete Algorithms, 4(1), pages 25–
50, 2006.

[STT81] K. Sugiyama, S. Tagawa and M. Toda. Methods for visual
understanding of hierarchical system structures. IEEE
Transactions on Systems, Man, and Cybernetics, 11(2):109–125,
1981.

[Sug02] K. Sugiyama. Graph Drawing and Applications. World Scientific,
Singapore, 2002.

[Tam13] R. Tamassia (editor). Handbook of Graph Drawing and
Visualization (Discrete Mathematics and Its Applications). CRC
Press, Boca Raton, Florida, USA. 2013.

[Tou05] G. Toussaint. Geometric proximity graphs for improving nearest
neighbor methods in instance-based learning and data mining.
International Journal of Computational Geometry and Applications,
15(2):101–150, 2005.

[Tut63] W. T. Tutte. How to draw a graph. Proc. London Math. Society,
13(52):743–768, 1963.

[UBSE98] J. Utech, J. Branke, H. Schmeck and P. Eades. An evolutionary

86

7 References

algorithm for drawing directed graphs. In Proceedings of the 1998
International Conference on Imging Science, Systems, and
Technology (CISST'98), pages 154–160, 1998.

[Wal03] C. Walshaw. A multilevel algorithm for force-directed graph
drawing. Journal of Graph Algorithms and Applications, 7(3):253–
285, 2003.

[Whe11] D. A. Wheeler. How to Evaluate Open Source Software / Free
Software (OSS/FS) Programs, published on D. Wheelers
homepage: http://www.dwheeler.com/oss_fs_eval.html, revised as
of August 5, 2011

[WHF93] C. Ware, D. Hui and G. Franck. Visualizing object oriented
software in three dimensions. In Proc. IBM Centre for Advanced
Studies Conf. (CASCON’93), pages 1–11, 1993.

[WM08] C. Ware and P. Mitchell. Visualizing graphs in three dimensions.
ACM Trans. Appl. Percept., 5(1), 2008.

[Zor90] S. Zoraster. The solution of large 0-1 integer programming
problems encountered in automated cartography. Operation
Research, 38(5):752–759, September-October 1990.

87

88

Appendix A

Appendix A

The BSD 3-clauses licence

BSD licences are a family of permissive free software licenses, imposing min-

imal restrictions on the redistribution of covered software. This is in contrast to

copyleft licenses, which have reciprocity share-alike requirements. The original

BSD license was used for its namesake, the Berkeley Software Distribution

(BSD), a Unix-like operating system. The original version has since been

revised and its descendants are more properly termed modified BSD licenses.

Two variants of the license, the New BSD License/Modified BSD License (3-

clause) and the Simplified BSD License/FreeBSD License (2-clause) have been

verified as GPL-compatible free software licenses by the Free Software

Foundation, and have been vetted as open source licenses by the Open Source

Initiative, while the original, 4-clause license has not been accepted as an open

source license and, although the original is considered to be a free software

license by the FSF, the FSF does not consider it to be compatible with the GPL

due to the advertising clause.

Besides the original license used in BSD, there are several derivative licenses

that are commonly referred to as a "BSD license". Today, the typical BSD

license is the 3-clause version, which is revised from the original 4-clause ver-

sion.

Note that: In all BSD licences as following, <organization> is the organization

of the <copyright holder> or just the <copyright holder>, and <year> is the

year of the copyright. As published in BSD, <copyright holder> is "Regents of

89

Appendix A

the University of California", and <organization> is "University of California,

Berkeley".

Previous BSD licence

Some releases of BSD prior to the adoption of the 4-clause BSD license used a

license that is clearly ancestral to the 4-clause BSD license. These releases

include 4.3BSD-Tahoe (1988) and Net/1 (1989). Though largely replaced by the

4-clause license, this license can be found in 4.3BSD-Reno, Net/2, and

4.4BSD-Alpha.

The original BSD Licence (4-clause license)

The original BSD license contained a clause not found in later licenses, known

as the "advertising clause". This clause eventually became controversial, as it

required authors of all works deriving from a BSD-licensed work to include an

acknowledgment of the original source in all advertising material.

This clause was objected to on the grounds that as people changed the license

to reflect their name or organization it led to escalating advertising requirements

when programs were combined together in a software distribution—every

occurrence of the license with a different name required a separate acknow-

ledgment. In arguing against it, Richard Stallman has stated that he counted 75

such acknowledgments in a 1997 version of NetBSD. In addition, the clause

presented a legal problem for those wishing to publish BSD-licensed software

which relies upon separate programs using the more-restrictive GNU GPL: the

advertising clause is incompatible with the GPL, which does not allow the addi-

tion of restrictions beyond those it already imposes; because of this, the GPL's

90

Appendix A

publisher, the Free Software Foundation, recommends developers not use the

license, though it states there is no reason not to use software already using it.

Today, this original license is now sometimes called "BSD-old" or "4-clause

BSD".

The BSD 3-clause license

("Revised BSD License", "New BSD License", or "Modified BSD License")

The advertising clause was removed from the license text in the official BSD on

22 July 1999 by William Hoskins, Director of the Office of Technology Licensing

for UC Berkeley. Other BSD distributions removed the clause, but many similar

clauses remain in BSD-derived code from other sources, and unrelated code

using a derived license.

While the original license is sometimes referred to as "BSD-old", the resulting

3-clause version is sometimes referred to by "BSD-new." Other names include

"New BSD", "revised BSD", "BSD-3", or "3-clause BSD". This version has been

vetted as an Open source license by the OSI as "The BSD License". The Free

Software Foundation, which refers to the license as the "Modified BSD

License", states that it is compatible with the GNU GPL. The FSF encourages

users to be specific when referring to the license by name (i.e. not simply refer-

ring to it as "a BSD license" or "BSD-style") to avoid confusion with the original

BSD license.

This version allows unlimited redistribution for any purpose as long as its copy-

right notices and the license's disclaimers of warranty are maintained. The

license also contains a clause restricting use of the names of contributors for

endorsement of a derived work without specific permission.

91

Appendix A

License terms

Copyright (c) <year>, <copyright holder>

All rights reserved.

Redistribution and use in source and binary forms,

with or without modification, are permitted

provided that the following conditions are met:

 * Redistributions of source code must retain

the above copyright notice, this list of conditions

and the following disclaimer.

 * Redistributions in binary form must reproduce

the above copyright notice, this list of conditions

and the following disclaimer in the documentation

and/or other materials provided with the

distribution.

 * Neither the name of the <organization> nor

the names of its contributors may be used to

endorse or promote products derived from this

software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS

AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED

WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE

IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS

FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO

92

Appendix A

EVENT SHALL <COPYRIGHT HOLDER> BE LIABLE FOR ANY

DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY,

OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT

LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR

SERVICES; LOSS OF USE, DATA, OR PROFITS; OR

BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY

THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT

LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR

OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF

THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY

OF SUCH DAMAGE.

Taken from: http://en.wikipedia.org/wiki/BSD_licenses

93

94

Appendix B

Appendix B

The MIT licence

The MIT License is a free software license originating at the Massachusetts

Institute of Technology (MIT). It is a permissive free software license, meaning

that it permits reuse within proprietary software provided all copies of the

licensed software include a copy of the MIT License terms. Such proprietary

software retains its proprietary nature even though it incorporates software

under the MIT License. The license is also GPL-compatible, meaning that the

GPL permits combination and redistribution with software that uses the MIT

License.

License terms

A common form of the MIT License (from OSI's official site, which is the same

version as the "Expat License", and which is not identical to the X source code)

is defined as follows:

Copyright (C) <year> <copyright holders>

Permission is hereby granted, free of charge, to any person obtaining

a copy of this software and associated documentation files (the

"Software"), to deal in the Software without restriction, including

without limitation the rights to use, copy, modify, merge, publish,

distribute, sublicense, and/or sell copies of the Software, and to

permit persons to whom the Software is furnished to do so, subject to

95

Appendix B

the following conditions:

The above copyright notice and this permission notice shall be

included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY

OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT

LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS

FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO

EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE

LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,

WHETHER IN AN ACTION OF CONTRACT, TORT OR

OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION

WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN

THE SOFTWARE.

Taken from: http://en.wikipedia.org/wiki/MIT_License

96

Appendix C

Appendix C

The Mozilla Public Licence Version 2

The Mozilla Public License (MPL) is a free, open source, and detailed software

license developed and maintained by the Mozilla Foundation. It is characterized

as a hybridization of the modified BSD license and GNU General Public License

(GPL) that seeks to balance the concerns of proprietary and open source

developers.

It has undergone two revisions, most recently to version 2.0 with the goals of

greater simplicity and better compatibility with other licenses.

