

Mapping of forest fires through satellite imagery

Carlos Sarille Cadenas
Telecommunications Technologies Degree

Supervisor: Anna Muñoz Bollas

05/06/2018

i

This work is licensed under a Creative
Commons Attribution-NonCommercial-
ShareAlike 4.0 International License

http://creativecommons.org/licenses/by-nc-sa/3.0/es/

ii

Para María, por todas as noites roubadas

iii

iv

 Final Project Data Sheet

Title:
Mapping of forest fires through satellite
imagery

Author: Carlos Sarille Cadenas

Supervisor: Anna Muñoz Bollas

Date (mm/yyyy): 06/2018

Department: SIG i geotelemàtica

Degree: Telecommunications Technologies Degree

 Abstract

Wild fires are a major problem in the northwest of the Iberian Peninsula. Only in
Galicia during 2006 96 000 hectares were burned.

There is no official cartography of those catastrophic events, and some of them are
not even registered.

This project develops an automated downloading and processing system for European
Union‘s Sentinel satellites, in order to map burned land efficiently and with a high
frequency.

NBR and NBR-difference indexes are calculated from Sentinel imagery for the
Galician area, using different imagery processing libraries.

Later on, the data is transformed into vector files and uploaded to a geographical
database to be show on an interactive web map.

 Resumen

Los incendios forestales son un problema de primer orden en el noroeste de la
península ibérica. Sólo en Galicia en 2006 ardieron más de 96 000 hectáreas.

No existe una cartografía oficial de estos incendios, y algunos ni siquiera constan
como tales en los registros.

Este trabajo desarrolla un sistema automatizado de descarga y procesado de
imágenes de satélite provenientes de los satélites Sentinel de la Unión Europea, con
el fin de proporcionar una cartografía de la superficie quemada de forma rápida y con
una periodicidad alta.

Se calculan a partir de estos datos los índices NBR y NBR-diferencia para el área
correspondiente a Galicia, mediante el uso de diferentes librerías de procesado de
imágenes geográficas.

Posteriormente estos datos se vectorializan y se vuelcan a una base de datos
geográficos para ser mostrados en un mapa interactivo.

 Keywords

Map Server, GIS, Sentinel, Satellite Imagery, Wild Fires, Forest Fires

v

Index
Index .. v

List of Figures .. vii
1. Introduction ... 1

1.1 Justification .. 1
1.2 Problem Formulation ... 1
1.3 Main Objectives ... 1

1.4 Outcoming ... 2
1.5 Brief summary of the developed products ... 2
1.6 Organization .. 3

PAC 1 .. 3
PAC 2 .. 3

PAC 3 .. 4
PAC 4 .. 5

2. Milestones .. 6
3. Risks .. 7
4. Materials ... 8

Hardware ... 8

Software .. 9
5. State of the Art. Concepts .. 10

Satellite Imagery: An overview .. 10
Satellite Imagery: Copernicus .. 11
Satellite Imagery: Landsat and private companies .. 13

Land Classification: Spectrum analysis ... 13
Colour Composites .. 13

Indexes .. 14
Land Classification: Object Based Image Analysis (OBIA) 16

6. State of the art. Technologies ... 17
Web-based Maps: Introduction .. 17
Open Source Geographical databases ... 17

PostGis .. 17

Web Map servers .. 17
GeoServer ... 18

Web Map libraries ... 18
Web servers: Apache .. 18
Java Applet Containers ... 19

Apache Tomcat ... 19
Python ... 19

GDAL .. 19
SentinelSat .. 20

Cloud Detection ... 21
Fmask ... 21

7. Design Stage .. 24

System Overview .. 24
Backend Tier ... 25

Admin Script .. 25
Download Tool .. 26
Unzip and Order Tool .. 26
Processing tool .. 26

vi

Folder System ... 27

Middle Tier ... 27
Presentation Tier ... 28

Webmap .. 28
8. Implementation Stage .. 29

Backend Tier: Dependencies .. 29
Numpy ... 29
GDAL .. 29

Sentinel Sat ... 29
Winrar .. 29
Shape and Geojson .. 30

Backend Tier: Implementation ... 31
Admin Script .. 31

Download Script .. 32

Unzip script ... 34
Processing script ... 36

Middle Tier ... 39
PostGis .. 39

Presentation Tier ... 40

Apache .. 40
Apache Tomcat ... 40
GeoServer ... 41

Leaflet ... 42
Web map ... 43

Production Stage ... 44
9. Results ... 45

Backend Tier ... 45

1-Download Imagery ... 46

Order and unzip downloaded files ... 47
Purge imagery content .. 47
Show folder content .. 47

