Comfort-Oriented Social Force Model and Learned Lessons

Miquel Isidre Vidal Carretero, A. Garrell, Luis Garza-Elizondo and R. Alquezar

Abstract—1In this paper, we propose a new Social Force
Model (SFM), called COSFM (Comfort-Oriented Social Force
Model), that maximizes the comfort of people when robots
navigate around them. We describe a navigation system that
allows robots to reach their target in small human environments
like a flat or small corridors in a safe and comfortable manner.
More precisely, the proposed approach is tested with a 3D
version of the Social Force Model (SFM) for aerial robots
with some restrictions in order to maximize the comfort of
nearby humans. To accomplish this commitment, we include
a navigation scheme that predicts the humans motion and
intention so the robot can safely avoid people. Moreover, to
avoid surprises, robots will never go faster than human motion
velocity. This contrasts with other conventional works where the
environment is neither so tight or close with people and walls.
This work is based on previous works of SFM [1] applied to
robots that come from an older framework for understanding
human movements in crowds [2]. However, we must advise that
even if the first results are quite good there is still much work
to do to obtain a fully comfortable model. The current model
shows great potential to solve difficult decisions, even scale on
many elements in close environments.Finally, the results are
good enough to think it is an appropriate model for indoor
human close environments with applications such as delivering
goods or reaching people for help in buildings.

I. INTRODUCTION

Currently, it is very common to see an aerial drone flying
in a park or a self driving harvester. First, auto-driving
cars are working on the road. All these progresses in the
field of robotics, self navigation and fast decision making
have empowered many industries to reinvent their processes
or reach new goals that before were very expensive. For
example, from modern underwater robots to self driving
cars. In the side of domestic applications, plenty of cleaning
robots have spread in many homes. Driving solutions to
maintain windows and floors clean. However, real indoor
environments present obstacles and highly dynamic objects
moving in different directions and velocities, making difficult
to achieve a safe navigation within the environment and to
reach the final goal with people moving at same time that
the robot. The main goal of this article is to propose new
ways to face this challenge.

The research has been focused over aerial robots because
they are quite common and easy to manage. Deploying on
them new navigation algorithms should be simpler work and
many homes could handle a drone inside them. Most of aerial
robots nearly lack holonomic constraints, which makes their
managing easier and more effective. For that reason, we use
a drone to achieve our goal.

For this purpose, we push the SFM model one step further
looking to robot navigation in human environments without
making humans feel unsafe or uncomfortable in close and

Fig. 1: SFM simulations with ground and aerial robots.
Top row: Blue boxes are people, green boxes are ground
robots, gold ones are aerial robots and orange boxes are ob-
stacles. Bottom row: Scenarios with more than 200 obstacles,
more than 20 people and different robots following people
and avoiding collision.

indoor spaces like an apartment. Many articles have focused
on navigation with people [3] either take comfort [4] as a
navigation parameter. But as we will see, the time constraint
is a hard limit to not pass either prediction on near passerby
people make the difference between an aggressive navigation
or soft one.

II. REVISION OF SFM
A. Introduction to SFM

The Social Force Model[2] models movement elements
as particles that are attracted by a Ff 2l and suffer/apply
repulsion force FiB* to other elements on the field. Every
interaction and final destination defines a sum of existing
forces which determines the final force. The model takes
into account interaction between robots and people, robots
and obstacles and robots and robots.

The total force is defined by the sum of interaction forces
from elements, and the attraction forces.

Fr = F& 4 Firt (1)

The interaction force Fint is the summation of all the
repulsive forces exercised by other pedestrians, objects and
robots around him, and is defined as:

Ft= ) £+ fig + ) fir ®
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Being pj € P people around the subject and o € O the
different obstacles and r € R the robots around it. Obviously
this mode could be extended to vehicles, animals or other
elements we want to introduce in the equation of forces
calculation.

The beauty of this model is that evey force is calculated
through a simple function:

i dE—dEj\ p (t)
flqt — A ( B ) TEj
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As E could be any element € R, P, O. Having the fol-
lowing statments dg,A,B as constant values pending on their
element type. On the other hand dg; as distance between
both elements, and the fraction generates the normalized
vector pointing from the element to our subject.