The MPL is the license for the Mozilla Firefox, Mozilla Thunderbird, and most

other Mozilla software, but it has been used by others, such as Adobe to license

their Flex product line, and LibreOffice 4.0 (also on LGPL 3+). Version 1.1 was

also notably adapted by companies to form derivative licenses like Sun

Microsystems' own Common Development and Distribution License.

Unlike strong copyleft licenses, code under the MPL may be combined with files

under any license in a "larger work", so long as conditions for the MPL are still

met for "covered" components (Section 3.3 of the license). The MPL treats the

source code file as the boundary between MPL-licensed and proprietary parts,

meaning that all or none of the code in a given source file falls under the MPL.

MPL version 2.0 is compatible with both the Apache License and by default "the

GNU GPL version 2.0, the GNU LGPL version 2.1, the GNU AGPL version 3.0,

and all later versions of those licenses". Version 1.1 had "some complex

restrictions" that made it incompatible with the GPL by default (and thus pre-

97

Appendix C

venting updating to the MPL 2.0). Although the MPL 1.1 did include a provision

(Section 13) for providing a work under a secondary license (including the GPL

or GPL-compatible ones), MPL 1.1 and GPL code could not "legally be linked,"

leading the Free Software Foundation to discourage using the MPL 1.1. For

these reasons, earlier versions of Firefox were released under multiple licenses:

the MPL 1.1, GPL 2.0, and LGPL 2.1.

License terms

Mozilla Public License

Version 2.0

1. Definitions

1.1. “Contributor”

means each individual or legal entity that creates, contributes to

the creation of, or owns Covered Software.

1.2. “Contributor Version”

means the combination of the Contributions of others (if any)

used by a Contributor and that particular Contributor’s

Contribution.

1.3. “Contribution”

means Covered Software of a particular Contributor.

1.4. “Covered Software”

means Source Code Form to which the initial Contributor has

attached the notice in Exhibit A, the Executable Form of such

Source Code Form, and Modifications of such Source Code

Form, in each case including portions thereof.

98

Appendix C

1.5. “Incompatible With Secondary Licenses”

means

a. that the initial Contributor has attached the notice

described in Exhibit B to the Covered Software; or

b. that the Covered Software was made available under

the terms of version 1.1 or earlier of the License, but not

also under the terms of a Secondary License.

1.6. “Executable Form”

means any form of the work other than Source Code Form.

1.7. “Larger Work”

means a work that combines Covered Software with other

material, in a separate file or files, that is not Covered Software.

1.8. “License”

means this document.

1.9. “Licensable”

means having the right to grant, to the maximum extent

possible, whether at the time of the initial grant or subsequently,

any and all of the rights conveyed by this License.

1.10. “Modifications”

means any of the following:

a. any file in Source Code Form that results from an

addition to, deletion from, or modification of the contents of

Covered Software; or

b. any new file in Source Code Form that contains any

Covered Software.

99

Appendix C

1.11. “Patent Claims” of a Contributor

means any patent claim(s), including without limitation, method,

process, and apparatus claims, in any patent Licensable by

such Contributor that would be infringed, but for the grant of the

License, by the making, using, selling, offering for sale, having

made, import, or transfer of either its Contributions or its

Contributor Version.

1.12. “Secondary License”

means either the GNU General Public License, Version 2.0, the

GNU Lesser General Public License, Version 2.1, the GNU

Affero General Public License, Version 3.0, or any later versions

of those licenses.

1.13. “Source Code Form”

means the form of the work preferred for making modifications.

1.14. “You” (or “Your”)

means an individual or a legal entity exercising rights under this

License. For legal entities, “You” includes any entity that

controls, is controlled by, or is under common control with You.

For purposes of this definition, “control” means (a) the power,

direct or indirect, to cause the direction or management of such

entity, whether by contract or otherwise, or (b) ownership of

more than fifty percent (50%) of the outstanding shares or

beneficial ownership of such entity.

2. License Grants and Conditions

2.1. Grants

100

Appendix C

Each Contributor hereby grants You a world-wide, royalty-free,

non-exclusive license:

a. under intellectual property rights (other than patent or

trademark) Licensable by such Contributor to use,

reproduce, make available, modify, display, perform,

distribute, and otherwise exploit its Contributions, either on

an unmodified basis, with Modifications, or as part of a

Larger Work; and

b. under Patent Claims of such Contributor to make, use,

sell, offer for sale, have made, import, and otherwise

transfer either its Contributions or its Contributor Version.

2.2. Effective Date

The licenses granted in Section 2.1 with respect to any

Contribution become effective for each Contribution on the date

the Contributor first distributes such Contribution.

2.3. Limitations on Grant Scope

The licenses granted in this Section 2 are the only rights

granted under this License. No additional rights or licenses will

be implied from the distribution or licensing of Covered

Software under this License. Notwithstanding Section 2.1(b)

above, no patent license is granted by a Contributor:

a. for any code that a Contributor has removed from

Covered Software; or

b. for infringements caused by: (i) Your and any other third

party’s modifications of Covered Software, or (ii) the

101

Appendix C

combination of its Contributions with other software

(except as part of its Contributor Version); or

c. under Patent Claims infringed by Covered Software in

the absence of its Contributions.

This License does not grant any rights in the trademarks,

service marks, or logos of any Contributor (except as may be

necessary to comply with the notice requirements in Section

3.4).

2.4. Subsequent Licenses

No Contributor makes additional grants as a result of Your

choice to distribute the Covered Software under a subsequent

version of this License (see Section 10.2) or under the terms of

a Secondary License (if permitted under the terms of Section

3.3).

2.5. Representation

Each Contributor represents that the Contributor believes its

Contributions are its original creation(s) or it has sufficient rights

to grant the rights to its Contributions conveyed by this License.

2.6. Fair Use

This License is not intended to limit any rights You have under

applicable copyright doctrines of fair use, fair dealing, or other

equivalents.

2.7. Conditions

Sections 3.1, 3.2, 3.3, and 3.4 are conditions of the licenses

granted in Section 2.1.

102

Appendix C

3. Responsibilities

3.1. Distribution of Source Form

All distribution of Covered Software in Source Code Form,

including any Modifications that You create or to which You

contribute, must be under the terms of this License. You must

inform recipients that the Source Code Form of the Covered

Software is governed by the terms of this License, and how

they can obtain a copy of this License. You may not attempt to

alter or restrict the recipients’ rights in the Source Code Form.

3.2. Distribution of Executable Form

If You distribute Covered Software in Executable Form then:

a. such Covered Software must also be made available in

Source Code Form, as described in Section 3.1, and You

must inform recipients of the Executable Form how they

can obtain a copy of such Source Code Form by

reasonable means in a timely manner, at a charge no

more than the cost of distribution to the recipient; and

b. You may distribute such Executable Form under the

terms of this License, or sublicense it under different

terms, provided that the license for the Executable Form

does not attempt to limit or alter the recipients’ rights in the

Source Code Form under this License.

3.3. Distribution of a Larger Work

You may create and distribute a Larger Work under terms of

Your choice, provided that You also comply with the

103

Appendix C

requirements of this License for the Covered Software. If the

Larger Work is a combination of Covered Software with a work

governed by one or more Secondary Licenses, and the

Covered Software is not Incompatible With Secondary

Licenses, this License permits You to additionally distribute

such Covered Software under the terms of such Secondary

License(s), so that the recipient of the Larger Work may, at their

option, further distribute the Covered Software under the terms

of either this License or such Secondary License(s).

3.4. Notices

You may not remove or alter the substance of any license

notices (including copyright notices, patent notices, disclaimers

of warranty, or limitations of liability) contained within the Source

Code Form of the Covered Software, except that You may alter

any license notices to the extent required to remedy known

factual inaccuracies.

3.5. Application of Additional Terms

You may choose to offer, and to charge a fee for, warranty,

support, indemnity or liability obligations to one or more

recipients of Covered Software. However, You may do so only

on Your own behalf, and not on behalf of any Contributor. You

must make it absolutely clear that any such warranty, support,

indemnity, or liability obligation is offered by You alone, and You

hereby agree to indemnify every Contributor for any liability

incurred by such Contributor as a result of warranty, support,

104

Appendix C

indemnity or liability terms You offer. You may include additional

disclaimers of warranty and limitations of liability specific to any

jurisdiction.

4. Inability to Comply Due to Statute or Regulation

If it is impossible for You to comply with any of the terms of this

License with respect to some or all of the Covered Software

due to statute, judicial order, or regulation then You must: (a)

comply with the terms of this License to the maximum extent

possible; and (b) describe the limitations and the code they

affect. Such description must be placed in a text file included

with all distributions of the Covered Software under this

License. Except to the extent prohibited by statute or regulation,

such description must be sufficiently detailed for a recipient of

ordinary skill to be able to understand it.

