
Promoting the development of secure
mobile agent applications

Carles Garrigues∗,a, Sergi Roblesb, Joan Borrellb, Guillermo Navarro-Arribasc

aEstudis d’Informàtica, Multimèdia i Telecomunicació, Universitat Oberta de Catalunya, Rambla del
Poblenou 156, 08018 Barcelona, Spain

bDept. d’Enginyeria de la Informació i de les Comunicacions,Edifici Q (ETSE), Universitat Autònoma de
Barcelona, 08193 Bellaterra, Spain

cIIIA, Institut d’Investigació en Intel·ligència Artificial, CSIC, Consejo Superior de Investigaciones
Científicas, 08193 Bellaterra, Spain

Abstract

In this paper we present a software architecture and a development environment for the
implementation of applications based on secure mobile agents. Recent breakthroughs
in mobile agent security have unblocked this technology, but there is still one important
issue to overcome: the complexity of programming applications using these security
solutions. Our proposal aims to facilitate and speed up the process of implementing
cryptographic protocols, and to allow the reuse of these protocols for the development
of secure mobile agents. As a result, the proposed architecture and development envi-
ronment promote the use of mobile agent technology for the implementation of secure
distributed applications.

Key words: mobile agents, sofware architecture, aided application development,
specification language.

1. Introduction

One of the main consequences of the Internet revolution was the decentralisation of
information and resources. This decentralisation gave rise to the need for new software
architectures that supported the mobility of the code to thelocation where the resources
resided. In order to respond to the needs of this new scenario, a promising technology
emerged in which the software was able to move from one network node to another
autonomously: the mobile agent technology.

The use of mobile agents contributes to the adaptability of the software, for the code
executed on the hosts of a distributed system is not located on the hosts themselves, but
in the mobile agent that carries the application code and visits all these hosts. Perform-
ing a change in such distributed application only involves modifying the mobile agent

∗Corresponding author. Tel.:+34-933263726
Email addresses:
garrigueso�uo
.edu (Carles Garrigues),sergi.robles�uab.es (Sergi

Robles),joan.borrell�uab.es (Joan Borrell),guille�iiia.
si
.es (Guillermo Navarro-Arribas)

Preprint submitted to Journal of Systems and Software November 5, 2010

that carries the code, not the implementation of all the hosts comprising the distributed
system. Designing applications using mobile agents, therefore, results in more flexible
software applications and, thus, more stable software architectures. As the software
architecture represents those design decisions that are hardest to change, ensuring the
architectural stability is essential to reduce the costs ofmaintaining and evolving the
software (Bahsoon and Emmerich, 2006).

However, in numerous occasions, using mobile agent technology also involves im-
plementing complex security mechanisms. Research efforts in the field of mobile agent
security have been quite intense over the last decade. The most relevant proposals ad-
dress the protection of the agent’s itinerary (Garrigues etal., 2008b), the protection of
the results generated during the agent execution (Zhou et al., 2004), and the protection
against replay attacks (Garrigues et al., 2009).

Nevertheless, designing security solutions is not enough.Development of secure
mobile agent applications must be encouraged as well. Thereis still a barrier to over-
come for achieving this: the difficulties that programmers have for implementing and
using this type of security solutions. The security systemsthat protect mobile agents
are theoretically and technically valid, but this does not suffice: it is also necessary to
provide a handy and convenient way of developing these systems, without requiring a
deep knowledge and expertise in cryptography.

New tools for the design and development stages have to be created (Mahmoud and
Yu, 2006), simplifying to the greatest extent possible the tasks carried out by both the
designer of new cryptographic protocols and the developer of new applications.

There is very little literature about these specific aspects, for the main work done on
mobile agents has been focused on developing new agent protection mechanisms. More
basic usability issues concerning the human developer havebeen left aside. As a result,
the implementation of these mechanisms can turn out to be more time-consuming than
the implementation of the agent tasks.

In this paper, we present a development environment that simplifies the implemen-
tation of applications based on secure mobile agents. In order to create our secure
mobile agents, a new software architecture is used that separates the implementation
of the agent’s tasks and its security mechanisms. As a result, the architecture promotes
the reuse of these two parts of the agent development. In addition, the new software
architecture relieves platforms from having to deal with different protection protocols
of different agents, for the agent protection mechanisms are handled by the agents
themselves.

The proposed development environment includes three main tools: the Agent
Builder, the Itinerary Designing Tool and the Agent Launcher. These tools allow de-
velopments to be divided into different components, where each component is imple-
mented in a different development stage.

The key element of our proposal is the Agent Builder, which enables the definition
of agent protection protocols using the Mobile Agent Cryptographic Protection Lan-
guage (MACPL). MACPL is a domain-specific language that offers several benefits:

• It does not require an extensive knowledge of cryptographicapplication pro-
gramming.

2

• It provides high level cryptographic functions that do not depend on any specific
algorithm or implementation, thus promoting code reuse.

• Implementation is independent of the agent’s itinerary, ofthe tasks executed on
each platform, and of the execution environment in which agents run.

These advantages allow security experts to define protocolsthat can be easily reused
multiple times by agent application programmers. Thus, ourproposal promotes the
development of mobile agents with the security mechanisms required by real-life ap-
plications.

It is worth noting that this paper does not provide a new agentprotection mecha-
nism. Our environment aims to simplify the implementation and use of current protec-
tion protocols, as well as others that may appear in the future. As a result, our proposal
is not constrained to any specific security mechanism.

The rest of the paper is structured as follows. In section 2, we introduce the related
work on simplifying mobile agent development and the security advances made in this
field. In section 3, we describe the new mobile agent softwarearchitecture, with the
components of a secure mobile agent. In section 4, we presentthe new development
environment, the methodology and the stages of the development process. Section 5
is devoted to the key element of our development environment: the Agent Builder. In
section 6, we highlight the main features of the language that simplifies the implemen-
tation of agent protection protocols: MACPL. In section 7, we describe the auxiliary
tools of our proposal: the Itinerary Designing Tool and the Agent Launcher. In section
8, an example is presented to show how our proposal could be applied to a real sce-
nario. In section 9, we evaluate the degree of simplificationachieved by our proposal.
Finally, in section 10, we provide some guidelines for future research directions and
conclude the paper.

2. Related work

A mobile agent is a software that can move autonomously from one computer to
another while executing (White, 1994). The migration of the whole running process,
along with its state, code and resources is what makes mobileagents different from
other kinds of distributed applications.

Several advantages have been identified in using mobile agents in distributed sys-
tems (Lange and Oshima, 1999). The most frequently cited advantages include: re-
duction of network load, by moving agents to the data serversinstead of transferring
large amounts of data through the network; decrease in communication latency, by
interacting locally with the resources available at the remote servers; dynamic adapta-
tion, for agents can react autonomously to the changes in their execution environment;
and better support for mobile devices with intermittent connections, for mobile agents
can operate asynchronously without requiring a continuously open connection, among
others.

Numerous applications have been developed that demonstrate the benefits of mo-
bile agent technology. Examples of these applications can be found in several areas:
information retrieval (Lu and Hsu, 2007), network management (Gavalas et al., 2008),

3

intrusion detection systems (Wang et al., 2006), web searching (Zerfiridis and Karatza,
2004), among others.

However, the benefits offered by mobile agents have not been sufficient to stimulate
their widespread deployment. The development of mobile agents usually involves im-
plementing complex security mechanisms, and very little research has been conducted
to simplify the implementation of these mechanisms. In the following sections, we
will outline the relevant work done in this regard. First, wewill present some of the
better known mobile agent platforms. Then, we will discuss the proposals intended to
simplify mobile agent development. Finally, we will present the most relevant work
done to provide security to mobile agents.

