Demostrador de Internet of Things con la tecnología IEEE 802.15.4e utilizando la plataforma OpenMote, sistema operativo OpenWSN y TheThings.io

Rubén Cabello Chacón

Master Universitario de Ingeniería de Telecomunicación UOC-URL

Enero 2018

Índice

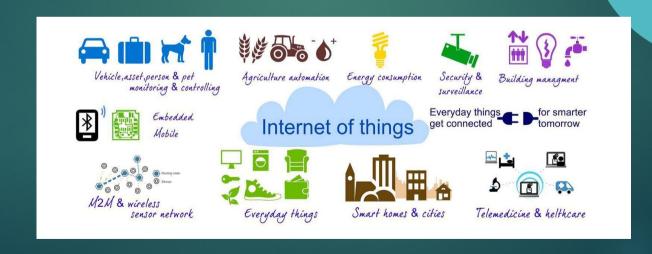
- ▶ Objetivos y motivación.
- Internet of Things
- Campos de aplicación loT
- ▶ IEEE 802.15.4
- ▶ IEEE 802.15.4e
- Fog Computing
- ▶ Cloud Computing
- Cloud vs Fog
- ▶ OpenWSN
- ▶ Plataformas IoT
- ▶ Diseño e implementación

Objetivos y motivación

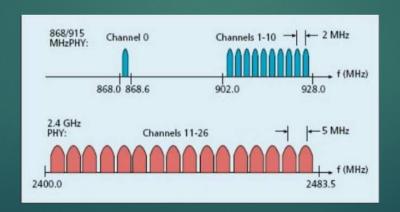
- Simular una red Open-WSN donde se recoge información de distintos sensores y se envían a una Raspberry pi actuando como Gateway.
- 2 tipos de procesado: fog computing y cloud computing.
- Datos subidos a Cloud para su visualización.
- Comparación entre las dos clases de procesado.

Objetivos y motivación

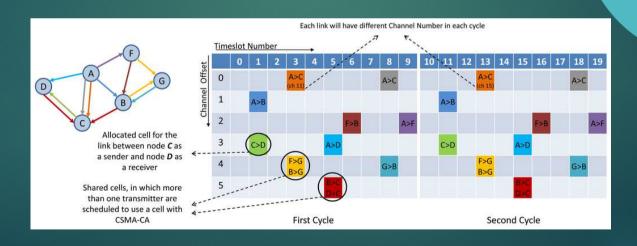
- ► Estudio sobre IoT.
- ► Conocimiento de tipos de procesado en IoT.
- ► IEEE 802.15.4 y IEEE 802.15.4e.
- ► Aprendizaje de OpenWSN.
- Conocer y utilizar plataformas Cloud.


Internet of Things (IoT)

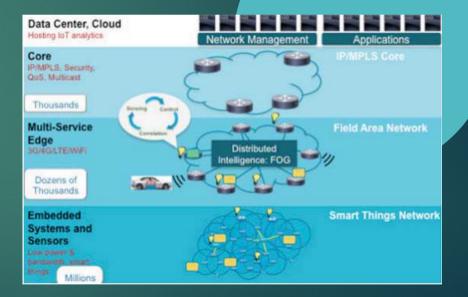
- Concepto que se refiere a la interconexión digital de las cosas u objetos cotidianos con Internet.
- ▶ Protocolos: IEEE802.15.4e, IETF 6TiSCH, 6LoWPAN, CoaP, HTTP, etc.


Campos de aplicación loT

- Smart home (sensores temperatura, humedad, automatización, etc.)
- Smart City (control meteorológico, contaminación, tráfico, etc.)
- Medicina y salud (marcapasos, control constantes vitales, etc.)
- Infraestructura (vías férreas, carreteras, parques eólicos, etc.)


IEEE 802.15.4

- ▶ Define capa física y capa de control acceso al medio.
- ▶ Bajo consumo de energía.
- Redes LR-WPAN (Low Rate Wireless Personal Area Network).


IEEE 802.15.4e

- ▶ Añade mejoras a IEEE 802.15.4.
- ▶ Mejor eficiencia energética, nodos intermedios no siempre activos.
- TSCH (Time slotted channel hopping), protección multicamimo y fading.
- Protección contra interferencias externas.

Fog Computing

- Datos tratados en el lugar mas eficiente entre origen y cloud.
- ▶ Mejorar eficiencia.
- Reducir consumo de Bw.
- ► Aumentar seguridad.
- ► Costes reducidos.

Cloud Computing

- Servicios a través de Internet.
- ▶ 3 modelos:
 - SaaS (Software as a Service): aplicaciones en la nube (ofimática, email, etc.)
 - ▶ PaaS (Platform as a Service): application engines, middleware, etc.
 - ▶ laaS (Infrastructure as a Service): storage, backup, BBDD, etc.
- ► HW/SW bajo demanda.
- ► Escalabilidad.
- ► Flexibilidad.

