
 
 
 
 

Open University of Catalonia 
 

 
 

What about Big Data? 
 

 
 

BS Final Project 
 

 
 

Sergio Cruz Gonzalez 
 

Computer Science and Engineering student  
by The Open University of Catalonia 

 

 

 

2015 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 
 

Advanced Computer Architecture Department 
 

Open University of Catalonia 
 
 
 

What about Big Data? 
 

 
 

BS Final Project 
 
 
 
Author :  Sergio Cruz Gonzalez 

Computer Science and Engineering student by The Open 
University of Catalonia 

 
Advisor:  Dr. Francesc Guim Bernat 

Dr. Computer Science 
 

 

 

2015 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 
 

Title: 
What about Big Data? 

 
 
 

Author: 
Sergio Cruz Gonzalez 

 
 
 
BS Final Project Committee: 
 
 
 
President:     PRESIDENT 
 
Speaker:     VOCAL 
 
Secretary:    SECRETARY 
     
 
 
Agree to mark with the qualification: 
 

 

 

Barcelona, 29 December 2015 



 

 



 

 

 

 

Acknowledgments 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 





Contents 
 
Figures Index                xi 
 
Tables Index                              xiii 
     
1. Introduction ........................................................................................................... 15 

1.1 Project motivation ............................................................................................ 16 

1.2 Goals and objectives ........................................................................................ 17 

1.3 Requirements ................................................................................................... 17 

1.4 Work breakdown .............................................................................................. 18 

1.5 Organization of the BS Final Project ............................................................... 20 

2 Key Big Data concepts .......................................................................................... 21 

2.1 Challenges and opportunities ........................................................................... 21 

2.2 Life cycle management .................................................................................... 22 

2.3 The 4 V’s of Big Data ...................................................................................... 24 

2.4 Processing models ............................................................................................ 26 

2.4.1 Batch processing ....................................................................................... 26 

2.4.2 Real-time processing ................................................................................ 28 

2.4.3 Stream processing ..................................................................................... 29 

3 Case studies ............................................................................................................ 31 

3.1 Apache Hadoop ................................................................................................ 31 

3.1.1 Hadoop architecture .................................................................................. 32 

3.1.2 Hadoop HDFS (Hadoop Distributed File System) ................................... 34 

3.1.3 Hadoop YARN (Yet Another Resource Negotiator) ................................ 40 

3.1.4 Hadoop MapReduce ................................................................................. 44 

3.1.5 Hadoop execution flow ............................................................................. 48 

3.2 Apache Spark ................................................................................................... 50 

3.2.1 Hadoop vs Spark ....................................................................................... 51 

3.2.2 Spark framework ...................................................................................... 54 

3.2.3 Spark architecture ..................................................................................... 56 

3.2.4 Resilient Distributed Datasets (RDDs) ..................................................... 61 

4 Big Data architecture implementation ................................................................ 65 

4.1 Solution architecture ........................................................................................ 65 



4.2 Cloudera: The Platform for Big Data .............................................................. 67 

5 System performance analysis and benchmarking .............................................. 72 

5.1 WordCount problem ........................................................................................ 72 

5.2 TeraSort problem ............................................................................................. 74 

5.3 PageRank problem ........................................................................................... 78 

5.4 Benchmarking .................................................................................................. 81 

6 Conclusions ............................................................................................................ 92 

6.1 Future Work ..................................................................................................... 96 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



List of Figures 
Figure 1.1 Big Data recent survey .................................................................................. 15 
Figure 1.2 Gantt chart ..................................................................................................... 19 
Figure 1.3 Simplified Gantt chart ................................................................................... 19 
Figure 2.1 Genuine Big Data Life-Cycle Management .................................................. 22 

Figure 2.2 Simplified Big Data Life-Cycle Management .............................................. 23 

Figure 2.3 The 4 V’s of Big Data ................................................................................... 24 
Figure 2.4 Batch processing key concept ....................................................................... 27 
Figure 2.5 In-memory computing key concept .............................................................. 28 

Figure 2.6 Apache Storm topology: Spout & Bolt ......................................................... 29 

Figure 2.7 Spark Streaming Architecture ....................................................................... 30 
Figure 3.1 Hadoop 1.0 to Hadoop 2.0 architecture ........................................................ 32 

Figure 3.2 Hadoop 1.0 architecture ................................................................................ 33 
Figure 3.3 HDFS architecture ......................................................................................... 35 
Figure 3.4 HDFS read operation .................................................................................... 36 
Figure 3.5 HDFS write operation ................................................................................... 38 
Figure 3.6 Hadoop 2.0 key concept ................................................................................ 40 
Figure 3.7 YARN architecture ....................................................................................... 41 
Figure 3.8 YARN Cluster: Running an application ....................................................... 42 

Figure 3.9 The overall execution of a MapReduce program .......................................... 45 

Figure 3.10 The overall Mapreduce WordCount problem ............................................. 45 

Figure 3.11 HDFS block division ................................................................................... 46 
Figure 3.12 Three maps running simultaneously. .......................................................... 47 

Figure 3.13 Hadoop execution flow ............................................................................... 48 
Figure 3.14 Multi-step data flows in Hadoop and Spark ................................................ 50 

Figure 3.15 Apache Spark Ecosystem ............................................................................ 54 
Figure 3.16 Spark Streaming fundamental principle ...................................................... 55 

Figure 3.17 Hadoop 2.0 ecosystem ................................................................................ 56 
Figure 3.18 Spark architecture........................................................................................ 57 
Figure 3.19 YARN Client-Mode .................................................................................... 59 
Figure 3.20 YARN Cluster-Mode .................................................................................. 59 
Figure 3.21 RDD execution flow ................................................................................... 61 
Figure 3.22 DAG execution graph ................................................................................. 62 
Figure 3.23 Task pipelined execution............................................................................. 62 
Figure 3.24 Task pipelined execution in multicore system ............................................ 63 

Figure 3.25 RDD: Narrow and Wide dependencies ....................................................... 63 

Figure 4.1 Low-level logical architecture....................................................................... 65 
Figure 4.2 High-level logical architecture ...................................................................... 66 
Figure 4.3 Cloudera Manager: host detection successfully ............................................ 68 

Figure 4.4 Cloudera Manager: cluster installation successfully ..................................... 68 

Figure 4.5 Cloudera Manager: parcels deployment successfully ................................... 68 

Figure 4.6 Cloudera Manager:  all requirements met successfully ................................ 69 



Figure 4.7 Cloudera Manager: core installation with Spark ........................................... 69 

Figure 4.8 Cloudera Manager:  HDFS roles ................................................................... 69 
Figure 4.9 Cloudera Manager:  YARN roles .................................................................. 70 
Figure 4.10 Cloudera Manager:  Spark roles .................................................................. 70 
Figure 4.11 Cloudera Manager:  first successful execution ........................................... 70 

Figure 4.12 Cloudera Manager:  final message .............................................................. 70 
Figure 4.13 Cloudera Manager: initial status ................................................................. 71 
Figure 5.1 Hadoop Streaming data flow ......................................................................... 73 
Figure 5.2 Spark-submit in a python environment with YARN..................................... 74 

Figure 5.3 Terasort benchmark data flow ....................................................................... 75 
Figure 5.4 Google PageRank algorithm ......................................................................... 78 
Figure 5.5 PageRank algorithm for a simple network .................................................... 79 

Figure 5.6 PageRank algorithm for a simple network: contributions at first iteration ... 80 

Figure 5.7 WordCount algorithm: whole execution time ............................................... 82 

Figure 5.8 WordCount algorithm: framework execution time ....................................... 83 

Figure 5.9 TeraSort algorithm: whole execution time .................................................... 84 

Figure 5.10 TeraSort algorithm: framework execution time .......................................... 85 

Figure 5.11 Spark JVM heap .......................................................................................... 86 
Figure 5.12 TeraSort MB-seconds ................................................................................. 88 
Figure 5.13 TeraSort VCore-seconds ............................................................................. 88 
Figure 5.14 PageRank algorithm: whole execution time ............................................... 90 

Figure 5.15 PageRank algorithm: framework execution time ........................................ 90 

Figure 6.1 Google Trends: Haddop vs Spark (January 2014 - October 2015) ............... 93 

 
 

 

 

 

 

 

 

 

 

 
 



List of Tables 
 
Table 3.1 Comparison table: Hadoop 1.0 vs Hadoop 2.0 ............................................... 43 

Table 3.2 Comparison table: MapReduce vs Spark ....................................................... 53 

Table 3.3 Comparison table: YARN Client-Mode vs YARN Cluster-Mode ................. 60 

Table 5.1 WordCount input data .................................................................................... 82 
Table 5.2 TeraSort input data ......................................................................................... 84 
Table 5.3 TeraSort amount of tasks per job ................................................................... 87 
Table 5.4 PageRank input data ....................................................................................... 89 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 



Chapter 1 
 

1. Introduction 
 

In today’s ICT era, data is more voluminous and multifarious and it is being transferred 
at high speed. Some reasons for these trends are: scientific organizations are solving big 
problems related to high-performance computing workloads, different types of public 
services are emerging and being digitized as well as new types of resources are being 
used. Mobile devices, global positioning systems, financial transaction logs, social 
media, sensors, monitoring systems, earth observation or medical imaging are all 
sources of Big Data and therefore they are generating large sets of complex data.  

 
Figure 1.1 shows the results of a Big Data recent survey exhibited by Talend [1]. 

The survey revealed that many common real-world applications deal with Big Data: 
 

 
Figure 1.1 Big Data recent survey 

 
Managing and mining such data to discover useful information is a significant 
challenge. All of these questions lead us to the Big Data concept, which tries to answer 
and solve all these issues. We can define Big data as huge and complex structured or 
unstructured data (among others types) that is difficult to manage using traditional 
technologies such as database management system (DBMS [2]) and software 
techniques. From my point of view and according to ICT experts, Big Data is the latest 
important trend along with Virtualization [3] and Cloud computing [4]. 
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1.1 Project motivation 
 

Such as we described above, Big Data is a broad term for data sets so large or complex 
that traditional data processing applications are inadequate; that is, it usually includes 
data sets with sizes beyond the ability of commonly used software tools 
to capture, curate, manage, and process data within a tolerable elapsed time. 
 

Big Data characteristics are often described using a multi-V model. Gartner [5] 
proposed a 3V model of Big Data (Volume, Velocity and Variety), but an additional 
dimension, Veracity, is also important to achieve data reliability and accuracy: 

 
• Volume: Volume is a major dimension of Big Data. Currently, the volume of 

data is increasing exponentially, from terabytes to petabytes and beyond. 
 

• Velocity: Velocity includes the speed of data creation, capturing, aggregation, 
processing, and streaming. Different types of Big Data may need to be processed 
at different speeds. In this point, we have multiple types of solutions such as 
Batch Processing [6], Real-time Processing [7] and Streaming Processing [8] .  
 

• Variety: Variety is one of the most important characteristics of Big Data. Many 
sources of Big Data generate many different forms of data. For example, if a 
new application is developed, a new type of data format may be introduced. It 
means that data mining and analysis techniques become more challenging. Thus, 
structured data, unstructured data, semi-structured data or mixed data are a few 
examples of Big Data forms. 
 

• Veracity: The veracity of Big Data is the reliability, accuracy and 
understandability of the data. In some Big Data applications, controlling data 
quality and data precision has demonstrated to be a big challenge. 

 
Our motivation in this BS Final Project will be analyzing the different Big Data 

processing approaches and techniques. In other words, we will focus on the Velocity 
concept, specifically in the different solutions based on Batch Processing techniques. 
The study will focus on the two major current proposed solutions: Apache Hadoop [9] 
and Apache Spark [10]. As we will see, both are open source Big Data processing 
frameworks, but each one uses the Batch Processing solution in a different manner. 
 

 

 

 

 

 



1.2 Goals and objectives 
 

The main goal of this BS Final Project is to compare both Apache Hadoop and Apache 
Spark solutions through different perspectives such as: 
 

• Analyzing and understanding both Apache Hadoop and Apache Spark Big Data 
processing frameworks. 
 

• Designing and building Big Data applications using the standard programming 
models (paradigms) proposed for both solutions (MapReduce [11] and Resilient 
Distributed DataSets [12] respectively). 
 

• Using benchmarking and stress testing, discuss and conclude the strengths and 
weaknesses of both solutions. 

 
An important point that we need to keep in mind and deserves further consideration 

is the use of Cloudera (Cloudera's open-source Apache Hadoop distribution, CDH) [13] 
as infrastructure solution. Cloudera, also known as “The Platform for Big Data”, it will 
allow us to have a free Hadoop architecture/environment (including Apache Spark) in a 
few steps thanks to one of its key components: Cloudera Manager [14]. 
 

1.3 Requirements 
 

To achieve the goals and objectives described above, we will need a capable 
environment to support the Cloudera's solution. Due to Cloudera requirements are very 
high, we will dispose of a full environment in the cloud, which is completely reachable 
through Internet (only one node must be reachable). A brief description of the hardware 
environment is shown below: 

• Four physical nodes interconnected through private LAN. 
 

• Private network addressing (excluding one node, which will dispose of both 
private and public network addressing). 
 

• Default Operating System: GNU/Linux CentOS 6.6 [15]. 
 

• CPU Model: Intel® Xeon® Processor L5410. 
 

• CPU (MHz): 2333. 
 

• CPU Cores: 8. 
 

• Memory (MB): 19987. 
 

• Disk (GB): 48. 