2.1. Mobile agent platforms
Firstly, it must be noted that literally tens of mobile agentplatforms have emerged

since the appearance of this new paradigm (see Trillo et al. (2007) for a survey of agent
platforms). Among these, we can highlight Telescript, ARA,D’Agents, Aglets, Con-
cordia, Grasshopper, Ajanta, SeMoA, AgentScape and JaDE. Most agent platforms
presented so far are prototypes that have only been used for research purposes. Few
of them have users outside the academic or research centre where they were created.
The platform that has more users at this present time is undoubtedly JaDE (Bellifem-
ine et al., 2007). In the beginning, JaDE only supported intra-platform mobility, which
means that agents could only move between the containers of asingle platform. Later,
inter-platform mobility was added (Cucurull et al., 2007),thus allowing agents to mi-
grate between different platforms.

All these mobile agent systems have a similar purpose: to provide an execution
environment to agents which allows them to use, search and provide services, such as
sending messages to each other or moving to other platforms.Most of these systems,
such as JaDE, are implemented in Java due to its reflection capabilities and the avail-
ability of a dynamic class loader. Much of the research conducted on mobile agents has
been centred on defining new mobile agent platforms, usuallyleaving aside usability
aspects.

2.2. Simplifying agent development
Research carried out on mobile agents has also given rise to multiple proposals to

simplify the development of this kind of applications. These proposals can be divided
in two main groups: on the one hand, proposals based on using new agent programming
languages that simplify the implementation of the agent tasks and, on the other hand,
proposals aimed at aiding in the design of mobile agent-based applications.

Regarding the first group, most proposals suggest the use of new declarative lan-
guages, for their inherent high level of abstraction simplifies the implementation and
readability of programs. Among these declarative languages, some proposals are based
on logic languages (Zunino et al., 2002), and others are based on functional languages
(Kambayashi and Takimoto, 2004).

Regarding the proposals intended to aid in the design of mobile agent applications,
many are based on the use of design patterns (Modak et al., 2005; Lima et al., 2004;
Tahara et al., 1999, 2001). Design patterns are proven solutions to recurring problems
that arise within some contexts, thus enabling an easy reuseof good software design.

4

In conclusion, numerous proposals have been presented to simplify the implemen-
tation of agent tasks. However, these proposals have originated in the artificial intelli-
gence world, and are focused on allowing programmers to express the agent’s cognitive
capabilities explicitly (reasoning, planning, decision making. . .). Thus, they are suit-
able to specify the agent’s reasonings or inferences, not the cryptographic mechanisms
needed to protect the agent’s itinerary or results. Therefore, these approaches cannot
be used to simplify the implementation of agent protection mechanisms.

2.3. Mobile agent security
Since the beginning of mobile agent research, many securityissues have been iden-

tified. Research efforts in the field of mobile agent security have been quite intense
over the last decade. Regarding the protection of platformsfrom agent or external at-
tacks, several sound solutions have been presented (Wahbe et al., 1993). However, the
problem of malicious hosts attacking an agent is by far much more difficult to solve.
Platforms can do anything when executing an agent, from a denial of service to prevent
its access to a given resource, to a modification of its code and data in order to change
its final behaviour.

Although achieving a complete solution is considered impossible, protocols have
been presented that mitigate several problems. The proposed solutions include the use
of cooperative agents (Roth, 1998; Ouardani et al., 2007), cryptographic tracing (Vi-
gna, 1997), obfuscated code (Hohl, 1998), secure coprocessors (Yee, 1994), protection
of the computational results (Maggi and Sisto, 2003), or cryptographic protection of
itineraries (Mir and Borrell, 2003).

Many of these techniques have a limited applicability, for they have been designed
for particular scenarios that are actually rarely found in real-life applications. For ex-
ample, the use of secure coprocessors is only suitable for closed environments, such
as corporate networks, where an expensive tamper-proof device can be installed on
each platform. On the other hand, the cryptographic protection of the itinerary and the
computational results are considered to be more suitable for practical scenarios.

Regarding the protection of the agent’s itinerary, the proposed techniques aim at
preventing platforms from accessing or manipulating partsof the agent’s itinerary in-
tended for other platforms. As for the protection of the computational results, the
proposed solutions ensure that no platform can tamper with the results generated by
another platform. Obviously, these approaches do not solveall problems related to
malicious platforms because the execution of the agent taskis always controlled by the
platform. Therefore, the platform can still manipulate thebehaviour of the agent and
the results generated on that platform.

In spite of this, the protection of the itinerary and the computational results is still
of utmost importance in many applications. This is especially true in scenarios where
platforms can compete with each other, such as those presented in Farmer et al. (1996).
For example, imagine that an agent is given an itinerary withseveral shops where it has
to find lowest price of a product. A malicious shop might modify the behaviour of the
agent so that the price obtained in subsequent shops was always multiplied by 3. As a
result, the price offered by the malicious shop would always become the lowest.

This attack could be prevented if the initial itinerary was cryptographically pro-
tected, so that platforms were not allowed to access or modify the tasks executed on

5

other platforms. In addition, the computational results should be protected in order to
prevent modifications of the prices obtained in previous platforms.

Several sound solutions have been presented for the protection of the agent com-
putational results (Maggi and Sisto, 2003; Zhou et al., 2004). Regarding the protection
of the agent’s itinerary, techniques such as Karnik and Tripathi (2001) or Roth (2002)
enable the protection sequential itineraries. On the otherhand, Mir and Borrell (2003)
and Garrigues et al. (2008b) also support the protection of flexible itineraries.

In conclusion, we can see that the research carried out so farhas given rise to sev-
eral mechanisms to provide security to mobile agents. However, the implementation
of these mechanisms is a difficult task, which requires significant expertise and often
discourages the use of this technology. In order to solve this problem, the next sec-
tions describe, first of all, how to implement secure mobile agents, and then, how this
implementation can be simplified using the proposed development environment.

3. A new mobile agent software architecture

Mobile agents implement different security mechanisms depending on the require-
ments of the given application. For example, they can implement mechanisms for the
protection against replay attacks (Garrigues et al., 2009), mechanisms for the protection
of the itinerary (Garrigues et al., 2008b), the computational results (Maggi and Sisto,
2003), etc. These security mechanisms are usually managed by the agent platform,
using a so-calledplatform-drivenapproach.

The platform-driven approach, however, has several drawbacks. Platforms must
support all existing security protocols and they must be updated whenever a new pro-
tocol appears or a current one is improved.

Our software architecture is based on implementing agents using anagent-driven
approach. Our agent-driven approach is based on providing agents with a code that
manages their own protection and execution. This code is referred to as the agent’s
control code. By executing the control code, the agent carries out all itstasks in an au-
tonomous way, without requiring platforms to know how the agent is internally struc-
tured. Agents can also decrypt their itinerary data using platforms’ private keys and,
for this purpose, they use a public decryption function provided by platforms. We de-
scribed the functionality and use of this public decryptionfunction in Ametller et al.
(2004).

Our mobile agent architecture also provides agents with anexplicit itinerary, which
stores the set of platforms that the agent has to visit and thetasks that have to be
executed on each platform. Explicit itineraries are comprised of different types of
nodes, where each node represents a stage in the agent route.Each node has a local
task and an execution platform associated with it. The task assigned to a node must start
and finish on the same platform, which implies that it must notcontain any migration
to another platform. Migrations always take place during the transition from a node to
its successor.

Different node types can be used to create the explicit itinerary. The following are
the types that have been defined so far. A more detailed explanation of the set of node
types that can be used can be found in Garrigues et al. (2008b).

6

• SequenceThis node has only the task and the platform associated with it. The
agent executes the task and migrates to the platform assigned to the next node.