3)

B. Ground Robots

In the space of research, in ground robots there are couple
of concepts to take in account. First of all, it takes best profit
of spaces. Usually, robots need more space or, in our case,
we want to take extra space on movement to not bother near
humans. In that sense, there is an approximation that takes
into account being in the area behind people as less annoy-
ing [21], therefore, more comfortable. This approximation
adds an extra element to previous SFM calculations in the
following form:

() rEj(t)
di;(t)
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Where w(pg;) is described as:

)(1 + cos(ngj))
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Where Ag; defines the strength of the anisotropic, space
left on the back, and cos(y;g) is calculated as:

cos(pp;j) = —NEj - €p; 6)

using ng;j, the normalized vector pointing from the robot
to p;, it describes the direction of the force, and ep; is
the desired motion direction of the pedestrian pj (which is
pointing to the goal).

On the other hand, we have the kinodynamic space the
robots need to perform their movements. Every step could
be a hard calculation and some efforts have been done to
find a fast good path for the moving robot [3]. Nevertheless,
our tries on a close space with some people has revealed a
high cost time of calculation. In short form, it was proposed
k random concatenated calculations and chose best space to
move, following the SFM model. The bad part is that every
step will generate e € ' SFM calculations having a k of 500
it will take too long for our capacity. Without diving deep
on this matter and also other approximations, see Fig. 2, has
been tried in that way. None of them reveal a fast solution
for a local planner.

Fig. 2: SFM Spacial Exploration. Top row: Short range
exploration tree affected by SFM. Bottom row: Left scenario
is a Pruned exploration tree affected by SFM. Right one is
next to objective SFM exploration tree.

C. Aerial Robots

Following the previous improvements of ground robots
taking into account comfort of the back space left more
improvements appear on aerial robots [5]. They propose
an improvement to the SFM model that takes into account
the space of comfort of people. They propose also the
aproximation of taking into account 3D comfort space. Then
the SFM model takes following form:

) ARIRj \ prys (t)
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Y(¢Rrj,Orj) represent the anisotropic factor in a 3D space,
which depends on ¢g; , an angle formed between the desired
velocity of the pedestrian p; and the vector rgj, indicating
the distance between the robot and the pedestrian p; and
pointing to him, and 0r; the angle between the r coordinate
plane and z coordinate, formed between the position of the
robot and the pedestrian. ©(¢r;, 0r;) is defined as:

Y(¢r;,OR;) 7

Y(@rj,0rj) = w(prj) cos(Ors)(h + Erjw(ers)n)  (8)

where £ is the height of the pedestrian, 1 is a constant
defined by us as 1.25, after performing experiments with
non-trained volunteers. Further, w(pg;) is described as:

)(1 +CO;(<»ORj)) 9)

Where Ag; defines the strength of the anisotropic, and
cos(p;gr) is calculated as:

w(prj) = Arj + (1 — Agj

cos(pRrj) = —NRj - €pj (10)

using ngj, the normalized vector pointing from the robot
to p;, it describes the direction of the force, and ep; is
the desired motion direction of the pedestrian pj (which is
pointing to the goal).

The drone anisotropic factor is different than the human
one, due to the fact that the drone is in the air all the time,



[ Interaction [k [ A T B ] d [ X

l

Per-Per [20] 2 1.25 0.1 0.2 0.5
Per-Per [21] 49 10 0.34 0.16 1

Robot-Person [22] 2.3 2.66 0.79 0.4 0.59
Drone-Person 4.45 3.35 0.565 0.295 0.55

TABLE I: Aerial Social Force Model Parameters. Param-
eters learned for Robot-drone interaction after applying the
minimization process.

it does not have the same limitations as the human, so the
anisotropic factor is defined by:

(1)

From the previous and current sections we get the param-
eters [5] on Table:1.

Y(pRrj, Orj) = w(pr;) cos(Or;)

D. Prediction

For our model we also include a simple prediction system
to estimate future velocity of moving elements, in our case
humans. As we will see next sections our comfortable
oriented SFM sets maximum velocity of the drone to 0.8 max
velocity of near humans. This increases the safety perception
of near people but at the same time raises a challenge to avoid
their path when the robot will move slower than them.