Clip rasters .. 47

Calculate NBR Index ... 48
Calculate difference between NBR indexes .. 48
Vectorize NBR and NBR difference .. 49
Upload files to PostGIS ... 49
Batch Processing .. 49

Products Obtained .. 49
Presentation Tier ... 50

10. Conclusions .. 53

Results .. 53

Learned Lessons ... 53
Problems Found .. 53
Future work lines ... 54

11. Annexes ... 55
SLD style for NBR difference layer .. 55

SLD style for NBR difference layer .. 57
Windows 10 Installation ... 60

12. Glossary ... 69
13. Bibliography .. 70

vii

List of Figures

1 - Original PAC2 work plan ... 4
2 - Original PAC3 work plan ... 4
3 - Sun-synchronous Polar Orbit .. 11
4 - Sentinel-2 spectral bands .. 12
5 - Different Colour Composites ... 14
6 - NDWI and NBR indexes .. 14
7 - As Neves district, before and after the 2017 October wildfires seen in RGB
colour composite of bands SWIR/NIR/Red. Burnt areas are highlighted. 15
8 - As Neves district. NBR index (left) and BAI index (right) after the 2017
October wildfires. .. 16
9 - Segmentation and classification Example ... 16
11 - Geojson file covering area of interest .. 20
12 - Sentinel Tiles ... 21
13 - Sentinel-2 B08 band cloudy scene .. 22
14 - Superimposed cloud mask .. 22
15 - Superimposed Fmask detection. Cluds and shadows 23
16 - System Architecture .. 24
17 - Backend Architecture .. 25
18 - Folder Structure .. 27
19 - Presentation Tier Structure ... 28
20 - Original Shapefile .. 30
21 - Modified Shapefile ... 30
22 - Database detail ... 39
23 - Apache default web page .. 40
24 - Tomcat default web page .. 41
25 - Geoserver default web page ... 41
26 - Geoserver Time Domain ... 42
27 - Admin Script Main Menu ... 46
28 - Download Imagery Option ... 46
29 - Show Folder Content Option ... 47
30 - Calculate Difference Option .. 48
31 - Batch Processing Option ... 49
32 - Products Obtained .. 50
33 - Web Map main view .. 50
34 - Web Map Base Layer Options .. 51
35 - NBR difference Layer .. 511
36 - Cadastral Parcels and NBR Index..52

file:///D:/Google%20Drive/_UOC_/_ESTE%20SEMESTRE/TFG/FINAL/csarille_TFG_report.docx%23_Toc515836937
file:///D:/Google%20Drive/_UOC_/_ESTE%20SEMESTRE/TFG/FINAL/csarille_TFG_report.docx%23_Toc515836939

 1

1. Introduction

This chapter will briefly describe the project objectives and justification.

1.1 Justification

Wildfires are a major problem in the northwest area of the Iberian Peninsula.
During the summer season of 2006, only in the region of Galicia, around 96,000
hectares were burnt (1) in what was one of the worst years in terms of wildfires.
Last year, although there aren‘t statistics yet, it is estimated that around 61,000
hectares were burnt (2).
There are several causes for this problem, among them the depopulation of
rural areas, lack of forest care, climate change and a forest sector that despite
of its size in economic terms, number of people employed and importance for
the region (3), hasn‘t been able to deal with the periodical wildfire crisis.
In order to perform a good analysis of the roots of this problem, keep track of
the affected surfaces and allow land owners, investigators and government to
have access to this data, this proposal focuses on the use of GIS technologies
(Geographical Information Systems) and satellite imagery to map the areas
affected by forest fires.

1.2 Problem Formulation

Nowadays it isn‘t known the real extension and severity of the wildfires, and
there isn‘t cartography available of those burnt surface that could help to study
and prevent those fires. The extension and severity of the fires is measured on
terrain in the cases of big fires, and estimated in other cases. In some cases
when people extinguish the fires with no help from firefighters, those are not
even registered.
Although the previously mentioned cartography is a legal obligation of the
Galician autonomic government (4), these data hasn‘t been collected and made
public yet.
This proposal tries to fill that gap, providing an easy and reliable tool to map and
consult the areas affected by forest fires. Furthermore, this tool can easily be
expanded to show other useful data as cadastral parcels, national parks, etc.
integrating a complete ―wildfires composed viewer‖.

1.3 Main Objectives

 Understanding of the different GIS technologies, methodologies and

structures.

 Creation of an integrated system to automatically download, process,

analyse and cartography satellite images with the objective of detecting

wildfires.