• If This node has a subitinerary associated with it, in additionto the local task and
the platform. The subitinerary is made up by one or more nodesof any type. The
local task executed on theif node includes a condition method, which decides
whether or not the subitinerary has to be traversed by the agent.

• SwitchThis node is similar to the previous one, but it is associatedwith two or
more subitineraries. Inside its local task, theswitchnode includes a condition
method that decides which subitinerary must be traversed next.

• SetThis node is also associated with two or more subitineraries. In this case,
however, after the execution of theset local task, all subitineraries are traversed
by the agent. Depending on the implementation, this traversal can be done in
sequence, one subitinerary after the other (in any order), or it can be done in
parallel, sending a clone of the initial agent to each subitinerary.

• Loop This node has a single subitinerary associated with it. The agent visits
the loop node and this subsequent subitinerary repeatedly. Every time the agent
visits theloopnode, it decides whether or not a new iteration has to be started.

• DiscovererThis node is also associated with a single subitinerary. However, this
subitinerary is special because it can include nodes that are executed on platforms
determined at runtime. When the platform where a node will be executed is not
specified at the time of creating the agent, we say that the node has adynamic
location. As explained below, a special property has to be set on a nodein order
to specify that it has a dynamic location.

Nodes can have their locations determined at runtime, and two special properties
are used for this purpose. On the one hand, theunchanged locationproperty, which
can be used to specify that the node will be executed on the previous platform visited
by the agent. On the other hand, thedynamic locationproperty, which can be used to
generate the node’s final location at runtime, in the platform assigned to thediscoverer
node.

It is worth noting that our proposal is not restricted to the previous set of node
types and properties. New types and properties can be added in the future when new
requirements appear.

3.1. Advantages of the new mobile agent software architecture

Implementing secure mobile agents using this new software architecture has a num-
ber of advantages.

First of all, storing the explicit itinerary in a separate structure allows its protec-
tion using cryptography. Protecting the itinerary is usually very important because it
ensures that platforms can only access their part of the itinerary.

7

Second, the control code can be easily reused since it does not depend on the tasks
carried out by the agent. Therefore, the management of the explicit itinerary, the com-
putational results, or any other mechanism related to, for example, fault tolerance, can
be implemented once and reused multiple times.

Third, agents may have different security requirements and, therefore, they may
implement different protection schemes. Our software architecture relieves platforms
from having to deal with different protection protocols of different agents. Thus, plat-
forms handle all agents the same way: the control code is executed as soon as the agent
arrives and all the remaining operations are delegated to this control code. Likewise,
the architecture relieves platform administrators of the need to update their platforms’
code whenever a protocol is improved or a new one has to be supported.

Fourth, having different node types enables a more flexible design of agent itiner-
aries. The agent is not constrained to follow a fixed route, but rather it can choose
one subitinerary or another at runtime, or it can even clone itself to visit various
subitineraries at the same time.

The implementation of a mobile agent with appropriate security mechanisms can be
very complex, especially when agents implement several security mechanisms. These
mechanisms are usually based on the use of cryptography, andtheir implementation is a
difficult task that usually entails much more work than the implementation of the agent
tasks. In the next sections, we will see how this implementation can be simplified, and
how our secure mobile agents are generated.

4. Development environment

The implementation of a secure mobile agent can result in thedevelopment of sev-
eral security mechanisms. These mechanisms involve, for example, obtaining platform
certificates, performing cryptographic operations to encrypt and decrypt some parts of
the itinerary, and so forth. Thus, the implementation can entail the use of public key in-
frastructures, symmetric and asymmetric keys, cryptographic hashes and, in general, an
extensive knowledge of cryptographic application programming. As mentioned earlier,
none of the previous proposals on mobile agent security has addressed the difficulties
faced by programmers when implementing these security mechanisms.

In order to relieve programmers of this burden, this sectionpresents a development
environment that simplifies the implementation of secure mobile agents. This environ-
ment is comprised of three main tools: the Itinerary Designing Tool, the Agent Builder
and the Agent Launcher.

The Itinerary Designing Tool (IDT) is a graphical tool that can be used to design the
agent’s itinerary. This tool provides a graphical itinerary editor where the programmer
can define the set of nodes that comprise the itinerary. Then,a task and an execution
platform can be assigned to each node. This tool also provides a task editor, where
new tasks can be created and compiled. With all the information provided by the
programmer, this tool produces an XML specification of the initial itinerary. More
details about this tool will be given in section 7.

Once the XML itinerary specification has been produced by theIDT, the Agent
Builder can be used to generate the final agent. In order to usethe Agent Builder, pro-
grammers must specify what protection mechanisms are required by their application.

8

Itinerary

MACPL
specification

Itinerary
Designing

Tool

Agent
Builder

Agent
Launcher

Programmer

Itinerary
specification

Executable
Agent

Agent platforms

Security
Expert

End
User

Figure 1: Overview of the mobile agent development environment

These mechanisms must be defined using the Mobile Agent Cryptographic Protec-
tion Language (MACPL), which is a new specification languagespecifically designed
to simplify the implementation of agent protection protocols. More details about the
Agent Builder will be given in section 5.

Once the agent is obtained, the Agent Launcher (AL) is used toput the agent into
execution on the first platform of the itinerary. More details about the Agent Launcher
will be given in section 7.

Figure 1 shows a representation of all the components that comprise the proposed
development environment. As this figure shows, different roles are involved in the
development process. First, the agent programmer, who designs the explicit itinerary
and generates the XML specification using the IDT. Second, the security expert, who
implements the agent protection protocols using MACPL. Finally, the end user, who
executes the agent and obtains its results without any knowledge about security or
programming at all. The separation of these three roles shows the flexibility and ease
of reuse that the proposed development environment brings to implementations. Thus,
the development of a whole system is divided into independent components—XML
and MACPL specifications—and independent tools that can be used by completely
different people.

Thus far, the components of the proposed development environment have been
presented. It is worth noting that this environment is not designed for any specific ex-
ecution platform. It can be implemented to simplify the development of secure mobile
agents in any programming language and for any execution environment. The next sec-
tions will be devoted to describe the main features of the Agent Builder and MACPL,
and the simplification achieved as a result of their utilisation.

5. The Agent Builder

The Agent Builder (AB) is comprised of three main modules: the Agent Setup
Module, the Control Code Module and the Agent Creator Module. These modules,

9

together with their inputs and outputs, are represented in figure 2. As this figure shows,
the AB has two main inputs: the MACPL specification and the XMLitinerary speci-
fication. The XML itinerary specification is the document generated by the Itinerary
Designing Tool. With regard to the MACPL specification, it iscreated by the agent
developer or a security expert, and is divided into two parts:

• The specification of the agent setup operations, which initialise the data struc-
tures used by the agent during its execution (e.g. protecteditinerary, trip marker,
or any other).

• The specification of the operations performed by the controlcode.

XML itinerary

Key
Generator

Control
Code

Module

Agent
Setup

Module

Agent
Creator

Public
Key

Private
Key

Agent runnable
instance

MACPL spec

Agent Setup spec

Control Code spec

Hash(ControlCode)

Agent
Builder

Agent
tasks

Figure 2: Components of the Agent Builder with its main inputs and outputs

The MACPL specification and the XML itinerary specification are used by the AB
to generate a secure mobile agent as follows:

First of all, the AB generates a random pair of asymmetric keys—a public key and a
private key. This keypair is used to allow agents to use the platforms’ public decryption
function, as described in Ametller et al. (2004).