For this exercise we use a really simplistic approach. Every
time it notices a new position from someone the predictor
engine records their location and time stamp. After some
records the predictor has a vector of positions and a vector
of times:

X = (x1,22,...,211) (12)

T = (t1,ta, ..., t11) (13)

Then, we can elaborate a vector of estimated velocities:

Ty — Tn1 Az,
n = = 14
Y tn - tn—l Atn ( )
With final result:
V = (v1,v2,...,v10) (15)

For our exercise we record the last 11 positions getting
the last 10 approximated velocities.
To predict people’s future velocity:

n
Zj:l Un
n
III. SIMULATION ENVIRONMENT

Vppr = (16)

A. Introduction to environment

First of all we have create a simple environment, using
Gazebo Ros, to check if the model can handle hundreds of
static elements, tens of people and robots following people
either navigating on it without collision and consuming low
resources. Fig. 1. All simulations done in this article have
been done in a desktop computer with 6Gb Ram with double
Xeon E5520 processors.

We have worked on a development on a local planner base
on SFM. This version takes into account some parameters
to increment the comfort of near people. The concept of
local planner is common in many frameworks[12][4], such
as ROS. The main idea is the existence of a Global Planner
that carries with it the responsibility to trace a global path
to reach a target and a local planner that will drive the robot
through the changing reality that can need time for large or
accurate calculations for replanning the proposed path. For
our final exercise we use a constant calculated global planner.
That engine always delivers the same route to the robot. That
way we can repeat the exercise and compare the different
behaviors of our local planner in near equal conditions.
Global planners should take care to solve situations that only
could be predicted or solved with bird sight. For example
SFM models suffer from the same issue that potential fields
navigation algorithms with the local minima[7]. When this
happens the global planner should take action to find a path
avoiding these situations.

For our commitment we have started working with Nav-
igation ROS framework, also similar to other options but
at the end reduced to a simpler option. As we will check
some issues appear on traditional frameworks over 3D aerial
robots. Both frameworks take in account the option on Global
Planner and Local Planner. In fact we reproduced [3] other
based SFM local planners to improve their result, left square
Fig. 10.

B. Configuration of near real environment

One of the problems to manage on simulations is to
generate a virtual environment as realistic as could be. In
order to achieve this commitment we have used Gazebo Ros
as simulation environment. Gazebo is currently a separated
software from ROS for managing simulations, but in our
version of environments (ROS Indigo) was still a package of
T0S.

Create a realistic environment began with reproducing a
real scenario based on a real flat (Fig. 3). We take the
floor plans of a team member. Modeled as a simpler version
(squared it) and raised it on the floor builder integrated on
Gazebo. After that we had a realistic physical environment
where our experiment could be placed.

Second element to develop was generating a group of
virtual actors that could walk around the flat. Each of them
was modeled as person following the primal version of SFM
defined by Helbing [2]. Their behavior follows previous SFM
model. As we want to launch a large range of experiments to
observe their results. We defined 6 different human profiles,
having each of them a different route inside the previous flat.
We can observe their planned path on the small six right
squares on the Fig. 10. We want to call special attention on
paths defined on the upper left and bottom right. Both are
designed to have frontal collision with our virtual drone. The
first path will approach the drone to the upper left room and
the second will try to push the drone against the wall on the
small corridor.
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Fig. 3: Building a realistic map. Top row: Transform a real
map to easy to reproduce one. Bottom row: Build the map
and final result in the 3D simulator.

Fig. 4: Reproducing Real Experiment. 7op row: Two
explored maps inside the simulator. Bottom row: Odometry
representation of walls and path of the drone.

Our experiment will launch at least 50 runs on 8§ scenarios.
First scenario will be with no people and our drone guided
only with the global planner. Second scenario is like the
previous one with our local planner. Third scenario will
bring the first virtual actor into the simulation. The following
scenarios will add one extra virtual actor until reaching 6
virtual actors on the simulation. The final 2 scenarios will
generate the previous collision situations explicitly provoked.

Finally we have been using a virtual Drone that emulates
the real behavior of a commercial AR Drone 2.0 [6]. In
our preliminary experiments we have already noticed their
similarity with real aerial robots. It suffers drift either inertial
and does not answer instantly to commands. As previous
virtual actors, get direct actions from our SFM model engine
for our virtual Drone we go through full stack simulation.