1.4 Work breakdown 
 

The work breakdown is shown below: 

• Phase 0: Work breadkdown (16/09/2015–22/10/2015,  37 days) 
o Information collection 
o Information analysis 
o Creating a work breakdown structure (BS Final Project – PAC 1) 

 

• Phase 1: Big Data concepts and case studies (23/10/2015–13/11/2015,  22 days) 
o Big Data and large scale distributed processing solutions 
o Apache Hadoop 
o Apache Spark 
o Cloudera: The Platform for Big Data 

 
• Phase 2: Big Data architecture implementation (14/11/2015–16/11/2015, 3 days) 

o Tuning environment 
o CDH Manager 

 

• Phase 3: Designing and building Big Data applications (17/11/2015–28/11/2015, 
12 days) 

o Common Big Data Framework: Developing Python application  
o Hadoop/MapReduce Programming Model: Developing Java application 
o Spark/Resilient Distributed Datasets Programming Model: Developing 

Scala application 
 

• Phase 4: System performance analysis and benchmarking (29/11/2015–
15/12/2015, 17 days) 

o Benchmarking and Stress Testing 
o Analyzing common Big Data application 
o Testing developed applications 

o Final conclusions 
 

• Phase 5: Final memory (16/12/2015–25/12/2015, 10 days) 
o Writing TFG dissertation 

 
 



 

Figure 1.2 Gantt chart 

 

 

Figure 1.3 Simplified Gantt chart 

 

 

 

 

 

 

 



1.5 Organization of the BS Final Project 
 

The rest of this BS Final Project is organized as follows: 

 

• Chapter 2 presents key Big Data concepts. We describe challenges and 
opportunities, lifecycle management as well as characteristics (Gartner's model). 
Furthermore, we aim to provide a general overview of the current Big Data 
processing models (Batch, Real-time and Stream Processing).  
 

• Chapter 3 describes our case studies. We discuss about the two major current 
proposed solutions: Apache Hadoop and Apache Spark. The main goal is to 
dissect both solutions and try to understand their behaviors through different 
perspectives, such as their architectonic solutions or their default logical roles at 
high level. 

 
• Chapter 4 presents our Big Data architecture implementation. In the first part, 

we show both low-level logical architecture (hardware tier, specifications) and 
high-level logical architecture (software tier, associated roles) as an architecture 
solution. In the second part, we perform a full installation of a platform for Big 
Data; the procedure includes installing and tuning a GNU/Linux environment as 
well as the use of Cloudera (Cloudera's open-source Apache Hadoop 
distribution, CDH) as infrastructure solution. 

 

• Chapter 5 describes the methodology that we have followed in order to perform 

system performance analysis and benchmarking. The main goal is to perform 
through some benchmarks available, system performance analysis and 
benchmarking of both large scale distributed processing solutions (Haddop and 
Spark). In this point, we present three different applications, where each one of 
them perform different tasks and follow a different programming paradigm. 
Additionally, we show different performance metrics as well as statistical data.  
 

• Chapter 6 presents our final conclusions and possible future studies 

 

 

 
 
 
 



Chapter 2 
 

2 Key Big Data concepts 
 

In this chapter we present key Big Data concepts. At first, we describe challenges and 
opportunities arising from Big Data term. Next, we dissect the Big Data lifecycle 
management from two different perspectives and describe the Big Data characteristics 
(Gartner's model). The last subchapter aims to provide a general overview of the current 
Big Data processing models. 

 

2.1 Challenges and opportunities 
 

Big Data is a huge structured or unstructured data set that is difficult to compute using 
traditional technologies such as database management system (DBMS) and software 
techniques. An increasing number of organizations are producing huge data sets, the 
size of which start at a few terabytes. Some examples and evidences are: 
 

• Sloan Digital Sky Survey (SDSD) [16]: SDSS  is a major multi-filter imaging 
and spectroscopic redshift survey using a dedicated 2.5-m wide-angle optical 
telescope at Apache Point Observatory in New Mexico. When the Sloan Digital 
Sky Survey started work in 2000, its telescope in collected more data in its first 
few weeks than had been amassed in the entire history of astronomy. Now, a 
decade later, its archive contains 140 terabytes of information. A successor, the 
Large Synoptic Survey Telescope [17], due to come on stream in Chile in 2016, 
will acquire that quantity of data every five days. 
 

• WaltMart [18]: WaltMart is an U.S. retail giant that handles more than 1m 
customer transactions every hour, feeding databases estimated at more than 2.5 
petabytes of information (the equivalent of 167 times the books in America's 
Library of Congress). 
 

• Facebook [19]: Facebook, the most famous online social networking service, it 
is capable to store more than 40 million photos. 
 

• Genome Research [20]: Decoding the human genome involves analyzing around 
3 billion base pairs. The procedure took ten years the first time that it was done 
(2003), but it can now be achieved in one week. 
 

All these examples and evidences lead us to the same idea: the real world contains 
an unimaginably huge amount of digital information which is increasing exponentially, 
from terabytes to petabytes and beyond. 



This fact brings us new benefits and opportunities, but it also produces a great number 
of problems and challenges. In other words, well managed data set can be very useful; 
they can be used to unlock new information, obtain new sources of value and provide 
new ideas into science for example. However, managing and mining such data to 
discover useful information is a significant challenge. For example, all these newly 
generated data exceed the current available storage space; moreover, ensuring data 
security and protecting privacy is becoming harder due to the information is growing 
rapidly and is being shared  widely around the world. 

All of these questions lead us to a new term: Big Data. 
 

2.2 Life cycle management 
 

To better understand Big Data characteristics (see The 4 V’s of Big Data), it is necessary to 
describe the Big Data life cycle management. Generally, Big Data systems use the 
following life cycle to manage its Big Data:  

 

 

Figure 2.1 Genuine Big Data Life-Cycle Management 
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However, we can still simplify the above illustration and divide it into four major 
phases: 

 

Figure 2.2 Simplified Big Data Life-Cycle Management 

 

In this way, we can analyze the above phases as follows: 

 

1. Big Data Generation: The first phase of the Big Data life cycle involves 
creating of Big Data. Data sources generate a huge amount of data. These types 
of data sources are anything like social networking sites, mobile devices or 
sensors and they can be categorized as enterprise data, healthcare or Internet of 
Things (IoT) [21] among many other things. 
 

2. Big Data Acquisition: The second phase of the Big Data life cycle involves 
capturing, curating, processing and transmission of Big Data. In this phase, raw 
data generated by different data sources is captured, processed and transmitted to 
the next stage of the Big Data life cycle. Some examples of techniques for 
acquiring Big Data could be log files, sensors or sensing devices. Processing and 
transmission are mechanisms that deserve further consideration. Both of them 
aim to solve some issues in this critical phase like redundant and useless data. In 
this way, new useful data can save storage space and improve overall computing 
efficiency for Big Data processing. 
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3. Big Data Storage: The third phase of the Big Data life cycle involves the 
storage procedure. Specifically, this phase is responsible of data availability and 
reliability for Big Data analytics. Distributed file system (DFS) [22] is 
commonly used to store Big Data originating from large scale sources, 
distributed systems or data-intensive applications for example.  
 
Some current examples are GFS [23], HDFS [24], TFS [25] and NoSQL [26] 
databases (they are commonly used for Big Data storage and management). 
 

4. Big Data Analysis: Big-data analysis is the last stage of the Big Data life cycle 
and includes Big Data analysis approaches and techniques as well as visualizing 
final data. Big-data analysis is similar to traditional data analysis in that 
potentially useful data is extracted and analyzed to maximize the value of the 
data. Approaches to Big Data analysis include mathematical approaches (which 
are used in many fields like engineering, healthcare or biology) and data mining 
approaches (which are used in many fields like regression analysis, clustering 
analysis or machine learning) among others. 
 

2.3 The 4 V’s of Big Data 
 

Big Data characteristics are often described using a multi-V model. Gartner proposed a 
3V model of Big Data (volume, velocity and variety), but an additional dimension, 
veracity, is also important to achieve data reliability and accuracy: 
 

 

Figure 2.3 The 4 V’s of Big Data 



The 4 V’s of Big Data can be described as follows: 
 

• Volume: Volume is a major dimension of Big Data. Currently, the volume of 
data is increasing exponentially, from terabytes to petabytes and beyond. 
 

• Velocity: Velocity includes the speed of data creation, capturing, aggregation, 
processing, and streaming. Different types of Big Data may need to be processed 
at different speeds. Velocity can be categorized as: 
 

o Batch Processing: Data arrives and is processed at certain intervals. 
Many Big Data applications process data in batches and have batch 
velocity. 
 

o Near-time Processing: The time between data arrival and its processing 
is very small, close to real time. 

 
o Real-time Processing: Data arrives and is processed in a continuous 

manner, which enables real time analysis. 
 

o Streaming Processing: Similar to real-time, data arrives and is processed 
upon incoming data flows. 

 
• Variety : Variety is one of the most important characteristics of Big Data. Many 

sources of Big Data generate many different forms of data. For example, if a 
new application is developed, a new type of data format may be introduced. It 
means that data mining and analysis techniques become more challenging. 
Variety can be categorized as: 
 
o Structured data: In this form, data is very easy to input and analyze 

because there are many database management system (DBMS) tools that 
can store, query, and manage the data efficiently. A few examples of this 
type of data are characters, numbers or floating points. 
 

o Unstructured data: In this form, data cannot be stored and managed using 
database management system (DBMS) tools because of data is not in a 
table (according to a relational model). A few examples of this type of 
data are location information, sensors data or biological data. According 
to latest surveys and studies, social media websites and sensors are major 
sources of this type of data and eighty to ninety percent of today’s data in 
the world is unstructured social media data. An additional important 
point: HP Labs has estimated that by 2030 approximately 1 trillion 
sensors will be in use, monitoring phenomena such as energy 
consumption, cyberspace, and weather. 
 

o Semi-structured data: In this form, data cannot be stored and managed 
using database management system (DBMS). This type of data is a type 
of structured data that is not organized in a table (according to a relational 
model). 
 



o Mixed data: In this form, data may be a mixture of the above types of 
data. Mixed data requires complex data capture and processing. 

 
• Veracity: The veracity of Big Data is the reliability, accuracy and 

understandability of the data. In some Big Data applications, controlling data 
quality and data precision has demonstrated to be a big challenge. 

 

2.4 Processing models 
 
As we described above (see The 4 V’s of Big Data), due to Big Data may need to be 
processed at different speeds, in general terms velocity can be categorized as Batch 
Processing, Near-time Processing, Real-time Processing and Streaming Processing. 

However, if we focus on processing models, that is, large scale distributed 
processing solutions, we can group processing technologies into three major categories: 
Batch Processing, Real-time Processing and Stream Processing.  

 

2.4.1 Batch processing 

 
Batch processing is used to process data in batches (jobs can take from minutes to hours 
lag). It means that data input is read, it is processed and it is written to the output. 
Apache Hadoop is the most well-known and popular open source implementation of 
batch processing as well as the most well-known and popular open source 
implementation of MapReduce programming model. 

 MapReduce is designed for batch processing of large volumes of data, and it is 
not suitable for recent demands like real-time processing or stream processing. In other 
words, it is appropriate for batch processing of Big Data that may take several hours or 
even days, and inadequate for jobs and queries that should finish in seconds or at most, 
minutes. 

Basically, MapReduce defines computation as two functions: map and reduce. 
The input is a set of key/value pairs, and the output is a list of key/value pairs. The map 
function takes an input pair and extracts a set of intermediate key/value pairs. The 
reduce function takes an intermediate key and a list of intermediate values associated to 
that key as its input, and results a set of final key/value pairs as the output. Execution of 
a MapReduce program involves two phases. In the first phase each input pair is given to 
a map function and a set of input pairs is produced. Then, in the second phase, all of the 
intermediate values that have the same key are aggregated into a list, and each 
intermediate key and its associated intermediate value list is given to a reduce function.  

The execution of a MapReduce program follows the same two-phase procedure. 
Usually, distributed MapReduce is implemented using master/slave architecture. The 



master machine is responsible of assignment of tasks and manages the slave machines. 
The input is stored over a shared storage (like a distributed file system), and is split into 
chunks. First, a copy of map and reduce functions code is sent to all workers. Then, 
master assigns map and reduce tasks to workers. Each worker assigned a map task, 
reads the corresponding input split and passes all of its pairs to map function and writes 
the results of the map function into intermediate files. After the map phase is finished, 
the reducer workers read intermediate files and pass the intermediate pairs to reduce 
function and finally the pairs resulted by reduce tasks are written to final output files. 
The overall execution of a MapReduce program is given in Figure 2.4: 

 

Figure 2.4 Batch processing key concept 

 

The advantages of the MapReduce programming model include easy programing 
model, near-linear speed up, good scalability as well as fault tolerance. The major 
disadvantage of this processing model is that it is unable to execute iterative or 
recursive jobs. Besides, the standard batch processing behavior is that all inputs must be 
ready by map before the reduce job starts, which makes this processing model 
unsuitable for real-time processing or stream processing. 

 



2.4.2 Real-time processing 
 

Real-time processing is used to process data and get the results almost immediately 
(within seconds lag). Solutions in this category can be classified into two major groups: 
solutions that try to reduce overhead of MapReduce programming model and make it 
faster to enable execution of jobs in less than seconds (they are also known as improved 
or fast Batch processing) or solutions that focus on providing means for real-time 
queries over structured and unstructured Big Data using new optimized approaches and 
techniques.  
 

Here, we describe two different approaches of these solutions respectively: 
 

• In-memory computing: In-memory computing is based on using a distributed 
main memory system to store and process Big data in real-time. Main memory 
provides higher bandwidth, more than 10 gigabytes per second compared to hard 
disk’s 200 megabytes per second. Access latency is also much better, 
nanoseconds versus milliseconds for hard disks. Price of RAM is also 
affordable. Currently, 1 TB of RAM can be bought with less than 20,000$. 
These performance superiority combined with dropping price of RAM makes in-
memory computing a great alternative to disk-based Big Data processing. 
Apache Spark is the most well-known and popular open source implementation 
of this type of solution. We will discuss main characteristics and capabilities of 
Apache Spark in next chapters. 

