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Abstract

In the last few years, Wireless Sensor Networks (WSN) are gaining importance

as a data collection mechanism for smart city systems. The development, de-

ployment and operation of these networks involve a wide and heterogeneous set

of technologies and participants. In many cases, city councils have outsourced

the implementations of their WSNs to different external providers. This has

resulted in a loss of control and visibility over the security of each individual

WSN and, as well, over the entire system as a whole.

In this article, we first describe the security problems related to the present

model of WSN implementation within smart city systems. Then, we propose a

non-intrusive architecture to recover part of the lost visibility, detect attacks on

the WSNs operated by third parties, increase control over the providers and, in

general, improve the security of the smart city from a holistic perspective.
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1. Introduction

Nowadays, city operational and management models are evolving towards

smart city systems using the possibilities offered by new information and com-
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munication technologies. However, the technological improvements in the cities

involve the introduction of equipment such as WSN into a new context. Al-5

though WSN technology has been widely studied in research, it is still immature

in real implementations and deployments in a city. Yet, in the last few years,

there has been a major increase in the number of deployments, which has in-

volved many different providers, technologies, solutions, requirements, etc. As a

consequence of this, security has been put aside in many WSN implementations,10

which opens up a security gap affecting the smart city system as a whole.

In most of the cases, smart city managers (i.e. the public administration)

have outsourced the WSN implementations to external providers. Generally,

the providers keep the responsibility of administering the networks, so they

deploy their devices only granting access to their employees. In this way, public15

administrations lose the means to verify that the WSNs are operating without

attacks or failures.

Nevertheless, public administrations are starting to become aware of the

security problems caused by the loss of visibility on their WSNs. Smart city

systems increase the interconnectivity among infrastructures and create new20

ways to spread vulnerabilities and to exploit infrastructure dependencies, caus-

ing damages to third parties. Thus, handing over security responsibilities only

to the providers, who have a limited view just to their network, increases the

risk of globally undetected incidents in the system. Therefore, public adminis-

trations need to find another way to ensure that WSN performance is faultless,25

which is not an easy task due to the following three intrinsic characteristics of

smart cities:

• Heterogeneity: Multiple providers use different technologies, under di-

verse security requirements.

• Limited access: Providers restrain public administrations from accessing30

their equipments.

• Difficulty to update: System updates become very costly and some-

times even impossible in WSNs.
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In this scenario, the first step towards improving security is a recovery of the

lost visibility over the networks operated by third parties. In this article, we pro-35

pose a non-intrusive architecture designed together with the city of Barcelona,

to bring the WSNs control back to the system administration and monitor the

providers. Moreover, the system allows to detect incidents due to both known

and unknown attacks, prevent contagion and stop their effects.

The rest of this paper is structured as follows: focussing on urban WSNs,40

Section 2 analyses the security problems and solutions proposed so far. In

Section 3, the proposed architecture is described. Then, Section 4 examines a

use case based on a public car park. Finally, Section 5 concludes the paper.

2. Related work

2.1. WSN security background45

WSN security has been extensively studied in the literature. Conventional

computer network countermeasures are normally not applicable to WSNs due

to the limited computational and energetic constraints of the nodes. Therefore,

preventive security solutions are adjusted or designed from scratch.

The use of cryptography has been proposed to defend against the most typ-50

ical attacks and to preserve basic security principles such as confidentiality,

integrity, availability and non-repudiation. For example, 802.15.4 and ZigBee

include different security modes based on symmetric cryptography[1]. How-

ever, cryptography neither defends against all attacks nor is effective against an

attacker who has previously stolen the network security keys. Hence, further55

security mechanisms are necessary.

Surveys [2, 3] summarize the most popular attacks on WSNs and also present

some solutions. So far, the proposed security techniques are valid in certain

circumstances or are designed to solve a specific problem. Due to the multi-

ple constraints of the WSNs, no mechanism applicable to all possible scenar-60

ios exists. For instance, deploying networks with resource-constrained nodes

(limited processing power) which cannot support some cryptographic modes is
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frequent. Furthermore, many vulnerabilities and their corresponding counter-

measures were discovered once the WSN had already been deployed. Thus, the

impossibility of updating certain types of WSNs becomes a serious problem for65

the administrators. Nowadays, no security system exists capable of covering the

wide range of heterogeneous scenarios present in the smart city. Accordingly,

additional security measures are required, apart from the traditional prevention

mechanisms that manufacturers usually embed in their devices.