C. Learned Lessons

The presented documents want to focus in our model
(COSFM), however, we would like to make a small stop to
share some experiences on working with the local path plan-
ner, small environments, compatibility of 3D environments

and current existing planners. Finally, a special chapter for
doors.

1) Oscillations: Many navigation systems suffer from the
same challenge. When they want to reach a point in space,
it could happen, that your inertia, either slow answer on
actuators or other elements makes your robots miss it out.
When they come back to reach it could easily start a loop
rounding around that target. To reduce this situation we have
deployed a couple of mechanisms. First of all as soon as it
is near the next step of its route, just accept as matched and
ask for the following point of the route to the global planner.
Secondly and more elegant we create a n + 1 dimension
for managing space in our world. For example a 2D world
will work with 3D vector coordinates. This third coordinate
just acts as a reducer for our SFM engine. As Fy,,; pushes
our Drone to the coordinates of the goal, if it has a n + 1
coordinate that could not be reached by their movement, but
it is taken into account during their SFM calculations as soon
as the Drone gets near that coordinate it gets a bigger force
portion until one time it gets most of Fy,,; generated.

Drawbacks appear on both workarounds. On the case of
accepting the near point as matched on the route could bring
difficult routes when a turnover 90 square appears on the
route or a door has its space for the next step, that margin
should be reduced to a minimum. In the other hand the n + 1
dimension solution could make everything run a little bit
slower as for each step on the route some force is derived
to nowhere place.

2) Walls: One of the big challenges on managing low
cost time calculations over the local planner is managing the
information provided by the sensors from the walls. Usually
that data is managed as a cloud of points and the map engine
will interpret it as a wall. This works correctly for the global
planner. The problem begins with a SFM based local planner.
As soon as we work with massive cloud points sourced by
the small corridors or walls on the flat our SFM will deliver
slow answers to the local planner and perhaps it reaches late.
We simplified it a little bit for the walls. As soon as we know
a 3D cloud of points belongs to a wall, we manage it as a
line of points at the same level that our drone. As we can see
on Fig.4 bottom row the full knowledge of the cloud points
could be a challenge for the SFM engine. Even when we use
the near restriction it will still handle a large data set for no
real profit.

3) Current Local Planners: In order to be able to make
better comparison of our proposal we face the problem that
not all local planners are prepared for the 3D environment.
This could seem an obvious reality, but it wasn’t so evident
on some experiments.

4) Doors: As we run our experiments in a simulation
based on a real flat. Our doors are a small space to go
thought. Going through a door could generate many oscilla-
tions, trying to not collision with one side of the door pushes
to the other side and begins dancing between them. Also
doors are so close spaces that is really difficult if one of
our virtual actors tries to go across it at the same moment
our drone tries it, it doesn’t have space to make any evasive



maneuver. At one point we realized that this problem also
happens with real humans and also when people try to drive
their car in a small space it also generates this kind of
behaviors. Doors made us tune more accurately COSFM than
any other element in the stage (even the virtual actors). We
reduced a little bit our parameters for SFM and let it drive
carefully through them.

IV. COSFM
A. Re-Simplication

As we have described in previous sections SFM has many
improvements to make it more accurate their forces over
the robot, pending on 3D position or angle front facing
the person. In our case we finally have chosen the simpler
form. One that doesn’t take into account either ¢ (¢r;, Or;).
Mostly it has been discarded due to a double fact. First we
are simulating indoor flight, that means that the improvement
of the Areal SFM could easily hit the roof. Secondly for
our simulation the maximum population we will manage is
6 virtual actors, which reduces in great manner the actual
benefit of this improvement.

B. Focus

COSFM focus on getting the base for a local planner
that targets maximize the comfort of near people based in
following directives:

1) Velocity: The drone velocity could be one of the bigger
bothering factors to near people[4]. Then we limit the max-
imum velocity of the drone to 0.8 velocity of near people.
This parameter becomes dynamic and with a minimum value.
If all people are stopped let it be 2.8 km/h which is slower
than common human walk speed 4 km/h.