 

 
Figure 2.5 In-memory computing key concept 

 
 
 



• Real-time queries: Real-time queries over Big Data was first implemented in 
Dremel by Google [27]. It uses a novel columnar storage format for nested 
structures with fast index and scalable aggregation algorithms for computing 
query results in parallel instead of batch sequences. These two techniques enable 
Dremel to process complex queries in real-time. There are several 
implementations in this field such as Cloudera Impala (an open source 
implementation of Dremel) [28], Apache Drill [29], Shark (SQL on Spark) [30] 
or the Stinger project by Hortonworks [31], which is an effort to make 100x 
performance improvement and add SQL semantics to future versions of Apache 
Hive [32]. 

 

2.4.3 Stream processing 
 

Also known as event-stream processing, it is used to continuously process and handle 
on the live stream data to get a result (a stream of data is processed at real time in 
parallel). Log streams, message streams or even event streams are good examples of 
data streams. The two major implementations of this processing model are Apache 
Storm [33] from Twitter and Apache S4 [34] from Yahoo.  

 

 

Figure 2.6 Apache Storm topology: Spout & Bolt 

 

 



Furthermore, we can talk about hybrid computation model (a technique known as 
micro-batching [35]). Micro-batching is a mix between batch processing and stream 
processing (a special case of batch processing where batch sizes are very small). The 
main idea is to treat the stream as a sequence of small batch chunks of data. On small 
intervals, the incoming stream is packed to a chunk of data and is delivered to batch 
system to be processed. Despite of its originality, this technique incurs a cost of latency; 
that is to say, it might not be suitable for certain applications. Spark Streaming [36] is 
the most well-known solution. 

Due to current demands and applications requirements, we need to keep in mind 
that stream processing model will significantly grow in the future. 

 

 

Figure 2.7 Spark Streaming Architecture 

 

 

 

 

 

 

 

 

 

 

 



3 Case studies 
 
In this chapter we present our case studies. We discuss about the two major current 
proposed solutions: Apache Hadoop and Apache Spark. Both solutions are based on the 
Batch processing model (although Apache Spark is really in-memory computation 
solution, it is a Batch processing system at heart too). The main goal is to dissect both 
solutions and try to understand their behaviors through different perspectives, such as 
their architectonic solutions or their default logical roles at high level.  

 

3.1 Apache Hadoop 
 

Apache Hadoop software library is a framework that allows for the distributed 
processing of large data sets across clusters of computers using simple programming 
models. It is designed to scale up from single servers to thousands of machines, each 
offering local computation and storage. Rather than rely on hardware to deliver high-
availability, the library itself is designed to detect and handle failures at the application 
layer, so delivering a highly-available service on top of a cluster of computers, each of 
which may be susceptible to failures. 

The base Apache Hadoop framework is composed of the following modules: 

• Hadoop Common: The common utilities that support the other Hadoop 
modules. 

• Hadoop Distributed File System (HDFS): A distributed file system that 
provides high-throughput access to application data. 

• Hadoop YARN [37]: A framework for job scheduling and cluster resource 
management. 

• Hadoop MapReduce: A YARN-based system for parallel processing of large 
data sets. 

The term "Hadoop" is not just the main project (the base modules shown 
previously), rather it is an ecosystem or collection of additional software packages that 
can be installed on top of or alongside Hadoop, such as Ambari [38], Avro [39], 
Cassandra [40], Chukwa [41], HBase [42], Hive [32], Mahout [43], Pig [44], Spark 
[10], Tez [45] and Zookeeper [46] among others. 

The Hadoop framework is implemented in Java programming language (with some 
native code in C and command line utilities written as Shell script). For end-users, 
although Java is the standard option to implement MapReduce applications, any 
programming language can be used with "Hadoop Streaming" [47] or “Hadoop Pipes” 
[48] to implement the "map" and "reduce" functions of the user's program.  



It is important to keep in mind that Apache Hadoop's MapReduce and HDFS core 
components were inspired by Google papers on their MapReduce [49] and Google File 
System [23].  

 

3.1.1 Hadoop architecture 
 

To better understand the core behavior of Apache Hadoop, it is essential to understand 
its base architecture (tiered architecture), which has suffered a few changes over the past 
years. Thus, we going to describe the last two architectures: Hadoop MapReduce 1.0 
(MRv1) and Hadoop MapReduce 2.0 (MRv2 or YARN) respectively. In this point, it is 
important to highlight that last implemented architecture (Hadoop 2.0) is the base 
architecture for our case studies (Apache Hadoop and Apache Spark). 

 As shown below, basically in Hadoop 2.0 a new layer has been introduced 
between HDFS and MapReduce.  This is YARN (Yet Another Resource Negotiator) 
framework which is responsible for doing Cluster Resource Management (by resources 
we mean CPU, memory, etc.). The main purpose of this division is to release cluster 
management from MapReduce engine (in other words, MapReduce will only perform 
data processing), so YARN can take over the task of cluster management. 

  

 

Figure 3.1 Hadoop 1.0 to Hadoop 2.0 architecture 

 

In Hadoop 1.0, there is a strong coupling between cluster resource management and 
MapReduce engine. If we focus on cluster resource management, it is composed of the 
JobTracker process, which is the master node, and the per-node slaves called 
TaskTrackers processes. The cluster resource management architecture in Hadoop 1.0 is 
illustrated below: 



 

 

Figure 3.2 Hadoop 1.0 architecture 

 

The JobTracker master process is the central scheduler for all MapReduce jobs in the 

cluster. Similar to most resource managers, the JobTracker process has two pluggable 

scheduler modules: Capacity and Fair. The JobTracker process is responsible for 

managing the TaskTrackers on worker server nodes, tracking resource consumption and 

availability, scheduling individual job tasks, tracking progress, and providing fault 

tolerance for tasks. 

 The TaskTracker process manages tasks on the individual nodes. The 

TaskTracker process communicates with JobTracker process; that is, it is controlled and 

directed by the JobTracker process. Besides, it is responsible to launch and remove jobs 

as well as providing task status information to the JobTracker process. The TaskTracker 

process also communicates through heartbeats to the JobTracker process; if the 

JobTracker process does not receive a heartbeat from a TaskTracker process, it assumes 

that it has failed and takes appropriate action (for example restarts jobs). 
  

 

 

 

 



Hadoop 1.0 architecture represents many issues like: 

• Scalability: JobTracker runs on single machine doing several tasks (resource 
management, scheduling, monitoring, etc.). 

• Availability: JobTracker is a single point of failure (if JobTracker fails, all jobs 
must restart). Besides, there is only one JobTacker per cluster (limit of about 
4000-5000 nodes per cluster). 

 
• Resource utilization: inflexible “slots” configured on nodes (map or reduce, not 

both). 
 

• Limitation with running MapReduce applications: force everything needs to 
look like MapReduce (lack support for alternate paradigms). 

 

As we will see below (see Hadoop YARN (Yet Another Resource Negotiator)) Hadoop 
2.0 architecture solves all these problems with YARN. 

 

3.1.2 Hadoop HDFS (Hadoop Distributed File System) 
 

The Hadoop Distributed File System (HDFS) is the primary distributed storage used by 
Hadoop applications. HDFS is a distributed file system designed to run on commodity 
hardware. It has many similarities with existing distributed file systems. However, the 
differences from other distributed file systems are significant. For example, HDFS is 
highly fault-tolerant and is designed to be deployed on low-cost hardware. HDFS 
provides high throughput access to application data and is suitable for applications that 
have large data sets.  

Some key features of HDFS are: 

• Highly fault-tolerant : HDFS may consist of hundreds or thousands of server 
machines. HDFS assumes nodes will fail, so it achieves reliability by replicating 
data across multiple nodes (it divides files into blocks of 128 MB by default and 
distributes 3 copies randomly across the cluster). 
 

• High throughput :  In HDFS, when we want to perform a task, the work is 
divided and shared among different nodes; it means that all the nodes will be 
executing the tasks assigned to them independently and in parallel. So the work 
will be completed in a very short period of time. For example, by reading data in 
parallel, we decrease the actual time to read data. In this way, HDFS gives high 
throughput. 
 
 



 
 

• Suitable for applications with large data sets: Applications that run on HDFS 
have large data sets. A typical file in HDFS is gigabytes to terabytes in size 
(HDFS is designed to support large files). This fact should provide high data 
bandwidth and scale to hundreds of nodes in a single cluster; besides, it should 
support tens of millions of files in a single instance. 
 

• Streaming access to file system data: Applications that run on HDFS need 
streaming access to their data sets. HDFS is designed for Batch processing rather 
than interactive use by users.  
 

• Built out of commodity hardware: Commodity hardware is generally a non-
expensive system (which is not of high quality or high-availability for example). 
Thus, HDFS can be installed in any average commodity hardware without any 
problem. 

 

Typically, HDFS has master/slave cluster architecture and consists of a NameNode 
(which manages the file system metadata and regulates access to files by clients) and 
DataNodes (which store actual data, handle read and write requests and perform internal 
block operations). Currently, is typical to find a Backup Node (Secondary Namenode). 
By its name, it gives a sense that it is a backup for the Namenode, but in reality it is not. 
Secondary Namenode takes responsibility of merging editlogs (sequence of changes 
made to the filesystem after Namenode started) with fsimage (snapshot of the filesystem 
when namenode started) from the namenode. In other words, its whole purpose is to 
have an HDFS checkpoint.   

The HDFS architecture is illustrated below:  

 

 
Figure 3.3 HDFS architecture 



Keeping in mind above information, it is also interesting to understand about how data 
flow happens between clients and HDFS system.  

In the figure below, general steps are described in a reading operation from 
HDFS. We suppose that a client (HDFS client) wants to read a file from HDFS: 

 

 

Figure 3.4 HDFS read operation 

 

• Step 1: The client opens the file that it wishes to read by calling “open()” 
operation on the FileSystem object (which for HDFS is an instance 
of DistributedFileSystem class). 
 

• Step 2: DistributedFileSystem calls the Namenode using RPC (Remote 
Procedure Call protocol) to determine the locations of the blocks for the 
first few blocks in the file. Besides: 
 

o For each block, the Namenode returns the addresses of the 
Datanodes that have a copy of that block. 

o The Datanodes are sorted according to their proximity to the 
client. 

o The DistributedFileSystem returns a FSDataInputStream to the 
client for it to read data from. 
 



• Step 3: The client calls “read()” operation on the stream. Also, 
DFSInputStream connects to the first (closest) Datanode for the first 
block in the file. 
 

• Step 4: Data is transmitted from the Datanode to the client. 
 

• Step 5:    When the end of the block is reached, DFSInputStream will 
close the connection to the Datanode, then it will find the best Datanode 
for the next block. 
 

• Step 6: When the client has finished all read tasks, it calls “close()” 
operation on the FSDataInputStream.  

 

Other things to consider are as follows:  

• During reading operation, if the client encounters an error while 
communicating with a Datanode, then it will try the next closest 
Datanode for that block. 
 

• Client remembers Datanodes that have failed, so it avoids unnecessary 
retries over them for later blocks. 
 

• Client also verifies checksums for the data transferred to it from the 
Datanode, so if a corrupted block is found, it is reported to the 
Namenode. 

 

In the same way, we show general steps involved in a writing operation from HDFS. 
We suppose that a client (HDFS client) wants to write a file from HDFS.  

Figure below represents writing operation: 



 

Figure 3.5 HDFS write operation 

 

• Step 1: The client creates the file by calling “create()” operation (which 
is a method on DistributedFileSystem class). 
 

• Step 2:   DistributedFileSystem makes an RPC call to the Namenode to 
create a new file in the filesystem’s namespace, with no blocks 
associated with it. Here, The Namenode performs various checks to 
make sure that the file doesn’t already exist and that the client has the 
right permissions to create the file. If checks pass, the Namenode makes 
a record of the new file; otherwise, file creation fails and the client is 
thrown an IOException. Finally, the DistributedFileSystem returns a 
FSDataOutputStream for the client to start writing data to. 
 

• Step 3: As the client writes data, DFSOutputStream splits it into packets, 
which it writes to an internal queue, called the “data queue”. The “data 
queue” is consumed by the DataStreamer, whose responsibility is to ask 
the Namenode to allocate new blocks by choosing a list of suitable 
Datanodes to store the replicas. The list of Datanodes forms a pipeline. 
 

• Step 4:  The DataStreamer streams the packets to the first Datanode in 
the pipeline, which stores the packet and forwards it to the second 
Datanode in the pipeline. Similarly, the second Datanode stores the 
packet and forwards it to the third (and last) Datanode in the pipe line.  



In this point, we assume that the replication level is three, so there are 
only three nodes in the pipeline. 
 

• Step 5:  DFSOutputStream also maintains an internal queue of packets 
that are waiting to be acknowledged by Datanodes ( the “ack queue”). A 
packet is removed from the ack queue only when it has been 
acknowledged by all the Datanodes in the pipeline. 
 

• Step 6: When the client has finished writing data it calls “close()” 
operation on the stream. 
  

• Step 7: Above step flushes all the remaining packets to the Datanode 
pipeline and waits for acknowledgments before contacting the Namenode 
to indicate that the file is complete. 

 

Other things to consider are as follows:  

• If a Datanode fails while data is being written to it, then: 
 

o First, the pipeline is closed, and any packets in the ack queue are 
added to the front of the data queue. 
 

o The current block on the “good” Datanodes is given a new 
“identity” by the Namenode, so that the partial block on the failed 
Datanode will be deleted if the failed Datanode recovers later. 
 

o The failed Datanode is removed from the pipeline and the rest of 
the block’s data is written to the two “good” Datanodes in the 
pipeline. 
 

o The Namenode notices that the block is under-replicated, and it 
arranges for an additional replica to be created on another node. 