Comparativa

Requerimientos	Cloud Computing	Fog Computing
Latencia	Alta	Ваја
Jitter	Alta	Muy bajo
Localización del servio	Internet	Final red local
Distancia client/serve	Múltiples saltos	Uno
Seguridad	Sin definición	Puede ser definida
Ataque datos	Alta probabilidad	Poca probabilidad
Importancia localizaci	No	Si
Geo-distribución	Centralizada	Distribuida
Nº nodos	Pocos	Amplia
Movilidad	Limitada	Soportada
RTI	Soportado	Soportado
Última milla	Línea arrendada	Wireless

Cloud Computing	Fog Computing
Los datos y aplicaciones son procesados en el cloud, lo cual consume mucho tiempo para largas cadenas de datos.	Opera en el final de la red, tiene menor consumo de tiempo al no tener que ir a través de Internet.
Problema de ancho de banda, cada bit ha de ser enviado al cloud.	Menos demanda de ancho de banda, cada bit va a puntos de acceso.
Bajo tiempo de respuesta y problemas de escalabilidad al depender de servidores remotos.	Desplegando pequeños servidores bajo la visibilidad de los usuarios se evita delay y problemas de escalabilidad.

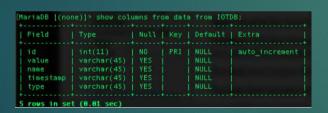
- Proyecto OpenSource para redes de sensores inalámbricas.
- ► IEEE802.15.4e, IETF 6TiSCH, 6LoWPAN, IETF ROLL, CoAP, HTTP, UDP, TCP...
- Den Visualizer: visualización y depuración (Web y CLI).
- OpemSim: simula una red ipv6 de motes.
- Compilación de programas a los motes en lenguaje C.

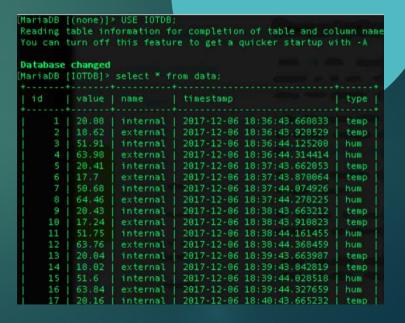
Plataformas IoT

- Distintas clases dependiendo de los servicios aportados.
- Amazon Web Services (AWS): laaS, SaaS, PaaS, noSql, HTTP, MQTP.
- Dweet.io: solo envío de mensajes.
- Freeboard: consulta dweet.io y realiza gráficas y dashboards.
- Thethings.io: API Python para conexión, Dashboard, scripting Jobs, Triggers.

Diseño e implementación

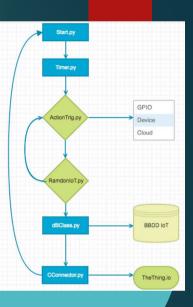
- Gateway: Raspberry Pi 3.
- Open-WSN, OpenSim y OpenVisualizer.
- ▶ SQL MariadB (fog computing).
- ▶ API en Python para subida datos a Thethings.io.
- Scripts generación de datos aleatorios.


Topología

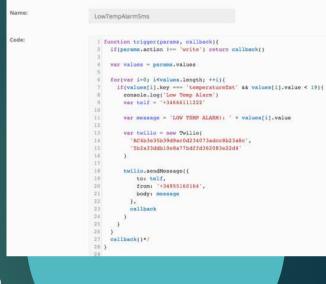

- ▶ Red en estrella.
- ▶ 1 DAGroot, 1 mote interno, 1 mote externo.
- Ambos envían la información al DAGroot conectado a Rasperación pi.
- Raspberry pi actúa como Gateway de la red Ipv6 y como interconexión con la red WAN.

BBDD

- Solo utilizada en procesado fog.
- Almacena la media del sensor, timestamp, tipo y localización.
- Guarda los datos históricos generados.



Procesado fog


- ▶ Todas las acciones tomadas en Raspberry Pi.
- Generación datos aleatorios.
- Toma de decisiones dependiendo de la medida obtenida.
- Grabación de datos en BBDD.
- ▶ Subida de datos a Cloud.

Procesado cloud

- Datos generados aleatoriamente.
- ▶ Se suben todos a Thethings.io.
- Uso de un job y un trigger para la toma de decisiones.
- ▶ Informe por sms de superación de umbral usando twilio.

Cloud vs fog

- Mayor latencia Cloud (aprox. 30ms) dependiente de la Wan.
- Seguridad: fog en área local, se puede implementar seguridad.
- Cloud no recomendable para aplicaciones críticas, delay.
- Coste: fog mas barato, no necesita Wan ni plataforma Cloud.
- Uso de Bw, cloud consumirá ancho de banda dependiendo de los datos recopilados.

Gracias

Rubén Cabello Chacón rcabello@uoc.edu