2) Close Spaces Oriented: Our model is oriented to
closed spaces. Perhaps in the future research could be
oriented to open spaces, but the aim of this model is to
maximize comfort and this concept is strongly linked to short
range space. At the moment it has much less to bring in open
spaces in comparison of closed ones.

3) Human collision as last option: As we introduced in
previous chapters, some executions put our virtual drone in
difficult situations where our virtual actor will push it to the
wall or close it in a small room. Our model will always
try to avoid collision with people, but in case of conflict
between people and wall, it will choose wall. This happens
automatically with SFM parameters. Nevertheless this should
be taken in account when working on really close spaces.

C. Timeless Prediction

Our improvement on SFM navigation is based on this
“Timeless Prediction”. As we can observe on Fig. 5 our
Drone would be attracted by the goal, but the main challenge
will be to not collide with anyone. On the top left we can
see a couple of possible paths the drone could take if all
people would be static. If we bring some movement on the
scenario (other 3 quarters) we can easily observe that one or
the other path are better depending on people decisions. It

Fig. 5: COSFM. Top Left: On a static stage a couple paths
has clear ways. Top Right: If all people move down then the
upper path is the best option.Bottom Left: If all people move
left then the right path is the best option. Bottom Right: But
if all people are moving perhaps it’s better not move.

could also be that the best option is to remain static (bottom
right quarter).

From works [14][23][3] we can observe many ways to
manage when/where near mobile elements will be and where
our navigated element could go. But if we are thinking about
low time cost calculations or look for a low iteration model
soon we will find that developing any model over time could
be difficult to manage. At the same time if we observe again
Fig. 5 we will realize that it is not mandatory for a short
period to see the time as variable. We can use all the future
projections f; € F' at the same moment to reveal the proper
path:
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For every moving element, in our case virtual actors, we
create a virtual representation of them in the direction of their
predicted velocity for 1 second further. This gives a small line
of projections of people that will reject movements of our
Drone. While it is true that this will increase our calculations
per round at the same time we are reducing iterations over
time to predict future moves and transforming to the SFM
the intention of mobile elements in form of force elements.
In the SFM framework this becomes an easy projection of
current moving elements to the predicted direction.

D. Math Model

This chapter focuses on giving the whole math model in
one chapter, first we have an f%°* for each moving element
in our environment, in our case virtual actors and our aerial
robot(Drone). This fgoal attracts the element to their next
target position and could be defined as:

202l — (v — vi) (18)

Being vY% our desired velocity (from our subject to their
target) and vg our current velocity. This autoregulates the



attraction force until it gets the desired velocity. k is a
constant defined in previous chapters (see Table I).

Our virtual actors are modeled like Helbing [2] and only
suffer repulsion force from other elements and attraction
force from their fgoal Their behavior is defined as:

Filglt — goal Z 1nt (19)
e;€EE
Where f3
flnt AP] ( dPBPdJP] ) rPJ (t) (20)
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Like previous step, A, B, k,d could be found at Table I.

At this point we have virtual actors that behave as humans
and target their local goals. For modeling our aerial robot we
apply the same basic SFM model:

Flnt fgoal + Z flnt (21)
e;€E
Where f3!f
(‘B Ri)rRj(t)
ft = Agje PR =2 (22)
o dr;(t)
and we enhance it with the prediction having:
Flnt goal Z 1nt Z 1nt (23)
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as f; € F are the predicted positions of the

mobile elements Vpositions between current

position and predicted one we generated elements
SA

fe = {eposition-----EpositionV Atime} For our actual

experiment we use and increment of 0.01 second per
projection.

Current filters have been applied to previous model to
enhance comfort:

1) Altitude: For any Fi* where 2 component suffers a
modification until it reaches a 0.5m altitude. That makes
the drone fly at 0.5m over the floor and only for avoiding
obstacles it goes to a different altitude.

2) Velocity: For min(v. € V) where v of the elements
in the scenario, our aerial drone sets their Max Velocity to
O.8’Umin .

V. EXPERIMENTS
A. Scenario

The current experiment is developed inside Gazebo sim-
ulator. The virtual world will have a simulated flat (Fig. 3)
with a simulated drone[6] that will follow a constant path de-
livered by the global planner constantly. This global planner
will deliver the pathss shown on Fig.10. As we mention on
previous chapters a couple of paths are designed to collision
with the done in the corridor or the L room.