 

 

 

 

 

 



3.1.3 Hadoop YARN (Yet Another Resource Negotiator) 
 

As we discussed above (see Hadoop architecture) Hadoop 1.0 architecture suffers many 
problems. Thanks to YARN (Yet Another Resource Negotiator), MapReduce engine 
only performs data processing, so YARN can take over the task of cluster management.  

Next figure illustrates the main idea of Hadoop 2.0 architecture: 

 

Figure 3.6 Hadoop 2.0 key concept 

 

YARN has central resource manager component which manages resources and 
allocates the resources to the application. Multiple applications can run on Hadoop via 
YARN and all application could share common resource management.  

The cluster resource management architecture in Hadoop 2.0 is illustrated 
below: 

 



 

Figure 3.7 YARN architecture 

 

 In YARN based architecture, the JobTracker is split into two different daemons 
called ResourceManager (which runs on master node) and NodeManager (which runs 
on slaves nodes) respectively. Also there are two new components: an 
ApplicationMaster (per-application specific framework) and Containers (amount of 
resources such as CPU or memory). 

The ResourceManager is a pure scheduler; that is, its sole purpose is to manage 
available resources among multiple applications on the cluster. As with Hadoop 1.0 
architecture, both Fair and Capacity scheduling options are available. 

The NodeManager is the per-machine framework agent that is responsible for 
Containers, monitoring their resource usage (CPU, memory, disk, network, etc.) and 
reporting back to the ResourceManager. 

The ApplicationMaster is responsible for accepting job submissions, negotiating 
resource Containers from the ResourceManager and tracking progress of jobs. 
ApplicationMasters are specific to and written for each type of application. 
The ApplicationMaster also provides the service for restarting the ApplicationMaster 
Container on failure. Besides, ApplicationMasters request and manage Containers, 
which grant rights to an application to use a specific amount of resources (CPU, 
Memory, etc.) on a specific host.  



Once given resources by the ResourceManager, ApplicationMaster contacts with the 
NodeManager to start individual tasks. For example, using the MapReduce framework, 
these tasks would be mapper and reducer processes. 

On previous figure, we have two ApplicationMasters running within the cluster, 
one of which has three Containers (the red client) and one that has one Container (the 
blue client). Note that the ApplicationMasters run on cluster nodes and not as part of the 
ResourceManager, thus reducing the pressure on a central scheduler. Also, because 
ApplicationMasters have dynamic control of Containers, cluster utilization can be 
improved. 

Next, we are going to describe application execution flow on YARN.  Figure 
below shows how YARN allocates resources and runs an application:  

 

 

Figure 3.8 YARN Cluster: Running an application 

 

 

 



• Step 1: To run an application on YARN, a client contacts with the 
ResourceManager and asks it to run an ApplicationMaster process. 
 

• Step 2: The ResourceManager then finds a NodeManager that can launch 
the ApplicationMaster process in a container (steps 2a and 2b). 
 

• Step 3: In this point, the ApplicationMaster process has two options; it 
could run a computation in its own Container, or it could request more 
Containers from the ResourceManager. Usually, the last option is the 
most common for distributed applications. 
 

• Step 4: Once given appropriate resources, the ApplicationMaster process 
uses them to run a distributed computation (steps 4a and 4b). 

 

We have seen how YARN improves general performance and provides multiple 
benefits. The main differences between Hadoop 1.0 and Hadoop 2.0 are as below: 

 

Hadoop 1.0 Hadoop 2.0 
Only MapReduce application can be 

processed 
 

Non MapReduce application can also be 
processed 

 
Cluster Resource Management is handled 

by JobTracker process (which is 
component of MapReduce engine) 

 

Cluster Resource Management is handled 
by YARN 

 

Cluster Resource are not fully utilized due 
to concept of fixed number of map and 

reduce slots 
 

Optimization of resources is better due to 
Central Resource Management. No more 

fixed map and reduce slots 
 

JobTracker and TaskTracker processes are 
responsible for the execution of 

application 
 

YARN (Resource Manager and 
NodeManager) replaces JobTracker and 

TaskTracker processes. No more 
JobTracker and TaskTracker processes in 

Hadoop 2.0 
 

 

Table 3.1 Comparison table: Hadoop 1.0 vs Hadoop 2.0 

 

To sum up, we can say that Hadoop 2.0 architecture is more isolated and 
scalable as compared to the earlier Hadoop 1.0 architecture. Besides, other tools can 
also perform data processing via YARN (YARN based execution model is more generic 
than earlier MapReduce based execution model). 



3.1.4 Hadoop MapReduce 

 
Hadoop MapReduce is a simple programming model to support the development of 
distributed applications (which process massive amounts of data stored in HDFS for 
example). Hadoop MapReduce hides underlying detail from the programmer, including 
details related to the parallelization of the computation, monitoring and recovery from 
failure, data management and load balancing onto the underlying physical 
infrastructure. 

 The key principle behind MapReduce is the recognition that many parallel 
computations share the same pattern; in other words: 

• Break the input data into a number of chunks. 
 

• Carry out initial processing on these chunks of data to produce intermediary 
results. 
 

• Combine the intermediary results to produce final output. 
 

The specification of the associated algorithm can be expressed in terms of two 
functions; one to carry out the initial processing and the second to produce the final 
results from the intermediary values. In this way, we have Map and Reduce functions: 

• The Map function takes a set of key-value pairs as input and produces a set 
of intermediary key-values as output. 
 

• The intermediary pairs are sorted by key value so that all intermediary 
results are ordered by intermediary key. This is broken up into groups and 
passed to Reduce instances, which carry out their processing to produce a list 
of values for each group (form some computations, this could be a single 
value).  

 

 

 

 

 

 

 



The next figure illustrates the overall execution of a MapReduce program: 

 

Figure 3.9 The overall execution of a MapReduce program 

 

The process by which the system performs the sort and transfers the map outputs 
to the Reducers as inputs is known as “Shuffle and Sort”. It is very important to keep in 
mind that the whole process (from the point where a Map produces output to where a 
Reduce consumes input) is very complex and its explanation and details are beyond the 
scope of this project [50]. 

Moreover, we show the overall MapReduce word count process, which is 
typically one of the simplest programs possible (besides, figure illustrates a simple input 
file, a simple input format as well as a simple process split). Next figure illustrates the 
whole process: 

 

Figure 3.10 The overall Mapreduce WordCount problem 

 



To better understand the operation of MapReduce, let us consider a simple example. As 
we mentioned earlier, in a Hadoop cluster, typically files are broken into 128MB blocks 
and each block is replicated three times on distinct nodes in the cluster. In this case, we 
have only one file, so it is composed of three blocks, making a total of nine blocks. 

 

Figure 3.11 HDFS block division 

 

Here is where MapReduce engine takes advantage of above properties. First, by 
choosing to run a Map function for each block, the amount of work that each Map does 
is relatively small (in the order of seconds) and can be performed in parallel across the 
cluster. Second, Maps generally runs on the same node as one of the block's replicas, 
which achieves data locality as well as minimizing network bandwidth. 

The next figure shows three Maps instances running simultaneously on three 
different parts (called file splits) of the input dataset (the three highlighted HDFS 
blocks). The output from the maps is stored on local disk, and not written back to 
HDFS: 



 

Figure 3.12 Three maps running simultaneously. 

 

Notice that the Map outputs are partitioned, with one partition for each Reducer. The 
partitioning function is normally simple hash partitioning, but it is possible to override 
it. Here, we have shown two partitions, corresponding to two Reducers (on a typical 
cluster, it would be much larger.) Since the partitions for each Reducer are spread across 
the cluster, it is not possible for the Reducers to run on the same node as their input. 
Instead, the partitions are copied across the network to the Reducers in a process known 
as “Shuffle and Sort”, which is shown as dark arrows. 

Finally, we have to take into account some key aspects such as: 

• The number of Maps instances is completely dependent on total size of 
input, input split size and structure of input files (taking into account 
small files problem [51]). 
 

• The number of Reduce instances is determined by 
“mapreduce.job.reduces” property, which is set by the 
“setNumReduceTasks()” method. 
 

 

 

 

 



3.1.5 Hadoop execution flow 
 

Once we have seen all main components of Hadoop, we going to describe the whole 
execution process of a MapReduce job; that is, the interaction among all components. 
The process of running a job is shown in the figure below: 

 

 

Figure 3.13 Hadoop execution flow 

 

• Step 1: Client submits MapReduce job by interacting with Job objects (Client 
runs in its own JVM). 
 

• Step 2: Job’s code interacts with ResourceManager to acquire application ID. 
 

• Step 3: Job’s code computes input splits and copies all job resources to HDFS to 
make them available for the rest of de job. 
 



• Step 4: Job’s code submits the application to ResourceManager. 

• Step 5: ResourceManager chooses a NodeManager with available resources. 
The scheduler allocates a container and then, the ResourceManager launches the 
application master’s process under NodeManager management (steps 5a and 
5b). 
 

• Step 6: The ApplicationMaster for MapReduce jobs is a Java application whose 
main class is MRAppMaster. It initializes the job by creating a number of 
objects to keep track of the job’s progress, as it will receive progress and 
completion reports from the tasks. 
 

• Step 7: MRAppMaster retrieves the input splits computed in the client from the 
HDFS. Then, it creates a map task object for each split as well as the reduce 
tasks (which are determined by themapreduce.job.reduces property). 
 

• Step 8: MRAppMaster negoatiates with ResourceManager for available 
resources (ResourceManager will select NodeManager with most resources). 
 

• Step 9: Once a task has been assigned to a Container by the ResourceManager’s 
scheduler, the ApplicationMaster starts the container by contacting the 
NodeManager (steps 9a and 9b).  
 

• Step 10: The task is executed by a Java application whose main class is 
YarnChild. YarnChild acquires job resources from HDFS, which will be 
required to execute map and reduce tasks. 
 

• Step 11: YarnChild executes map and reduce tasks. 
 
 

 

 

 

 

 

 

 

 



3.2 Apache Spark 
 

Apache Spark is a fast and general-purpose cluster computing system, which was 
originally developed in 2009 in UC Berkeley’s AMPLab, and open sourced in 2010 as 
an Apache project. Spark is an in-memory data processing framework based on a 
generalization of MapReduce (multi-stage in-memory paradigm), which makes it much 
faster in processing than MapReduce (two-stage disk-based paradigm). According to 
certain studies, Spark enables applications in Hadoop clusters to run up to 100 times 
faster in memory and 10 times faster even when running on disk. 

In MapReduce, intermediate data is stored in the disk; consequently, data access 
and transfer makes it lower. However, in Spark intermediate data is stored in-memory 
(as long as data fits in memory); additionally, Spark utilizes multiple threads instead of 
multiple processes to achieve high parallelism on a single node.  

 

 

Figure 3.14 Multi-step data flows in Hadoop and Spark 

 

 

 

Due to its high performance and parallelism, Spark is widely used for streaming 
data analytics, graph analytics, fast interactive queries and machine learning through 
different projects (see 3.2.2). Spark had in excess of 465 contributors in 2014, making it 
not only the most active project in the Apache Software Foundation [52] but one of the 
most active open source Big Data projects. 

Spark has numerous features and capabilities worth mentioning as follows: 



• Can process iterative and interactive analytics (Spark can cache data and 
query it repeatedly). 
 

• Many functions and operators available for data analysis (Spark supports 
more than just Map and Reduce functions). 
 

• DAG [53] framework to design functions easily. 
 

• In-memory based intermediate storage (Spark also supports on-disk 
execution engine). 
 

• Easy to use and maintain. 
 

• Written in Scala [54] and runs in JVM environment (although Spark 
applications can be written in Scala, Java, Python and R API’s). 
 

• Runs in environments such as Hadoop, Mesos [55], Standalone [56] or in 
Cloud environments [57]. 
 

• Great scalability (to over 8000 nodes in production environments). 
 

•  Interactive command line interface (in Scala or Python) for low-latency 
and scalable data exploration. 
 

• Extensible through its rich framework (see 3.2.2). 

 

3.2.1 Hadoop vs Spark 
 

Hadoop (see Apache Hadoop) is a Big Data processing technology (based on MapReduce 
programming model) which has been proven for 10 years and has demonstrated to be a 
great solution for processing large data sets with a parallel, distributed algorithm on a 
cluster. 

MapReduce is a great solution for one-pass computations but not very efficient 
for use cases that require multi-pass computations and algorithms. That is, each step in 
the data processing workflow has one Map phase and one Reduce phase respectively. 
The job output data between each step has to be stored in the Distributed File System 
(such as HDFS) before the next step can begin. Therefore, this approach tends to be 
slow due to replication and disk storage. Moreover, programming issues can arise; 
developers need to know how to convert any use case into MapReduce pattern to adapt 
their solutions. 



Spark is an in-memory cluster computing for iterative and interactive applications. It is 
designed to be an execution engine that works both in-memory and on-disk. Spark holds 
intermediate results in memory rather than writing them to disk, which is very useful 
especially when you need to work on the same dataset multiple times. Thus, Spark will 
attempt to store as much data as possible in memory and the rest of it will spill to disk 
(that is, it can store part of a data set in memory and the remaining data on the disk). 
Besides, through Spark operators, it is easy to perform external operations when data 
does not fit in memory. For this reason, it is responsibility of the developer to evaluate 
both data and memory requirements.  

In this way, Spark allows programmers to develop complex and multi-step data 
pipelines using directed acyclic graph (DAG) pattern (it also supports in-memory data 
sharing across DAGs, so different jobs can work with the same data). Spark generally 
runs on top of existing Hadoop 2.0 infrastructure (see Hadoop YARN (Yet Another Resource 

Negotiator)) to provide improvements and additional functionalities. 