2.2. Intrusion Detection Systems70

In order to not exclusively depend on the prevention countermeasures, In-

trusion Detection Systems (IDSs) are deployed as additional defensive barriers

to alert administrators when unusual situations are taking place in the system.

Principally, IDSs use techniques based on misuses or anomalies. Misuse-

based techniques rely on an extensive database of attack signatures. An attack75

signature is a pattern that can be used to identify an attacker’s attempt to

exploit a known operating system or application vulnerability. Alarms are raised

when new observations match any of the signatures[4]. The main advantage of

this type of detection is the low rate of false-positives. Nevertheless, it has the

drawback of not being able to detect unknown threats for which there is not yet80

any implemented signature.

Anomaly-based techniques are based on identifying differences between the

actual network activity and a predefined model considered as normal. Different

techniques are used to define what to consider normal[5]. The most widespread

techniques come from the Machine Learning domain. Unlike misuse-based de-85

tection, anomaly-based techniques are suitable to detect unknown attacks. On

the other hand, as main drawbacks, these techniques trigger high false-alarm

rates and the normal-activity profiles need to be periodically updated in net-

works with dynamic activity. In this area, classification techniques based on

Support Vector Machines (SVM) have proven to be effective in several con-90

texts related with intrusion and anomaly detection[6, 7]. A particular type of

SVMs especially convenient to detect anomalies is one-class SVM (OC-SVM).
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OC-SVM algorithms define a frontier in a vector space for a set of observations

(training data). This frontier is used to classify new observations as normal or

as outliers. This is an unsupervised learning technique where labeled training95

data is not required. Other learning techniques require labeled training data

for normal and anomalous instances (supervised techniques) or just for normal

instances (semi-supervised techniques). In the scope of intrusion detection in

a smart city, obtaining labeled data (particularly for anomalous instances) is

challenging. Therefore, unsupervised learning techniques such as OC-SVM are100

more appropriate in this context.

At present, there are many proposed IDSs for WSNs implementing anomaly

detection techniques[8]. However, IDSs for WSNs are usually designed to have

some components embedded in the nodes and/or to benefit from a previous

knowledge about the devices, the topology, the communication protocol or an-105

other feature of the WSN. Thus, they are not appropriate as a general solution

for a smart city.

2.3. Security Information and Event Management

The characteristics of an heterogeneous and complex system like the smart

city make solutions based on Security Information and Event Management110

(SIEM) suitable. SIEMs are designed for log management, IT regulatory com-

pliance, event correlation, active response and endpoint security[9]. Basically,

SIEM systems contribute to the security administration of organizations by

gathering and correlating the security information of several types, formats and

sources into a single system. Thus, administrators may drop out the traditional115

analysis using the security mechanisms in a silo perspective. With a SIEM, secu-

rity practitioners carry out complex monitoring and incident inquiries involving

multiple devices and protection mechanisms. In addition, the view over the

entire network becomes more manageable and the number of false alarms from

the individual systems decreases. In general, SIEMs are focused on network and120

system security. However, in the last years, they have as well become powerful

tools for analysis in other areas. Regarding WSNs, authors of [10] propose to
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modify the SIEM OSSIM1, in order to protect the WSNs in an hydroelectric

power plant.

SIEMs deliver excellent results when IT administrators have total control125

of the organization’s equipment and access to the logs is granted. As we have

already mentioned, the smart city is a totally opposite scenario and, therefore,

it is not feasible to deploy a SIEM. In the next section, we propose to enhance

a SIEM to overcome the restrictions of smart cities and to bring back visibility

to its system administrators. As far as we know today, there are no references130

in the literature addressing this specific topic.

3. Architecture

For the principal purpose of recovering the lost visibility over the smart city

WSNs, in this section we propose an architecture that adds an extra protection

layer to the system to monitor the health of the WSNs deployed by third parties.135

Thus, the first defensive line is still responsibility of the providers, who have

easier access, more knowledge and permission to their own infrastructure. Thus,

the proposed architecture has been designed in collaboration with the Barcelona

City Council with the main purpose of ensuring that the service providers are

implementing security measures to avoid attacks and to respond to incidents140

with low latency. At the same time, the proposed architecture has been designed

to be compatible with the deployed devices and respect the existing contracts

agreed with the providers. Furthermore, the proposed architecture avoids the

restrictions of the three characteristics mentioned in Section 1. Our solution

deploys a new layer in the servers of the smart city administrators. This layer145

is conceptually above the devices used by the different providers. Therefore, it

is not affected by the heterogeneity of the different configurations, it does not

require special permissions over third party devices and it is easily accessible

and updatable.