Then, the Control Code Module compiles the second part of theMACPL specifica-
tion to generate the agent control code. This part of the MACPL specification defines

10

how the control code manages the data structures used by the agent during its exe-
cution (protected itinerary, trip marker, etc.). In addition, the Control Code Module
inserts the random public key previously generated inside the resulting control code as
a compile-time constant (Ametller et al., 2004).

Next, the Agent Setup Module runs a MACPL interpreter to execute the first part
of the MACPL specification. This part of the MACPL specification defines how to
initialise the data structures required by the agent execution. The protected itinerary is
one of the data structures that must be always created duringthe agent setup. For this
purpose, this module uses the XML itinerary specification provided by the IDT. This
module also uses the random private key previously generated in order to sign every
platform-specific code included in the protected itinerary(Ametller et al., 2004).

Finally, the Agent Creator Module combines the outputs of the two previous mod-
ules to create the executable mobile agent.

At this point, it is worth noting that the agent’s tasks are implemented by the pro-
grammer in the programming language supported by the execution environment, which
can be Java, C++, or any other. Other protocols have been presented to simplify the im-
plementation of the agent’s tasks, usually providing new agent programming languages
(Zunino et al., 2002; Kambayashi and Takimoto, 2004). However, these protocols do
not allow developers to implement any agent protection mechanisms. Because of this,
the proposed development environment is focused on aiding the programmer in the im-
plementation of the security protocols required by secure mobile agent applications. If
necessary, the proposed environment can be combined with other proposals to simplify
the implementation of the agent tasks, too.

As can be seen, the proposed development environment is not constrained to any
specific set of protection protocols. The programmer uses one MACPL specification
or another depending on the requirements of the given application. Thus, the proposed
environment simplifies the development of current protocols as well as others that may
appear in the future. In the next section, the main features of MACPL will be described
in detail.

6. MACPL

The programming of mobile agent protection mechanisms could be simplified by
implementing a new application framework with a set of routines that facilitated the
development of new security protocols. This framework could be implemented in a
programming language like Java as a set of classes and interfaces that could be ex-
tended to create the final security protocol. However, this solution would be bound to
a specific execution environment and programming language.

In order to allow security experts to define protocols that will never change, re-
gardless of the agent programming language or its executionenvironment, we have
designed a new language: the Mobile Agent Cryptographic Protection Language
(MACPL). MACPL is a domain-specific programming language devised to relieve se-
curity experts (not necessarily programmers) of the burdenof implementing the agent
protection mechanisms in a traditional programming language. The main advantages
of MACPL are the following:

11

• It provides a small set of high level functions, so that the programming of cryp-
tographic protocols using MACPL becomes much easier than using a complete
programming language such as C, Java or any other.

• Its cryptographic functions are generic, which means that they do not depend on
any specific algorithm or implementation. This makes the MACPL code more
portable and easier to use.

• The code is easily reused since it is independent of

– the agent’s specific itinerary,

– the tasks executed on each platform,

– and the agent execution environment (Jade, Aglets. . .).

Therefore, the security protocols defined by security experts can be reused as
many times as necessary by application programmers.

• Despite being a domain-specific language, the set of functions provided by
MACPL are grouped into libraries that can be easily extended.

In order to develop a better understanding of MACPL features, the following sub-
sections provide insight into the technical details of the language.

6.1. Main features of MACPL

MACPL is a domain-specific programming language intended toease the develop-
ment of any security-related mobile agent concern, such as the protection of the agent’s
itinerary or its computational results. The design of this language has pursued two main
objectives:

• Simplifying the traversal of the initial itinerary, and itsprotection using cryptog-
raphy.

• Simplifying the implementation of the control code, which handles the protected
itinerary and other agent security mechanisms.

The language resulting from these requirements is explained thoroughly in Gar-
rigues et al. (2008a), where a detailed description of MACPLfeatures can be found.
Besides, Garrigues et al. (2008a) also contains an example of its use to implement an
itinerary protection protocol.

MACPL code is divided into two clearly different parts: the part that defines how
to create the explicit itinerary and any other data structures required by the agent, and
the part that defines how the control code is generated. Thesetwo parts are separated
by the#
ontrol_
ode_begin precompilation directive. The code placed above this
directive is the agentsetup code, and the code placed below is the agentcontrol code.

MACPL provides four types of instructions: type declarations, assignment state-
ments, function calls and function definitions. MACPL code is executed by evaluating
all type declarations, assignment statements and functioncalls in order.

12

Functions are defined using thefundef keyword, and can take arguments which
are always passed by value. In addition, MACPL functions always return a value, and
the return keyword is used for this purpose. As will be seen, MACPL provides a
broad set of built-in functions, which are intended to make it a powerful and easy-to-
use language. The following code shows an example of a function definition.

fundef Task getTask(GraphNode node) {
// fun
tion body
return task;

}

In this case, this code defines thegetTask function, which takes a GraphNode
argument and returns a Task object. The different data types provided by MACPL,
such as the GraphNode and the Task, will be described in the next section.

Type declarations are statements that specify the type of a variable. All variables
must be declared before being used. The following is an example of a type declaration.
In this case, a variable of typeGraph is declared.

Graph initialItinerary;

Assignment statements assign a value to a variable using the’=’ operator. A type
declaration and an assignment statement can be combined in the same instruction. The
following example code shows a type declaration, an assignment statement, and a com-
bination of the two.

String name;
name = "foo";
Integer id = 0;

6.2. MACPL types

The set of types provided by MACPL is quite small—only eight different data
types. This is motivated by the fact that, first, MACPL is not ageneral purpose lan-
guage and, second, MACPL is devised to be as simple as possible.

MACPL is statically typed since types are determined at compile time, not at run-
time. In addition, MACPL is strongly typed because the language prevents the execu-
tion of code that uses types in an invalid way.

An important MACPL type is the List, for it allows programmers to create com-
pound objects that can be protected using cryptographic mechanisms. Part of the
MACPL syntax is conceived to facilitate the use of List objects. For example, lists
are created by writing the elements in order, separated by ’:’ and surrounded by ’[’ and
’]’. The ’ < >’ operator allows to refer to individual elements of a list. Thus,list<n>
refers to thenth element oflist. The following is an example of the creation of a list.

List it = [getnexttrans(node,5,nhost):finalIt<5>℄;

In this case, a list of two elements is created and assigned totheit variable. The
first element is the value returned by thegetnexttrans function, and the second ele-
ment is the fifth element of thefinalIt list.

MACPL allows programmers to access the last element of a listusing thelast
keyword. This keyword is often used in expressions like the one represented next.

[ExpressionWithIndex | IndexVariable,FirstIndex,LastIndex℄

These expressions are used to evaluateExpressionWithIndex from
IndexVariable=FirstIndex to IndexVariable=LastIndex, and store the re-
sult in a list. For example, iflist is a List object containing three elements, then the
following code.

13

[fun(list<j>)|j,1,last℄

is equivalent to this one

[fun(list<1>):fun(list<2>):fun(list<3>)℄

MACPL provides two data types to facilitate the handling of the agent’s itinerary:
the Graph and GraphNode data types. ThegetInitialItinerary built-in function
reads the XML itinerary specification provided to the Agent Builder, and returns a
Graph representation of it (see section 6.4). This Graph object is composed of one or
more GraphNode objects, which can be traversed and manipulated by the programmer
using several built-in functions:getNode, su

essors, prede
essors, addNode,
graph2List, among others. The following code shows an example of graph manipu-
lation using the Graph object returned by thegetInitialItinerary function.

