Promoting the development of secure
mobile agent applications

Carles Garrigueg, Sergi Roble Joan Borrell, Guillermo Navarro-Arribas

agstudis d’'Informatica, Multimedia i Telecomunicacié, Maisitat Oberta de Catalunya, Rambla del
Poblenou 156, 08018 Barcelona, Spain
bDept. d’Enginyeria de la Informaci6 i de les Comunicaciogdifici Q (ETSE), Universitat Autbonoma de
Barcelona, 08193 Bellaterra, Spain
ClIA, Institut d'Investigacio en Inteligéncia Artificial, CSIC, Consejo Superior de Investigaws
Cientificas, 08193 Bellaterra, Spain

Abstract

In this paper we present a software architecture and a dawelot environment for the

implementation of applications based on secure mobiletag&ecent breakthroughs
in mobile agent security have unblocked this technologithmre is still one important

issue to overcome: the complexity of programming applicetiusing these security
solutions. Our proposal aims to facilitate and speed up tbegss of implementing

cryptographic protocols, and to allow the reuse of theseopuds for the development
of secure mobile agents. As a result, the proposed arahiteahd development envi-
ronment promote the use of mobile agent technology for th@amentation of secure
distributed applications.

Key words: mobile agents, sofware architecture, aided applicatieeldpment,
specification language.

1. Introduction

One of the main consequences of the Internet revolution eadécentralisation of
information and resources. This decentralisation gaestoishe need for new software
architectures that supported the mobility of the code tddbation where the resources
resided. In order to respond to the needs of this new scerapimmising technology
emerged in which the software was able to move from one n&twode to another
autonomously: the mobile agent technology.

The use of mobile agents contributes to the adaptabilithesbftware, for the code
executed on the hosts of a distributed system is not locatéldeohosts themselves, but
in the mobile agent that carries the application code aritb\afi these hosts. Perform-
ing a change in such distributed application only involvexlifying the mobile agent

*Corresponding author. Tek:34-933263726
Email addressescgarrigueso@uoc.edu (Carles Garrigueskergi . robles@uab. es (Sergi
Robles),joan.borrell@uab.es (Joan Borrell)guille@iiia.csic.es (Guillermo Navarro-Arribas)

Preprint submitted to Journal of Systems and Software Nbees) 2010

that carries the code, not the implementation of all theshosmprising the distributed
system. Designing applications using mobile agents, tbereresults in more flexible
software applications and, thus, more stable softwareitantbres. As the software
architecture represents those design decisions that ededtdo change, ensuring the
architectural stability is essential to reduce the costaintaining and evolving the
software (Bahsoon and Emmerich, 2006).

However, in numerous occasions, using mobile agent teogg@llso involves im-
plementing complex security mechanisms. Resedtohtg in the field of mobile agent
security have been quite intense over the last decade. Therglevant proposals ad-
dress the protection of the agent’s itinerary (Garriguesd.eP008b), the protection of
the results generated during the agent execution (Zhou, &0614), and the protection
against replay attacks (Garrigues et al., 2009).

Nevertheless, designing security solutions is not enolgvelopment of secure
mobile agent applications must be encouraged as well. Tibetdl a barrier to over-
come for achieving this: the fliculties that programmers have for implementing and
using this type of security solutions. The security systémas protect mobile agents
are theoretically and technically valid, but this does n#fice: it is also necessary to
provide a handy and convenient way of developing these mgsteithout requiring a
deep knowledge and expertise in cryptography.

New tools for the design and development stages have to bedréMahmoud and
Yu, 2006), simplifying to the greatest extent possible teks carried out by both the
designer of new cryptographic protocols and the developeew applications.

There is very little literature about these specific aspéatshe main work done on
mobile agents has been focused on developing new agentfiootenechanisms. More
basic usability issues concerning the human developerieem left aside. As a result,
the implementation of these mechanisms can turn out to be time-consuming than
the implementation of the agent tasks.

In this paper, we present a development environment thadi$ies the implemen-
tation of applications based on secure mobile agents. lardaicreate our secure
mobile agents, a new software architecture is used thataegathe implementation
of the agent’s tasks and its security mechanisms. As a réiselarchitecture promotes
the reuse of these two parts of the agent development. Iniamidihe new software
architecture relieves platforms from having to deal witliedent protection protocols
of different agents, for the agent protection mechanisms are dthihgl the agents
themselves.

The proposed development environment includes three noais:t the Agent
Builder, the Itinerary Designing Tool and the Agent LaurrchEhese tools allow de-
velopments to be divided into fierent components, where each component is imple-
mented in a dferent development stage.

The key element of our proposal is the Agent Builder, whichl#es the definition
of agent protection protocols using the Mobile Agent Crgpéphic Protection Lan-
guage (MACPL). MACPL is a domain-specific language thérs several benefits:

¢ It does not require an extensive knowledge of cryptograpipiglication pro-
gramming.

¢ |t provides high level cryptographic functions that do nepdnd on any specific
algorithm or implementation, thus promoting code reuse.

e Implementation is independent of the agent’s itinerarytheftasks executed on
each platform, and of the execution environment in whichégyaun.

These advantages allow security experts to define prottiatisan be easily reused
multiple times by agent application programmers. Thus, groposal promotes the
development of mobile agents with the security mechanisqaired by real-life ap-
plications.

It is worth noting that this paper does not provide a new agestiection mecha-
nism. Our environment aims to simplify the implementatiod ase of current protec-
tion protocols, as well as others that may appear in theduttys a result, our proposal
is not constrained to any specific security mechanism.

The rest of the paper is structured as follows. In sectione€iniroduce the related
work on simplifying mobile agent development and the segailvances made in this
field. In section 3, we describe the new mobile agent softaachitecture, with the
components of a secure mobile agent. In section 4, we présemew development
environment, the methodology and the stages of the deveopprocess. Section 5
is devoted to the key element of our development environntaetAgent Builder. In
section 6, we highlight the main features of the languagesihaplifies the implemen-
tation of agent protection protocols: MACPL. In section & describe the auxiliary
tools of our proposal: the Itinerary Designing Tool and thgeAt Launcher. In section
8, an example is presented to show how our proposal could feedpo a real sce-
nario. In section 9, we evaluate the degree of simplificatiomeved by our proposal.
Finally, in section 10, we provide some guidelines for fetuesearch directions and
conclude the paper.

2. Related work

A mobile agent is a software that can move autonomously frasmamputer to
another while executing (White, 1994). The migration of theole running process,
along with its state, code and resources is what makes mabdats dferent from
other kinds of distributed applications.

Several advantages have been identified in using mobiletsagedistributed sys-
tems (Lange and Oshima, 1999). The most frequently citedradges include: re-
duction of network load, by moving agents to the data servetead of transferring
large amounts of data through the network; decrease in caneation latency, by
interacting locally with the resources available at thegtnservers; dynamic adapta-
tion, for agents can react autonomously to the changes iinekecution environment;
and better support for mobile devices with intermittentreeetions, for mobile agents
can operate asynchronously without requiring a continlyay®en connection, among
others.

Numerous applications have been developed that deman#tiebenefits of mo-
bile agent technology. Examples of these applications eafobnd in several areas:
information retrieval (Lu and Hsu, 2007), network managetf&avalas et al., 2008),

intrusion detection systems (Wang et al., 2006), web se@ay¢Herfiridis and Karatza,
2004), among others.

However, the benefitsiered by mobile agents have not beefiisient to stimulate
their widespread deployment. The development of mobiletsgesually involves im-
plementing complex security mechanisms, and very litteasch has been conducted
to simplify the implementation of these mechanisms. In ttofing sections, we
will outline the relevant work done in this regard. First, wil present some of the
better known mobile agent platforms. Then, we will discisgroposals intended to
simplify mobile agent development. Finally, we will preséime most relevant work
done to provide security to mobile agents.