1”OSSIM”, http://www.alienvault.com/open-threat-exchange/projects
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Figure 1: Architecture of the proposed solution.

The proposed solution, shown in Fig. 1, is based on an enhanced SIEM con-150

tained within the city council facilities in order to make use of the recollection,

storage, processing and big data services offered by the smart city. The main

components and the data flow represented in the figure are:

1. Data originate from several sources in different data types. Generally,

application data come from the sensor readings and network status data155

come from gateways, watchdogs[11] or other devices with enough capacity

to monitor the WSN. In certain cases, in order to get a precise picture

of the network, WSN nodes log system status information, which is sent

regularly or under request[12, 13]. Then, these data are gathered, parsed

and normalized by remote data collectors distributed near the sources160

or by centralized data collectors installed near the processing engines.

2. Normalized data are the input of the two detection engines. On the one

hand, the rule-based detection engine, which has the objective to de-

tect known attacks and to correlate data from different sources (see Sec-

tion 3.1 for more information). On the other hand, the SVM-based de-165

tection engine, which uses machine learning techniques for the detection

of anomalies and unknown attacks (see Section 3.2 for more information).
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3. The detection engines independently analyse the input data and trigger

alerts that are stored in a common alert database.

4. The alerts from the database are correlated by the rule-based detection170

engine generating new alerts, which become candidates to be correlated

in future iterations.

5. The administration and visualization tools offer interfaces (e.g. dash-

boards, SMS alerts) and subscription mechanisms to inform about the

alerts and to manage the system.175

The core of this architecture is built around the two detection engines. As

it has been discussed in Section 2, these two types of detection techniques have

different characteristics that need to be combined for effective anomaly detection

in smart cities. In this way, the SVM-based detection engine allows to detect

attacks that have not yet been disclosed or for which a signature would be too180

complex to be implemented. On the other hand, the rule-based detection engine

is a highly reliable mechanism with which administrators are capable of easily

implementing rules to detect misuses and also to correlate the alerts triggered

by the SVM-based detection engine to reduce the number of false alarms. In

the following sections, we give a more detailed description of these two detection185

engines.

3.1. Rule-based detection engine

The rule-based detection engine provides the system with a highly reliable

alert module. An alert is mainly defined by a rule with the conditions that

trigger the alert, a schedule, a level of severity and the actions to execute (e.g.190

administrator warning, execution of certain processes).

Rules are built with two purposes. Firstly, to find evidences of undesirable

situations (e.g. traces of refused connections, parameters surpassing a thresh-

old). Secondly, rules are also built to correlate multiple evidences found in

different network components and/or moments in time. These correlation rules195

take advantage of the fact that some attacks leave traces in several parts of
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the system within a limited time window. These traces are normally a conse-

quence of the several steps required to perform an attack or the persistence of

the attacker after failing. The following are high-level examples of alerts:

• IF ∃ Event E200

FROM Log L ON Real-time

WHERE Field F

CONTAINS "Authentication failed"

THEN Alert(Severity: Low,

Action: Run Script S)205

• IF ∃ Event E

FROM Log L ON Real-time

WHERE Field F > Threshold

THEN Alert(Severity: Medium,

Action: Show in alert panel)210

• IF 6 ∃ Event E1 FROM Log L1 Last 2 Hours

AND ∃ Event E2 FROM Log L2 Last Hour

THEN Alert(Severity: High,

Action: Send SMS)

The proposed architecture gathers all the evidences of suspicious behaviours215

in the WSNs of the smart city in a single system. However, the real challenge

is to warn administrators just when the severity of the alarm is high enough.

To meet this goal, we propose to define rules in an iterative manner. First,

simple rules are designed to seek for traces of undesirable actions or parameters

beyond known thresholds. Then, more complex correlation rules are created to220

bind together several alerts triggered by simple rules, other correlation rules or

the SVM-based detection engine. Each step of this process results in an alert

with a higher reliability.