1: Graph initItin = getInitialItinerary();
2: List initItinList = graph2List(initItin);
3: export List prote
tedItin = [prote
tNode(initItinList<i>)|i,1,last℄;
4: fundef List prote
tNode(GraphNode node) {
5: String platform = nodeData(node)<3><2>;
6: String nextplatform = nodeData(su

essors(node)<1>)<3><2>;
7: return [aen
rypt(platform,graphNode2String(node)):nextplatform℄;
8: }

The first line of the above code initialisesinitItin to the Graph object returned by
getInitialItinerary. Line 2 introduces all the GraphNode objects ofinitItin

into a list, using thegraph2List built-in function. The resulting list is stored in the
initItinList variable. Line 3 applies theprote
tNode function to every element of
initItinList. As a result, a list of protected itinerary nodes is obtainedand stored in
theprote
tedItin variable. Finally, lines 4 to 8 define theprote
tNode function,
which takes a GraphNode parameter (node) and returns a List object.

Theprote
tNode function uses thenodeData built-in function to extract infor-
mation fromnode and from the successor ofnode (more details about this function will
be given in section 6.4). The platform associated withnode is stored in theplatform
variable, and the subsequent platform of the itinerary is stored in thenextplatform
variable. Then, thegraphNode2String built-in function is used convertnode into
a String object, and the result is encrypted using the publickey of platform. The
encrypted node andnextplatform are finally returned using thereturn keyword.

This short example shows how the protection of the initial itinerary is significantly
simplified. In this case, only eight lines of code are needed to traverse the agent’s initial
itinerary, encrypt each one of its nodes, and then introducethe result in a list.

Another important MACPL type is the RuntimeDefined. This type is used to deal
with the data types provided by the agent programming language, which is the language
supported by the agent execution environment. The data types of the agent program-
ming language are not directly supported by MACPL, which means that type errors
related with RuntimeDefined objects are detected at runtime, not at compile time.

An example of a built-in function that uses RuntimeDefined objects is thesen
rypt
function. This built-in function encrypts data using a symmetric key algorithm, and
takes a secret key parameter which is a RuntimeDefined object. However, if the se-
cret key provided tosen
rypt is a RuntimeDefined object that does not encapsulate

14

a proper secret key, then MACPL will issue an error at runtime, not at compile time.
In general, most cryptographic functions provided by MACPLuse RuntimeDefined
objects.

MACPL also provides a data type associated with the tasks executed by the agent:
the Task data type. In order to execute tasks, MACPL providestheexe
 built-in func-
tion, which takes a Task object and a String object as parameters. The String object
specifies the name of the method that has to be executed, whichmust be implemented
within the task. The type returned by this function is a String. The generation of Task
objects in a format suitable for MACPL is performed using theItinerary Designing
Tool.

The String is also an important MACPL type. Apart from representing a sequence
of characters (e.g. “foo”), the String type is used to encapsulate objects of other
types. For example, thesde
rypt built-in function decrypts data using a certain secret
key, and returns a String object encapsulating the decrypted data. In order to con-
vert the resulting String object into another data type, MACPL provides several con-
version functions, such asstring2Task, string2List, etc. The inverse operations
can also be performed using the corresponding conversion functions (task2String,
list2String . . .).

In addition to the aforementioned data types, MACPL has alsotwo more types: the
Boolean and the Integer. The purpose of these types is equivalent to the one of many
other programming languages. They are used to evaluate conditional expressions, in-
dex elements of graphs and lists, etc.

6.3. Scope of variables

MACPL variables have two different types of scope:

Global: Variables with global scope can be accessed from anywhere within the entire
MACPL code. They must be declared outside any function definition.

Function: Variables with function scope are only visible within the function in which
they are declared.

Global variables may be referred to anywhere in the program,but they lose their
value once the agent migrates from one platform to another. An example of this situa-
tion is shown in the following code.

Graph initItin = getInitialItinerary();
List prote
tedItin = prote
tItinerary(initItin);
List a

umulatedResults =

[signok(list2String(["Home":null:"Platform1"℄))℄;
...
#
ontrol_
ode_begin
GraphNode
urrentNode = getCurrentNode(prote
tedItin);
List a

umulatedResults =

exe
uteCurrentTask(
urrentNode,a

umulatedResults);
...

The above code definesprote
tedItin and a

umulatedResults as global
variables. They are first initialised during the agent setup, and then they are used by
the control code in every platform of the itinerary. The problem of this example code

15

is that the value assigned to these variables during the agent setup will never be avail-
able to the control code. Likewise, the value assigned toa

umulatedResults in the
control code will be lost when the agent migrates from its current platform to the next.

In order to allow the values of variables to be recovered after migrating from one
platform to another, theexport keyword must be used. This keyword must be placed
at the beginning of the type declaration, as shown in the following example.

Graph initItin = getInitialItinerary();
export List prote
tedItin = prote
tItinerary(initItin);
export List a

umulatedResults =

[signok(list2String(["Home":null:"Platform1"℄))℄;
...
#
ontrol_
ode_begin
GraphNode
urrentNode = getCurrentNode(prote
tedItin);
a

umulatedResults =

exe
uteCurrentTask(
urrentNode,a

umulatedResults);
...

The above code shows thatprote
tedItin anda

umulatedResults are now
declared asexportablevariables, and therefore their value is never lost during migra-
tions. It is worth noting that theexport keyword can only be used to declare global
variables.

6.4. Built-in functions
MACPL provides a comprehensive set of built-in functions for the implementation

of agent protection protocols. This section provides a brief description of the most
important ones. As mentioned earlier, MACPL built-in functions are described in detail
in Garrigues et al. (2008a).

A subset of MACPL built-in functions is used to handle Graph objects. This subset
includes:su

essors andprede
essors, which return the successors and predeces-
sors of a given GraphNode, respectively;graph2List, which returns a list containing
all the GraphNode objects of a graph;joinGraphs, which returns the graph resulting
from the union of two graphs, among others.

MACPL also provides functions for list management:length, to determine the
size of a list;remove, to remove an element from a list;join, to concatenate two lists,
among others.

In order to extract the information included in the XML itinerary specification,
MACPL provides thegetInitialItinerary built-in function. This function intro-
duces all the information found in the XML document into a Graph object. In order to
make this possible, the XML document must provide at least the following information
for each itinerary node: task, type and platform. The following DTD document shows
the structure of a valid XML itinerary especification.

<!ELEMENT ITINERARY (NODE+)>
<!ELEMENT NODE (TYPE,TASK,PLATFORM,(ATTRIBUTE*),(ITINERARY*))>
<!ELEMENT TYPE (#PCDATA)>
<!ELEMENT TASK (#PCDATA)>
<!ELEMENT PLATFORM (#PCDATA)>
<!ELEMENT ATTRIBUTE (NAME,VALUE)>
<!ELEMENT NAME (#PCDATA)>
<!ELEMENT VALUE (#PCDATA)>

The following XML document shows a valid specification of an example itinerary
that is comprised of a single node.

16

<ITINERARY>
<NODE>

<TYPE>Sequen
e</TYPE>
<TASK>Task1.jar</TASK>
<PLATFORM>

d-pr2</PLATFORM>

</NODE>
</ITINERARY>

ThegetInitialItinerary function introduces every itinerary node into a Graph-
Node object. In order to read the contents of a GraphNode object, MACPL provides the
nodeData built-in function. This function returns a list of element-value pairs. Both
the element names and the values are represented as String objects. As an example,
the node defined in the above XML document would be returned bythe nodeData
function as follows.

[["TYPE":"Sequen
e"℄ : ["TASK":"Task1.jar"℄ : ["PLATFORM":"

d-pr2"℄ ℄

Apart from a task, type and platform, the XML itinerary can also specify other
information for each itinerary node. This additional information can be specified using
one or moreATTRIBUTE elements, each of which containing aNAME element and a
VALUE element.