2

 Creation of a web map service, allowing users to view and interact with

the data gathered and generated.

 Use of Open Source software through all the stages of the process when

available.

 Contribute to a better management of forest areas and environment

protection.

1.4 Outcoming

Although the main goal of this project is focused on wildfires, many other
environment related projects could be done using the same technologies and
processes with small modifications. Monetization could be possible, as land
owners and governments could be interested on this kind of data.
Moreover, specific applications regarding construction or agriculture industry,
which require more precision could be achieved with more detailed imagery,
which could be bought from private satellite companies.
Overall, this kind of technology is becoming more and more popular and useful,
and almost every industry is potentially interested on it, as long as there is
something that can be located on a map. The big challenge is to generate the
data shown on it.

1.5 Brief summary of the developed products

 Interactive Web map: Web map written in JavaScript using the Leaflet

library.

 Geographical Database and Maps Server: Configured and updated

Database and Maps server, using PostGIS, Rasdaman and/or

Geoserver.

 Coordination software: Provides an interface with the system

administrator and that executes and manages the whole automated map

generation system.

 Image acquisition Script: It downloads the required layers from the

Sentinel HUB.

 Image processing Script: It clips the downloaded images according to the

designated area and the clouds mask provided by the Sentinel HUB1.

Generates the raster files corresponding to the burnt areas.

1
 Sentinel Hub web page: https://www.sentinel-hub.com/

https://www.sentinel-hub.com/

3

 Change Control: Compares two images from different dates performing

the detection of new burnt areas.

 Layer Generation Script: Converts the raster files to vector files and

uploads them to the Map server.

1.6 Organization

The project activities have been grouped as it follows:

PAC1 Work plan elaboration and general planning.

PAC2
Hardware and software set up. Basic Web map
implementation. Coordination Script phase 1 and
Image acquisition Script. Report writing.

PAC3
Image processing Script, Layer Generation and
Change Detection. Coordination Script Phase2.
Final Web map. Report Writing.

PAC4 Geobia. Report Writing. Presentation Elaboration

PAC 1

The first PAC consists on the elaboration of the workplan, which includes
defining project objectives and scope, milestones, schedules, and risk analysis.

PAC 2

The second PAC comprehends system dependencies installation and
configuration, as well as the first steps of coordination and acquisition software
implementation.

In the image 1 can be seen in red for complete stages and red/green for parcial
stages, the original work plan as presented in PAC2.

4

1 - Original PAC2 work plan

PAC 3

PAC 3 includes finishing web map implementation, as well as image processing
and layer generation software. Furthermore, most documentation must be done
within this PAC. In the image 2, with the same colour code than the previous
one, the PAC 3 original work plan is presented.

2 - Original PAC3 work plan

5

PAC 4

PAC 4 is the final phase. Layer generation implementation must be finished, as
well as change detection software. If time allows, GEOBIA research and
implementation can be done. Final memoir and video presentation are to be
done in this phase.

6

2. Milestones

The main milestones of this project are:

Date Milestone

20/02/2018 Course Start

07/03/2018 PAC 1 Draft Submit

09/03/2018 PAC 1 Submit

30/03/2018 PAC 2 Draft Submit

01/04/2018 PAC 2 Submit

06/05/2018 PAC 3 Draft Submit

11/05/2018 PAC 3 Submit

31/05/2018 PAC 4 Draft Submit

04/06/2018 PAC 4 Submit

19/06/2018 Virtual Debate Starts

21/06/2018 End of the Project

7

3. Risks

Regarding this project, the following risks have been identified:

Risk Lack of time

Description Problems finding time to get the project done

Impact Project tasks duration

Probability High

Action Adapt the calendar trying to anticipate those situations.

Risk Hardware Failures

Description Failure of the computers involved

Impact Project tasks duration

Probability Low

Action Repairing the machine, get a new one or migrate the
whole system to another platform such as a VPS.

Risk Planning mistakes

Description Errors due to the lack of experience on the GIS field

Impact Project Tasks Duration

Probability Mid

Action Spend more time implementing the tasks

Risk Processing Complexity

Description The computer isn‘t able to carry out the computation
required.

Impact Impossibility of getting the project results

Probability Middle

Action Split the processing queues into smaller ones. Use a
second machine to distribute the computation.

Risk Too Big Scope

Description The Scope of the project is excessive

Impact Project Features

Probability Middle-High

Action Remove features from the project

8

4. Materials

This chapter describes which Hardware and software will be used to develop
the project.

Hardware
There will be several machines involved in this project, running different OS.