5. Termination

5.1. The rights granted under this License will terminate

automatically if You fail to comply with any of its terms.

However, if You become compliant, then the rights granted

under this License from a particular Contributor are reinstated

(a) provisionally, unless and until such Contributor explicitly and

finally terminates Your grants, and (b) on an ongoing basis, if

such Contributor fails to notify You of the non-compliance by

some reasonable means prior to 60 days after You have come

back into compliance. Moreover, Your grants from a particular

Contributor are reinstated on an ongoing basis if such

105

Appendix C

Contributor notifies You of the non-compliance by some

reasonable means, this is the first time You have received

notice of non-compliance with this License from such

Contributor, and You become compliant prior to 30 days after

Your receipt of the notice.

5.2. If You initiate litigation against any entity by asserting a

patent infringement claim (excluding declaratory judgment

actions, counter-claims, and cross-claims) alleging that a

Contributor Version directly or indirectly infringes any patent,

then the rights granted to You by any and all Contributors for

the Covered Software under Section 2.1 of this License shall

terminate.

5.3. In the event of termination under Sections 5.1 or 5.2 above,

all end user license agreements (excluding distributors and

resellers) which have been validly granted by You or Your

distributors under this License prior to termination shall survive

termination.

6. Disclaimer of Warranty

Covered Software is provided under this License on

an “as is” basis, without warranty of any kind, either

expressed, implied, or statutory, including, without

limitation, warranties that the Covered Software is

free of defects, merchantable, fit for a particular

purpose or non-infringing. The entire risk as to the

106

Appendix C

quality and performance of the Covered Software is

with You. Should any Covered Software prove

defective in any respect, You (not any Contributor)

assume the cost of any necessary servicing, repair, or

correction. This disclaimer of warranty constitutes an

essential part of this License. No use of any Covered

Software is authorized under this License except

under this disclaimer.

7. Limitation of Liability

Under no circumstances and under no legal theory,

whether tort (including negligence), contract, or

otherwise, shall any Contributor, or anyone who

distributes Covered Software as permitted above, be

liable to You for any direct, indirect, special,

incidental, or consequential damages of any

character including, without limitation, damages for

lost profits, loss of goodwill, work stoppage,

computer failure or malfunction, or any and all other

commercial damages or losses, even if such party

shall have been informed of the possibility of such

damages. This limitation of liability shall not apply to

liability for death or personal injury resulting from

such party’s negligence to the extent applicable law

107

Appendix C

prohibits such limitation. Some jurisdictions do not

allow the exclusion or limitation of incidental or

consequential damages, so this exclusion and

limitation may not apply to You.

8. Litigation

Any litigation relating to this License may be brought only in the

courts of a jurisdiction where the defendant maintains its

principal place of business and such litigation shall be governed

by laws of that jurisdiction, without reference to its conflict-of-

law provisions. Nothing in this Section shall prevent a party’s

ability to bring cross-claims or counter-claims.

9. Miscellaneous

This License represents the complete agreement concerning

the subject matter hereof. If any provision of this License is held

to be unenforceable, such provision shall be reformed only to

the extent necessary to make it enforceable. Any law or

regulation which provides that the language of a contract shall

be construed against the drafter shall not be used to construe

this License against a Contributor.

10. Versions of the License

10.1. New Versions

Mozilla Foundation is the license steward. Except as provided

in Section 10.3, no one other than the license steward has the

right to modify or publish new versions of this License. Each

108

Appendix C

version will be given a distinguishing version number.

10.2. Effect of New Versions

You may distribute the Covered Software under the terms of the

version of the License under which You originally received the

Covered Software, or under the terms of any subsequent

version published by the license steward.

10.3. Modified Versions

If you create software not governed by this License, and you

want to create a new license for such software, you may create

and use a modified version of this License if you rename the

license and remove any references to the name of the license

steward (except to note that such modified license differs from

this License).

10.4. Distributing Source Code Form that is Incompatible With

Secondary Licenses

If You choose to distribute Source Code Form that is

Incompatible With Secondary Licenses under the terms of this

version of the License, the notice described in Exhibit B of this

License must be attached.

Exhibit A - Source Code Form License Notice

This Source Code Form is subject to the

terms of the Mozilla Public License, v.

2.0. If a copy of the MPL was not

distributed with this file, You can obtain

one at http://mozilla.org/MPL/2.0/.

If it is not possible or desirable to put the notice in a particular

109

Appendix C

file, then You may include the notice in a location (such as a

LICENSE file in a relevant directory) where a recipient would be

likely to look for such a notice.

You may add additional accurate notices of copyright

ownership.

Exhibit B - “Incompatible With Secondary Licenses” Notice

This Source Code Form is “Incompatible With

Secondary Licenses”, as defined by the

Mozilla Public License, v. 2.0.

Taken from: http://en.wikipedia.org/wiki/Mozilla_Public_License

and: http://www.mozilla.org/MPL/2.0/

110

Appendix D

Appendix D

The GNU General Public Licence Version 2

The GNU General Public License (GNU GPL or GPL) is the most widely used

free software license, which guarantees end users (individuals, organizations,

companies) the freedoms to use, study, share (copy), and modify the software.

Software that allows these rights is called free software and if the software is

copyleft ensures those are retained. The GPL demands both. The license was

originally written by Richard Stallman of the Free Software Foundation (FSF) for

the GNU project.

In other words, the GPL grants the recipients of a computer program the rights

of the Free Software Definition and uses copyleft to ensure the freedoms are

preserved whenever the work is distributed, even when the work is changed or

added to. The GPL is a copyleft license, which means that derived works can

only be distributed under the same license terms. This is in distinction to per-

missive free software licenses, of which the BSD licenses and the MIT License

are the standard examples. GPL was the first copyleft license for general use.

Prominent free software programs licensed under the GPL include the Linux

kernel and the GNU Compiler Collection (GCC). Some other free software pro-

grams (MySQL is a prominent example) are dual-licensed under multiple

licenses, often with one of the licenses being the GPL.

It is believed that the copyleft provided by the GPL was crucial to the success of

Linux-based systems, giving the programmers who contributed to the kernel the

assurance that their work would benefit the whole world and remain free, rather

111

Appendix D

than being exploited by software companies that would not have to give any-

thing back to the community.

Licence Terms

GNU GENERAL PUBLIC LICENSE

Version 2, June 1991

Copyright (C) 1989, 1991 Free Software Foundation, Inc.,

51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA

Everyone is permitted to copy and distribute verbatim copies of this

license document, but changing it is not allowed.

Preamble

The licenses for most software are designed to take away your

freedom to share and change it. By contrast, the GNU General Public

License is intended to guarantee your freedom to share and change

free software--to make sure the software is free for all its users. This

General Public License applies to most of the Free Software

Foundation's software and to any other program whose authors

commit to using it. (Some other Free Software Foundation software

is covered by the GNU Lesser General Public License instead.) You

can apply it to your programs, too.

112

Appendix D

When we speak of free software, we are referring to freedom, not

price. Our General Public Licenses are designed to make sure that

you have the freedom to distribute copies of free software (and

charge for this service if you wish), that you receive source code or

can get it if you want it, that you can change the software or use

pieces of it in new free programs; and that you know you can do

these things.

To protect your rights, we need to make restrictions that forbid

anyone to deny you these rights or to ask you to surrender the rights.

These restrictions translate to certain responsibilities for you if you

distribute copies of the software, or if you modify it.

For example, if you distribute copies of such a program, whether

gratis or for a fee, you must give the recipients all the rights that you

have. You must make sure that they, too, receive or can get the

source code. And you must show them these terms so they know

their rights.

We protect your rights with two steps: (1) copyright the software, and

(2) offer you this license which gives you legal permission to copy,

distribute and/or modify the software.

Also, for each author's protection and ours, we want to make certain

that everyone understands that there is no warranty for this free

113

Appendix D

software. If the software is modified by someone else and passed on,

we want its recipients to know that what they have is not the original,

so that any problems introduced by others will not reflect on the

original authors' reputations.

Finally, any free program is threatened constantly by software

patents. We wish to avoid the danger that redistributors of a free

program will individually obtain patent licenses, in effect making the

program proprietary. To prevent this, we have made it clear that any

patent must be licensed for everyone's free use or not licensed at all.

The precise terms and conditions for copying, distribution and

modification follow.

TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND

MODIFICATION

0. This License applies to any program or other work which contains

a notice placed by the copyright holder saying it may be distributed

under the terms of this General Public License. The "Program",

below, refers to any such program or work, and a "work based on the

Program" means either the Program or any derivative work under

copyright law: that is to say, a work containing the Program or a

portion of it, either verbatim or with modifications and/or translated

into another language. (Hereinafter, translation is included without

114

Appendix D

limitation in the term "modification".) Each licensee is addressed as

"you".