We defined 8 different scenarios, one per number of
people, one without people and one without local planner,
only global planner.
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Fig. 6: Route Time: How long does the drone take to run
whole path in each scenario. Our COSFM takes a bit longer,
and gets longer as more people walk on the scenario.
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Fig. 7: Wall Distance: Average distance of the drone to the
wall. More is better, as we can observe that until we reach
4 people it doesn’t really affect it.

B. Execution

The execution of this experiment has been developed
with an automatic mechanism that launches the scenario
continuously, saves the ROS Bag message for each run. This
has generated more than 850 ROS Bags, after eliminating the
corrupt bags and unlaunched simulations we get a total of
604 bags. With a minimum of 53 bags of 6 people experiment
to a maximum of 101 without people or local planner we get
a wide range of data to make the analysis of our COSFM in
simulation.
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Fig. 8: Proximity of the wall: The minimum distance to the
wall, as we can see with 4 or more people, the drone begins
to collide with the wall in some simulations.
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Fig. 9: Proximity of people.: Generally, our method doesn’t
collide with people.

C. Data analysis

From previous simulations, we have raised more than
10Gb of data messages exclusively for COSFM. To process
that amount of data we have developed a range of scripts
to process their content and apply some logic. From data
messages we have selected the following Key Performance
Indicators (KPI) per run:

1) Number of people: : Number of people rounding on
that simulation launch.

2) Time to route: : The amount of time the virtual drone
need to accomplish the whole route. That means enter the flat
to reach again the small hall. This time has been measured
on simulation time scale, not the real scale. As the simulator
runs morre slowly than real time, this could be a problem.

3) Average distance of the wall: : After recording all the
position of the virtual drone, how far was it from the wall
in average.

4) Minimum distance of the wall: : How near it has been
to the walls. This parameter will reveal collision with the
wall.

5) Minimum distance of people: : How near it has been
to the people. This parameter will reveal a collision with
someone.

VI. CONCLUSIONS

After observing the COSFM simulations hundreds of
times, and the data analysis, we clearly see one good and one
bad. Generally our local planner tends to avoid collisions and
doesn’t bother people. Many times that a couple of virtual
actors overun our drone, it reaches a solution. But it could not
hide the reality that sometimes in our simulations we suffer
some colisions between the drone and our virtual actors. Also
we should find a better solution than making the aerial robot
collide with the wall when it has to chose between wall or
virtual actor. In fact perhaps we should better land (and let
the drone be stepped on), as it is less dangerous than hitting
the wall and bouncing against the virtual actor.

If we check the figure 6 we can see that respect a no local
planner it doesn’t bring so much overhead, it makes the route
nearly in the same time. Also if we check the figure 7 we
can observe it tends to let more space between the drone and
the wall.

Over the collision space we would work on figures 8
and 9. Both have a slashed line showing the colission
ditance. As we can appreciate for people it is a bit larger. In
both scenarios we can appreciate that it gets worst with the
provoked collision in small spaces. Either with 5 or 6 people
some simulations our drone hits the wall or, what’s worst,
hits someone.

Also it has been shown over many simulations that pre-
diction is a key point over COSFM, as being slower than
people always will be a challenge to avoid the colision, we
should anticipate it in a more clever way. This could be a
deep field for research.

Finally we understand there is work to do, but and same
time we are really pleased for the shown results. It is a really
tight space, with small doors to cross or many people moving
for the size of the flat. Generally our COSFM planner has
worked great and shown as many not so obvious solutions
for solving navigations challenges.

VII. FUTURE WORKS

When we review the videos of the different navigation
experiments, we feel that perhaps even humans couldn’t drive
better neither would be resolved better by other local-planner
methods.

Future works will be focused on fine tuning the current
method, trying to avoid collisions. Get some tests with the
same scenario with human drone pilots, also check the
response of other planners in these scenarios.



Fig. 10: Paths. Left: Full path driven by the drone. Right 6 boxes: This are the 6 paths followed by the 6 people on the flat.

Finally, we plan to perform real-life experiments. The
scenario has been based in an existent flat where we could
try if in a real scenario it works properly.
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