To simplify the definition of rules for an entire smart city, system adminis-

trators can use signature databases publicly available. For instance, Snort2 is225

a popular IDS that offers regularly updated signature databases for most com-

mon protocols. Quickdraw3 offers signatures for SCADA. As far as we know,

2”Snort”, https://www.snort.org/
3”Quickdraw”, http://www.digitalbond.com/tools/quickdraw/
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however, there are no signature databases specifically designed for WSNs or for

smart city applications (e.g. parking, environmental monitoring). This compli-

cates the management and the detection of anomalies in contexts with a vast230

number of incident types.

The rule-based detection engine is especially useful against attacks that are

clearly identifiable through thresholds and which are considered stable in the

long term. However, in a changing environment such as the smart city, thresh-

olds are usually hard to define because the environment is dynamic and changes235

according to the seasons, the time of day, etc. Furthermore, unknown attacks,

for which no rules are defined, are undetectable. In the next section, we present

a complementary detection engine to overcome these problems.

3.2. SVM-based detection engine

The SVM-based detection engine uses unsupervised OC-SVMs to trigger240

alerts when new observations are identified as outliers. For each system to

protect, we propose to regularly train a OC-SVM with vectors with the most

representative system features. Thus, each feature vector becomes a picture

of the system state within a chosen time window. At scheduled intervals, new

feature vectors with the system’s current state are built and tested with the245

trained OC-SVM. The selected features come from:

• Application data from sensor readings.

• Network status data from the base station and other available devices.

• Data from other services of the smart city with temporal or spatial

relationship with the monitored application.250

For instance, our proposal allows the use of samples from the historical

records to train a OC-SVM to protect a public car park application. The fea-

ture vectors are composed of the three data types described above. Within a

time window of two hours, data are aggregated for each sensor to represent the

amount of free/occupied state changes (application data), the number of lost255
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packets (network status data) and the flow of vehicles in the nearby roads (data

from other services). Then, every two hours the trained OC-SVM is used to

test if there are anomalies in the data received from the smart city.

4. Use case: attack on a parking WSN

In this section, we validate the proposed architecture through a use case260

structured around a public car park. Parking data come from a service provider

of Barcelona. With the goal of building more comprehensive scenarios, the

parking data is supplemented with WSN simulations made with Castalia 3.34.

To analyze the data, the proposed solution is implemented on top of the SIEM

Splunk5 and is deployed in Barcelona City Council data center. The alert mod-265

ule of this SIEM is used as the rule-based detection engine. Furthermore, Splunk

is extendable with custom commands to enhance search and alert rules. Thus,

the SVM-based detection engine is implemented with two custom commands

for training and testing OC-SVMs. In this use case, we create alerts based on

simple and correlation rules and we use OC-SVMs to detect unknown attacks270

(i.e. attacks for which there are no implemented signatures in the database).

Moreover, we validate that a combination of network status and application data

from related systems makes up for the reduced access to third party devices in

smart cities.

4.1. Scenarios275

In order to validate the flexibility of our solution, we present seven scenarios

based on different configurations of parking WSNs. To capture the variability

of layouts and the diversity of technologies in the smart city, the networks are

designed relying on two types of data link protocols (802.15.4 and TMAC), two

types of topologies (star and tree) and with a different amount of sensors. The280

number of parking sensors varies between 9 and 100. In addition, in scenarios 1

4”Castalia”, http://castalia.npc.nicta.com.au/
5”Splunk”, http://www.splunk.com/
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Table 1: Summary of the scenarios.

Scenario parking

sen-

sors

Other sensors MAC Topology

1 9 2 CO2, 3 light, 1 mass,

2 humidity

802.15.4 Star

2 9 2 CO2, 3 light, 1 mass,

2 humidity

TMAC Star

3 30 2 CO2, 3 light, 1 mass,

2 humidity

802.15.4 Star

4 30 2 CO2, 3 light, 1 mass,

2 humidity

TMAC Star

5 100 None 802.15.4 Star

6 100 None TMAC Star

7 100 None 802.15.4 Tree

- 4, sensors from a miscellany of applications (environmental monitoring, light

and mass in a container) share a single WSN with different sending behaviours.

While parking, light and mass sensors are reactive, CO2 and humidity sensors

are programmed to send the readings at regularly scheduled intervals. Table 1285

shows a summary of the scenarios.