MACPL also provides thereadFile built-in function to read the contents of a
file and introduce them into a String. A common use of this function is to read files
that contain agent tasks. For example,readFile can be used to read theTask1.jar
file specified in the previous XML itinerary example. The String object returned by
readFile can be then converted into a Task object using thestring2Task built-in
function, and then this task can be executed using theexe
 built-in function.

MACPL also provides other built-in functions for the implementation of the con-
trol code:move, which allows agents to migrate from one platform to the next;
lone,
which allows agents to send a clone of themselves to other platforms; andsendResults,
which allows agents to send their partial or final results to the owner.

One of MACPL’s primary goals is to simplify the implementation of cryptographic
protocols. For this purpose, it provides several cryptographic functions:aen
rypt
andade
rypt, to perform asymmetric encryption and decryption;sign andverify,
to perform digital signatures and verifications;skeygen andkeypairgen, to generate
symmetric and asymmetric keys, among others. It is worth noting that theade
rypt
function, which allows agents to decrypt data using the current platform’s private key,
is implemented as described in Ametller et al. (2004), so that agents can never access
platforms’ private keys directly.

A common feature of all cryptographic functions is that theyallow programmers to
specify what they want to do, without specifying how they want to do it. For this pur-
pose, the parameters taken by these functions never depend on any specific algorithm or
implementation. This feature makes the MACPL code more portable and easier to use.
For example, when theskeygen function is used to generate a secret key for a symmet-
ric algorithm, the programmer does not specify if the key is intended for AES or 3DES
encryption and decryption. The following section describes how the programmer can
compile the agent selecting a specific set of algorithms or implementations, and how
built-in functions are grouped into libraries.

17

6.5. Function libraries

MACPL built-in functions are designed to be independent of any algorithm or im-
plementation. This makes the MACPL code more generic and reusable. In addition,
the Agent Builder supports different implementations of the built-in functions. Thus,
programmers can compile the same MACPL code using different versions of these
functions, depending on the requirements of the application.

Built-in functions are grouped into libraries. For example, all built-in functions re-
lated to list management are grouped into the same library. Each library implements an
interface, so that different versions of the same set of built-in functions can be provided.
For example, all built-in functions related to cryptography are defined in one interface.
The Agent Builder may provide two different libraries implementing this interface, one
based on PGP and another one based on X.509v3 certificates.

The set of interfaces and libraries provided by MACPL can be extended. Thus, pro-
grammers can develop new libraries by creating their own implementations of MACPL
interfaces. Additionally, programmers can also create their own interfaces, and then
provide one or more implementations of those interfaces. A new interface could be cre-
ated, for example, to provide MACPL with networking capabilities or to allow agents
to exchange ACL messages with one another. It is worth notingthat libraries are imple-
mented in the programming language supported by the agent execution environment,
which essentially means that programmers can implement newlibraries in a general
purpose programming language.

Because each interface can be implemented by many different libraries, the Agent
Builder provides command line parameters to select what specific libraries have to be
used to compile the agent. In addition, if the MACPL code usesa certain interface pro-
vided by the programmer, then the name of this interface mustbe specified inside the
MACPL code, using the#require precompilation directive for this purpose. The pro-
grammer can then use command line parameters to select the library that implements
his interface.

7. Auxiliary Tools

In the previous sections, we have described the Agent Builder and the MACPL
language. In this section, we will present other auxiliary tools of the proposed devel-
opment environment, which help programmers to generate theXML itinerary specifi-
cation and allow them to launch the agent to the first platformof the itinerary.

7.1. Itinerary Designing Tool

The Itinerary Designing Tool (IDT) is used to aid the programmer in the generation
of the XML itinerary specification. This tool provides a graphical interface that is
organised in tabs, which allow the programmer to define the itinerary nodes, implement
their tasks and see the messages generated by the agent compilation.

The itinerary definition tabis very similar to a drawing application. The left side
of the window contains a node palette where the programmer can choose which type
of node is included in the itinerary. Once a node has been placed in the drawing area,

18

Figure 3: Itinerary Designing Tool

a task and a platform can be assigned to it. Figure 3 shows a screenshot of an example
itinerary that is being edited in the IDT.

The task assigned to a node can be provided in precompiled form or it can be
implemented and compiled in theimplementation tab. When the programmer starts
editing a new task in this tab, the IDT generates a skeleton ofthe methods that must
be implemented. For example, if the programmer is editing the task assigned to aloop
node, the skeleton includes thejumpCondition method, which decides whether or not
the agent has to perform a new iteration.

Once the nodes and their corresponding tasks have been introduced in the itinerary
definition tab, the XML itinerary specification can be generated.

In addition to generating the XML itinerary specification, the IDT can also be used
to create the executable mobile agent. For this purpose, programmers can choose which
MACPL specification implements the protection mechanisms required by their appli-
cation. Then, they can run the Agent Builder program from theIDT and obtain the
executable agent. Thus, the IDT is designed as a developmentenvironment in which
all the stages of the development process are integrated in the same tool.

7.2. Agent Launcher

The agents generated by the Agent Builder can be put into execution using the
Agent Launcher (AL). The AL is a lightweight client application that allows agents to
be launched to both local and remote platforms. This application should be able to run
on any device, either a desktop computer or a handheld device, such as a PDA.

In order to start agents on remote platforms, the AL uses the immigration module
of platforms’ migration service (Cucurull et al., 2007). The communication with this

19

migration service is performed using an Agent Communication Channel. The AL intro-
duces the agent into an ACL message, and this message is sent to the remote platform.
Then, the platform’s immigration module extracts the agentfrom the ACL message,
and puts the agent into execution.

8. Example application

In this section, we will see the usage and utility of our proposal by means of a
simple application based on mobile agents. Let us assume that we want to purchase a
car insurance and we want to survey several insurance companies. In order to automate
the process, we create an agent that visits a given set of insurance companies and
negotiates the best conditions for our insurance.

The application is created by providing a mobile agent with an itinerary of insur-
ance companies that have to be evaluated. The agent visits these companies and, for
each one of them, it produces all the information required tocalculate the insurance
premium: the car make and model, our driving history, usage of the car, etc. Next, the
agent negotiates the best insurance conditions, taking into account the level of cover-
age, the excess payment, and any other parameter required byour application. As a
result, the agent obtains the conditions offered by every insurance company.

After visiting all the platforms included in its itinerary,the agent returns to its home
platform, and it determines which are the best offered conditions. Next, a new round
is started to visit all the companies again, but this time negotiating an improvement on
the best conditions previously obtained. This process is repeated until two consecutive
iterations lead to the same best conditions.

Once the best conditions are obtained, the owner can proceedwith the paperwork
to complete the insurance purchase. This application showsa simple scenario where
the use of mobile agents can introduce a number of advantages, such as reducing net-
work load, by employing local communications, as well as automation of e-commerce
processes. These advantages are especially significant in this application, because it
involves a negotiation process that can be lengthy and tedious.

In order to develop this application, we need to implement some security mecha-
nisms that protect the agent’s itinerary and its computational results. These security
mechanisms are always required in e-commerce applicationssuch as the one presented
here. In this case, the protection of the itinerary and the computational results is of
utmost importance, for platforms (insurance companies) can compete with each other,
and might be interested in manipulating the agent code or itsresults in order to corrupt
the insurance conditions offered by other companies.

Implementing the required security mechanisms using a traditional platform-driven
approach would be very complex in the scenario described here. All companies would
need to agree on the same security protocols, and they would need to update their agent
platforms whenever a new security protocol was introduced or an existing one was up-
dated. Therefore, using our mobile agent software architecture for the implementation
is clearly a much better alternative.