Spark takes MapReduce to the next level with less expensive shuffles in the data 
processing. With capabilities like in-memory data storage and near real-time processing, 
the performance can be several times faster than other Big Data technologies. Therefore, 
Spark can be thought as an alternative to MapReduce due to the limitations and 
overheads of the latter, but no as a replacement (each one of them will be suitable in 
different situations). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Finally, we can summarize both alternatives as follows: 

 

Paradigm MapReduce Spark 

API 

Poor (Java), although it 
is also possible to 
develop through 

Hadoop Streaming and 
Hadoop Pipes 

Rich (Java, Python, Scala, 
R) 

Boilerplate code A lot Almost no 

Database query interface 
(SQL) 

Hive Spark SQL 

Exploration of data Not possible easily 
Spark Shell allows quick 
and easy data exploration 

Extensibility (Ecosystem) 

A lot of tools available 
but integration is not 

easy (it requires a lot of 
effort) 

Unified infrastructure (it 
unifies a lot of projects like 

Spark SQL, Spark 
Streaming and son on) into 
a single abstraction of RDD 

Fault Tolerance 
Through persisting the 

results of each of 
phases 

Through immutability of 
RDD  

In-memory computations Not possible Possible 

Iterative processing Non trivial Straightforward 

Performance High latency Low latency 

Testability 
Possible via libraries 

but non trivial 
Very easy through Spark 

Shell 

Workflow type 

Poor (two-phases 
paradigm), only two 
possible phases like 

Map and Reduce 
operations 

Rich (multi-stage 
paradigm) many stages of 
processing are possible 

 

Table 3.2 Comparison table: MapReduce vs Spark  

 

 

 

 



3.2.2 Spark framework 
 

Spark contributors have utilized the core Spark Framework and have developed 
different libraries on top of Spark to improve its capabilities. These libraries can be 
plugged in to Spark according to requirements: 

 

Figure 3.15 Apache Spark Ecosystem 

 

• Apache Spark (Spark Core and Resilient Distributed Datasets (RDD’s)): 
Spark Core is the foundation of the overall project. It provides distributed task 
dispatching, scheduling, and basic I/O functionalities.  
 
The fundamental programming abstraction is called Resilient Distributed 
Datasets (RDD’s) [12] a logical collection of data partitioned across machines. 
RDD’s can be created by referencing datasets in external storage systems (such 
as HDFS) or through transformations operations (e.g. map, filter, reduce, join) 
on existing RDDs. RDD’s simplifies programming complexity because the way 
applications manipulate RDDs is similar to manipulating local collections of 
data. We will deepen around this concept in next subchapters (see Resilient 
Distributed Datasets (RDDs)). 
 

• Spark SQL: Spark SQL is a wrapper of SQL on top of Spark. It transforms 
SQL queries into Spark jobs to produce results. In other words, it provides the 
capability to expose the Spark datasets over JDBC API as well as running the 
SQL like queries on Spark data using traditional BI and visualization tools. 
 

• Spark Streaming: Spark Streaming is a library that enables Spark to perform 
scalable, faul-tolerant, high throughput system to process streaming data in near 
real-time (a technique known as micro-batching, see Stream processing). Spark 
Streaming takes the input data from a source and breaks it into batches. Finally, 
the batch is stores as an internal dataset (RDD) for processing. Next figure 
shows the fundamental principle: 



 

 

Figure 3.16 Spark Streaming fundamental principle 

 

• MLlib (machine learning) : MLlib [58] is a scalable machine learning library 
that works on top of Spark. The machine learning library consists of common 
learning algorithms and utilities, including classification, regression, clustering 
and so on. It is considerably easier to use and deploy and its performance can be 
optimized to be 100 times faster than MapReduce. 
 

• GraphX  (graph): GraphX [59] enables working with graph-based algorithms (it 
has a wide variety of graph-based algorithms already implemented). Some 
examples are PageRank, Connected components, Label propagation and so on. 
At a high level, GraphX extends main RDD idea by introducing the concept of 
Resilient Distributed Property Graph (RDPG) [60]: a directed multi-graph with 
properties attached to each vertex and edge, as well as different fundamental 
operators. 

 

 

 

 

 

 

 

 

 

 

 

 

 



3.2.3 Spark architecture 
 

Broadly, Spark requires a Cluster Manager and a Distributed Storage System. For 

cluster management, Spark currently supports Standalone (native Spark cluster that 

makes it easy to set up a cluster), Hadoop YARN or Apache Mesos (in addition of 

Amazon EC2, which launches scripts that make it easy to launch a Standalone cluster 

on Amazon EC2). For distributed storage, Spark can interface with a wide variety, 

including Hadoop Distributed File System (HDFS) which is the most common 

option,  Cassandra,  OpenStack Swift [61], Amazon S3 [62], Kudu [63] or even a 
custom solution can be implemented. 

 As we mentioned earlier (see Hadoop architecture) thanks to Hadoop 2.0 

architecture, it is possible to implement other data processing engines than MapReduce. 

Due to the high modularity, the most common implementation of Spark for large cluster 

of machines is based on Hadoop 2.0 ecosystem; that is, HDFS as distributed storage and 
YARN as cluster manager.  

Figure below shows the basic architecture of Hadoop 2.0 ecosystem, where we 
can run natively many processing solutions:  

 

Figure 3.17 Hadoop 2.0 ecosystem 

 

Previously (see Hadoop HDFS (Hadoop Distributed File System), we explained 

and described the most important features of HDFS. In the same way (see Hadoop 

YARN (Yet Another Resource Negotiator), we analyzed both architecture and core 

behavior of YARN. In this point, it is also important to understand why YARN is the 

recommended cluster resource manager for Spark; next we can see several benefits over 
Spark Standalone and Mesos: 

 

 



• User can dynamically share and centrally configure the same pool of 
cluster resources among all frameworks that run on YARN. 

 

• User can use all the features of YARN schedulers for categorizing, 
isolating, and prioritizing workloads. 

 

• User can choose the number of executors to use. 

 

• Spark can run against Kerberos enabled Hadoop clusters and use secure 
authentication between its processes. 

 

Once again, the best combination (distributed storage system and cluster manager) in 

terms of solution is not unique, so that we need to keep in mind many factors such as 

the size of our commodity cluster, application requirements, type of scheduler and 
associated policy, etc. 

 

All things considered, we can examine the top tier of Spark architecture as 
follows: 

 

 

Figure 3.18 Spark architecture 

 

 



As we can see in figure above, Spark Architecture follows typical master/worker 
architecture and consists of Driver Program, Cluster Manager and Executors. 

 Spark applications run as independent sets of processes on a cluster, which are 
coordinated in terms of job flow and scheduling tasks by the SparkContext object in the 
main program (called Driver Program). Next, once SparkContext has connected to 
Cluster Manager (which is responsible for starting executor processes and where and 
when they will be run), Spark acquires Executors on nodes in the cluster, which are 
processes that run computations and store data of the application. Next, it sends 
application code (defined by JAR or Python files passed to SparkContext) to the 
executors. Finally, SparkContext can send tasks to the executors to run. 

 There are several things to note about Spark architecture: 

• Each application gets its own executor processes, which stay up for the duration 

of the whole application and run tasks in multiple threads. This has the benefit of 

isolating applications from each other, on both the scheduling side (each driver 

schedules its own tasks) and executor side (tasks from different applications run 

in different JVMs). However, it also means that data cannot be shared across 

different Spark applications (instances of SparkContext) without writing it to an 

external storage system. 

 

• Spark is agnostic to the underlying cluster manager. As long as it can acquire 

executor processes and these communicate with each other, it is relatively easy 

to run it even on a cluster manager that also supports other applications (e.g. 
Mesos/YARN). 

• When running Spark on YARN, each Spark executor runs as YARN Container 

(collection of physical resources such as CPU cores or memory on a single node 
at a cluster). 

 

• Tasks represent a unit of work on a partition of a distributed dataset. Besides, 
tasks can share variables through cache partition. 

 

 

 

 



• When running Spark on YARN, it supports two modes for running: Yarn-Client 
mode and Yarn-Cluster mode: 

o In Yarn-Client mode, the Driver Program (SparkContext) runs in the 

Client Process and the ApplicationMaster is only used for requesting 

resources from YARN. This mode makes sense for interactive and 

debugging purposes since user can see application’s output immediately 
(on the Client Process side). 

 

Figure 3.19 YARN Client-Mode 

o In Yarn-Cluster mode, the Driver Program (SparkContext) runs in the 

ApplicationMaster process. This means that the same process (which 

runs inside a YARN Container) is responsible for both driving the 

application and requesting resources from YARN. In this case, the Client 

can go away after initiating the application. This mode makes sense for 
production jobs. 

 

Figure 3.20 YARN Cluster-Mode 

. 



Finally, we can summarize both modes as follows: 

 

Mode YARN Client-Mode YARN Cluster-Mode 

Driver program runs in: Client side ApplicationMaster process 

Main purpose: Debugging, testing 
Production environments, 

long jobs 

Persistent services 
YARN  

ResourceManager and 
NodeManager 

YARN  
ResourceManager and 

NodeManager 

Supports Spark Shell? Yes No 

User needs to wait to get 
the result? 

Yes No 

Who requests resources? ApplicationMaster process ApplicationMaster process 

Who starts executor 
processes? 

YARN NodeManager YARN NodeManager 

 

Table 3.3 Comparison table: YARN Client-Mode vs YARN Cluster-Mode 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



3.2.4  Resilient Distributed Datasets (RDDs) 
 

The key concept in Apache Spark is the Resilient Distributed Dataset (RDD). An RDD 
is a fault-tolerant collection of elements partitioned across the nodes of the cluster that 
can be operated on in parallel. This abstraction was proposed in a 2012 research paper, 
Resilient Distributed Datasets: A Fault-Tolerant Abstraction for In-Memory Cluster 
Computing [12]. 
 

Conceptually, RDDs are an immutable resilient distributed collection of records, 
which can be stored in the volatile memory or in a persistent storage (HDFS, HBase, 
etc.). RDDs can only be created through deterministic operations on either other RDDs 
or data in stable storage.  

 
Broadly, RDDs can perform two types of operations transformations and 

actions. On the one hand, transformations do not return a single value; they return a 
new-modified RDD based on the original (nothing is evaluated). Several 
transformations are available through the Spark API, including map, filter, groupbykey 
or union among others. On the other hand, actions evaluate and return a new value; 
when an action is called on a RDD object, all the data processing queries are computed 
at the time and the result is returned. Some examples of actions supported by the Spark 
API include count, collect, reduce or lookup among others. Another key aspect is the 
lineage of an RDD. We could define the lineage like the information about how an 
RDD was derived from other datasets. This is a powerful property; if a partition of an 
RDD is lost, the RDD has enough information about how it was derived from other 
RDDs to recompute just that partition. In this way, lost data can be recovered, often 
quite quickly, without requiring costly replication. The figure below shows the basic 
idea of execution flow: 

 

 
Figure 3.21 RDD execution flow 

 
 
 
 



Internally, logical graph of RDD operations can be represented as a Directed Acyclic 
Graph (DAG) of operators (where the programming model follows a pattern in which 
data flows in multiple steps). DAG is compiled into stages (set of tasks that run in 
parallel) and each stage is executed as a series of tasks (fundamental unit of execution). 
Thus, each Spark job is represented by a DAG of task stages to be performed on the 
cluster. Next figure illustrates the execution graph of a basic operation:  
 

 
Figure 3.22 DAG execution graph 

 

It is also interesting to understand the execution pipeline of a task. It is 
composed of three basic phases: 

• Fetch: input from InputFormat or a Shuffle 
• Execute: execute the task 

• Write: materialize task output as Shuffle or driver result 

 

 

Figure 3.23 Task pipelined execution 

 

 



The same idea can be transferred to a multicore environment as follows: 

 

 

Figure 3.24 Task pipelined execution in multicore system 

 

Additionally, we can talk about RDD dependencies, which can be of two types: 
narrow and wide. Narrow dependencies occur when a partition of an RDD (chunks in 
Hadoop’s terminology, block in HDFS terminology) is used by only one partition of the 
next RDD. Wide dependencies occur when a partition of an RDD is used by multiple 
partitions in the next RDD (usually in groups and joins operations). The following 
figure shows the two types of dependencies 

 

Figure 3.25 RDD: Narrow and Wide dependencies 

 



We have seen how by using RDDs, programmers can pin their large data sets to 
memory, thereby supporting high-performance and iterative processing. Compared to 
reading a large data set from disk (for every processing iteration), in-memory 
computing is an efficient solution. Thanks to this approach, computation becomes 
faster. It is very important to keep in mind that the whole process of Spark application 
execution (at internal level) is very complex and its explanation and details are beyond 
the scope of this project [64]. 

Finally, we can mention some features of RDDs as follows: 

• Resilient and fault tolerance. In case of any failure they can be rebuilt 
according to the data stored 
 

• Distributed 
 

• Datasets partitioned across cluster nodes 
 

• Immutable 
 

• Memory-intensive 
 

• Caching levels conFigureble according to the environment 
 

• Each RDD consists of 5 basic properties: partitions, dependencies, compute 
as well as partitioner and preferred locations (both of them optional) 

 

 

 

 

 

 

 

 



4 Big Data architecture implementation 
 

In this chapter we present our Big Data architecture implementation. In the first part, we 
show both low-level logical architecture (hardware tier, specifications) and high-level 
logical architecture (software tier, associated roles) as an architecture solution. In the 
second part, we perform a full installation of a platform for Big Data; the procedure 
includes installing and tuning a GNU/Linux environment as well as the use of Cloudera 
(Cloudera's open-source Apache Hadoop distribution, CDH) as infrastructure solution. 

 

4.1 Solution architecture  
 

Our cluster environment is located in the cloud and it is composed of four physical 
servers. It is completely reachable through Internet (although only one node must be 
reachable using HTTPS and SSH connections). In Big Data terms, we could talk about a 
Hadoop Cluster in the Cloud. A brief description of the hardware environment can be 
found in previous subchapters (see Requirements).   