2.1. Mobile agent platforms

Firstly, it must be noted that literally tens of mobile agpltforms have emerged
since the appearance of this new paradigm (see Trillo €2@D7) for a survey of agent
platforms). Among these, we can highlight Telescript, ARAAgents, Aglets, Con-
cordia, Grasshopper, Ajanta, SeMoA, AgentScape and Jalist Bhent platforms
presented so far are prototypes that have only been useddeanch purposes. Few
of them have users outside the academic or research centre Wiey were created.
The platform that has more users at this present time is ltddly JaDE (Bellifem-
ine et al., 2007). In the beginning, JaDE only supportediptatform mobility, which
means that agents could only move between the containersingle platform. Later,
inter-platform mobility was added (Cucurull et al., 200fHus allowing agents to mi-
grate between dierent platforms.

All these mobile agent systems have a similar purpose: toigecan execution
environment to agents which allows them to use, search andder services, such as
sending messages to each other or moving to other platfdvtast of these systems,
such as JaDE, are implemented in Java due to its reflectiabiiies and the avail-
ability of a dynamic class loader. Much of the research caotetlion mobile agents has
been centred on defining new mobile agent platforms, usledling aside usability
aspects.

2.2. Simplifying agent development

Research carried out on mobile agents has also given risaltpla proposals to
simplify the development of this kind of applications. Thgesoposals can be divided
in two main groups: on the one hand, proposals based on usinggent programming
languages that simplify the implementation of the agerksasd, on the other hand,
proposals aimed at aiding in the design of mobile agentébapplications.

Regarding the first group, most proposals suggest the usevofiaclarative lan-
guages, for their inherent high level of abstraction sifigdithe implementation and
readability of programs. Among these declarative langsiagmme proposals are based
on logic languages (Zunino et al., 2002), and others aredb@séunctional languages
(Kambayashi and Takimoto, 2004).

Regarding the proposals intended to aid in the design of lmalent applications,
many are based on the use of design patterns (Modak et ab; Pbfa et al., 2004;
Tahara et al., 1999, 2001). Design patterns are proveni@aduipo recurring problems
that arise within some contexts, thus enabling an easy kfug®od software design.

In conclusion, numerous proposals have been presentemhpdifyithe implemen-
tation of agent tasks. However, these proposals have atgginn the artificial intelli-
gence world, and are focused on allowing programmers taessghe agent’s cognitive
capabilities explicitly (reasoning, planning, decisioakimg...). Thus, they are suit-
able to specify the agent’s reasonings or inferences, eatrifptographic mechanisms
needed to protect the agent’s itinerary or results. Thegethese approaches cannot
be used to simplify the implementation of agent protecti@thanisms.

2.3. Mobile agent security

Since the beginning of mobile agent research, many sedssitgs have been iden-
tified. Researchféorts in the field of mobile agent security have been quitensge
over the last decade. Regarding the protection of platfdrom agent or external at-
tacks, several sound solutions have been presented (Wahbgl®93). However, the
problem of malicious hosts attacking an agent is by far muohendificult to solve.
Platforms can do anything when executing an agent, from edefrservice to prevent
its access to a given resource, to a modification of its codedata in order to change
its final behaviour.

Although achieving a complete solution is considered irsfids, protocols have
been presented that mitigate several problems. The prdagations include the use
of cooperative agents (Roth, 1998; Ouardani et al., 200yptagraphic tracing (Vi-
gna, 1997), obfuscated code (Hohl, 1998), secure copraceféee, 1994), protection
of the computational results (Maggi and Sisto, 2003), optographic protection of
itineraries (Mir and Borrell, 2003).

Many of these techniques have a limited applicability, fayt have been designed
for particular scenarios that are actually rarely foundeallife applications. For ex-
ample, the use of secure coprocessors is only suitable dsedlenvironments, such
as corporate networks, where an expensive tamper-proa¢edean be installed on
each platform. On the other hand, the cryptographic priatedf the itinerary and the
computational results are considered to be more suitabjeréatical scenarios.

Regarding the protection of the agent’s itinerary, the pemgl techniques aim at
preventing platforms from accessing or manipulating pafthe agent’s itinerary in-
tended for other platforms. As for the protection of the camgional results, the
proposed solutions ensure that no platform can tamper Wwéhésults generated by
another platform. Obviously, these approaches do not salveroblems related to
malicious platforms because the execution of the agenisasivays controlled by the
platform. Therefore, the platform can still manipulate Hehaviour of the agent and
the results generated on that platform.

In spite of this, the protection of the itinerary and the comagional results is still
of utmost importance in many applications. This is espBctale in scenarios where
platforms can compete with each other, such as those pegsierftarmer et al. (1996).
For example, imagine that an agent is given an itinerary seétleral shops where it has
to find lowest price of a product. A malicious shop might mgdife behaviour of the
agent so that the price obtained in subsequent shops wagsatmadtiplied by 3. As a
result, the price fiered by the malicious shop would always become the lowest.

This attack could be prevented if the initial itinerary wagptographically pro-
tected, so that platforms were not allowed to access or moki tasks executed on

other platforms. In addition, the computational resultsudti be protected in order to
prevent modifications of the prices obtained in previouf@tens.

Several sound solutions have been presented for the postedtthe agent com-
putational results (Maggi and Sisto, 2003; Zhou et al., 20B4garding the protection
of the agent’s itinerary, techniques such as Karnik andathip(2001) or Roth (2002)
enable the protection sequential itineraries. On the dthed, Mir and Borrell (2003)
and Garrigues et al. (2008b) also support the protectiorewifdie itineraries.

In conclusion, we can see that the research carried out magiven rise to sev-
eral mechanisms to provide security to mobile agents. Hewekie implementation
of these mechanisms is affitult task, which requires significant expertise and often
discourages the use of this technology. In order to soheghoblem, the next sec-
tions describe, first of all, how to implement secure mobgerds, and then, how this
implementation can be simplified using the proposed dewedop environment.

3. A new mobile agent software architecture

Mobile agents implement flerent security mechanisms depending on the require-
ments of the given application. For example, they can implermechanisms for the
protection against replay attacks (Garrigues et al., 2008¢hanisms for the protection
of the itinerary (Garrigues et al., 2008b), the computatioasults (Maggi and Sisto,
2003), etc. These security mechanisms are usually manag#telagent platform,
using a so-calle@latform-drivenapproach.

The platform-driven approach, however, has several drelghaPlatforms must
support all existing security protocols and they must beatgd whenever a new pro-
tocol appears or a current one is improved.

Our software architecture is based on implementing agesitg @anagent-driven
approach. Our agent-driven approach is based on providjegta with a code that
manages their own protection and execution. This code é&rexf to as the agent's
control code By executing the control code, the agent carries out alhgks in an au-
tonomous way, without requiring platforms to know how thestgys internally struc-
tured. Agents can also decrypt their itinerary data usimgf@ms’ private keys and,
for this purpose, they use a public decryption function ed by platforms. We de-
scribed the functionality and use of this public decryptionction in Ametller et al.
(2004).

Our mobile agent architecture also provides agents witkxalicit itinerary, which
stores the set of platforms that the agent has to visit andatsies that have to be
executed on each platform. Explicit itineraries are cosgatiof diferent types of
nodes, where each node represents a stage in the agent Eaute node has a local
task and an execution platform associated with it. The tasigaed to a node must start
and finish on the same platform, which implies that it mustaasttain any migration
to another platform. Migrations always take place durirgttansition from a node to
its successor.