The development environment presented in this paper, additionally, simplifies the
implementation of the required security mechanisms. Protocols such as Mir and Borrell

20

(2003) and Maggi and Sisto (2003) can be used to protect the agent’s itinerary and
results, and a pre-existing implementation of these protocols is already provided in
Garrigues et al. (2008a). Therefore, adding security to this application can require no
extra effort.

The Itinerary Designing Tool also simplifies the design of the agent itinerary. Fig-
ure 4 shows how an example of such itinerary could be defined inthe IDT.

Figure 4: Definition of an example agent itinerary in the IDT

As this figure shows, the itinerary starts with aloop node (node 1), represented by
symbol . This first node will be executed on the agent home platform. The following
is asetnode, represented by symbol, which has theunchanged locationproperty set.
This property is depicted by a left arrow replacing the platform’s name, and it indicates
that thesetwill be executed on the previous platform visited by the agent, that is, the
agent home platform. Right after thesetnode, we have the set of insurance companies
that must be evaluated, which aresequencenodes and are represented by symbol.
After visiting all these platforms, the agent returns to theinitial loop node, where it
decides whether or not a new iteration has to be started.

As can be seen, our development environment has been devisedto allow a great
reusability of protection protocols. As a result, programmers are able to focus on the
implementation of their agents’ tasks, rather than on time-consuming protection algo-
rithms.

21

9. Evaluation of the proposed development environment

In this section, we will evaluate our proposal’s suitability for the main objective we
intend to achieve: simplifying the development of secure mobile agents.

The example seen in the previous section has already shown usthe benefits of our
proposal for application programmers, end users, and agentplatform administrators.
Firstly, application programmers can easily reuse previously tested security protocols
to add security to their mobile agents. Besides, they can usethe IDT to design the
agent’s itinerary and implement the corresponding agent tasks. Secondly, end users can
easily send their agents to remote platforms using the AgentLauncher. This operation
can even be carried out from a mobile device. Finally, agent platform administrators do
not need to update their platforms whenever a new security protocol appears. Platforms
can handle all incoming agents in the same way, so their complexity is significantly
reduced.

In addition to the above benefits, our development environment also offers several
advantages to security experts who implement the agent protection protocols. These
advantages revolve around the fact that MACPL simplifies theimplementation of these
protocols. In order to evaluate the degree of simplificationachieved with MACPL,
we have compared the implementation of a security protocol using MACPL with the
implementation using a general purpose language. From thiscomparison, we have
obtained the following evidence:

• Using MACPL reduces code complexity, which results in about10 times fewer
lines of code, and fewer potential programming errors.

• MACPL simplifies the handling of the initial itinerary generated by the IDT. This
is achieved through the use of the Graph data type and its associated functions.

• MACPL automates the handling of platform public keys and certificates. Thus,
it eliminates the need to interact with public key infrastructures.

• MACPL simplifies the decryption of agent data using the platforms’ private keys.
This is achieved through theade
rypt function, which implements the protocol
described in Ametller et al. (2004) to perform this operation securely.

• MACPL automates the conversion from encrypted code to executable code (e.g.
Java classes). This is achieved through thestring2Task conversion function.

All these advantages, together with those already mentioned at the beginning of
section 6, provide conclusive evidence that MACPL simplifies significantly the devel-
opment of agent protection protocols.

Nevertheless, we must also admit that the use of a new language might gener-
ate some reluctance for various reasons. First of all, security experts or programmers
might prefer to use another language they know better or feelmore comfortable with.
Secondly, programmers might feel that MACPL lacks some looping constructs such
as “while” or “for”. At present, our language relies solely on recursion to repeatedly
execute a piece of code.

22

Despite these minor drawbacks, those security experts working on mobile agent
security may appreciate the usefulness of a domain-specificprogramming language
that has been specially designed for this purpose. In addition, the language will surely
mature over time to better suit programmers’ needs.

10. Conclusions

In this paper, we have presented a new mobile agent software architecture that is
based on implementing agents comprised of an explicit itinerary and a control code.
This architecture offers the following advantages:

• The implementation of the agent tasks and the security mechanisms is com-
pletely separated. As a result, the software architecture promotes the reuse of
these two parts of the agent development.

• Control codes can be easily reused since they do not depend onthe tasks carried
out by the agent.

• Platforms are relieved from having to deal with different protection protocols of
different agents. Besides, platforms’ code does not need to be updated whenever
a protocol is improved or a new one has to be supported.

• The use of mobile agent technology, in general, contributesto the stability of the
software architecture, for mobile agent applications are easier to adapt to new
requirements. Besides, mobile agents offer other advantages, such as reduction
of network load and decrease in communication latency.

However, most applications using mobile agent technology require the use of se-
curity mechanisms which are complex to implement. This paper has also presented a
development environment designed to simplify the implementation of secure mobile
agents. The key element of the proposed environment is the Agent Builder, which al-
lows programmers or security experts to define protection protocols using the Mobile
Agent Cryptographic Protection Language (MACPL). MACPL isa domain-specific
language that is easy to learn and use. The use of MACPL has thefollowing advan-
tages:

• Simplified implementation of agent protection protocols, because it is carried out
using a domain-specific specification language that does notrequire an extensive
knowledge of cryptographic application programming.

• Availability of high level cryptographic functions that make it possible to quickly
create security protocols. A subset of these functions allows agents to encrypt
and decrypt itinerary data using platforms’ private keys, as described in Ametller
et al. (2004).

• Integration of the agent control code, which manages the agent execution, and the
agent setup code, where the protected itinerary or any otherinitial data structure
required by the agent is created.

23

• Easy code reuse, for MACPL built-in functions are generic and do not depend
on any specific algorithm or implementation. Moreover, MACPL implementa-
tions are also independent of the agent’s itinerary, of the tasks executed on each
platform, and of the execution environment in which agents run.

In addition to simplifying the implementation of agent protection protocols, our
proposal also includes other tools intended for the end user, such as the Itinerary De-
signing Tool, which addresses the creation of the XML itinerary specification, and the
Agent Launcher, for the introduction of new agents in remoteplatforms.

A proof-of-concept of the proposed development environment has been imple-
mented using the Java language and the JaDE agent platform (Bellifemine et al., 2007).
The Agent Setup Module and the Control Code Module have been implemented using a
MACPL to Java translator, which generates Java code that is then compiled to generate
an executable bytecode.

The development environment presented in this paper represents a valuable contri-
bution to the mobile agent security field. However, some issues could be explored to
extend the results of the paper.

First of all, our mobile agent software architecture is based on providing agents
with the code that manages their own protection and execution. This inevitably en-
tails an increase of the agent size and execution time. Although this increase is very
small, it might affect the performance of some real-time systems. Therefore, further
research could be conducted to minimise the impact of our software architecture on the
performance of applications.

Secondly, as mentioned in the previous section, the lack of looping constructs such
as “while” or “for” might represent a drawback for some programmers. Further work
should be conducted to explore the need to extend the language in this regard, and an
empirical study should be carried out to evaluate the acceptance and success of the
language.

Thirdly, we have implemented two security protocols in MACPL (Garrigues et al.,
2008a), which address some important security threads. However, these protocols do
not counter all possible attacks that can be mounted againstan agent. Therefore, further
work could be conducted to implement a comprehensive set of security techniques, so
as to allow agent programmers to easily add protection to anykind of agent-based
application.

Additionally, it would be interesting to provide a mechanism for selecting the ap-
propriate technique or combination of techniques to use, depending on the execution
environment and targeted application. Thus, our development environment should be
helpful for developers to better understand the design choices involved in the develop-
ment of their secure mobile agent-based applications.

Finally, the IDT could be extended to enable agent tracking and fault tolerant mech-
anisms. Thus, we would simplify the generation of not only secure, but also reliable
agents.