The detailed low-level logical architecture is shown below: 

 

 

Figure 4.1 Low-level logical architecture 

 



In the same way, from the point of view of logical roles (HDFS, YARN, Haddop and 
Spark), we can rank them as follows: 

• eimtbl10.uoc.edu (master node): HDFS NameNode, HDFS Secondary 
NameNode, YARN ResourceManager, YARN Job History Server, Spark 
History Server (History Servers hold information about the history of completed 
applications). 
 

• eimtbl11.uoc.edu (slave node): HDFS DataNode, YARN NodeManager. 
 

• eimtbl12.uoc.edu (slave node): HDFS DataNode, YARN NodeManager. 
 

• eimtbl13.uoc.edu (slave node): HDFS DataNode, YARN NodeManager. 

 

The detailed high-level logical architecture is shown below: 

 

 

Figure 4.2 High-level logical architecture 

 

 

 

 



4.2 Cloudera: The Platform for Big Data 
 

Cloudera (Cloudera's open-source Apache Hadoop distribution, CDH) is the platform 
for Big Data most known. Also known as The Platform for Big Data, it will allow us to 
have a free Hadoop architecture/environment (including Apache Spark) in a few steps 
thanks to one of its key components: Cloudera Manager.  
 

However, before we can work with Cloudera as shuch, we need to get ready our 
environment. That is, we need to perform a full installation of a compatible GNU/Linux 
operating system (CentOS 6.X) in our cluster of four machines, as well as tuning of the 
environment in order to make it suitable for the use of Cloudera Manager (5.X). 

 
Explaining the entire process and every step performed (from the operating 

system installation to Cloudera Manager installation) is beyond the scope of this project.  
Since we are performing a demonstration and proof of concept deployment, Cloudera 
Manager deployment is the recommended method for installing CDH and managed 
services (Cloudera Manager automates the installation and configures the entire 
installation process, where the most options are by default). In any other case, as for 
example production deployments or special cases, we might need specific requirements 
(such as external database), so that we should perform a manual installation of certain 
components. Anyway, it is interesting to keep in mind a few details, especially the part 
of tuning of the environment. For this reason, we show the most important requirements 
and steps that must be performed in order to avoid compatibility problems between 
operating system level and Cloudera Manager: 

 
• Accomplish CDH/ Cloudera Manager hardware requirements [65] 

 
• Recommended GNU/Linux operating system: CentOS 6.X (update 4 or 

later recommended) 
 

• Disable SELinux (Security-Enhanced Linux) 
 

• Disable IPtables firewall 
 

• Share the same /etc/hosts file for the four servers (all of them with static 
IP address as well as a proper DNS resolution) 
 

• Select a proper SSH authentication method (preferably Public key 
authentication or Password authentication according to our needs) 
 

• Select the appropriate runlevel for slaves servers (preferably equal to 3) 
to improve overall performance 
 

• Set default Swappiness value equal to 0 to improve overall performance 
 

• Disable transparent hugepage compaction to improve overall 
performance 



To conclude this subchapter, we show a few captures of the installation process, which 
demonstrates how our Hadoop Cluster finished successfully by using Cloudera Manager 
(note how we mapped logical roles to appropriate servers such as we mentioned earlier):  
 
 

 
Figure 4.3 Cloudera Manager: host detection successfully 

 

 
Figure 4.4 Cloudera Manager: cluster installation successfully 

 

 

Figure 4.5 Cloudera Manager: parcels deployment successfully 

 



 

Figure 4.6 Cloudera Manager:  all requirements met successfully 

 

 

Figure 4.7 Cloudera Manager: core installation with Spark 
 

 

Figure 4.8 Cloudera Manager:  HDFS roles 

 



 

Figure 4.9 Cloudera Manager:  YARN roles 

 

 

Figure 4.10 Cloudera Manager:  Spark roles 

 

 

Figure 4.11 Cloudera Manager:  first successful execution 

 

 

Figure 4.12 Cloudera Manager:  final message 

 



 

Figure 4.13 Cloudera Manager: initial status 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



5 System performance analysis and benchmarking 
 

In this chapter we describe the methodology that we have followed in order to perform 

system performance analysis and benchmarking. The main goal is to perform through 
some benchmarks available, system performance analysis and benchmarking of both 
large scale distributed processing solutions (Hadoop and Spark). In this point, we 
present three different applications, where each one of them perform different tasks and 
follow a different programming paradigm. Additionally, we show different performance 
metrics as well as statistical data.  

 

5.1 WordCount problem 
 

The easiest problem in MapReduce paradigm is the Word Count problem; for this 
reason, it is also called MapReduce’s “Hello World” by many people. Maybe, Word 
Count is the best example for understanding the basic concepts of MapReduce 
paradigm. 

The goal of the Word Count problem is to find the number of occurrences of 
each word in a given input set, which is typically a text file. So, the input is text/s files 
and the output is text/s files, each line of which contains a word and the count of how 
often it occurred, separated by a tab. 

At MapReduce level (Hadoop), each mapper takes a line as input and breaks it into 
words. It then emits a key/value pair of the word and 1. Each reducer sums the counts 
for each word and emits a single key/value with the word and sum. More information 
about this example can be found in previous subchapters (see Hadoop MapReduce). In 
Spark, algorithm follows mainly the same methodology; that is, through “map” and 
“ reduceByKey” RDD operations, it can perform the same task. Other steps are done by 
Spark internal core. 
 

Hadoop comes with its WordCount java implementation and Spark comes with 
both java and python implementations respectively. However, in order to better perform 
system performance analysis and benchmarking, we have developed our own version of 
Word Count example in python programming language for MapReduce framework (we 
have chosen python over java due to its simplicity at code level). The main idea behind 
this decision is the next: both implementations must be implemented in the same 
programming language in order to avoid performance problems. Some examples of 
problems that can arise are the next: different intermediate code generated (bytecode), 
performance issues between interpreters and jvm runtimes, data serialization and so on.  

 



Moreover, it is important to understand that we only need to implement both map and 
reduce functions; MapReduce engine handles the process known as “Shuffle and Sort” 
by itself. Further explanation about it can be found in previous subchapters (see Hadoop 

MapReduce). 

Our MapReduce python implementation will run on Hadoop through Hadoop 
Streaming, which is a utility that comes with the Hadoop distribution and allows us to 
create and run map/reduce jobs with any executable or script as the mapper and/or the 
reducer. In Spark, we will run its python implementation of the Word Count problem 
through Spark-submit script (this is the only way to submit jobs on Spark) [66]. 

 In Hadoop, Hadoop Streaming utility takes input from standard input (stdin) and 
provides output through standard output (stdout). Internally, the streaming engine reads 
and writes data appropriately, invoking applications as needed. Figure below shows 
Hadoop Streaming basic data flow: 

 

Figure 5.1 Hadoop Streaming data flow 

 

In Spark, Spark-submit script allows us to submit compiled Spark applications 
(application jar or python file) on YARN with several options. In our case, we will run a 
python application in YARN cluster mode. Further explanation about Spark architecture 
and Spark execution flow can be found in previous subchapters (see Spark architecture). 
Next figure illustrates basic data flow through Spark-submit in a python environment 
with YARN: 

 



 

Figure 5.2 Spark-submit in a python environment with YARN 

 

 

5.2 TeraSort problem 
 

The TeraSort benchmark is probably the most well-known Hadoop benchmark. Back in 
2008, Yahoo! set a record by sorting 1 TB of data in 209 seconds [67] – on a Hadoop 
cluster of 910 nodes as Owen O’Malley of the Yahoo! Grid Computing Team reports. 
One year later in 2009, Yahoo! set another record by sorting a 1 PB (1’000 TB) of data 
in 16 hours [68] on an even larger Hadoop cluster of 3800 nodes (it took the same 
cluster only 62 seconds to sort 1 TB of data, easily beating the previous year’s record!). 

Basically, the goal of TeraSort problem is to sort 1TB of data (or any other 
amount of data) as fast as possible. It is an ideal benchmark for testing both storage 
layer (HDFS) and processing layer (such as MapReduce or Spark in our case) of a 
Hadoop cluster.  

Internally, TeraSort benchmark consists of the following three steps: 

1. Generating the input data via TeraGen benchmark. 
2. Running the actual TeraSort benchmark on the input data. 
3. Validating the sorted output data via TeraValidate benchmark. 



 

Figure 5.3 Terasort benchmark data flow 

 

As we can see in the figure above, TeraGen generates random data that can be 
conveniently used as input data for a subsequent TeraSort run. TeraGen can generate 
many rows of data as we wish, each of which having a size of 100 bytes by default (for 
example, 10000000000 rows * 100 bytes row to achieve 1TB of data). The rows follow 
the next data format: 

10 bytes key | 2 bytes break | 32 bytes acsii/hex | 4 bytes break | 48 bytes filler | 4 bytes break | \r\n  

 
Next, TeraSort runs the actual TeraSort benchmark (the sorting is performed by 

the 10-byte ASCII key). Finally, TeraValidate validates the sorted output data of 
TeraSort. 

 
At MapReduce level (Hadoop), each phase will manage both map and reduce tasks in a 
different manner: 

 
1. TeraGen will run map tasks to generate the data (one for each HDFS block of 

data as usual) and will not run reduce tasks. 
 

2. TeraSort will run map tasks to sort the data (one for each HDFS block of data as 
usual) and will be one reduce task by default (it will depend on environment-
specific configuration). 
 



3. TeraValidate will run map tasks to validate the data (one for each HDFS block 
of data as usual) and will be one reduce task by default (again, it will depend on 
environment-specific configuration). 
 
 

In Spark, algorithm follows mainly the same methodology. On the one hand, Teragen 
generates records (data output) through random number generator and some random 
bytes up to 100 bytes. On the other hand, TeraValidate performs different comparisons 
in order to determine proper order of data. The main phase (TeraSort) just executes 
“sortByKey” function on the RDD to sort data. Other steps are done by Spark internal 
core. 

 
Hadoop comes with its TeraSort java implementation; however, Spark does not 

have any implementation for this benchmark. In order to compare both frameworks 
efficiently, we have two choices: to develop our own version for Spark or find some 
equivalent code, which must be used by a huge community (in this way the comparison 
will be valid and reliable). Fortunately for us, there is a version written by one member 
of DataBricks [69] community (Evan Higgs) at Github [70], which is highly used for 
similar purposes to ours. It is developed in scala language and follows the same 
methodology of the MapReduce version (the three specific phases shown above); 
besides, it is fully compatible with any input data used by the MapReduce version. To 
make it suitable, we only need to package the scala code by using Apache Maven [71]. 
 

However, if we take a look at Evan's page, we can observe the next problem at 
"Known issues" section: “This terasort doesn't use the partitioning scheme that 
Hadoop's Terasort uses. This results in not very good performance.” Specifically, 
Evan’s version of Terasort uses a very simple partitioner (which uses the first 7 bytes 
for determining the partition of a key/value pair, which can result in performance 
problems). Custom partitioning in Spark is an advanced technique (optional) which tries 
to achieve better performance by balancing partitions (splits of RDD) among worker 
nodes properly (overriding Spark defaults options [72] ) 
 

While MapReduce implementation uses 12 reducers as range partitioner by 
default (this number can be defined by setting “mapreduce.job.reduces” variable), 
Evan’s implementation uses "random” value for such purpose. Since it exists one 
job/task for each partition and both frameworks work better with a small number of 
large files than a large number of small files, it is obvious that we do not want extra 
tasks which can incur in overhead problems or unbalanced distribution problems. Thus, 
in order to make a fair comparison between both frameworks (as well as avoiding 
performance problems), the main idea is to modify Evan’s code to make it comparable 
with MapReduce implementation; in other words, we need to establish the same range 
partitioner as Hadoop TeraSort algorithm (12 tasks in our case).  
 

Fortunately for us, we have found a good implementation which achieves 
previous concept [73]. 
 
 
 
 



The algorithm follows the same methodology described above (Evan Higgs algorithm) 
and it is fully compatible with any input data used by the MapReduce version. The only 
difference is that we can now specify range partitioner according to our needs. 
Additionally, we will make some code modifications (simplifying code arguments, 
establishing several constants according to our needs, as well as handling Spark’s 
context in order to obtain job statistics properly). Only doing this, we can make a fair 
comparison. 
 

Unlike WordCount problem (see WordCount problem) where both 
implementations are developed in the same programming language, in this case we 
perform system performance analysis and benchmarking from another perspective: each 
implementation is developed according to the native programming language of each 
processing framework respectively; that is, java implementation for Mapreduce and 
scala implementation for Spark. It is fair enough, since both implementations are fully 
compatible as we mentioned above. Moreover, we have to take into account that any 
scala source code is intended to be compiled to Java bytecode, so that the resulting 
executable code runs on a Java virtual machine. Besides, Java libraries may be used 
directly in Scala code and vice versa (language interoperability). Consequently, we 
might say that the generated bytecode is basically the same. 

 

We will run both packages following the standard methodology for each one of 
them. On the one hand, in the Mapreduce case, we will use “hadoop-mapreduce-
examples.jar” package through “hadoop jar” instruction, which contains TeraSort class. 
On the other hand (Spark’s case), we will use “spark-submit” script to submit the 
compiled Spark application (package jar in our case) which also contains TeraSort class. 
In both cases, YARN will be used as a cluster manager in cluster mode. 

 
 

 

 

 

 

 

 

 

 

 

 



5.3 PageRank problem 
 

PageRank is an algorithm used by Google Search to rank websites in their search engine 
results. Developed by Larry Page [74] (one of the founders of Google), PageRank aims 
to measure the importance of website pages. According to Google: 

 

PageRank works by counting the number and quality of links to a page to determine a 
rough estimate of how important the website is. The underlying assumption is that more 

important websites are likely to receive more links from other websites. 