Different node types can be used to create the explicit itinefdug following are
the types that have been defined so far. A more detailed exgdarof the set of node
types that can be used can be found in Garrigues et al. (2008b)

e Sequencdhis node has only the task and the platform associated withhie
agent executes the task and migrates to the platform askigriee next node.

o If This node has a subitinerary associated with it, in additiche local task and
the platform. The subitinerary is made up by one or more notlasy type. The
local task executed on thE node includes a condition method, which decides
whether or not the subitinerary has to be traversed by thetage

e SwitchThis node is similar to the previous one, but it is associatitd two or
more subitineraries. Inside its local task, theitchnode includes a condition
method that decides which subitinerary must be traversgd ne

e SetThis node is also associated with two or more subitinerarieghis case,
however, after the execution of tketlocal task, all subitineraries are traversed
by the agent. Depending on the implementation, this travex@n be done in
sequence, one subitinerary after the other (in any ordern}, @an be done in
parallel, sending a clone of the initial agent to each sobitiry.

e Loop This node has a single subitinerary associated with it. Tdentvisits
theloop node and this subsequent subitinerary repeatedly. Evasyttie agent
visits theloop node, it decides whether or not a new iteration has to beestart

e DiscovererThis node is also associated with a single subitinerary. édaw this
subitinerary is special because it can include nodes tbabaacuted on platforms
determined at runtime. When the platform where a node willXeeegted is not
specified at the time of creating the agent, we say that the had adynamic
location As explained below, a special property has to be set on ainauteler
to specify that it has a dynamic location.

Nodes can have their locations determined at runtime, andspecial properties
are used for this purpose. On the one hand,uthehanged locatiomproperty, which
can be used to specify that the node will be executed on théopieplatform visited
by the agent. On the other hand, thgamic locatiorproperty, which can be used to
generate the node’s final location at runtime, in the platfassigned to thdiscoverer
node.

It is worth noting that our proposal is not restricted to threvious set of node
types and properties. New types and properties can be addbd future when new
requirements appear.

3.1. Advantages of the new mobile agent software architectu

Implementing secure mobile agents using this new softwatetacture has a num-
ber of advantages.

First of all, storing the explicit itinerary in a separateusture allows its protec-
tion using cryptography. Protecting the itinerary is usuaéry important because it
ensures that platforms can only access their part of therény.

Second, the control code can be easily reused since it doegpend on the tasks
carried out by the agent. Therefore, the management of hieixtinerary, the com-
putational results, or any other mechanism related to,Xample, fault tolerance, can
be implemented once and reused multiple times.

Third, agents may have ftierent security requirements and, therefore, they may
implement diferent protection schemes. Our software architecturevesdiplatforms
from having to deal with dferent protection protocols offtierent agents. Thus, plat-
forms handle all agents the same way: the control code isi@as soon as the agent
arrives and all the remaining operations are delegatedsatintrol code. Likewise,
the architecture relieves platform administrators of teedhto update their platforms’
code whenever a protocol is improved or a new one has to bexepp

Fourth, having dierent node types enables a more flexible design of agent-itine
aries. The agent is not constrained to follow a fixed route,rather it can choose
one subitinerary or another at runtime, or it can even claselfito visit various
subitineraries at the same time.

The implementation of a mobile agent with appropriate sgcarechanisms can be
very complex, especially when agents implement severalrggenechanisms. These
mechanisms are usually based on the use of cryptographth@indmplementation is a
difficult task that usually entails much more work than the imgetation of the agent
tasks. In the next sections, we will see how this impleménatan be simplified, and
how our secure mobile agents are generated.

4. Development environment

The implementation of a secure mobile agent can result idé¢krelopment of sev-
eral security mechanisms. These mechanisms involve, &onple, obtaining platform
certificates, performing cryptographic operations to gpcand decrypt some parts of
the itinerary, and so forth. Thus, the implementation cédaiktine use of public key in-
frastructures, symmetric and asymmetric keys, cryptdycapashes and, in general, an
extensive knowledge of cryptographic application prograny. As mentioned earlier,
none of the previous proposals on mobile agent security théieased the fficulties
faced by programmers when implementing these security amsims.

In order to relieve programmers of this burden, this segii@sents a development
environment that simplifies the implementation of securbite@gents. This environ-
ment is comprised of three main tools: the Itinerary Desigriool, the Agent Builder
and the Agent Launcher.

The Itinerary Designing Tool (IDT) is a graphical tool thahde used to design the
agent’s itinerary. This tool provides a graphical itingraditor where the programmer
can define the set of nodes that comprise the itinerary. Tdéask and an execution
platform can be assigned to each node. This tool also prevadesk editor, where
new tasks can be created and compiled. With all the infoamapirovided by the
programmer, this tool produces an XML specification of th&dhitinerary. More
details about this tool will be given in section 7.

Once the XML itinerary specification has been produced bylEHE the Agent
Builder can be used to generate the final agent. In order tthes&gent Builder, pro-
grammers must specify what protection mechanisms arerestjay their application.

Itinerary Agent
Designing mn.?ra?-/ A Ex/icumtble Lau?lcher
specification i en

Tool Specllesfon | Builder = Aoemt | \ -

I MACPL d =
T specification f ./ m
(\\!t}nerary "‘ A ‘E'

O o S =
i/& %/\% Agent platforms
End
Programmer User

Security
Expert

Figure 1: Overview of the mobile agent development envirenim

These mechanisms must be defined using the Mobile Agent @&Jsggihic Protec-
tion Language (MACPL), which is a new specification langusgecifically designed
to simplify the implementation of agent protection protiscaMore details about the
Agent Builder will be given in section 5.

Once the agent is obtained, the Agent Launcher (AL) is usgaitdhe agent into
execution on the first platform of the itinerary. More det@bout the Agent Launcher
will be given in section 7.

Figure 1 shows a representation of all the components tmapidse the proposed
development environment. As this figure showgfedent roles are involved in the
development process. First, the agent programmer, whgreghe explicit itinerary
and generates the XML specification using the IDT. Secoras#turity expert, who
implements the agent protection protocols using MACPLalynthe end user, who
executes the agent and obtains its results without any krugel about security or
programming at all. The separation of these three roles shiog/flexibility and ease
of reuse that the proposed development environment brinigsglementations. Thus,
the development of a whole system is divided into independemponents—XML
and MACPL specifications—and independent tools that can bd bg completely
different people.

Thus far, the components of the proposed development emagat have been
presented. It is worth noting that this environment is natigleed for any specific ex-
ecution platform. It can be implemented to simplify the depenent of secure mobile
agents in any programming language and for any executiaroemeent. The next sec-
tions will be devoted to describe the main features of therAgiilder and MACPL,
and the simplification achieved as a result of their utiisat

5. The Agent Builder

The Agent Builder (AB) is comprised of three main modulese #kgent Setup
Module, the Control Code Module and the Agent Creator Moddleese modules,

together with their inputs and outputs, are representedimdi2. As this figure shows,
the AB has two main inputs: the MACPL specification and the XNherary speci-
fication. The XML itinerary specification is the document geated by the Itinerary
Designing Tool. With regard to the MACPL specification, itciseated by the agent
developer or a security expert, and is divided into two parts

e The specification of the agent setup operations, whichaiigt the data struc-
tures used by the agent during its execution (e.g. protéttedary, trip marker,
or any other).

e The specification of the operations performed by the coctdk.

MACPL spec

Agent Setup spec

‘I Control Code spec |\X_I\Litirﬂslry\|
Public Key Private
l Key Generator Key
Control
Code
Module
Hash(ControlCode)
{
Agent Agent
Setup tasks
Module
I
b
Agent A
ent
Creator g_
I Builder

i

Agent runnable
instance

Figure 2: Components of the Agent Builder with its main irgpand outputs

The MACPL specification and the XML itinerary specificatiare ased by the AB
to generate a secure mobile agent as follows:

First of all, the AB generates a random pair of asymmetrickes public key and a
private key. This keypair is used to allow agents to use tagqins’ public decryption
function, as described in Ametller et al. (2004).

Then, the Control Code Module compiles the second part d#RE€PL specifica-
tion to generate the agent control code. This part of the MA§pecification defines

10

how the control code manages the data structures used byg#m during its exe-

cution (protected itinerary, trip marker, etc.). In addlitj the Control Code Module
inserts the random public key previously generated ingidedsulting control code as
a compile-time constant (Ametller et al., 2004).