4.2. Attack model

We assume that attackers intend to gain advantage over other users of the

public parking spaces. To this end, the attackers disrupt the communication of

several nodes during high occupancy hours. Thus, parking applications do not290

receive updates when parking slots become free and, therefore, attackers have a

higher probability to find available slots in certain areas.

Different types of attack are conducted depending on the specific network
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configuration:

• Jamming. This attack at the physical layer consists in sending a high295

power signal to the gateway in order to corrupt legitimate packets.

• Unfairness. At the data link layer, the attackers exploit the channel ac-

cess protocols to prevent transmissions from legitimate nodes. In 802.15.4

configurations, legitimate nodes use Clear Channel Assessment (CCA) to

check whether the channel is free before transmitting. The attackers con-300

tinuously occupy the communication channel impeding other transmis-

sions. In TMAC configurations, the attackers corrupt reference control

packets used by legitimate nodes to initiate transmission.

• Selective forwarding and blackhole. In these attacks at the network

layer, the attackers capture a node that stops retransmitting some packets305

from some nodes (selective forwarding), or from all of them (blackhole).

4.3. SVM-based detection

A SVM-based detection engine prototype has been implemented with two

Splunk custom commands (svmtrain, svmtest). The machine learning mecha-

nism relies on the library scikit-learn 0.15.2[14].310

The command svmtrain trains a OC-SVM. Below we show the use of this
command with training data from the Scenario 7. The feature vectors contain
the hour, the number of state changes of the parking sensor and the rate of lost
packets:

index=20150325-100nodes802154-multihop sim_type=train315

| fields - * | fields + "hour", * appsend, * applossrate

| svmtrain file_name=scenario7 nu=0.01 gamma=0.01

The command svmtest tests each vector from a dataset using a previously
trained OC-SVM:

index=20150325-100nodes802154-multihop sim_type=test320

| fields - * | fields + "hour", * appsend, * applossrate

| svmtest file name=scenario7

In this use case, we use these two commands to train a OC-SVM with a

Radial Basis Function (RBF) kernel for each proposed scenario. Then, we test
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Table 2: Metrics.

Detection rate
true positives

true positives + false negatives

False alarm rate
false positives

false positives + true negatives

F-score
true positives

true positives + (false negatives + false positives)/2

the detection engine with a failure-free dataset and several datasets with the325

mentioned attacks. The vectors to build the datasets contain application data

(e.g. sensor readings) and network status data obtained at the base station (e.g.

number of lost packets, number of packets received with interferences, number

of sent RTS).

To evaluate the detection results, we calculate three standard metrics widely330

used to assess IDSs and machine learning algorithms [15]. These metrics are

summarized in Table 2. The detection rate is calculated dividing the number of

detected attacks (true positives) by the number of total attacks (true positives

+ false negatives). The false alarm rate, also known as false positive rate, is

calculated dividing the number of instances that are incorrectly classified as335

attacks (false positives) by the number of total instances that are not attacks

(false positives + true negatives). Finally, the f-score takes into account the

number of true positives over the arithmetic average of predicted positives and

real positives.

As Table 3 shows, the combination of application data with the available340

network status data at the base station results in high detection rates in all the

scenarios. Furthermore, the parameters to configure the OC-SVM are not mod-

ified among scenarios, which validates that this unsupervised machine learning

mechanism has high flexibility. However, the false alarm rate in certain scenar-

ios is also high, especially in the scenarios with more nodes. We see that, in the345

tree topology, the lack of information about far apart nodes at the base station

reduces the detection rate when a small percentage of the nodes is affected by
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Table 3: SVM-detection results.

ScenarioAttack Detection rate (%) False alarm rate(%) F-score (%)

1 Jamming 98 2 97.51

1 Unfairness 97.5 2 97.26

2 Jamming 98.5 3.33 96.81

2 Unfairness 99 3.33 97.06

3 Jamming 99 3.67 96.82

3 Unfairness 99 3.67 96.82

4 Jamming 100 3.67 97.32

4 Unfairness 99.5 3.67 97.07

5 Jamming 100 4.91 93.14

5 Unfairness 95.56 4.91 90.89

6 Jamming 100 13.43 83.24

6 Unfairness 90.84 13.43 78.61

7 Blackhole 100 14.54 82.29

7 Sel.forward. 82.78 14.54 73.31

the attacker (i.e. selective forwarding) and it increases the false alarm rate. In

the same way, the features extracted from the data link layer in the TMAC sce-

nario provide the trained models with less information than the features from350

the physical layer used in the 802.15.4 scenario in the star topology. This also

results in a decrease in the detection rate when few nodes are affected (i.e. un-

fairness) and an increase in the false alarm rate. In the next section we use the

rule-based detection engine to define correlation rules in order to reduce this

inconvenience.355
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index="parking_simulation" host=20150113-9sensors802154-2h

| eval count_co2_sent = ’10_appsend’ + ’11_appsend’ + ’12_appsend’ | search count_co2_sent<3