 

 

Figure 5.4 Google PageRank algorithm 

 

Note that PageRank is not the only algorithm used by Google to order search 
engine results, but it is the first algorithm that was used by the company and it is the 
best-known. Although we treat with a straightforward implementation of a more 
complex algorithm, without any doubt it is a great parallel algorithm candidate for our 
case study. 

In general terms, the main goal behind PageRank algorithm is to determine 
which page is more important than others. In other words; one web page will have high 
rank if it obtains links from many web pages or obtains link from a high-rank web page. 
We can illustrate it through a simple example: we have 4 pages (A, B, C and D as non-
existing page) represented as follows: 

 



 

Figure 5.5 PageRank algorithm for a simple network 

“D” is a page that has not been created yet or removed, but it is being linked from “C” 
page (we could talk about as a broken link). From previous figure, we can determine 
how rank of “A” page will be the highest, because it obtains point from “B” and “C” 
pages respectively. The formula of calculating the points is such as: 

 

However, we can still simplify the formula above as follows: 

PageRank(A) = (1-d) + d (PageRank(B) / Count(B) + PageRank(C) / Count(C) + ...) 

The d in the formula is the “damping factor” to simulate 'a random surfer' and it is 
usually set to 0.85. Further explanations and details about it can be found in wiki 
pageranking page [75]. 

In this way, by applying previous formula, we can obtain rank of “A” page such as: 

PageRank(A) = 0.15 + 0.85 * (PageRank(B)/outgoing links(B) + 
PageRank(C)/outgoing link(C)) 

Thus, if we take into account basic steps of algorithm such as: 

1. Start each page at a rank of 1. 
2. On each iteration, have page p contribute"rankp / |neighborsp| to its neighbors. 
3. Set each page’s rank to 0.15 + 0.85 × contribs. 

The first iteration of algorithm above would provide the following output: 

• PageRank(A)= 1,425 
• PageRank(B)= 0,15 



• PageRank(C)= 0,15 

 

Figure 5.6 PageRank algorithm for a simple network: contributions at first 
iteration 

 

Note that we omit PageRank(C), because it is a non-existing web page. Broadly, it is 
common to perform over 10 iterations to obtain more accurate ranks (algorithm is based 
on previous calculations and will get more accurate ranks after more runs). 

At MapReduce level (Haddop), in the mapper phase, each map task matches 
each outgoing link to the page with its rank and total outgoing links. In the reduce 
phase, each reduce task simply calculates the new page rank for the pages by applying 
general formula shown above. In Spark, algorithm follows mainly the same 
methodology. To sum up, it executes “map” and “groupByKey” functions to handle 
data properly and then it calculates contributions for each link through “join” and “map” 
functions. At last, by using “reduceByKey” and “mapValues” functions, it can obtain 
final ranks for each given link. In this case, it is interesting to understand how Spark can 
cache datasets in memory to speed up reuse. PageRank algorithm can load just the links 
in RAM using "cache" function on a RDD. Other steps are done by Spark internal core. 
 

Hadoop does not have any official implementation of PageRank algorithm, 
while Spark comes with all possible implementations (java, python and scala). Again, 
we have two choices: to develop our own version for Hadoop or find some equivalent 
code, which must be used by a huge community (in this way the comparison will be 
valid and reliable). In this case, it does not exist any equivalent code of such algorithm 
for MapReduce framework, so that we need to develop our own code or find some 
similar code to make it suitable in order to better perform system performance analysis 
and benchmarking. 

 



We have found many examples through different code repositories, but any of them 
follows the methodology used in scala code (basic steps of algorithm). Besides, none of 
them is fully compatible at input data level, so that we must develop our own version. 
Here, python is not a good choice, so java has been selected as a programming language 
given its relationship with scala language. Further explanation about it can be found in 
previous subchapters (see WordCount problem and TeraSort problem). The java code has 
been developed in Eclipse IDE [76] and compiled with required packages for hadoop-
mapreduce framework [77] . 

We will run both packages following the standard methodology for each one of 
them. On the one hand, in the Mapreduce case, we will use “hadoop-mapreduce-
pagerank.jar” package through “hadoop jar” instruction, which contains our own 
PageRank class. On the other hand (Spark’s case), we will use “spark-submit” script to 
submit the compiled Spark application (package “spark-examples-1.3.0-cdh5.4.8-
hadoop2.6.0-cdh5.4.8.jar”) which contains SparkPageRank class. In both cases, YARN 
will be used as a cluster manager in cluster mode. 
 

5.4 Benchmarking  
 

Since the most reliable metric when we want to compare several algorithms (either 
sequential or parallel) is the time execution, we focus on it in order to perform system 
performance analysis and benchmarking of previous problems.  
 

We are going to study time execution from two different points of view; on the 
one hand, we focus on the middleware tier (YARN), which will provide us an idea of 
the processing time when we consider the whole involved process (see Hadoop execution 

flow). This metric can help us to determine the behavior of YARN regarding to other 
resource managers at performance level. On the other hand, we focus on framework-
specific processing time; that is, the whole internal processing time on each of 
processing framework when they are starting a certain job (when the ApplicationMaster 
process is able to start the first task). Moreover, if applicable, we show aggregate 
resource allocation metric (MB-seconds, vcore-seconds), which shows the amount of 
consumed resources by all the tasks from two perspectives: internal memory (RAM) 
and processing time (CPU). Thus, the first metric is extracted from Resource Manager's 
Web UI (http://server:8088), while specific-processing time at framework level is 
extracted from both History's roles Web UI (http://server:19888/jobhistory for 
MapReduce and http://server:18088 for Spark). Regarding to aggregate resource 
allocation metric, it is also extracted from Resource Manager's Web UI 
(http://server:8088). 
 

All things considered, we going to show different performance metrics as well as 
statistical data related to each of the algorithms.  

 
 



The WordCount algorithm will be the first case to be analyzed. In this case, we perform 
benchmarking through several ebooks [78]; it is quite reasonable, since the goal of 
WordCount algorithm is to find the number of occurrences of each word in a given 
input set (which is typically a text file).  The next table shows three different sizes of 
input data; we specify the length of each file in words, as well as the size of each file. 
 
 

Small input:  
The Outline of Science, Vol. 

1 (of 4) by J. Arthur 
Thomson 

Medium input: 
The Notebooks of Leonardo 

Da Vinci 

Large input:  
The Notebooks of Leonardo 

Da Vinci (x 95) 

809 words (~5KB) 255384 words (~1,36 MB) 24261480 words (~128MB) 

Table 5.1 WordCount input data 

 
The figure below shows the whole execution time from YARN’s perspective: 

 

 
Figure 5.7 WordCount algorithm: whole execution time 

 

In the same way, we show the total execution time at framework level: 
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Small_Input Medium_Input Large_Input

MapReduce 20 20,66666667 75

Spark 14,66666667 15,33333333 73,33333333

Wordcount: whole execution time



 
Figure 5.8 WordCount algorithm: framework execution time 

 

As we can see in the figures above, the first conclusion that we can extract is that the 
execution time required by YARN is greater than framework-specific processing time. 
Somehow, it is something we could intuit; before a certain NodeManager can start a 
task, several steps must be performed in order to ensure the entire job properly (driving 
job submission, allocating resources and so on).  
  

At framework-specific processing time level, we can see how differences 
between both processing frameworks are minimal; however, Spark overcomes 
MapReduce (even if we use a more large input data). Both algorithms basically perform 
the same task and they are designed in the same way. Why is Spark more efficient than 
MapReduce? The WordCount algorithm is so simple that allow us to understand a few 
key concepts around Spark (which make the difference): 

 
• Faster task startup time. Spark works at thread level (fork operation for each 

new task) while MapReduce works at JVM level (brings up a new JVM for each 
new task). 
 

• Faster shuffles. Each algorithm performs one all-to-all operation (see next case 
for further details) which means to perform a “shuffle process”. Spark puts the 
data on disk only once during shuffles (in the best case) while MapReduce does 
it twice (by default). 
 

• Caching concept. Spark can cache data into memory (see next case for further 
details) which can improve performance considerably. Despite MapReduce can 
cache data through HDFS, this technique is not at the same level that in-memory 
caching. 
 

 
 

Small_Input Medium_Input Large_Input

MapReduce 14,33333333 15,33333333 69,66666667

Spark 10,66666667 11,33333333 61,66666667
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Above all, we need to keep in mind that we have developed a simple version of 
WordCount algorithm (where the goal is simplicity and ease of understanding); that is, 
we do not use neither Combine [79] function at MapReduce level nor 
iterators/generators [80] at python level; both concepts can help a lot in terms of 
computational expensiveness or memory consumption, depending on the task at hand. 
 

Although we neither talk nor show aggregate resource allocation metric (MB-
seconds, vcore-seconds), it is also increased regarding to the input data set (many tasks 
mean more resource allocation for each of them at time level). Here, Spark tries to set 
the number of partitions automatically based on our cluster (2 tasks to 2 executors), 
while Hadoop performs 14 tasks by default (2 mappers and 12 reducers). Having said 
that, it does not make sense to compare both frameworks from such perspective due to 
each framework uses different partitioning mode. 
 
 

It is time to analyze TeraSort algorithm. Again, we show three different sizes of 
input data. Note that although we do not use 1TB of data (which is the typical case) due 
to characteristics of our cluster architecture, the selected sizes provide us an idea of the 
behavior of this algorithm. The table below describes the selected input data sets: 
 

Small input 
 

Medium input 
 

Large input  
 

100 MB 1 GB 10 GB 

Table 5.2 TeraSort input data 

 

Next, we show the whole execution time from YARN’s perspective: 
 

 

Figure 5.9 TeraSort algorithm: whole execution time 
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In the same way, we show the total execution time at framework level: 
 

 

Figure 5.10 TeraSort algorithm: framework execution time 

 

One more time, we can see how the execution time required by YARN is greater than 
framework-specific processing time; which is again quite reasonable. 
  

At framework-specific processing time level, we can see how Hadoop 
overcomes Spark according to input data is increased. In other words, when data set is 
not very large (100 MB in our case), Hadoop’s execution time is smaller than Spark’s 
execution time; otherwise, Spark takes a long time to process it. To know the why of it, 
it is mandatory to understand Spark architecture in a deeper way, as well as Spark main 
programming abstractions (RDD and DAG). As we can imagine, this kind of insight is 
beyond the scope of this project due to its complexity; however, we going to try to 
explain a few details in order to make it understandable. 

In this point, we need to understand how Spark handles executors (JVM 
processes) and how it configures and uses their heap memory. Next, we show the 
diagram of Spark memory allocation inside of the JVM heap [81]: 

 

Small_Input Medium_Input Large_Input

MapReduce 17,66666667 26,33333333 119,3333333

Spark 18 63 660
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TeraSort: framework execution time



 
           Figure 5.11 Spark JVM heap 

 

By default, Spark starts with 512 MB JVM Heap (for Driver Program) and 1024 MB for 
Executors (all of this is totally configurable through spark default settings or command 
line arguments of the different executions). Though, in order to avoid “OutOfMemory” 
errors, Sparks only allows utilizing around 90% (Safe zone). Moreover, Spark allows 
storing some data in memory (it utilizes this memory for its LRU cache [82]); thus, 
some amount of memory is reserved for the caching of the data that are being processed 
(around 60%, Storage zone). Within of it, we can see a certain amount of memory 
(around 20%, Unroll zone), which is the amount of RAM that is allowed to be utilized 
by "unroll" process. The “unroll” process unrolls blocks of data into the memory, so 
they can be used properly. Basically, data can be stored both serialized (serialized 
caching) and deserialized (raw caching) form. Since data in serialized form cannot be 
used directly, they must be "unrolled" previously (so this is the RAM that is used for 
"unrolling"). Each one has different advantages as well as drawbacks; but one key 
concept that we need to take into account is that raw caching (deserialized data) 
consumes a lot of memory (one RDD can grow up to 4 times). 
  

The Shuffle zone (around 20%, although it exactly takes around 16%) deserves 
special mention. Spark uses this memory (also known as “shuffle buffer”) for 
"shuffling" process. Broadly speaking, several operations such as sorting, data 
aggregation or cogroups (among other) involve shuffle processes. Specifically; when we 
perform different transformations such as groupByKey and reduceByKey (which have 
wide dependencies), Spark must execute a shuffle, which transfers data around the 
cluster and results in a new stage with a new set of partitions. As we can imagine, 
shuffle incurs heavy disk and network I/O, so it results in an expensive operation, which 
should be avoided when possible. At any given time, if we do not have enough memory 
to store the whole “map” output, Spark might need to spill intermediate data to the disk. 

 
 
 
 



Now we have more knowledge about Spark architecture, we can explain the reason of 
why Spark takes long processing time for both medium and large input data. If we take 
a look at source code, when we perform repartitionAndSortWithinPartitions operation 
[83], Spark splits data according to the given partitioner and, within each resulting 
partition, sort records by their keys (sortByKey). Given that the values for the same key 
must be on the same machine in order to sort data, data must be transferred, which 
implies "shuffling" process explained above. In our case, “map” output does not fit into 
shuffle buffer, so Spark needs to spill some intermediate data to disk (that is, twice). All 
of this explains poor performance when data set is considerably large. According to 
some studies, most performance, scalability, and reliability issues observed in 
production Spark deployments occur within the shuffle process. 
 

In this case, it makes sense to compare both processing frameworks from 
aggregate resource allocation metric perspective, due to both frameworks have the same 
partitioning level. In any case, the number of reducer tasks for MapReduce framework 
will be 12 by default (so mappers will be the difference between total tasks and 
reducers); Spark does not distinguish roles, so the amount of tasks (among all the stages 
per job) will be the given number. The next table shows the total number of tasks for a 
given input data: 

 
Small input Medium input: 

 
Large input: 

 
14 tasks 20 tasks 88 tasks 

Table 5.3 TeraSort amount of tasks per job 

 
 

 
If we keep in mind that: 
 

• MB-seconds: The aggregated amount of memory (in megabytes) the application 
has allocated times the number of seconds the application has been running. 