Activities other than copying, distribution and modification are not

covered by this License; they are outside its scope. The act of

running the Program is not restricted, and the output from the

Program is covered only if its contents constitute a work based on

the Program (independent of having been made by running the

Program). Whether that is true depends on what the Program does.

1. You may copy and distribute verbatim copies of the Program's

source code as you receive it, in any medium, provided that you

conspicuously and appropriately publish on each copy an appropriate

copyright notice and disclaimer of warranty; keep intact all the

notices that refer to this License and to the absence of any warranty;

and give any other recipients of the Program a copy of this License

along with the Program.

You may charge a fee for the physical act of transferring a copy, and

you may at your option offer warranty protection in exchange for a

fee.

2. You may modify your copy or copies of the Program or any portion

of it, thus forming a work based on the Program, and copy and

distribute such modifications or work under the terms of Section 1

115

Appendix D

above, provided that you also meet all of these conditions:

a) You must cause the modified files to carry prominent notices

stating that you changed the files and the date of any change.

b) You must cause any work that you distribute or publish, that

in whole or in part contains or is derived from the Program or

any part thereof, to be licensed as a whole at no charge to all

third parties under the terms of this License.

c) If the modified program normally reads commands

interactively when run, you must cause it, when started running

for such interactive use in the most ordinary way, to print or

display an announcement including an appropriate copyright

notice and a notice that there is no warranty (or else, saying

that you provide a warranty) and that users may redistribute the

program under these conditions, and telling the user how to

view a copy of this License. (Exception: if the Program itself is

interactive but does not normally print such an announcement,

your work based on the Program is not required to print an

announcement.)

These requirements apply to the modified work as a whole. If

identifiable sections of that work are not derived from the Program,

and can be reasonably considered independent and separate works

116

Appendix D

in themselves, then this License, and its terms, do not apply to those

sections when you distribute them as separate works. But when you

distribute the same sections as part of a whole which is a work based

on the Program, the distribution of the whole must be on the terms of

this License, whose permissions for other licensees extend to the

entire whole, and thus to each and every part regardless of who

wrote it.

Thus, it is not the intent of this section to claim rights or contest your

rights to work written entirely by you; rather, the intent is to exercise

the right to control the distribution of derivative or collective works

based on the Program.

In addition, mere aggregation of another work not based on the

Program with the Program (or with a work based on the Program) on

a volume of a storage or distribution medium does not bring the other

work under the scope of this License.

3. You may copy and distribute the Program (or a work based on it,

under Section 2) in object code or executable form under the terms

of Sections 1 and 2 above provided that you also do one of the

following:

a) Accompany it with the complete corresponding machine-

readable source code, which must be distributed under the

117

Appendix D

terms of Sections 1 and 2 above on a medium customarily used

for software interchange; or,

b) Accompany it with a written offer, valid for at least three

years, to give any third party, for a charge no more than your

cost of physically performing source distribution, a complete

machine-readable copy of the corresponding source code, to be

distributed under the terms of Sections 1 and 2 above on a

medium customarily used for software interchange; or,

c) Accompany it with the information you received as to the

offer to distribute corresponding source code. (This alternative

is allowed only for noncommercial distribution and only if you

received the program in object code or executable form with

such an offer, in accord with Subsection b above.)

The source code for a work means the preferred form of the work for

making modifications to it. For an executable work, complete source

code means all the source code for all modules it contains, plus any

associated interface definition files, plus the scripts used to control

compilation and installation of the executable. However, as a special

exception, the source code distributed need not include anything that

is normally distributed (in either source or binary form) with the major

components (compiler, kernel, and so on) of the operating system on

which the executable runs, unless that component itself accompanies

118

Appendix D

the executable.

If distribution of executable or object code is made by offering access

to copy from a designated place, then offering equivalent access to

copy the source code from the same place counts as distribution of

the source code, even though third parties are not compelled to copy

the source along with the object code.

4. You may not copy, modify, sublicense, or distribute the Program

except as expressly provided under this License. Any attempt

otherwise to copy, modify, sublicense or distribute the Program is

void, and will automatically terminate your rights under this License.

However, parties who have received copies, or rights, from you under

this License will not have their licenses terminated so long as such

parties remain in full compliance.

5. You are not required to accept this License, since you have not

signed it. However, nothing else grants you permission to modify or

distribute the Program or its derivative works. These actions are

prohibited by law if you do not accept this License. Therefore, by

modifying or distributing the Program (or any work based on the

Program), you indicate your acceptance of this License to do so, and

all its terms and conditions for copying, distributing or modifying the

Program or works based on it.

119

Appendix D

6. Each time you redistribute the Program (or any work based on the

Program), the recipient automatically receives a license from the

original licensor to copy, distribute or modify the Program subject to

these terms and conditions. You may not impose any further

restrictions on the recipients' exercise of the rights granted herein.

You are not responsible for enforcing compliance by third parties to

this License.

7. If, as a consequence of a court judgment or allegation of patent

infringement or for any other reason (not limited to patent issues),

conditions are imposed on you (whether by court order, agreement or

otherwise) that contradict the conditions of this License, they do not

excuse you from the conditions of this License. If you cannot

distribute so as to satisfy simultaneously your obligations under this

License and any other pertinent obligations, then as a consequence

you may not distribute the Program at all. For example, if a patent

license would not permit royalty-free redistribution of the Program by

all those who receive copies directly or indirectly through you, then

the only way you could satisfy both it and this License would be to

refrain entirely from distribution of the Program.

If any portion of this section is held invalid or unenforceable under

any particular circumstance, the balance of the section is intended to

apply and the section as a whole is intended to apply in other

circumstances.

120

Appendix D

It is not the purpose of this section to induce you to infringe any

patents or other property right claims or to contest validity of any

such claims; this section has the sole purpose of protecting the

integrity of the free software distribution system, which is

implemented by public license practices. Many people have made

generous contributions to the wide range of software distributed

through that system in reliance on consistent application of that

system; it is up to the author/donor to decide if he or she is willing to

distribute software through any other system and a licensee cannot

impose that choice.

This section is intended to make thoroughly clear what is believed to

be a consequence of the rest of this License.

8. If the distribution and/or use of the Program is restricted in certain

countries either by patents or by copyrighted interfaces, the original

copyright holder who places the Program under this License may add

an explicit geographical distribution limitation excluding those

countries, so that distribution is permitted only in or among countries

not thus excluded. In such case, this License incorporates the

limitation as if written in the body of this License.

9. The Free Software Foundation may publish revised and/or new

versions of the General Public License from time to time. Such new

121

Appendix D

versions will be similar in spirit to the present version, but may differ

in detail to address new problems or concerns.

Each version is given a distinguishing version number. If the Program

specifies a version number of this License which applies to it and

"any later version", you have the option of following the terms and

conditions either of that version or of any later version published by

the Free Software Foundation. If the Program does not specify a

version number of this License, you may choose any version ever

published by the Free Software Foundation.

10. If you wish to incorporate parts of the Program into other free

programs whose distribution conditions are different, write to the

author to ask for permission. For software which is copyrighted by

the Free Software Foundation, write to the Free Software

Foundation; we sometimes make exceptions for this. Our decision

will be guided by the two goals of preserving the free status of all

derivatives of our free software and of promoting the sharing and

reuse of software generally.

NO WARRANTY

11. BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE,

THERE IS NO WARRANTY FOR THE PROGRAM, TO THE

EXTENT PERMITTED BY APPLICABLE LAW. EXCEPT WHEN

122

Appendix D

OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS

AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS"

WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR

IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED

WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A

PARTICULAR PURPOSE. THE ENTIRE RISK AS TO THE QUALITY

AND PERFORMANCE OF THE PROGRAM IS WITH YOU.

SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME

THE COST OF ALL NECESSARY SERVICING, REPAIR OR

CORRECTION.

12. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR

AGREED TO IN WRITING WILL ANY COPYRIGHT HOLDER, OR

ANY OTHER PARTY WHO MAY MODIFY AND/OR REDISTRIBUTE

THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU

FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL,

INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF

THE USE OR INABILITY TO USE THE PROGRAM (INCLUDING

BUT NOT LIMITED TO LOSS OF DATA OR DATA BEING

RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR

THIRD PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE

WITH ANY OTHER PROGRAMS), EVEN IF SUCH HOLDER OR

OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF

SUCH DAMAGES.

123

Appendix D

END OF TERMS AND CONDITIONS

How to Apply These Terms to Your New Programs

If you develop a new program, and you want it to be of the greatest

possible use to the public, the best way to achieve this is to make it

free software which everyone can redistribute and change under

these terms.