Next, the Agent Setup Module runs a MACPL interpreter to ekethe first part
of the MACPL specification. This part of the MACPL specificatidefines how to
initialise the data structures required by the agent ei@tuThe protected itinerary is
one of the data structures that must be always created dilnénggent setup. For this
purpose, this module uses the XML itinerary specificatiaoviuted by the IDT. This
module also uses the random private key previously gertematerder to sign every
platform-specific code included in the protected itinerggnetller et al., 2004).

Finally, the Agent Creator Module combines the outputs efttho previous mod-
ules to create the executable mobile agent.

At this point, it is worth noting that the agent’s tasks ar@iemented by the pro-
grammer in the programming language supported by the dracrivironment, which
can be Java, €+, or any other. Other protocols have been presented to $yntipdi im-
plementation of the agent’s tasks, usually providing neenagrogramming languages
(Zunino et al., 2002; Kambayashi and Takimoto, 2004). Haxethese protocols do
not allow developers to implement any agent protection raeisims. Because of this,
the proposed development environment is focused on aidagrogrammer in the im-
plementation of the security protocols required by secusbila agent applications. If
necessary, the proposed environment can be combined With @mtoposals to simplify
the implementation of the agent tasks, too.

As can be seen, the proposed development environment isonstrained to any
specific set of protection protocols. The programmer usesMACPL specification
or another depending on the requirements of the given agit Thus, the proposed
environment simplifies the development of current proteesl well as others that may
appear in the future. In the next section, the main featurBs@€CPL will be described
in detail.

6. MACPL

The programming of mobile agent protection mechanismsdcbelsimplified by
implementing a new application framework with a set of roes that facilitated the
development of new security protocols. This framework ddug implemented in a
programming language like Java as a set of classes andaicesrthat could be ex-
tended to create the final security protocol. However, thiston would be bound to
a specific execution environment and programming language.

In order to allow security experts to define protocols thdt méver change, re-
gardless of the agent programming language or its execetiwitonment, we have
designed a new language: the Mobile Agent CryptographitcePtion Language
(MACPL). MACPL is a domain-specific programming languageisied to relieve se-
curity experts (not necessarily programmers) of the buafemplementing the agent
protection mechanisms in a traditional programming laggual he main advantages
of MACPL are the following:

11

e |t provides a small set of high level functions, so that thegpamming of cryp-
tographic protocols using MACPL becomes much easier thanguscomplete
programming language such as C, Java or any other.

e Its cryptographic functions are generic, which means the tio not depend on
any specific algorithm or implementation. This makes the NNAQode more
portable and easier to use.

e The code is easily reused since it is independent of

— the agent’s specific itinerary,
— the tasks executed on each platform,
— and the agent execution environment (Jade, Aglets. . .).

Therefore, the security protocols defined by security espesin be reused as
many times as necessary by application programmers.

e Despite being a domain-specific language, the set of fumetfwrovided by
MACPL are grouped into libraries that can be easily extended

In order to develop a better understanding of MACPL featuttes following sub-
sections provide insight into the technical details of #reguage.

6.1. Main features of MACPL

MACPL is a domain-specific programming language intendezhs®e the develop-
ment of any security-related mobile agent concern, sucheagrbtection of the agent’s
itinerary or its computational results. The design of thisguage has pursued two main
objectives:

o Simplifying the traversal of the initial itinerary, and fisotection using cryptog-
raphy.

¢ Simplifying the implementation of the control code, whicmidles the protected
itinerary and other agent security mechanisms.

The language resulting from these requirements is explaineroughly in Gar-
rigues et al. (2008a), where a detailed description of MAG&dtures can be found.
Besides, Garrigues et al. (2008a) also contains an examjikse to implement an
itinerary protection protocol.

MACPL code is divided into two clearly flerent parts: the part that defines how
to create the explicit itinerary and any other data strestuwequired by the agent, and
the part that defines how the control code is generated. Tiesparts are separated
by the#control_code_begin precompilation directive. The code placed above this
directive is the agergetup codeand the code placed below is the agemtrol code

MACPL provides four types of instructions: type declaratipassignment state-
ments, function calls and function definitions. MACPL codexecuted by evaluating
all type declarations, assignment statements and funcéilisin order.

12

Functions are defined using tfieandef keyword, and can take arguments which
are always passed by value. In addition, MACPL functionsagbweturn a value, and
the return keyword is used for this purpose. As will be seen, MACPL pdegi a
broad set of built-in functions, which are intended to mala powerful and easy-to-
use language. The following code shows an example of a fumdgfinition.

fundef Task getTask(GraphNode node) {
// function body
return task;

}

In this case, this code defines tgetTask function, which takes a GraphNode
argument and returns a Task object. Thffedent data types provided by MACPL,

such as the GraphNode and the Task, will be described in tttesaetion.

Type declarations are statements that specify the type afiable. All variables
must be declared before being used. The following is an elaaif@ type declaration.
In this case, a variable of tyfaph is declared.

Graph initialItinerary;

Assignment statements assign a value to a variable usinig-tloperator. A type
declaration and an assignment statement can be combineg $amne instruction. The
following example code shows a type declaration, an assghstatement, and a com-
bination of the two.

String name;
name = "foo";
Integer id = 0;

6.2. MACPL types

The set of types provided by MACPL is quite small—only eighffefient data
types. This is motivated by the fact that, first, MACPL is najeneral purpose lan-
guage and, second, MACPL is devised to be as simple as passibl

MACPL is statically typed since types are determined at atajmme, not at run-
time. In addition, MACPL is strongly typed because the laaggiprevents the execu-

tion of code that uses types in an invalid way.

An important MACPL type is the List, for it allows programnseio create com-
pound objects that can be protected using cryptographichaméems. Part of the
MACPL syntax is conceived to facilitate the use of List olgecFor example, lists
are created by writing the elements in order, separated bpd surrounded by [and
T. The ’< >’ operator allows to refer to individual elements of a lishuB,1ist<n>
refers to thenth element oftist. The following is an example of the creation of a list.

List it = [getnexttrans(node,5,nhost):finallt<5>];

In this case, a list of two elements is created and assignteto: variable. The
first element is the value returned by thetnexttrans function, and the second ele-

ment is the fifth element of theinalTt list.)
MACPL allows programmers to access the last element of aifistg thelast
keyword. This keyword is often used in expressions like the epresented next.

[ExpressionWithIndex | IndexVariable,FirstIndex,LastIndex]

These expressions are used to evalu@itepressionWithIndex from
IndexVariable=FirstIndex tO0 IndexVariable=LastIndex, and store the re-
sult in a list. For example, ifist is a List object containing three elements, then the
following code.

13

[fun(list<j>)1j,1,last]
is equivalent to this one

[fun(list<1>) :fun(list<2>) :fun(list<3>)]

MACPL provides two data types to facilitate the handlingla# tigent’s itinerary:
the Graph and GraphNode data types. gheInitialItinerary built-in function
reads the XML itinerary specification provided to the Agentil8er, and returns a
Graph representation of it (see section 6.4). This Grapbablg composed of one or
more GraphNode objects, which can be traversed and mategdudg the programmer
using several built-in functionsgetNode, successors, predecessors, addNode,
graph2List, among others. The following code shows an example of gragotipu-
lation using the Graph object returned by gheeInitialItinerary function.

Graph initItin = getInitialltinerary();
List initItinList = graph2List(initItin);
export List protectedItin = [protectNode(initItinList<i>)|i,1,last];
fundef List protectNode(GraphNode node) {
String platform = nodeData(node) <3><2>;
String nextplatform = nodeData(successors(node)<1>)<3><2>;
return [aencrypt(platform,graphNode2String(node)) :nextplatform];
}

0 N O WN -

The first line of the above code initialisesitItin to the Graph object returned by
getInitialltinerary. Line 2 introduces all the GraphNode objectsiafitItin
into a list, using theraph2List built-in function. The resulting list is stored in the
initItinList variable. Line 3 applies therotectNode function to every element of
initItinList. As aresult, alist of protected itinerary nodes is obtaimed stored in
theprotectedItin variable. Finally, lines 4 to 8 define theotectNode function,
which takes a GraphNode parametesde) and returns a List object.

