

Apache Spark instrumentation
using custom PIN Tool

sparkanalyzer

José Manuel García Sánchez

Outline
● Presentation
● Apache Spark modifications
● Pintool development: pinSpark
● Evaluation: Spark cluster over Amazon

AWS
– Deployment, execution and instrument

worloads

● Future works & conclusion

Highlights

● Sparkanalyzer was developed as a degree
project at Open University of Catalonia
(UOC)

● This project is the last step in my Grade of
Computer Engineering studies

● Sparkanalyzer belongs to computer
architecture area at UOC

Final Degree Project

● Sparkanalyzer was proposed by Francesc
Guim (UOC) as final degree project for my
studies

● Final degree project in UOC is a subject
with 12 credits

● Sparkanalyzer was developed between
september to january, 2016.

Personal Goals

 Apply knowledge obtained along my grade
studies to a complex IT project.

 Pass my last subject to earn 12 credits so I
can graduate

Presentation(I)
● Sparkanalyzer is a project to instrument

Apache Spark workloads using PIN custom
tool

● To use Sparkanalyzer, we need a custom
apache spark deployment and permissions
to modify libraries/source code (we need to
wrap our pin tool inside the Spark code)

● Pintool records values of execution on
Slaves nodes on spark.

Presentation(II)
● Instrumentation runs on Slave nodes. We

tool only instruments Jobs on the Spark
cluster submitted over standard submit
procedures(spark-submit.sh)

● PIN output is stored on MySQL database
for central management and on local
filesystem on each slave node

● PIN Tool configuration is done with a conf
file, /etc/pinSpark/pinSpark.conf

Apache Spark Modifications

● Tested over Apache Spark 1.5.1
● We need to compile and modify one file of

Spark Source code. We have identified
were the jobs are executed on Slaves, so
our modification puts pin execution before
the jobs is launched on the worker to
instrument.

● core/src/main/scala/org/apache/spark/launcher/WorkerCommandBuil
der.scala

Apache Spark Modifications(II)

● Our custom code reads configuration
values from /etc/pinSpark/pinSpark.conf

● After modify and compile Apache Spark,
we can copy and use Apache Spark
Distribution modified to instrument.

● It's necessary to run our Spark distribution
on all nodes that conforms the cluster. Also
 pinSpark.conf must exists on each node

Apache Spark Modifications(III)

● Instrumentation is only on each job that is
executed on Slave nodes.

● Apache Spark modification is independent
of PIN Tool. By config values on
/etc/pinSpark/pinSpark.conf we can modify
execution and parse another tool or script
before job execution

pinSpark

● Developed using PIN Tool framework
● Reads configuration values from

/etc/pinSpark/pinSpark.conf
● Instrument execution of

– Memory read/write, barrier,
instructions, etc.

– Syscalls: Open, Close, Read, Write,
Send, Recv

pinSpark (II)

● Stores information on MySQL database
and local filesystem file on Slave node

● Simple development. The tools is very
simple: Follow execution and analyze
defined metrics.

● Easy to expand with custom metrics
● Tool independent of Spark. We can

execute standalone

pinSpark (III)

● PIN distribution must exist on each slave
node. Instrumentation is executed locally
on jobs.

● What is really launched on Spark slave?
● INFO ExecutorRunner: Launch command: "/servers/pin/pin.sh" "-t"

"/servers/pin/source/tools/pinSpark/obj-intel64/pinSpark.so" "-o"
"/tmp/pinSpark_principal_RL1Zz.log" "--" "/usr/lib/jvm/java-8-oracle/jre/bin/java" "-cp"
"/servers/production/spark-1.5.0-bin-pin-Spark/sbin/../conf/:/servers/production/spark-1.5.0-bin-pin-
Spark/lib/spark-assembly-1.5.0-hadoop2.2.0.jar" "-Xms2048M" "-Xmx2048M" "-
Dspark.driver.port=52307" "org.apache.spark.executor.CoarseGrainedExecutorBackend" "--driver-
url" "akka.tcp://sparkDriver@10.0.0.108:52307/user/CoarseGrainedScheduler" "--executor-id" "0"
"--hostname" "10.0.0.108" "--cores" "4" "--app-id" "app-20151209175456-0000" "--worker-url"
"akka.tcp://sparkWorker@10.0.0.108:36427/user/Worker"

Evaluation: Amazon EMC

● All the development and testing performed
on ECS instances

● Compilation of Apache Spark need a large
machine configuration. We choose
c4.xlarge instance type for
development/master node.