To do so, attach the following notices to the program. It is safest to

attach them to the start of each source file to most effectively convey

the exclusion of warranty; and each file should have at least the

"copyright" line and a pointer to where the full notice is found.

<one line to give the program's name and a brief idea of what it

does.>

Copyright (C) <year> <name of author>

This program is free software; you can redistribute it and/or modify it

under the terms of the GNU General Public License as published by t

the Free Software Foundation; either version 2 of the License, or (at

your option) any later version.

This program is distributed in the hope that it will be useful, but

WITHOUT ANY WARRANTY; without even the implied warranty of

124

Appendix D

MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License

along with this program; if not, write to the Free Software Foundation,

Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.

Also add information on how to contact you by electronic and paper

mail.

If the program is interactive, make it output a short notice like this

when it starts in an interactive mode:

Gnomovision version 69, Copyright (C) year name of author

Gnomovision comes with ABSOLUTELY NO WARRANTY; for details

type `show w'.

This is free software, and you are welcome to redistribute it under

certain conditions; type `show c' for details.

The hypothetical commands `show w' and `show c' should show the

appropriate parts of the General Public License. Of course, the

commands you use may be called something other than `show w'

and `show c'; they could even be mouse-clicks or menu items--

whatever suits your program.

125

Appendix D

You should also get your employer (if you work as a programmer) or

your school, if any, to sign a "copyright disclaimer" for the program, if

necessary. Here is a sample; alter the names:

Yoyodyne, Inc., hereby disclaims all copyright interest in the program

`Gnomovision' (which makes passes at compilers) written by James

Hacker.

<signature of Ty Coon>, 1 April 1989

Ty Coon, President of Vice

This General Public License does not permit incorporating your

program into proprietary programs. If your program is a subroutine

library, you may consider it more useful to permit linking proprietary

applications with the library. If this is what you want to do, use the

GNU Lesser General Public License instead of this License.

Taken from: http://en.wikipedia.org/wiki/GNU_General_Public_License

and: http://www.gnu.org/licenses/old-licenses/gpl-2.0.en.html

126

Appendix E

Appendix E

The GNU General Public Licence Version 3

On 29 June 2007, the third version of the license (GNU GPLv3) was released to

address some perceived problems with the second version (GNU GPLv2) that

were discovered during its long-time usage. To keep the license up to date the

GPL license includes an optional "any later version" clause, allowing users to

choose between the original terms or the terms in new versions as updated by

the FSF. Developers can omit it when licensing their software; for instance the

Linux kernel is licensed under GPLv2 without the "any later version" clause.

Licence Terms

GNU GENERAL PUBLIC LICENSE

Version 3, 29 June 2007

Copyright (C) 2007 Free Software Foundation, Inc. <http://fsf.org/>

Everyone is permitted to copy and distribute verbatim copies of this

license document, but changing it is not allowed.

Preamble

The GNU General Public License is a free, copyleft license for

software and other kinds of works.

127

Appendix E

The licenses for most software and other practical works are

designed to take away your freedom to share and change the works.

By contrast, the GNU General Public License is intended to

guarantee your freedom to share and change all versions of a

program--to make sure it remains free software for all its users. We,

the Free Software Foundation, use the GNU General Public License

for most of our software; it applies also to any other work released

this way by its authors. You can apply it to your programs, too.

When we speak of free software, we are referring to freedom, not

price. Our General Public Licenses are designed to make sure that

you have the freedom to distribute copies of free software (and

charge for them if you wish), that you receive source code or can get

it if you want it, that you can change the software or use pieces of it

in new free programs, and that you know you can do these things.

To protect your rights, we need to prevent others from denying you

these rights or asking you to surrender the rights. Therefore, you

have certain responsibilities if you distribute copies of the software,

or if you modify it: responsibilities to respect the freedom of others.

For example, if you distribute copies of such a program, whether

gratis or for a fee, you must pass on to the recipients the same

freedoms that you received. You must make sure that they, too,

128

Appendix E

receive or can get the source code. And you must show them these

terms so they know their rights.

Developers that use the GNU GPL protect your rights with two steps:

(1) assert copyright on the software, and (2) offer you this License

giving you legal permission to copy, distribute and/or modify it.

For the developers' and authors' protection, the GPL clearly explains

that there is no warranty for this free software. For both users' and

authors' sake, the GPL requires that modified versions be marked as

changed, so that their problems will not be attributed erroneously to

authors of previous versions.

Some devices are designed to deny users access to install or run

modified versions of the software inside them, although the

manufacturer can do so. This is fundamentally incompatible with the

aim of protecting users' freedom to change the software. The

systematic pattern of such abuse occurs in the area of products for

individuals to use, which is precisely where it is most unacceptable.

Therefore, we have designed this version of the GPL to prohibit the

practice for those products. If such problems arise substantially in

other domains, we stand ready to extend this provision to those

domains in future versions of the GPL, as needed to protect the

freedom of users.

129

Appendix E

Finally, every program is threatened constantly by software patents.

States should not allow patents to restrict development and use of

software on general-purpose computers, but in those that do, we

wish to avoid the special danger that patents applied to a free

program could make it effectively proprietary. To prevent this, the

GPL assures that patents cannot be used to render the program non-

free.

The precise terms and conditions for copying, distribution and

modification follow.

TERMS AND CONDITIONS

0. Definitions.

"This License" refers to version 3 of the GNU General Public

License.

"Copyright" also means copyright-like laws that apply to other kinds

of works, such as semiconductor masks.

"The Program" refers to any copyrightable work licensed under this

License. Each licensee is addressed as "you". "Licensees" and

"recipients" may be individuals or organizations.

130

Appendix E

To "modify" a work means to copy from or adapt all or part of the

work in a fashion requiring copyright permission, other than the

making of an exact copy. The resulting work is called a "modified

version" of the earlier work or a work "based on" the earlier work.

A "covered work" means either the unmodified Program or a work

based on the Program.

To "propagate" a work means to do anything with it that, without

permission, would make you directly or secondarily liable for

infringement under applicable copyright law, except executing it on a

computer or modifying a private copy. Propagation includes copying,

distribution (with or without modification), making available to the

public, and in some countries other activities as well.

To "convey" a work means any kind of propagation that enables other

parties to make or receive copies. Mere interaction with a user

through a computer network, with no transfer of a copy, is not

conveying.

An interactive user interface displays "Appropriate Legal Notices" to

the extent that it includes a convenient and prominently visible

feature that (1) displays an appropriate copyright notice, and (2) tells

the user that there is no warranty for the work (except to the extent

that warranties are provided), that licensees may convey the work

131

Appendix E

under this License, and how to view a copy of this License. If the

interface presents a list of user commands or options, such as a

menu, a prominent item in the list meets this criterion.

1. Source Code.

The "source code" for a work means the preferred form of the work

for making modifications to it. "Object code" means any non-source

form of a work.

A "Standard Interface" means an interface that either is an official

standard defined by a recognized standards body, or, in the case of

interfaces specified for a particular programming language, one that

is widely used among developers working in that language.

The "System Libraries" of an executable work include anything, other

than the work as a whole, that (a) is included in the normal form of

packaging a Major Component, but which is not part of that Major

Component, and (b) serves only to enable use of the work with that

Major Component, or to implement a Standard Interface for which an

implementation is available to the public in source code form. A

"Major Component", in this context, means a major essential

component (kernel, window system, and so on) of the specific

operating system (if any) on which the executable work runs, or a

compiler used to produce the work, or an object code interpreter

132

Appendix E

used to run it.

The "Corresponding Source" for a work in object code form means all

the source code needed to generate, install, and (for an executable

work) run the object code and to modify the work, including scripts to

control those activities. However, it does not include the work's

System Libraries, or general-purpose tools or generally available free

programs which are used unmodified in performing those activities

but which are not part of the work. For example, Corresponding

Source includes interface definition files associated with source files

for the work, and the source code for shared libraries and

dynamically linked subprograms that the work is specifically designed

to require, such as by intimate data communication or control flow

between those subprograms and other parts of the work.

The Corresponding Source need not include anything that users can

regenerate automatically from other parts of the Corresponding

Source.

The Corresponding Source for a work in source code form is that

same work.

2. Basic Permissions.

All rights granted under this License are granted for the term of

133

Appendix E

copyright on the Program, and are irrevocable provided the stated

conditions are met. This License explicitly affirms your unlimited

permission to run the unmodified Program. The output from running a

covered work is covered by this License only if the output, given its

content, constitutes a covered work. This License acknowledges your

rights of fair use or other equivalent, as provided by copyright law.