The protectNode function uses th@odeData built-in function to extract infor-
mation fromnode and from the successornéde (more details about this function will
be given in section 6.4). The platform associated withe is stored in theplatform
variable, and the subsequent platform of the itinerarydsest in thenextplatform
variable. Then, thgraphNode2String built-in function is used convetiode into
a String object, and the result is encrypted using the plaicof platform. The
encrypted node angkxtplatform are finally returned using theeturn keyword.

This short example shows how the protection of the initiakitary is significantly
simplified. In this case, only eight lines of code are neederdhwverse the agent’s initial
itinerary, encrypt each one of its nodes, and then introttueeesult in a list.

Another important MACPL type is the RuntimeDefined. Thiseyp used to deal
with the data types provided by the agent programming lapgjuahich is the language
supported by the agent execution environment. The data typthe agent program-
ming language are not directly supported by MACPL, which nsethat type errors
related with RuntimeDefined objects are detected at runtimoieat compile time.

An example of a built-in function that uses RuntimeDefinejots is thesencrypt
function. This built-in function encrypts data using a syetrit key algorithm, and
takes a secret key parameter which is a RuntimeDefined obljemivever, if the se-
cret key provided t@encrypt is a RuntimeDefined object that does not encapsulate

14

a proper secret key, then MACPL will issue an error at runtingt at compile time.
In general, most cryptographic functions provided by MACIe RuntimeDefined
objects.

MACPL also provides a data type associated with the tasksués@ by the agent:
the Task data type. In order to execute tasks, MACPL prouioesxec built-in func-
tion, which takes a Task object and a String object as paemelhe String object
specifies the name of the method that has to be executed, whishbe implemented
within the task. The type returned by this function is a $frifithe generation of Task
objects in a format suitable for MACPL is performed using ttieerary Designing
Tool.

The String is also an important MACPL type. Apart from repraing a sequence
of characters (e.g. “foo”), the String type is used to enalgis objects of other
types. For example, thelecrypt built-in function decrypts data using a certain secret
key, and returns a String object encapsulating the deatygéta. In order to con-
vert the resulting String object into another data type, NPAGhrovides several con-
version functions, such asring2Task, string2List, etc. The inverse operations
can also be performed using the corresponding conversitetifuns ¢ask2String,
list2String...).

In addition to the aforementioned data types, MACPL has@isanore types: the
Boolean and the Integer. The purpose of these types is depiva the one of many
other programming languages. They are used to evaluateticorad expressions, in-
dex elements of graphs and lists, etc.

6.3. Scope of variables
MACPL variables have two €lierent types of scope:

Global: Variables with global scope can be accessed from anywhéehéwtihe entire
MACPL code. They must be declared outside any function defmi

Function: Variables with function scope are only visible within theétion in which
they are declared.

Global variables may be referred to anywhere in the progtamthey lose their
value once the agent migrates from one platform to anotheexample of this situa-
tion is shown in the following code.

Graph initItin = getInitialIltinerary();

List protectedItin = protectItinerary(initItin);

List accumulatedResults =
[signok(list2String(["Home" :null:"Platformi"]))];

#control_code_begin
GraphNode currentNode = getCurrentNode(protectedItin);
List accumulatedResults =

executeCurrentTask (currentNode,accumulatedResults) ;

The above code defingxotectedItin and accumulatedResults as global
variables. They are first initialised during the agent setupa then they are used by
the control code in every platform of the itinerary. The pgesb of this example code

15

is that the value assigned to these variables during thet agarp will never be avail-
able to the control code. Likewise, the value assignetttiimulatedResults in the

control code will be lost when the agent migrates from itsentr platform to the next.

In order to allow the values of variables to be recovered afiigrating from one
platform to another, thexport keyword must be used. This keyword must be placed
at the beginning of the type declaration, as shown in thevietig example.

Graph initItin = getInitialltinerary();

export List protectedItin = protectItinerary(initItin);

export List accumulatedResults =
[signok(list2String(["Home" :null:"Platformi"]))];

#control_code_begin
GraphNode currentNode = getCurrentNode(protectedItin);
accumulatedResults =

executeCurrentTask (currentNode,accumulatedResults) ;

The above code shows thatotectedItin andaccumulatedResults are how
declared agxportablevariables, and therefore their value is never lost duringraai
tions. It is worth noting that thexport keyword can only be used to declare global
variables.

6.4. Built-in functions

MACPL provides a comprehensive set of built-in functionstfee implementation
of agent protection protocols. This section provides aflgtéscription of the most
important ones. As mentioned earlier, MACPL built-in fupat are described in detalil
in Garrigues et al. (2008a).

A subset of MACPL built-in functions is used to handle Grapfects. This subset
includes:successors andpredecessors, which return the successors and predeces-
sors of a given GraphNode, respectivalyaph2List, which returns a list containing
all the GraphNode objects of a grapftiinGraphs, which returns the graph resulting
from the union of two graphs, among others.

MACPL also provides functions for list managementngth, to determine the
size of a listremove, to remove an element from a ligtoin, to concatenate two lists,

among others.

In order to extract the information included in the XML itiaey specification,
MACPL Provides thegetInitialItinerary built-in function. This function intro-
duces all the information found in the XML document into a @rabject. In order to
make this possible, the XML document must provide at leastdliowing information
for each itinerary node: task, type and platform. The follapDTD document shows
the structure of a valid XML itinerary especification.

<!ELEMENT ITINERARY (NODE+)>

<!ELEMENT NODE (TYPE,TASK,PLATFORM, (ATTRIBUTE*) , (ITINERARY*))>
<!ELEMENT TYPE (#PCDATA)>

<!ELEMENT TASK (#PCDATA)>

<!ELEMENT PLATFORM (#PCDATA)>

<!ELEMENT ATTRIBUTE (NAME,VALUE)>

<!ELEMENT NAME (#PCDATA)>

<!ELEMENT VALUE (#PCDATA)>

The following XML document shows a valid specification of ateaple itinerary
that is comprised of a single node.

16

<ITINERARY>
<NODE>
<TYPE>Sequence</TYPE>
<TASK>Task1. jar</TASK>
<PLATFORM>ccd-pr2</PLATFORM>
</NODE>
</ITINERARY>

ThegetInitialItinerary functionintroduces every itinerary node into a Graph-
Node object. In order to read the contents of a GraphNodehBfACPL provides the
nodeData built-in function. This function returns a list of elemevdalue pairs. Both
the element names and the values are represented as St@atsolAs an example,
the node defined in the above XML document would be returnethby.odeData
function as follows.

[["TYPE":"Sequence"] : ["TASK":"Taskl.jar"] : ["PLATFORM":"ccd-pr2"]]

Apart from a task, type and platform, the XML itinerary casakpecify other
information for each itinerary node. This additional infation can be specified using
one or moreATTRIBUTE elements, each of which containingNaME element and a
VALUE element.

MACPL also provides thereadFile built-in function to read the contents of a
file and introduce them into a String. A common use of this fiamcis to read files
that contain agent tasks. For exampleadFile can be used to read tiTaskl. jar
file specified in the previous XML itinerary example. The &griobject returned by
readFile can be then converted into a Task object usingsteing2Task built-in
function, and then this task can be executed usingtle built-in function.

MACPL also provides other built-in functions for the implentation of the con-
trol code:move, which allows agents to migrate from one platform to the nekéne,
which allows agents to send a clone of themselves to othdoplas; andsendResults,
which allows agents to send their partial or final resulth®dwner.