 
• Vcore-seconds: The aggregated number of vcores that the application has 

allocated times the number of seconds the application has been running. 
 

• Active nodes in our cluster: 3 (worker nodes). 
 

• Memory Total of our cluster: 20,66 GB (maximum memory per node: 7052 
MB). 
 

• VCores Total of our cluster: 24 (maximum cores per node: 8). 
 

• Maximum number of containers per node: ~7 (minimum number between 
memory bounds and cpu bounds). 
 
 

We can show the next figures: 
 



 

 

Figure 5.12 TeraSort MB-seconds 

 

 

Figure 5.13 TeraSort VCore-seconds 

 
 
 
In this point, we can conclude that: 
 

• For a small data set, we can see how Spark is more efficient than MapReduce in 
both metrics. That is, when data set is relatively small (smaller than block size in 
this case), data set fits perfectly in memory and all tasks can handle data in an 
efficient way. Thus, each YARN container takes less time (on an average) to 
execute a certain task than in MapReduce engine. 
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• When we have a medium data set, Spark starts suffering known issues when all 

data set almost does not fit in memory, so it needs to spill (performing both data 
compression and serialization) some data to disk. We need to understand that all 
shuffled data per reduce task must fit into memory; it happens when task 
involves an all-to-all operation (sortByKey in our case). However, it is 
interesting to see how from processing time point of view, Spark is still more 
efficient than MapReduce official implementation (each container needs, on an 
average, less time to execute a certain task). 
 

• A large data set produces a reverse trend; like previous case, Spark needs to spill 
a lot of data to disk. Moreover, it causes a long processing time (each container 
takes, on an average, more time to execute a certain task than in MapReduce 
engine). Here, Spark clearly does not overcome MapReduce official 
implementation. 

 

Finally, we have to analyze PageRank algorithm. Again, we show three different sizes 
of input data; in this case, we specify, for each given file, the amount of nodes as well as 
the amount of edges (which represent the whole simulated network). Last input data 
(large data set) deserves further consideration, since we are using a real representation 
of Amazon network (co-purchasing network from March 2003). The table below 
summarizes such information: 

 

Small input:  Medium input: 
 

Large input:  
 

86 nodes, 430 edges 
(~8KB) 

709 nodes, 3545 edges 
(~60KB) 

262111 nodes, 
1234877edges  (~16,4MB) 

Table 5.4 PageRank input data 

 
Such as we did before, we show again the whole execution time from YARN’s 
perspective: 



 

Figure 5.14 PageRank algorithm: whole execution time 

 

In addition, we show the total execution time at framework level: 

 
Figure 5.15 PageRank algorithm: framework execution time 

 

One more time, we can see how the execution time required by YARN is greater than 
framework-specific processing time; which is quite reasonable again. 
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At framework-specific processing time level, we can see how Spark overcomes Hadoop 
when input data size is not very large. However, when we work with a large input (a lot 
of records of RDD key/value pairs in our case), Spark reduces its performance. The 
reason was mentioned earlier; Spark must spill a certain amount of data to disk (data 
does not fit into the shuffle buffer, so it needs to spill data to disk twice). Despite Spark 
uses cache operation in order to cache data into memory (which might lead to a great 
performance), the point is that PageRank (scala algorithm) utilizes many all-to-all 
operations (groupByKey, join and reduceByKey), which implies several stages with 
multiple shuffle operations among each of them. As we explained above, each shuffle 
process causes a great impact on the performance. The scala source code is a good 
example of working with RDD key/value pairs; it allows us to get input data into a 
key/value format and provides special operations (such as aggregation or 
transformations) on RDDs containing key/value pairs. However, when we handle a lot 
of records, it starts suffering a great impact at performance level (long processing time, 
high memory demands) without forgetting multiple shuffle processes due to its design 
(which incurs on disk I/O and high network latency). Thus, we can confirm that our java 
implementation of PageRank is more efficient than Spark's implementation when we 
handle large input data set (note that Hadoop/MapReduce is specially designed to treat 
with huge input data set). 

In this case, it does not make sense to talk about show aggregate resource 
allocation metric (MB-seconds, vcore-seconds), since each processing framework 
utilizes different partition level: Hadoop uses 14 tasks by default (2 mappers and 12 
reducers) while Spark uses 4 tasks within 4 stages. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



6 Conclusions 
 

In this BS Final Project we have introduced us to Big Data field. Although it has been 
only "the tip of the iceberg", it has provided us an excellent insight of what is and what 
means the famous word “Big Data”. 

 In the first part of this BS Final Project, through several examples, we have 
provided a definition of the Big Data term. Next, we have also described challenges and 
opportunities arising from Big Data. In addition, we have dissected the Big Data 
lifecycle management from two different perspectives as well as describing the Big 
Data characteristics (Gartner's model). In this point, we have focused on velocity as key 
feature, which lead us to different processing models (Batch, Real-time and Stream 
processing). 

In the second part of this BS Final Project, we have studied and discussed the 
two most well-known processing frameworks for Big Data applications. Mostly, we 
have focused on the two major current proposed large scale distributed processing 
solutions: Apache Hadoop and Apache Spark. We have seen how each one may be 
categorized according to different processing models; while Hadoop follows Batch 
processing model (MapReduce paradigm), Spark is commonly categorized into Real-
time processing model (In-Memory computing paradigm). Moreover, we have 
described each processing framework from different perspectives (architectonic 
solution, basic design patterns as well as several key features). 

In the third part of this BS Final Project, we have presented our Big Data 
architecture solution. We have designed the whole architecture taking into account both 
low-level and high-level requirements. We have shown a step-by-step of the entire 
procedure installation; starting from installing and tuning a GNU/Linux environment as 
well as the use of Cloudera (Cloudera open-source Apache Hadoop distribution, CDH) 
as infrastructure solution. 

The last part of this BS Final Project covers system performance analysis and 
benchmarking. We have described the methodology that we have followed in order to 
perform system performance analysis and benchmarking of both large scale distributed 
processing solutions. In the first part, we have presented three different problems, where 
each one performs different tasks and follows a different programming paradigm. In 
some cases, it has been necessary to adapt some algorithm in order to make it suitable to 
our architecture; in other cases, it has been necessary to develop our own algorithm in 
order to make a fair comparison. In the second part, we have shown different 
performance metrics as well as statistical data, which have allowed us to understand, in 
a deeper way, both processing solutions. 

 

 



Currently, Apache Spark is becoming in the new trend in the Big Data field. The figure 
below shows search results (Google Trends [84] for both Hadoop and Spark) for the last 
two years: 

 

 

Figure 6.1 Google Trends: Haddop vs Spark (January 2014 - October 2015) 

 

Clearly, Spark (top line) is becoming more and more popular among the end customers, 
so they are performing multiple web searches related to Spark. But, does it mean that 
Spark is going to replace Hadoop definitely? Is Hadoop/MapReduce an obsolete 
processing framework? Thanks to this BS Final Project, we have proved how this myths 
and rumors are completely false. 

Firstly: Hadoop is not just a processing framework. As we have seen before, 
Hadoop is an ecosystem or collection of additional software packages that can be 
installed on top of or alongside. Thus, Spark can run on top of Hadoop, benefiting from 
Hadoop cluster manager (YARN) and underlying storage (HDFS) (although it can also 
run completely separately from Hadoop, maybe it is not the best option nowadays). 
Secondly, Hadoop is a more mature platform. MapReduce has proven its experience for 
the last years, with multiple successful cases. Furthermore, its integration with third-
party software is better in comparison with Spark: we have seen how Cloudera's 
behavior is better when we perform MapReduce tasks instead of Spark jobs (we achieve 
more and better information about final results). Lastly, we have seen how Hadoop 
achieves better results when we handle large input data sets (note that 
Hadoop/MapReduce is specially designed to treat with huge input data set. 

 

 



However, Hadoop also has its own weaknesses as well as drawbacks. Firstly: if we take 
a look beyond, we realize that the MapReduce programing model is not a new thing; in 
other words, the main concept takes a lot of time being implemented following different 
strategies (divide&conquer strategy or reduction clauses implemented by several 
parallel languages such as OpenMP/MPI). Thus, in many cases, maybe we do not need 
Hadoop in order to achieve our goals (note that any algorithm must be adapted into 
MapReduce pattern). Secondly, we have seen how in equal conditions (identical 
algorithm design), Spark overcomes Hadoop achieving better execution times. Lastly, 
we have verified how Hadoop is suitable for one-pass computation but maybe it is not 
the best option for cases that require multi-pass computations. Due to its data processing 
workflow, data between each step must be stored in the Distributed File System (HDFS) 
before the next step can begin, which may impact in the overall performance (Spark can 
achieve its goals by putting the data on disk only once during shuffles, in the best 
cases). 

So, what about Spark? Like Hadoop, Spark also has its own strengths as well as 
drawbacks. Firstly: Spark provides a rich API (scala, python, java, R) which make it 
easy to develop (you can choose your favourite programming language), while Hadoop 
only supports java "officially" (as we have verified, it is also possible to develop 
through Hadoop Streaming and Hadoop Pipes). Secondly, Spark provides faster task 
startup time (by using threads operations instead of bringing up a new JVM). Lastly, we 
have seen how Spark can cache a certain amount of data, which is without any doubt,  
one of its key concepts (without forgetting RDD's and DAG pipeline). It is true that 
Hadoop can cache some amount of data through underlying storage (HDFS) but in 
general Spark's cache engine is quite good (in fact, nothing revolutionary new, since 
memory access is always faster than disk access). 

As we mentioned above, Spark is not an exception, so it also has several 
weaknesses as well as drawbacks. Firstly: working with Resilient Distributed Dataset 
(RDD) is not so simple. For those who are familiar with OOP languages, understanding 
and managing RDD's can be a bit difficult. Moreover, despite its multiple benefits, we 
cannot forget that RDD structures consume a lot of storage memory (raw caching, 
otherwise they cannot be used directly). In fact, we have observed how Spark does not 
work well when we handle a large input data set (note that Spark is specially designed 
to achieve minimal processing times instead of handling with huge input data set). 
Secondly, Spark is not an in-memory technology really; in other words, Spark cannot 
persist data in memory and process it entirely. Everything Spark can do is to cache data 
(into a certain amount of cache memory with the LRU eviction rules), which is not 
equal to the “persistence” concept. Cached data can be easily dropped and recomputed 
later, based on the other data available in the source persistent store available through 
connector (that is what really Spark utilizes: pluggable logical connectors for different 
persistent storage systems like HDFS).  

 



Moreover, if Spark does not have enough memory to store the data, it will spill 
intermediate data to the disk. Thus, if we keep in mind the “shuffle process “explained 
above, Spark inevitably performs operations into the disk (unless it does not need to 
shuffle data, which is quite unusual). Lastly, we can conclude that the next assertion 
"Spark performs 10x-100x faster than Hadoop" is in most cases false. Through our 
system performance analysis and benchmarking of the different problems, we have 
observed how it never happens. Not even in a so simple case (see WordCount problem) 
where both algorithms are almost identical (and both perform only one shuffle process) 
we do not achieve this huge performance. Spark performs “10x-100x faster operations” 
when it works with machine learning algorithms. That is, when this kind of algorithms 
are repeatedly iterating over the same dataset many times, Spark can cache dataset into 
the memory (it only needs to read it when data is accessed for the first time, after it only 
needs to read it from the cache memory). Anyway, we are talking about an ideal 
situation (pure machine learning algorithm, entire dataset fits perfectly into memory and 
so on). 

In summary, Spark is a viable alternative to Hadoop/MapReduce in a range of 
circumstances, but in no case it is a replacement for Hadoop; we should think in Spark 
as a great companion to a modern Hadoop cluster deployment. Thus, when someone 
asks you the next question: Which is better, Hadoop or Spark? The correct answer 
would be: Neither. It is simply a wrong question. Our research has demonstrated how 
the best choice between each processing framework will depend on many factors. From 
my point of view, the most important are as follows: typology of the problem, designing 
efficient algorithms as well as performing several tuning options (including HDFS, 
YARN, MapReduce tasks and Spark jobs). Only if we keep in mind all these factors, we 
can achieve our goals. 

 

 

 

 

 

 

 

 

 

 



6.1 Future Work 
 

On the one hand, keeping in mind that we have performed our comparative tests with 
the default values, as a part of the future work it would be interesting to perform several 
tuning options in order to evaluate the set of algorithms. Taking into account the 
typology of the algorithm and the input data set, we can optimize the overall execution 
workflow as well as improving the performance of the whole system. Tuning options 
must include the underlying storage (HDFS), the resource manager (YARN) and the 
processing layer (MapReduce tasks or Spark jobs). In addition, if we want to achieve 
excellent results, we must understand the internals concepts of each programming 
model (both Mapreduce and RDD/DAG). After all, we are treating with parallel 
algorithms, so a good algorithm design is key concept in order to improve global 
performance (instead of increasing hardware resources in many cases). Therefore, future 
evaluations will have to consider both points of view. 

On the other hand, due to new trends and requirements, new processing 
frameworks are becoming more and more popular nowadays. As we commented 
previously (see Stream processing) several processing frameworks are being designed in 
order to continuously process and handle on the live stream data. Good examples are 
Apache Storm from Twitter and Apache S4 from Yahoo. Moreover, we cannot obviate 
hybrid computation models (such as micro-batching), which mixes both batch 
processing and stream processing techniques and will be suitable in specific cases. 
Spark Streaming is the most well-known solution that follows this hybrid methodology. 
Therefore, as a part of the future work, it would be interesting to begin taking a look at 
these new approaches, which will mark new trends in the future undoubtedly.    
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