You may make, run and propagate covered works that you do not

convey, without conditions so long as your license otherwise remains

in force. You may convey covered works to others for the sole

purpose of having them make modifications exclusively for you, or

provide you with facilities for running those works, provided that you

comply with the terms of this License in conveying all material for

which you do not control copyright. Those thus making or running the

covered works for you must do so exclusively on your behalf, under

your direction and control, on terms that prohibit them from making

any copies of your copyrighted material outside their relationship with

you.

Conveying under any other circumstances is permitted solely under

the conditions stated below. Sublicensing is not allowed; section 10

makes it unnecessary.

134

Appendix E

3. Protecting Users' Legal Rights From Anti-Circumvention Law.

No covered work shall be deemed part of an effective technological

measure under any applicable law fulfilling obligations under article

11 of the WIPO copyright treaty adopted on 20 December 1996, or

similar laws prohibiting or restricting circumvention of such

measures.

When you convey a covered work, you waive any legal power to

forbid circumvention of technological measures to the extent such

circumvention is effected by exercising rights under this License with

respect to the covered work, and you disclaim any intention to limit

operation or modification of the work as a means of enforcing,

against the work's users, your or third parties' legal rights to forbid

circumvention of technological measures.

4. Conveying Verbatim Copies.

You may convey verbatim copies of the Program's source code as

you receive it, in any medium, provided that you conspicuously and

appropriately publish on each copy an appropriate copyright notice;

keep intact all notices stating that this License and any non-

permissive terms added in accord with section 7 apply to the code;

keep intact all notices of the absence of any warranty; and give all

recipients a copy of this License along with the Program.

135

Appendix E

You may charge any price or no price for each copy that you convey,

and you may offer support or warranty protection for a fee.

5. Conveying Modified Source Versions.

You may convey a work based on the Program, or the modifications

to produce it from the Program, in the form of source code under the

terms of section 4, provided that you also meet all of these

conditions:

a) The work must carry prominent notices stating that you

modified it, and giving a relevant date.

b) The work must carry prominent notices stating that it is

released under this License and any conditions added under

section 7. This requirement modifies the requirement in section

4 to "keep intact all notices".

c) You must license the entire work, as a whole, under this

License to anyone who comes into possession of a copy. This

License will therefore apply, along with any applicable section 7

additional terms, to the whole of the work, and all its parts,

regardless of how they are packaged. This License gives no

permission to license the work in any other way, but it does not

136

Appendix E

invalidate such permission if you have separately received it.

d) If the work has interactive user interfaces, each must display

Appropriate Legal Notices; however, if the Program has

interactive interfaces that do not display Appropriate Legal

Notices, your work need not make them do so.

A compilation of a covered work with other separate and independent

works, which are not by their nature extensions of the covered work,

and which are not combined with it such as to form a larger program,

in or on a volume of a storage or distribution medium, is called an

"aggregate" if the compilation and its resulting copyright are not used

to limit the access or legal rights of the compilation's users beyond

what the individual works permit. Inclusion of a covered work in an

aggregate does not cause this License to apply to the other parts of

the aggregate.

6. Conveying Non-Source Forms.

You may convey a covered work in object code form under the terms

of sections 4 and 5, provided that you also convey the machine-

readable Corresponding Source under the terms of this License, in

one of these ways:

a) Convey the object code in, or embodied in, a physical

137

Appendix E

product (including a physical distribution medium),

accompanied by the Corresponding Source fixed on a durable

physical medium customarily used for software interchange.

b) Convey the object code in, or embodied in, a physical

product (including a physical distribution medium),

accompanied by a written offer, valid for at least three years and

valid for as long as you offer spare parts or customer support

for that product model, to give anyone who possesses the

object code either (1) a copy of the Corresponding Source for

all the software in the product that is covered by this License,

on a durable physical medium customarily used for software

interchange, for a price no more than your reasonable cost of

physically performing this conveying of source, or (2) access to

copy the Corresponding Source from a network server at no

charge.

c) Convey individual copies of the object code with a copy of

the written offer to provide the Corresponding Source. This

alternative is allowed only occasionally and noncommercially,

and only if you received the object code with such an offer, in

accord with subsection 6b.

d) Convey the object code by offering access from a designated

place (gratis or for a charge), and offer equivalent access to the

138

Appendix E

Corresponding Source in the same way through the same place

at no further charge. You need not require recipients to copy the

Corresponding Source along with the object code. If the place

to copy the object code is a network server, the Corresponding

Source may be on a different server (operated by you or a third

party) that supports equivalent copying facilities, provided you

maintain clear directions next to the object code saying where

to find the Corresponding Source. Regardless of what server

hosts the Corresponding Source, you remain obligated to

ensure that it is available for as long as needed to satisfy these

requirements.

e) Convey the object code using peer-to-peer transmission,

provided you inform other peers where the object code and

Corresponding Source of the work are being offered to the

general public at no charge under subsection 6d.

A separable portion of the object code, whose source code is

excluded from the Corresponding Source as a System Library, need

not be included in conveying the object code work.

A "User Product" is either (1) a "consumer product", which means

any tangible personal property which is normally used for personal,

family, or household purposes, or (2) anything designed or sold for

incorporation into a dwelling. In determining whether a product is a

139

Appendix E

consumer product, doubtful cases shall be resolved in favor of

coverage. For a particular product received by a particular user,

"normally used" refers to a typical or common use of that class of

product, regardless of the status of the particular user or of the way

in which the particular user actually uses, or expects or is expected

to use, the product. A product is a consumer product regardless of

whether the product has substantial commercial, industrial or non-

consumer uses, unless such uses represent the only significant

mode of use of the product.

"Installation Information" for a User Product means any methods,

procedures, authorization keys, or other information required to

install and execute modified versions of a covered work in that User

Product from a modified version of its Corresponding Source. The

information must suffice to ensure that the continued functioning of

the modified object code is in no case prevented or interfered with

solely because modification has been made.

If you convey an object code work under this section in, or with, or

specifically for use in, a User Product, and the conveying occurs as

part of a transaction in which the right of possession and use of the

User Product is transferred to the recipient in perpetuity or for a fixed

term (regardless of how the transaction is characterized), the

Corresponding Source conveyed under this section must be

accompanied by the Installation Information. But this requirement

140

Appendix E

does not apply if neither you nor any third party retains the ability to

install modified object code on the User Product (for example, the

work has been installed in ROM).

The requirement to provide Installation Information does not include

a requirement to continue to provide support service, warranty, or

updates for a work that has been modified or installed by the

recipient, or for the User Product in which it has been modified or

installed. Access to a network may be denied when the modification

itself materially and adversely affects the operation of the network or

violates the rules and protocols for communication across the

network.

Corresponding Source conveyed, and Installation Information

provided, in accord with this section must be in a format that is

publicly documented (and with an implementation available to the

public in source code form), and must require no special password or

key for unpacking, reading or copying.

7. Additional Terms.

"Additional permissions" are terms that supplement the terms of this

License by making exceptions from one or more of its conditions.

Additional permissions that are applicable to the entire Program shall

be treated as though they were included in this License, to the extent

141

Appendix E

that they are valid under applicable law. If additional permissions

apply only to part of the Program, that part may be used separately

under those permissions, but the entire Program remains governed

by this License without regard to the additional permissions.

When you convey a copy of a covered work, you may at your option

remove any additional permissions from that copy, or from any part of

it. (Additional permissions may be written to require their own

removal in certain cases when you modify the work.) You may place

additional permissions on material, added by you to a covered work,

for which you have or can give appropriate copyright permission.

Notwithstanding any other provision of this License, for material you

add to a covered work, you may (if authorized by the copyright

holders of that material) supplement the terms of this License with

terms:

a) Disclaiming warranty or limiting liability differently from the

terms of sections 15 and 16 of this License; or

b) Requiring preservation of specified reasonable legal notices

or author attributions in that material or in the Appropriate Legal

Notices displayed by works containing it; or

c) Prohibiting misrepresentation of the origin of that material, or

142

Appendix E

requiring that modified versions of such material be marked in

reasonable ways as different from the original version; or

d) Limiting the use for publicity purposes of names of licensors

or authors of the material; or

e) Declining to grant rights under trademark law for use of some

trade names, trademarks, or service marks; or

f) Requiring indemnification of licensors and authors of that

material by anyone who conveys the material (or modified

versions of it) with contractual assumptions of liability to the

recipient, for any liability that these contractual assumptions

directly impose on those licensors and authors.

All other non-permissive additional terms are considered "further

restrictions" within the meaning of section 10. If the Program as you

received it, or any part of it, contains a notice stating that it is

governed by this License along with a term that is a further

restriction, you may remove that term. If a license document contains

a further restriction but permits relicensing or conveying under this

License, you may add to a covered work material governed by the

terms of that license document, provided that the further restriction

does not survive such relicensing or conveying.