One of MACPL's primary goals is to simplify the implementatiof cryptographic
protocols. For this purpose, it provides several cryptphi@functions: aencrypt
andadecrypt, to perform asymmetric encryption and decryptiefign andverify,
to perform digital signatures and verificatios&eygen andkeypairgen, to generate
symmetric and asymmetric keys, among others. It is wortingdhat theadecrypt
function, which allows agents to decrypt data using theenirplatform’s private key,
is implemented as described in Ametller et al. (2004), sbdgants can never access
platforms’ private keys directly.

A common feature of all cryptographic functions is that th#gw programmers to
specify what they want to do, without specifying how they wando it. For this pur-
pose, the parameters taken by these functions never depemy specific algorithm or
implementation. This feature makes the MACPL code moregtetand easier to use.
For example, when thekeygen function is used to generate a secret key for a symmet-
ric algorithm, the programmer does not specify if the keytemnded for AES or 3DES
encryption and decryption. The following section desaihew the programmer can
compile the agent selecting a specific set of algorithms ptémentations, and how
built-in functions are grouped into libraries.

17

6.5. Function libraries

MACPL built-in functions are designed to be independentrgf algorithm or im-
plementation. This makes the MACPL code more generic anshiga. In addition,
the Agent Builder supports flerent implementations of the built-in functions. Thus,
programmers can compile the same MACPL code usiffigrdint versions of these
functions, depending on the requirements of the applinatio

Built-in functions are grouped into libraries. For exampa# built-in functions re-
lated to list management are grouped into the same libragh Ebrary implements an
interface, so that dierent versions of the same set of built-in functions can beiged.
For example, all built-in functions related to cryptograine defined in one interface.
The Agent Builder may provide two fierent libraries implementing this interface, one
based on PGP and another one based on X.509v3 certificates.

The set of interfaces and libraries provided by MACPL canttereled. Thus, pro-
grammers can develop new libraries by creating their ownémpntations of MACPL
interfaces. Additionally, programmers can also creat@ then interfaces, and then
provide one or more implementations of those interfacesevinterface could be cre-
ated, for example, to provide MACPL with networking captigit or to allow agents
to exchange ACL messages with one another. Itis worth nétiaigibraries are imple-
mented in the programming language supported by the agenuan environment,
which essentially means that programmers can implementlibeavies in a general
purpose programming language.

Because each interface can be implemented by mdferetit libraries, the Agent
Builder provides command line parameters to select whatifspébraries have to be
used to compile the agent. In addition, if the MACPL code w@sesrtain interface pro-
vided by the programmer, then the name of this interface meispecified inside the
MACPL code, using thérequire precompilation directive for this purpose. The pro-
grammer can then use command line parameters to selecbthgylthat implements
his interface.

7. Auxiliary Tools

In the previous sections, we have described the Agent Buddd the MACPL
language. In this section, we will present other auxiliargl$ of the proposed devel-
opment environment, which help programmers to generatXhhie itinerary specifi-
cation and allow them to launch the agent to the first platfofthe itinerary.

7.1. Itinerary Designing Tool

The ltinerary Designing Tool (IDT) is used to aid the prograem in the generation
of the XML itinerary specification. This tool provides a ghégal interface that is
organised in tabs, which allow the programmer to define theriiry nodes, implement
their tasks and see the messages generated by the agentatiampi

Theitinerary definition tabis very similar to a drawing application. The left side
of the window contains a node palette where the programnrecikiaose which type
of node is included in the itinerary. Once a node has beereglacthe drawing area,

18

e 8 &l
L

Itinerary Editor | Manifest Editor | Behaviours Editor | Output |

= Active Node
Name
[eod-pr4. |

Host address

@ = | [ecdprauabes |

Wain class
ced-prd Lallbdey D e
InkshgentThanksAgent class|
o Browse

A0

»
m
i

ced-pr3 ced-pr3

©

ccd-pr5

Wi

=
o
=

ced-pr1 ced-pr2 ced-pr1

ae)

=F @
o
o
]

<

4l I [*

Figure 3: Itinerary Designing Tool

a task and a platform can be assigned to it. Figure 3 show®arssnot of an example
itinerary that is being edited in the IDT.

The task assigned to a node can be provided in precompiled dorit can be
implemented and compiled in thimplementation tab When the programmer starts
editing a new task in this tab, the IDT generates a skeletdgheomethods that must
be implemented. For example, if the programmer is editiegdisk assigned tolaop
node, the skeleton includes thempCondition method, which decides whether or not
the agent has to perform a new iteration.

Once the nodes and their corresponding tasks have beedtio&d in the itinerary
definition tab, the XML itinerary specification can be geneda

In addition to generating the XML itinerary specificationetiDT can also be used
to create the executable mobile agent. For this purposgramomers can choose which
MACPL specification implements the protection mechanisesgiired by their appli-
cation. Then, they can run the Agent Builder program fromIDi€ and obtain the
executable agent. Thus, the IDT is designed as a developgngimbnment in which
all the stages of the development process are integratée iseime tool.

7.2. Agent Launcher

The agents generated by the Agent Builder can be put intouérecusing the
Agent Launcher (AL). The AL is a lightweight client appligat that allows agents to
be launched to both local and remote platforms. This apjidicahould be able to run
on any device, either a desktop computer or a handheld destich as a PDA.

In order to start agents on remote platforms, the AL usesntimeigration module
of platforms’ migration service (Cucurull et al., 2007). &bommunication with this

19

migration service is performed using an Agent Communicetibannel. The AL intro-
duces the agent into an ACL message, and this message is seatrémote platform.
Then, the platform’s immigration module extracts the agemn the ACL message,
and puts the agent into execution.

8. Example application

In this section, we will see the usage and utility of our psgddoy means of a
simple application based on mobile agents. Let us assurhgthavant to purchase a
car insurance and we want to survey several insurance coegpdm order to automate
the process, we create an agent that visits a given set ofaimsel companies and
negotiates the best conditions for our insurance.

The application is created by providing a mobile agent withtmerary of insur-
ance companies that have to be evaluated. The agent vis#is tompanies and, for
each one of them, it produces all the information requiredaiculate the insurance
premium: the car make and model, our driving history, usddbeocar, etc. Next, the
agent negotiates the best insurance conditions, takiogaitdount the level of cover-
age, the excess payment, and any other parameter requirear lapplication. As a
result, the agent obtains the conditiortieced by every insurance company.

After visiting all the platforms included in its itinerar)e agent returns to its home
platform, and it determines which are the beered conditions. Next, a new round
is started to visit all the companies again, but this timeotiatjing an improvement on
the best conditions previously obtained. This processpsated until two consecutive
iterations lead to the same best conditions.

Once the best conditions are obtained, the owner can pracigedhe paperwork
to complete the insurance purchase. This application skaosisiple scenario where
the use of mobile agents can introduce a number of advantsigels as reducing net-
work load, by employing local communications, as well aomation of e-commerce
processes. These advantages are especially significamisiagplication, because it
involves a negotiation process that can be lengthy andusdio

In order to develop this application, we need to implememegecurity mecha-
nisms that protect the agent'’s itinerary and its computatioesults. These security
mechanisms are always required in e-commerce applicaimisas the one presented
here. In this case, the protection of the itinerary and themgdational results is of
utmost importance, for platforms (insurance companies)ccanpete with each other,
and might be interested in manipulating the agent code oestglts in order to corrupt
the insurance conditiondfered by other companies.

Implementing the required security mechanisms using #iwadl platform-driven
approach would be very complex in the scenario describesl Wdrcompanies would
need to agree on the same security protocols, and they weslilto update their agent
platforms whenever a new security protocol was introduceghcexisting one was up-
dated. Therefore, using our mobile agent software ardhitedor the implementation
is clearly a much better alternative.