(a) CO2 not received: Medium severity alert scheduled at 20h to verify that the

regular CO2 readings from 19h have been received.
index="parking_simulation" host=20150113-9sensors802154-2h | fields - _* | fields + "hour", "0_radiopckfailedNoInt",

"0_radiopckfailedInt", "0_radiopckfailedBelowSens", "0_radiopckfailedNonRX", "0_radiopckreceivedWithInt",

"0_radiopckreceivedWithoutInt", *_appsend | svmtest file name=20150113-9sensors802154-2h | search test=-1

(b) SVM outlier: Medium severity alert to identify outliers in real time using a

trained OC-SVM within a two hour window.
index=_audit action=alert_fired | eval ttl=expiration-now() | search ttl>0

| eval is_not_co2=if(ss_name=="Scenario 1 - CO2 Not Received",1,0) | eval is svm=if(ss_name=="Scenario 1 - SVM outlier",1,0)

| stats sum(is_not_co2) as sum_alert1 sum(is_svm) as sum_alert2 | eval num_alerts=sum_alert1+sum_alert2 | search num_alerts>1

(c) Multiple alerts within an hour: High severity alert to detect that several

evidences are affecting the network within an hour window.

Figure 2: Rule examples for alert definition.

Figure 3: Alerts in the alert panel in Splunk.

4.4. Rule-based detection with alert correlation

As it has been previously mentioned, the main problems of a rule-based

detection engine are the difficulty to define thresholds and the unfeasibility to

detect unknown attacks. At the same time, machine learning mechanisms gen-

erate too many false positives to be considered fully reliable. As an example,360

in this use case, we create a set of low and medium severity alerts based on

rules that look for evidences of anomalies, as well as highly reliable alerts based

on correlation rules. Example alerts for Scenario 1 are shown in figures 2a, 2b

and 2c. These alerts are triggered with the datasets from the attacks described

in 4.2 resulting in the warnings on the alert panel shown in Fig. 3. It must365

be emphasized that to trigger the high severity warning on Fig. 3, our pro-

posal combines data from different WSN applications (i.e. CO2 and parking);

application and network status data; and it is also paramount to combine the

rule-based and the SVM-based detection engines.
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5. Conclusions370

In this article, we have seen that traditional security needs to be enhanced

in order to detect anomalies in smart city WSNs operated by third parties. The

reduced access to the service provider network devices limits the visibility over

the WSNs to smart city administrators and prevents a conventional log analysis

using just rule-based mechanisms. To overcome this, we have proposed a non375

intrusive architecture that combines a rule-based and a SVM-based detection

engine. This architecture deploys a new security layer in the central servers

above the miscellaneous equipments of the providers. Thus, problems due the

heterogeneity, the limited access or the difficulty to update certain devices are

avoided. Moreover, we have proposed to supplement the reduced network status380

data with the application data sent by the sensors and with data from other

temporally or spatially related smart city services.

Furthermore, we have implemented a prototype of the proposed architecture

on top of Splunk and we have presented a use case structured around a public

car park to validate it. We have seen that the two detection engines complement385

each other. On the one hand, the rule-based detection engine triggers highly

reliable alerts, but it is not capable of detecting unknown attacks. Besides, some

rules require thresholds that are hard to define in a context such as the smart

city with intrinsic variability associated to the season of the year, the number

of sensors, etc. On the other hand, the SVM-based detection engine detects390

unknown attacks and its unsupervised learning nature provides with flexibility

in a changing environment. Nevertheless, machine learning techniques have the

drawback of a high false alarm rate. To improve the reliability of the alerts,

we have proposed to iteratively define correlation rules to group alerts from

both detection engines. Thus, the proposed architecture increases smart city395

security and returns part of the lost visibility over the WSNs to smart city

administrators.
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