24

Acknowledgements

This work is partially supported by the Spanish Ministry of Science and Innovation
and the FEDER funds under the grants TSI2006-03481 SCRISSI,TSI2007-65406-
C03-03 E-AEGIS and CONSOLIDER-INGENIO 2010 CSD2007-00004ARES. This
work has also been funded by the AGAUR Catalan Agency throughthe project SGR2005-
00319.

References

Ametller, J., Robles, S., Ortega, J. A., 2004. Self-Protected Mobile Agents. In: AA-
MAS ‘04: Proceedings of the Third International Joint Conference on Autonomous
Agents and Multiagent Systems. IEEE Computer Society, pp. 362–367.

Bahsoon, R., Emmerich, W., 2006. Requirements for Evaluating Architectural Stabil-
ity. In: Proceedings of the IEEE International Conference on Computer Systems and
Applications. IEEE Computer Society, pp. 1143–1146.

Bellifemine, F. L., Caire, G., Greenwood, D., 2007. Developing Multi-Agent Systems
with JADE. John Wiley & Sons.

Cucurull, J., Ametller, J., Martí, R., 2007. Agent mobility. In: Bellifemine, F. L., Caire,
G., Greenwood, D. (Eds.), Developing Multi-Agent Systems with JADE. Wiley, pp.
115–130.

Farmer, W. M., Guttman, J. D., Swarup, V., 1996. Security formobile agents: Issues
and requirements. In: Proceedings of the National Information Systems Security
Conference. pp. 591–597.

Garrigues, C., Migas, N., Buchanan, W., Robles, S., Borrell, J., 2009. Protecting mo-
bile agents from external replay attacks. The Journal of Systems and Software 82 (2),
197–206.

Garrigues, C., Robles, S., Borrell, J., 2008a. Mobile AgentCryptographic Pro-
tection Language. Tech. rep., Universitat Autònoma de Barcelona, avail-
able at https://senda.uab.es/wiki/BuildingMobileAgentsArti
le/

Te
hni
alReport?a
tion=Atta
hFile&do=get&target=MACPL.pdf.

Garrigues, C., Robles, S., Borrell, J., 2008b. Securing dynamic itineraries for mobile
agent applications. Journal of Network and Computer Applications 31 (4), 487–508.

Gavalas, D., Tsekouras, G. E., Anagnostopoulos, C., 2008. Amobile agent platform for
distributed network and systems management. The Journal ofSystems and Software
doi:10.1016/j.jss.2008.06.034.

Hohl, F., 1998. A Model of Attacks of Malicious Hosts AgainstMobile Agents. In: Pro-
ceedings of the ECOOP Workshop on Distributed Object Security and 4th Workshop
on Mobile Object Systems: Secure Internet Mobile Computations. pp. 105–120.

25

Kambayashi, Y., Takimoto, M., 2004. A Functional Language for Mobile Agents
with Dynamic Extension. In: Proceedings of the 8th International Conference on
Knowledge-Based Intelligent Information and EngineeringSystems KES’04. Vol.
3214 of Lecture Notes in Computer Science. Springer-Verlag, pp. 1010–1017.

Karnik, N. M., Tripathi, A. R., 2001. Security in the Ajanta mobile agent system.
Software Practice and Experience 31 (4), 301–329.

Lange, D. B., Oshima, M., 1999. Seven good reasons for mobileagents. Communica-
tions of the ACM 42 (3), 88–89.

Lima, E. F. A., Machado, P. D. L., Sampaio, F. R., Figueiredo,J. C. A., 2004. An
Approach to Modelling and Applying Mobile Agent Design Patterns. In: SIGSOFT
Software Engineering Notes. Vol. 29. ACM Press, pp. 1–8.

Lu, T., Hsu, C., 2007. Mobile agents for information retrieval in hybrid simulation
environment. Journal of Network and Computer Applications30 (1), 244–264.

Maggi, P., Sisto, R., 2003. A configurable mobile agent data protection protocol. In:
Proceedings of the 2nd Int. Conf. on Autonomous Agents and Multiagent Systems
(AAMAS ’03). ACM Press, pp. 851–858.

Mahmoud, Q. H., Yu, L., 2006. Making Software Agents User-Friendly. Computer
39 (7), 94–96.

Mir, J., Borrell, J., 2003. Protecting Mobile Agent Itineraries. In: Mobile Agents for
Telecommunication Applications (MATA). Vol. 2881 of Lecture Notes in Computer
Science. Springer Verlag, pp. 275–285.

Modak, V. D., Langan, D. D., Hain, T. F., 2005. A pattern-based development tool
for mobile agents. In: Proceedings of the 36th SIGCSE Technical Symposium on
Computer Science Education. ACM Press, pp. 72–75.

Ouardani, A., Pierre, S., Boucheneb, H., 2007. A security protocol for mobile agents
based upon the cooperation of sedentary agents. Journal of Network and Computer
Applications 30 (3), 1228–1243.

Roth, V., 1998. Secure Recording of Itineraries through Co-operating Agents. In:
ECOOP Workshops. pp. 297–298.

Roth, V., 2002. Empowering Mobile Software Agents. In: Proc. 6th IEEE Mobile
Agents Conference. Vol. 2535 of Lecture Notes in Computer Science. Springer Ver-
lag, pp. 47–63.

Tahara, Y., Ohsuga, A., Honiden, S., 1999. Agent System Development Method Based
on Agent Patterns. In: Proceedings of the The Fourth International Symposium on
Autonomous Decentralized Systems ISADS ’99. IEEE ComputerSociety.

26

Tahara, Y., Ohsuga, A., Honiden, S., 2001. Mobile agent security with the IPEditor
development tool and the mobile UNITY language. In: Proceedings of the Fifth
International Conference on Autonomous Agents AGENTS ’01.ACM Press, pp.
656–662.

Trillo, R., Ilarri, S., Mena, E., 2007. Comparison and Performance Evaluation of Mo-
bile Agent Platforms. In: Proceedings of the 3rd International Conference on Auto-
nomic and Autonomous Systems (ICAS ’07). IEEE Computer Society, pp. 41–47.

Vigna, G., 1997. Protecting Mobile Agents through Tracing.In: Proceedings of the
Third International Workshop on Mobile Object Systems.

Wahbe, R., Lucco, S., Anderson, T. E., Graham, S. L., 1993. Efficient Software-Based
Fault Isolation. In: Proceedings of the 14th ACM Symposium on Operating Systems
Principles (SOSP ’93). ACM Press, pp. 203–216.

Wang, Y., Behera, S. R., Wong, J., Helmer, G., Honavar, V., Miller, L., Lutz, R.,
Slagell, M., 2006. Towards the automatic generation of mobile agents for distributed
intrusion detection system. The Journal of Systems and Software 79 (1), 1–14.

White, J. E., 1994. Telescript technology: the foundation for the electronic market-
place. Tech. rep., General Magic, Inc.

Yee, B., 1994. Using Secure Coprocessors. Ph.D. thesis, Carnegie Mellon University.

Zerfiridis, K. G., Karatza, H. D., 2004. Brute force web search for wireless devices
using mobile agents. The Journal of Systems and Software 69 (1), 195–206.

Zhou, J., Onieva, J. A., Lopez, J., 2004. Analysis of a free roaming agent result-
truncation defense scheme. In: Proceedings of the IEEE Int.Conf. on e-Commerce
Technology (CEC ’04). IEEE Computer Society, pp. 221–226.

Zunino, A., Campo, M., Mateos, C., 2002. Simplifying MobileAgent Develop-
ment through Reactive Mobility by Failure. In: Advances in Artificial Intelligence:
SBIA’02. Vol. 2507 of Lecture Notes in Computer Science. Springer-Verlag, pp.
163–174.

27