143

Appendix E

If you add terms to a covered work in accord with this section, you

must place, in the relevant source files, a statement of the additional

terms that apply to those files, or a notice indicating where to find the

applicable terms.

Additional terms, permissive or non-permissive, may be stated in the

form of a separately written license, or stated as exceptions; the

above requirements apply either way.

8. Termination.

You may not propagate or modify a covered work except as

expressly provided under this License. Any attempt otherwise to

propagate or modify it is void, and will automatically terminate your

rights under this License (including any patent licenses granted

under the third paragraph of section 11).

However, if you cease all violation of this License, then your license

from a particular copyright holder is reinstated (a) provisionally,

unless and until the copyright holder explicitly and finally terminates

your license, and (b) permanently, if the copyright holder fails to

notify you of the violation by some reasonable means prior to 60

days after the cessation.

Moreover, your license from a particular copyright holder is reinstated

144

Appendix E

permanently if the copyright holder notifies you of the violation by

some reasonable means, this is the first time you have received

notice of violation of this License (for any work) from that copyright

holder, and you cure the violation prior to 30 days after your receipt

of the notice.

Termination of your rights under this section does not terminate the

licenses of parties who have received copies or rights from you under

this License. If your rights have been terminated and not permanently

reinstated, you do not qualify to receive new licenses for the same

material under section 10.

9. Acceptance Not Required for Having Copies.

You are not required to accept this License in order to receive or run

a copy of the Program. Ancillary propagation of a covered work

occurring solely as a consequence of using peer-to-peer

transmission to receive a copy likewise does not require acceptance.

However, nothing other than this License grants you permission to

propagate or modify any covered work. These actions infringe

copyright if you do not accept this License. Therefore, by modifying

or propagating a covered work, you indicate your acceptance of this

License to do so.

145

Appendix E

10. Automatic Licensing of Downstream Recipients.

Each time you convey a covered work, the recipient automatically

receives a license from the original licensors, to run, modify and

propagate that work, subject to this License. You are not responsible

for enforcing compliance by third parties with this License.

An "entity transaction" is a transaction transferring control of an

organization, or substantially all assets of one, or subdividing an

organization, or merging organizations. If propagation of a covered

work results from an entity transaction, each party to that transaction

who receives a copy of the work also receives whatever licenses to

the work the party's predecessor in interest had or could give under

the previous paragraph, plus a right to possession of the

Corresponding Source of the work from the predecessor in interest, if

the predecessor has it or can get it with reasonable efforts.

You may not impose any further restrictions on the exercise of the

rights granted or affirmed under this License. For example, you may

not impose a license fee, royalty, or other charge for exercise of

rights granted under this License, and you may not initiate litigation

(including a cross-claim or counterclaim in a lawsuit) alleging that any

patent claim is infringed by making, using, selling, offering for sale, or

importing the Program or any portion of it.

146

Appendix E

11. Patents.

A "contributor" is a copyright holder who authorizes use under this

License of the Program or a work on which the Program is based.

The work thus licensed is called the contributor's "contributor

version".

A contributor's "essential patent claims" are all patent claims owned

or controlled by the contributor, whether already acquired or hereafter

acquired, that would be infringed by some manner, permitted by this

License, of making, using, or selling its contributor version, but do not

include claims that would be infringed only as a consequence of

further modification of the contributor version. For purposes of this

definition, "control" includes the right to grant patent sublicenses in a

manner consistent with the requirements of this License.

Each contributor grants you a non-exclusive, worldwide, royalty-free

patent license under the contributor's essential patent claims, to

make, use, sell, offer for sale, import and otherwise run, modify and

propagate the contents of its contributor version.

In the following three paragraphs, a "patent license" is any express

agreement or commitment, however denominated, not to enforce a

patent (such as an express permission to practice a patent or

covenant not to sue for patent infringement). To "grant" such a patent

147

Appendix E

license to a party means to make such an agreement or commitment

not to enforce a patent against the party.

If you convey a covered work, knowingly relying on a patent license,

and the Corresponding Source of the work is not available for anyone

to copy, free of charge and under the terms of this License, through a

publicly available network server or other readily accessible means,

then you must either (1) cause the Corresponding Source to be so

available, or (2) arrange to deprive yourself of the benefit of the

patent license for this particular work, or (3) arrange, in a manner

consistent with the requirements of this License, to extend the patent

license to downstream recipients. "Knowingly relying" means you

have actual knowledge that, but for the patent license, your

conveying the covered work in a country, or your recipient's use of

the covered work in a country, would infringe one or more identifiable

patents in that country that you have reason to believe are valid.

If, pursuant to or in connection with a single transaction or

arrangement, you convey, or propagate by procuring conveyance of,

a covered work, and grant a patent license to some of the parties

receiving the covered work authorizing them to use, propagate,

modify or convey a specific copy of the covered work, then the patent

license you grant is automatically extended to all recipients of the

covered work and works based on it.

148

Appendix E

A patent license is "discriminatory" if it does not include within the

scope of its coverage, prohibits the exercise of, or is conditioned on

the non-exercise of one or more of the rights that are specifically

granted under this License. You may not convey a covered work if

you are a party to an arrangement with a third party that is in the

business of distributing software, under which you make payment to

the third party based on the extent of your activity of conveying the

work, and under which the third party grants, to any of the parties

who would receive the covered work from you, a discriminatory

patent license (a) in connection with copies of the covered work

conveyed by you (or copies made from those copies), or (b) primarily

for and in connection with specific products or compilations that

contain the covered work, unless you entered into that arrangement,

or that patent license was granted, prior to 28 March 2007.

Nothing in this License shall be construed as excluding or limiting

any implied license or other defenses to infringement that may

otherwise be available to you under applicable patent law.

12. No Surrender of Others' Freedom.

If conditions are imposed on you (whether by court order, agreement

or otherwise) that contradict the conditions of this License, they do

not excuse you from the conditions of this License. If you cannot

convey a covered work so as to satisfy simultaneously your

149

Appendix E

obligations under this License and any other pertinent obligations,

then as a consequence you may not convey it at all. For example, if

you agree to terms that obligate you to collect a royalty for further

conveying from those to whom you convey the Program, the only

way you could satisfy both those terms and this License would be to

refrain entirely from conveying the Program.

13. Use with the GNU Affero General Public License.

Notwithstanding any other provision of this License, you have

permission to link or combine any covered work with a work licensed

under version 3 of the GNU Affero General Public License into a

single combined work, and to convey the resulting work. The terms of

this License will continue to apply to the part which is the covered

work, but the special requirements of the GNU Affero General Public

License, section 13, concerning interaction through a network will

apply to the combination as such.

14. Revised Versions of this License.

The Free Software Foundation may publish revised and/or new

versions of the GNU General Public License from time to time. Such

new versions will be similar in spirit to the present version, but may

differ in detail to address new problems or concerns.

150

Appendix E

Each version is given a distinguishing version number. If the Program

specifies that a certain numbered version of the GNU General Public

License "or any later version" applies to it, you have the option of

following the terms and conditions either of that numbered version or

of any later version published by the Free Software Foundation. If the

Program does not specify a version number of the GNU General

Public License, you may choose any version ever published by the

Free Software Foundation.

If the Program specifies that a proxy can decide which future

versions of the GNU General Public License can be used, that

proxy's public statement of acceptance of a version permanently

authorizes you to choose that version for the Program.

Later license versions may give you additional or different

permissions. However, no additional obligations are imposed on any

author or copyright holder as a result of your choosing to follow a

later version.

15. Disclaimer of Warranty.

THERE IS NO WARRANTY FOR THE PROGRAM, TO THE

EXTENT PERMITTED BY APPLICABLE LAW. EXCEPT WHEN

OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS

AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS"

151

Appendix E

WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR

IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED

WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A

PARTICULAR PURPOSE. THE ENTIRE RISK AS TO THE QUALITY

AND PERFORMANCE OF THE PROGRAM IS WITH YOU.

SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME

THE COST OF ALL NECESSARY SERVICING, REPAIR OR

CORRECTION.

16. Limitation of Liability.

IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR

AGREED TO IN WRITING WILL ANY COPYRIGHT HOLDER, OR

ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS THE

PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR

DAMAGES, INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL

OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR

INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT

LIMITED TO LOSS OF DATA OR DATA BEING RENDERED

INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD

PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH

ANY OTHER PROGRAMS), EVEN IF SUCH HOLDER OR OTHER

PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH

DAMAGES.

152

Appendix E

17. Interpretation of Sections 15 and 16.

If the disclaimer of warranty and limitation of liability provided above

cannot be given local legal effect according to their terms, reviewing

courts shall apply local law that most closely approximates an

absolute waiver of all civil liability in connection with the Program,

unless a warranty or assumption of liability accompanies a copy of

the Program in return for a fee.