● Slave nodes can use any instance type.
For our tests we take t2.medium

Evaluation: Amazon EMC

Evaluation: Amazon EMC (II)

● After download PIN, Apache Spark and
compile and deploy all software, we can
use Amazon AMI to generate a template for
machine deployment

● Slaves nodes are deployed on EC2 using
our custom AMI with all software already
prepared

● We need to modify pinSpark.conf on each
slave node

Evaluation: Amazon EMC (III)
● We store all software on /servers directory
● Starting of master process (only on

principal node)

– root@principal:/servers/production/s
park-production/sbin# ./start-
master.sh

● Of course, under spark-production we
deploy our custom and modified Apache
Spark distribution

Evaluation: Amazon EMC (IV)
● Starting of master process (only on

principal node)

– root@principal:/servers/production/s
park-production/sbin# ./start-
slave.sh spark://principal:7077

● On slave nodes we must start slave
pointing to master node. We deploy a hosts
file with all the machines IP for easy
management, but it's not necessary

Evaluation: Amazon EMC (V)
● We can access spark management web on

http://principal:8080

Deploying and testing
● To submit jobs to the cluster we can use

some tools. Our custom Spark binary
distribution needs that you send packages
with spark-submit script. This is located on
bin directory.

● Spark-submit uses multiple switches to
configure jobs deployed to the cluster

Deploying and testing (II)
● This is an example of job

– ./spark-submit --class
org.apache.spark.examples.JavaWordCount --master
spark://principal:7077 --executor-memory 2G --total-
executor-cores 2 /servers/production/spark-
production/examples/target/spark-examples_2.10-
1.5.0.jar /servers/data/cantar.txt

● We run WordCount from Spark examples,
using 2 core and 2GB of Ram per slave
node. Also we pass the file to run
wordcount

Deploying and testing (III)
● Execution stores output on MySQL database and

also on /tmp (random file name) on each slave
node. Local log file also stores debug output

● You can modify instrumentation using
pinSpark.conf file (deactivate some
instrumentation metrics, for example).

● pinSpark.conf also permit configuration of
open/read/write syscall related to a directory (for
example, instrument from /data or from complete
root /)

Deploying and testing (IV)
● As instrumentation puts a huge overhead on

execution, output to log file and database is
performed each a fixed number of instructions (you
can modify on pin tool source code)

● This output is a snapshot of instrumentation until this
moment. Values are accumulative, you can use this
outputs to see how the instrumentation and execution
goes. Of course, latest entry is the final value for the
instrumentation

● If you run multiple workers on different slaves,
information on database appears identified with
custom field showing node

Future works & conclusion
● Sparkanalyzer can be improved with (my principal

topics)

– Modify source to instrument syscalls with
dinamic configuration based on config file

– Implement a solution to study output
execution with data store on database

– Modify code for better performance

– Create a installation script to automatize
download, compilation and preparation of
environment

Future works & conclusion (II)
● We have developed a patch to instrument Spark jobs

on Apache Spark

● Instrumentation only happens on worker job, so we
instrument the exact job submitted to the Spark
cluster, not the infrastructure software or services

● Also, we have developed an example tool that use
our procedure to gather metering data from spark
execution

● Source code can be downloaded from

– https://bitbucket.org/fguim/sparkanalyzer

	Diapositiva 1
	Diapositiva 2
	Diapositiva 3
	Diapositiva 4
	Diapositiva 5
	Diapositiva 6
	Diapositiva 7
	Diapositiva 8
	Diapositiva 9
	Diapositiva 10
	Diapositiva 11
	Diapositiva 12
	Diapositiva 13
	Diapositiva 14
	Diapositiva 15
	Diapositiva 16
	Diapositiva 17
	Diapositiva 18
	Diapositiva 19
	Diapositiva 20
	Diapositiva 21
	Diapositiva 22
	Diapositiva 23
	Diapositiva 24
	Diapositiva 25