The development environment presented in this paper,iaddily, simplifies the
implementation of the required security mechanisms. Raotéssuch as Mir and Borrell

20

(2003) and Maggi and Sisto (2003) can be used to protect teet'agtinerary and
results, and a pre-existing implementation of these podsois already provided in
Garrigues et al. (2008a). Therefore, adding security ®dpplication can require no
extra dtort.

The ltinerary Designing Tool also simplifies the design & #gent itinerary. Fig-
ure 4 shows how an example of such itinerary could be definduifDT.

| Minerary Edilor \ Wanifest Editor | Behaviours Editor roulpul |

[»

<
<] ©,

InsCom1 -

InsCom2

il InsCom3

1

Home platform

4]

4] 1M i3

———

Figure 4: Definition of an example agent itinerary in the IDT

As this figure shows, the itinerary starts witho@p node (node 1), represented by
symbolO. This first node will be executed on the agent home platforhe fdllowing
is asetnode, represented by symbiglwhich has theinchanged locatioproperty set.
This property is depicted by a left arrow replacing the platf’'s name, and it indicates
that thesetwill be executed on the previous platform visited by the agtat is, the
agent home platform. Right after teetnode, we have the set of insurance companies
that must be evaluated, which aequencaodes and are represented by synOol
After visiting all these platforms, the agent returns to ithial loop node, where it
decides whether or not a new iteration has to be started.

As can be seen, our development environment has been dewisdldw a great
reusability of protection protocols. As a result, prograensnare able to focus on the
implementation of their agents’ tasks, rather than on ttmesuming protection algo-
rithms.

21

9. Evaluation of the proposed development environment

In this section, we will evaluate our proposal’s suitaifitr the main objective we
intend to achieve: simplifying the development of securdiecgents.

The example seen in the previous section has already shothe benefits of our
proposal for application programmers, end users, and gdatibrm administrators.
Firstly, application programmers can easily reuse preshiotested security protocols
to add security to their mobile agents. Besides, they cartheséDT to design the
agent’s itinerary and implement the corresponding agskstséSecondly, end users can
easily send their agents to remote platforms using the Agambcher. This operation
can even be carried out from a mobile device. Finally, agkrtqym administrators do
not need to update their platforms whenever a new secuntpeol appears. Platforms
can handle all incoming agents in the same way, so their aoditplis significantly
reduced.

In addition to the above benefits, our development environrakso dfers several
advantages to security experts who implement the agerggiion protocols. These
advantages revolve around the fact that MACPL simplifiesrtidementation of these
protocols. In order to evaluate the degree of simplificatchieved with MACPL,
we have compared the implementation of a security protosioiguMACPL with the
implementation using a general purpose language. Fronctmgarison, we have
obtained the following evidence:

e Using MACPL reduces code complexity, which results in abidutimes fewer
lines of code, and fewer potential programming errors.

e MACPL simplifies the handling of the initial itinerary gera¢ed by the IDT. This
is achieved through the use of the Graph data type and itsiasst functions.

¢ MACPL automates the handling of platform public keys andifieates. Thus,
it eliminates the need to interact with public key infrastures.

¢ MACPL simplifies the decryption of agent data using the plaitfs’ private keys.
This is achieved through thelecrypt function, which implements the protocol
described in Ametller et al. (2004) to perform this openasecurely.

¢ MACPL automates the conversion from encrypted code to eéabtricode (e.g.
Java classes). This is achieved throughsheing2Task conversion function.

All these advantages, together with those already merdiatéhe beginning of
section 6, provide conclusive evidence that MACPL simgiBgnificantly the devel-
opment of agent protection protocols.

Nevertheless, we must also admit that the use of a new laegumght gener-
ate some reluctance for various reasons. First of all, #ga@xperts or programmers
might prefer to use another language they know better omieeé comfortable with.
Secondly, programmers might feel that MACPL lacks someilmpgonstructs such
as “while” or “for”. At present, our language relies solelg cecursion to repeatedly
execute a piece of code.

22

Despite these minor drawbacks, those security expertsimgpdn mobile agent
security may appreciate the usefulness of a domain-spgeiigramming language
that has been specially designed for this purpose. In addlithe language will surely
mature over time to better suit programmers’ needs.

10. Conclusions

In this paper, we have presented a new mobile agent softwelnéecture that is
based on implementing agents comprised of an explicitritiyeand a control code.
This architecture fiers the following advantages:

e The implementation of the agent tasks and the security nmésina is com-
pletely separated. As a result, the software architecttomeptes the reuse of
these two parts of the agent development.

o Control codes can be easily reused since they do not depethe tasks carried
out by the agent.

e Platforms are relieved from having to deal witlffdrent protection protocols of
different agents. Besides, platforms’ code does not need todadagwhenever
a protocol is improved or a new one has to be supported.

e The use of mobile agent technology, in general, contribiatéise stability of the
software architecture, for mobile agent applications asex to adapt to new
requirements. Besides, mobile agenfieoother advantages, such as reduction
of network load and decrease in communication latency.

However, most applications using mobile agent technolegyire the use of se-
curity mechanisms which are complex to implement. This p&ps also presented a
development environment designed to simplify the impletaigion of secure mobile
agents. The key element of the proposed environment is tieatAguilder, which al-
lows programmers or security experts to define protectiotogols using the Mobile
Agent Cryptographic Protection Language (MACPL). MACPLaislomain-specific
language that is easy to learn and use. The use of MACPL hdsltbeing advan-
tages:

o Simplified implementation of agent protection protocoksg&use it is carried out
using a domain-specific specification language that doeegatre an extensive
knowledge of cryptographic application programming.

o Availability of high level cryptographic functions that kait possible to quickly
create security protocols. A subset of these functionsvallagents to encrypt
and decrypt itinerary data using platforms’ private kegsjescribed in Ametller
et al. (2004).

e Integration of the agent control code, which manages thetayecution, and the
agent setup code, where the protected itinerary or any athiad data structure
required by the agent is created.

23

e Easy code reuse, for MACPL built-in functions are generid dn not depend
on any specific algorithm or implementation. Moreover, MAGRplementa-
tions are also independent of the agent’s itinerary, oféisks executed on each
platform, and of the execution environment in which ageuts r

In addition to simplifying the implementation of agent mration protocols, our
proposal also includes other tools intended for the end sseh as the Itinerary De-
signing Tool, which addresses the creation of the XML itergrspecification, and the
Agent Launcher, for the introduction of new agents in renpié¢forms.

A proof-of-concept of the proposed development envirorinters been imple-
mented using the Java language and the JaDE agent platfedlifg®Bine et al., 2007).
The Agent Setup Module and the Control Code Module have mplemented using a
MACPL to Java translator, which generates Java code tha¢isdompiled to generate
an executable bytecode.

The development environment presented in this paper repi®a valuable contri-
bution to the mobile agent security field. However, somedsstould be explored to
extend the results of the paper.

First of all, our mobile agent software architecture is lbase providing agents
with the code that manages their own protection and exetufidis inevitably en-
tails an increase of the agent size and execution time. Adthdhis increase is very
small, it might dfect the performance of some real-time systems. Therefordheir
research could be conducted to minimise the impact of otwaoé architecture on the
performance of applications.

Secondly, as mentioned in the previous section, the lackagfihg constructs such
as “while” or “for” might represent a drawback for some pragymers. Further work
should be conducted to explore the need to extend the lardgoagis regard, and an
empirical study should be carried out to evaluate the aeoept and success of the
language.

Thirdly, we have implemented two security protocols in MACBarrigues et al.,
2008a), which address some important security threads.eMawthese protocols do
not counter all possible attacks that can be mounted agairesjent. Therefore, further
work could be conducted to implement a comprehensive seairigy techniques, so
as to allow agent programmers to easily add protection tokamy of agent-based
application.

Additionally, it would be interesting to provide a mechamifor selecting the ap-
propriate technique or combination of techniques to uspenéing on the execution
environment and targeted application. Thus, our developrevironment should be
helpful for developers to better understand the designceisanvolved in the develop-
ment of their secure mobile agent-based applications.