END OF TERMS AND CONDITIONS

How to Apply These Terms to Your New Programs

If you develop a new program, and you want it to be of the greatest

possible use to the public, the best way to achieve this is to make it

free software which everyone can redistribute and change under

these terms.

To do so, attach the following notices to the program. It is safest to

attach them to the start of each source file to most effectively state

the exclusion of warranty; and each file should have at least the

"copyright" line and a pointer to where the full notice is found.

<one line to give the program's name and a brief idea of what it

does.>

153

Appendix E

Copyright (C) <year> <name of author>

This program is free software: you can redistribute it and/or modify it

under the terms of the GNU General Public License as published by

the Free Software Foundation, either version 3 of the License, or (at

your option) any later version.

This program is distributed in the hope that it will be useful, but

WITHOUT ANY WARRANTY; without even the implied warranty of

MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License

along with this program. If not, see <http://www.gnu.org/licenses/>.

Also add information on how to contact you by electronic and paper

mail.

If the program does terminal interaction, make it output a short notice

like this when it starts in an interactive mode:

<program> Copyright (C) <year> <name of author>

This program comes with ABSOLUTELY NO WARRANTY; for details

type `show w'. This is free software, and you are welcome to

redistribute it under certain conditions; type `show c' for details.

154

Appendix E

The hypothetical commands `show w' and `show c' should show the

appropriate parts of the General Public License. Of course, your

program's commands might be different; for a GUI interface, you

would use an "about box".

You should also get your employer (if you work as a programmer) or

school, if any, to sign a "copyright disclaimer" for the program, if

necessary. For more information on this, and how to apply and follow

the GNU GPL, see <http://www.gnu.org/licenses/>.

The GNU General Public License does not permit incorporating your

program into proprietary programs. If your program is a subroutine

library, you may consider it more useful to permit linking proprietary

applications with the library. If this is what you want to do, use the

GNU Lesser General Public License instead of this License. But first,

please read <http://www.gnu.org/philosophy/why-not-lgpl.html>.

Taken from: http://en.wikipedia.org/wiki/GNU_General_Public_License

and: http://www.gnu.org/licenses/gpl.html

155

156

Appendix F

Appendix F

Public Domain

Works in the public domain are those whose intellectual property rights have

expired, have been forfeited, or are inapplicable. The term is not normally

applied to situations where the creator of a work retains residual rights, in which

case use of the work is referred to as "under license" or "with permission".

In informal usage, the public domain consists of works that are publicly avail-

able; while according to the formal definition, it consists of works that are

unavailable for private ownership or are available for public use. As rights are

country-based and vary, a work may be subject to rights in one country and not

in another. Some rights depend on registrations with a country-by-country basis,

and the absence of registration in a particular country, if required, implies public

domain status in that country.

Public Domain is one of the traditional safety valves in copyright law.

The term public domain did not come into use until the mid-17th century,

although as a concept "it can be traced back to the ancient Roman Law, as a

preset system included in the property right system." The Romans had a large

proprietary rights system where they defined "many things that cannot be

privately owned" as res communes, res publicae and res universitatis. The term

res commune was defined as "things that could be commonly enjoyed by man-

kind, such as air, sunlight and ocean." The term res publicae referred to things

that were shared by all citizens, and the term res universitatis meant things that

were owned by the municipalities of Rome. When looking at the public domain

157

Appendix F

from a historical perspective, one could say the construction of the idea of "pub-

lic domain" sprouted from the concepts of res commune, res publicae, and res

universitatis in early Roman Law.

When the first early copyright law was first established in Britain with the Statute

of Anne in 1710, public domain did not appear. However, similar concepts were

developed by British and French jurists in the eighteenth century. Instead of

"public domain" they used terms such as publici juris or propriété publique to

describe works that were not covered by copyright law. The phrase "fall in the

public domain" can be traced to mid-nineteenth century France to describe the

end of copyright term. The French poet Alfred de Vigny equated the expiration

of copyright with a work falling "into the sink hole of the public domain" and if

the public domain receives any attention from intellectual property lawyers it is

still treated as little more than that which is left when intellectual property rights,

such as copyright, patents, and trademarks, expire or are abandoned. In this

historical context Paul Torremans describes copyright as a "little coral reef of

private right jutting up from the ocean of the public domain." Because copyright

law is different from country to country, Pamela Samuelson has described the

public domain as being "different sizes at different times in different countries".

Definition

Definitions of the boundaries of the public domain in relation to copyright, or

intellectual property more generally, regard the public domain as a negative

space, that is, it consists of works that are no longer in copyright term or were

never protected by copyright law. According to James Boyle this definition

underlines common usage of the term public domain and equates the public

domain to public property and works in copyright to private property. However,

158

Appendix F

the usage of the term public domain can be more granular, including for

example uses of works in copyright permitted by copyright exceptions. Such a

definition regards work in copyright as private property subject to fair use rights

and limitation on ownership. A conceptual definition comes from Lange, who

focused on what the public domain should be: "it should be a place of sanctuary

for individual creative expression, a sanctuary conferring affirmative protection

against the forces of private appropriation that threatened such expression".

Patterson and Lindberg described the public domain not as a "territory", but

rather as a concept: "[T]here are certain materials – the air we breathe, sunlight,

rain, space, life, creations, thoughts, feelings, ideas, words, numbers – `not sub-

ject to private ownership. The materials that compose our cultural heritage must

be free for all living to use no less than matter necessary for biological survival."

The term public domain may also be interchangeably used with other imprecise

and/or undefined terms such as the "public sphere" or "commons", including

concepts such as "commons of the mind", the "intellectual commons", and the

"information commons".

Value

Pamela Samuelson has identified eight "values" that can arise from information

and works in the public domain.

Possible values include:

1. Building blocks for the creation of new knowledge, examples include

data, facts, ideas, theories, and scientific principle.

2. Access to cultural heritage through information resources such as

ancient Greek texts and Mozart’s symphonies.

3. Promoting education, through the spread of information, ideas, and sci-

159

Appendix F

entific principles.

4. Enabling follow-on innovation, through for example expired patents and

copyright.

5. Enabling low cost access to information without the need to locate the

owner or negotiate rights clearance and pay royalties, through for

example expired copyrighted works or patents, and non-original data

compilation.

6. Promoting public health and safety, through information and scientific

principles.

7. Promoting the democratic process and values, through news, laws, reg-

ulation, and judicial opinion.

8. Enabling competitive imitation, through for example expired patents and

copyright, or publicly disclosed technologies that do not qualify for patent

protection.

Dedicating works to the public domain

Few if any legal systems have a process for reliably donating works to the pub-

lic domain. They may even prohibit any attempt by copyright owners to sur-

render rights automatically conferred by law, particularly moral rights. An altern-

ative is for copyright holders to issue a licence which irrevocably grants as

many rights as possible to the general public, e.g., the CC0 licence from Creat-

ive Commons.

Continantal-european law

Public Domain is a legal term of the anglo-american law. It is similar, but not

identical to the continental-european “Gemeinfreiheit”

160

Appendix F

For further informations about “Gemeinfreiheit” the reader may refer to:

http://de.wikipedia.org/wiki/Gemeinfreiheit

Taken from: http://en.wikipedia.org/wiki/Public_domain

161

	Abstract
	1 Introduction
	2 Graph Drawing and Visualisation
	3 Methodology
	3.1 In-detail description of the data analysis
	3.1.1 Identifying the candidates
	3.1.2 Reading existing reviews
	3.1.3 Comparing the leading programs
	3.1.4 In-depth analysis of the top candidates

	4 I R C A
	4.1 Identify
	4.2 Read Reviews
	4.3 Comparison
	4.3.1 Functionality
	4.3.2 Market share
	4.3.3 Support / Maintenance / Longevity / Reliability
	4.3.4 Flexibility / Customisability
	4.3.5 Licence
	4.3.6 Other cirteria

	4.4 Analysis in-depth
	4.5 Conclusion

	5 Software Development
	5.1 Unified Modeling Language (UML)
	5.1.1 Use Cases Diagram
	5.1.2 Sequence Diagram

	6 Documention of the software tool
	6.1 Installation in 4 steps
	6.2 Workspace, Toolbar and Properties
	6.3 The Menu Bar
	6.4 Graph edit options
	6.5 To Do List
	6.6 General Features

	7 References
	Appendix A
	The BSD 3-clauses licence

	Appendix B
	The MIT licence

	Appendix C
	The Mozilla Public Licence Version 2

	Appendix D
	The GNU General Public Licence Version 2

	Appendix E
	The GNU General Public Licence Version 3

	Appendix F
	Public Domain