Finally, the IDT could be extended to enable agent trackimfault tolerant mech-
anisms. Thus, we would simplify the generation of not onlyuse, but also reliable
agents.

24

Acknowledgements

This work is partially supported by the Spanish Ministry eféhce and Innovation
and the FEDER funds under the grants TSI12006-03481 SCRISSL007-65406-
C03-03 E-AEGIS and CONSOLIDER-INGENIO 2010 CSD2007-008(RES. This
work has also been funded by the AGAUR Catalan Agency thraugbroject SGR2005-
00319.

References

Ametller, J., Robles, S., Ortega, J. A., 2004. Self-Pre@dtiobile Agents. In: AA-
MAS ‘04: Proceedings of the Third International Joint Caefece on Autonomous
Agents and Multiagent Systems. IEEE Computer Society, pp-367.

Bahsoon, R., Emmerich, W., 2006. Requirements for Evalgairchitectural Stabil-
ity. In: Proceedings of the IEEE International Conferene&omputer Systems and
Applications. IEEE Computer Society, pp. 1143-1146.

Bellifemine, F. L., Caire, G., Greenwood, D., 2007. DevabgpMulti-Agent Systems
with JADE. John Wiley & Sons.

Cucurull, J., Ametller, J., Marti, R., 2007. Agent mobility: Bellifemine, F. L., Caire,
G., Greenwood, D. (Eds.), Developing Multi-Agent SystenithWADE. Wiley, pp.
115-130.

Farmer, W. M., Guttman, J. D., Swarup, V., 1996. Securitynfmbile agents: Issues
and requirements. In: Proceedings of the National InfolonaBystems Security
Conference. pp. 591-597.

Garrigues, C., Migas, N., Buchanan, W., Robles, S., Bordell2009. Protecting mo-
bile agents from external replay attacks. The Journal ofe®ys and Software 82 (2),
197-206.

Garrigues, C., Robles, S., Borrell, J., 2008a. Mobile Ag€mnyptographic Pro-
tection Language. Tech. rep., Universitat Autdonoma de &ama, avail-
able at https://senda.uab.es/wiki/BuildingMobileAgentsArticle/
TechnicalReport?7action=AttachFile&do=get&target=MACPL.pdf.

Garrigues, C., Robles, S., Borrell, J., 2008b. Securingadhia itineraries for mobile
agent applications. Journal of Network and Computer Appilbns 31 (4), 487-508.

Gavalas, D., Tsekouras, G. E., Anagnostopoulos, C., 200&bile agent platform for
distributed network and systems management. The Joursglstéms and Software
doi:10.1016.jss.2008.06.034.

Hohl, F., 1998. A Model of Attacks of Malicious Hosts Agaithdbbile Agents. In: Pro-
ceedings of the ECOOP Workshop on Distributed Object Sgcamid 4th Workshop
on Mobile Object Systems: Secure Internet Mobile Compaoitisti pp. 105—-120.

25

Kambayashi, Y., Takimoto, M., 2004. A Functional Language Klobile Agents
with Dynamic Extension. In: Proceedings of the 8th Inteioval Conference on
Knowledge-Based Intelligent Information and Engineersygtems KES'04. Vol.
3214 of Lecture Notes in Computer Science. Springer-Vepag1010-1017.

Karnik, N. M., Tripathi, A. R., 2001. Security in the Ajantaolmile agent system.
Software Practice and Experience 31 (4), 301-329.

Lange, D. B., Oshima, M., 1999. Seven good reasons for maggats. Communica-
tions of the ACM 42 (3), 88—89.

Lima, E. F. A., Machado, P. D. L., Sampaio, F. R., FigueiredioC. A., 2004. An
Approach to Modelling and Applying Mobile Agent Design Ratts. In: SIGSOFT
Software Engineering Notes. Vol. 29. ACM Press, pp. 1-8.

Lu, T., Hsu, C., 2007. Mobile agents for information retdkin hybrid simulation
environment. Journal of Network and Computer Applicati8g1), 244—264.

Maggi, P., Sisto, R., 2003. A configurable mobile agent datéegtion protocol. In:
Proceedings of the 2nd Int. Conf. on Autonomous Agents antiid@gent Systems
(AAMAS '03). ACM Press, pp. 851-858.

Mahmoud, Q. H., Yu, L., 2006. Making Software Agents Usdefrdly. Computer
39 (7), 94-96.

Mir, J., Borrell, J., 2003. Protecting Mobile Agent Itinées. In: Mobile Agents for
Telecommunication Applications (MATA). Vol. 2881 of LectuNotes in Computer
Science. Springer Verlag, pp. 275-285.

Modak, V. D., Langan, D. D., Hain, T. F., 2005. A pattern-tthskevelopment tool
for mobile agents. In: Proceedings of the 36th SIGCSE Tesahi8ymposium on
Computer Science Education. ACM Press, pp. 72—75.

Ouardani, A., Pierre, S., Boucheneb, H., 2007. A securibgquol for mobile agents
based upon the cooperation of sedentary agents. Journatailk and Computer
Applications 30 (3), 1228-1243.

Roth, V., 1998. Secure Recording of Itineraries throughoperating Agents. In:
ECOOP Workshops. pp. 297-298.

Roth, V., 2002. Empowering Mobile Software Agents. In: Pr6th IEEE Mobile
Agents Conference. Vol. 2535 of Lecture Notes in Computeézrge. Springer Ver-
lag, pp. 47-63.

Tahara, Y., Ohsuga, A., Honiden, S., 1999. Agent System IDpxreent Method Based
on Agent Patterns. In: Proceedings of the The Fourth Intiermal Symposium on
Autonomous Decentralized Systems ISADS '99. IEEE CompBtsiiety.

26

Tahara, Y., Ohsuga, A., Honiden, S., 2001. Mobile agentritgcwith the IPEditor
development tool and the mobile UNITY language. In: Proosgs of the Fifth
International Conference on Autonomous Agents AGENTS ACM Press, pp.
656—662.

Trillo, R., llarri, S., Mena, E., 2007. Comparison and Parfance Evaluation of Mo-
bile Agent Platforms. In: Proceedings of the 3rd InternaidConference on Auto-
nomic and Autonomous Systems (ICAS '07). IEEE Computer 8&gcpp. 41-47.

Vigna, G., 1997. Protecting Mobile Agents through Tracilmg. Proceedings of the
Third International Workshop on Mobile Object Systems.

Wahbe, R., Lucco, S., Anderson, T. E., Graham, S. L., 198&:iént Software-Based
Fault Isolation. In: Proceedings of the 14th ACM SymposiumQOperating Systems
Principles (SOSP '93). ACM Press, pp. 203-216.

Wang, VY., Behera, S. R., Wong, J., Helmer, G., Honavar, Vlle¥iL., Lutz, R.,
Slagell, M., 2006. Towards the automatic generation of heagents for distributed
intrusion detection system. The Journal of Systems andv@odt79 (1), 1-14.

White, J. E., 1994. Telescript technology: the foundationtfe electronic market-
place. Tech. rep., General Magic, Inc.

Yee, B., 1994. Using Secure Coprocessors. Ph.D. thesisg@iarMellon University.

Zerfiridis, K. G., Karatza, H. D., 2004. Brute force web s&afor wireless devices
using mobile agents. The Journal of Systems and Softwar&)6295—206.

Zhou, J., Onieva, J. A., Lopez, J., 2004. Analysis of a fremmimg agent result-
truncation defense scheme. In: Proceedings of the IEEECnif. on e-Commerce
Technology (CEC '04). IEEE Computer Society, pp. 221-226.

Zunino, A., Campo, M., Mateos, C., 2002. Simplifying Mobifgent Develop-
ment through Reactive Mobility by Failure. In: Advances irtificial Intelligence:
SBIA02. Vol. 2507 of Lecture Notes in Computer Science. iSger-Verlag, pp.
163-174.

27