Most of the development will be done using a HP Omen 15 laptop. Main
specifications are:

 Windows 10 Student Edition

 Intel core i7-7700HQ

 16 Gb RAM

 NVIDIA GTX 1050 4GB GDDR5 graphics

 1 TB HDD + 256 GB SSD

This machine will be used too to perform image processing for the web map
demo.

The second machine is a Raspberry2 Pi 3 Model B acting as a headless server.
This is a cheap and reasonably powerful minicomputer that can be easily set up
to work as a server.

The operative System is Raspbian, a derivative of Debian, which makes this
system extremely easy to migrate to a production environment (i.e. a Virtual
Private Server, a Hosting Service, etc.).

Raspberry Pi 3 main specifications are (5):

 Quad Core 1.2GHz Broadcom BCM2837 64bit CPU

 1GB RAM

 BCM43438 wireless LAN and Bluetooth Low Energy (BLE) on board

 Micro SD storage

The Raspberry will be used to host the database during development, and to
perform slow image processing once the system is up and running, as it will
have around 3 days between each satellite imagery series.

There is a spare computer, with the following specifications:

 AMD X2 Dual core 64 bit processor

 4 GB RAM

 1 TB HDD

Furthermore, a web map demo, as well as a Geoserver instance and a Postgis
database will be uploaded to a Linode3 VPS server, in order to provide an easy
way to see the project results. The characteristics are:

 1 GB RAM

2
 Raspberry Pi webpage: http://raspberrypi.org/

3
 Linode webpage: https://www.linode.com/

http://raspberrypi.org/

9

 1 CPU Core

 25 GB SSD Storage

 1 TB Monthly Transfer

Software
The following Open Source Software will be used in the system:

 Apache Web Server4

 Apache Tomcat5

 PostGIS/PostgrSQL6

 GeoServer7

 Leaflet8

 GDAL/OGR9

 Python10

Furthermore, during the development and documentation stages, the following
software will be used:

 QGIS11

 LightTable12

 Microsoft Office Suite13

 Draw.io14

For Windows machines, Winrar15 is used to unpack compressed files.

4
 Apache webpage: http://apache.org/

5
 Tomcat webpage: http://tomcat.apache.org/

6
 PostGis webpage: https://postgis.net/

7
 Geoserver webpage: http://geoserver.org/

8
 Leaflet webpage: http://leafletjs.com/

9
 GDAL/OGR webpage: http://www.gdal.org

10
 Python webpage: https://www.python.org/

11
 QGIS webpage: https://www.qgis.org/

12
 LightTable webpage: http://lighttable.com/

13
 Microsoft office webpage: https://www.office.com/

14
 Draw.io webpage: https://www.draw.io/

15
 Winrar webpage: https://www.winrar.es/

http://apache.org/
http://tomcat.apache.org/
https://postgis.net/
http://geoserver.org/
http://leafletjs.com/
http://www.gdal.org/
https://www.python.org/
https://www.qgis.org/
http://lighttable.com/
https://www.office.com/
https://www.draw.io/
https://www.winrar.es/

10

5. State of the Art. Concepts

This chapter briefly describe the main concepts used in this memoir.

Satellite Imagery: An overview

Artificial satellites surround our world, and they can be classified depending on
their use, the distance from the surface or their type of orbit.

Attending to their use, several types of satellites can be found, such as
communications satellites (telephony, television, internet…), military satellites
(surveillance, military communications…), scientific satellites (climate
monitoring, astronomic telescopes…), geolocation (GPS, Glonass, Galileo…),
educational (small satellites called ―CubeSats‖ from universities…) and many
others.

Depending on their distance from the surface of the earth, we can classify them
in three groups:

-Low Earth Orbit (LEO): Satellites located between 160km and 2000km
from earth. They are located relatively close to earth. Because of that,
their orbital periods (time they took to go around the globe) are short,
typically between one and two hours. In this orbit are located the
International Space Station (ISS), the Hubble Telescope and most of the
CubeSats sent to orbit.

-Mid Earth Orbit (MEO): Region of space located between 2000 km and
36000 km of altitude. The main use for satellites this orbit is for
navigation and communications, and it‘s where GPS satellites are
located. Orbital Periods range from 2 to almost 24 hours.

-High Earth Orbit (HEO): Region of space located above the
geosynchronous orbits, this is around 36000 km. In this type of orbits,
satellites apparently move backwards because their orbital period is
greater than 24 hours.

-Geostationary orbit. At 35786 km above the equator, the orbital period is
exactly 24 hours. This means that from earth perspective, a satellite will
stay in a fixed position in the sky. It is a very useful orbit for
communication satellites, as they can constantly provide service to the
region underneath them.

-Geosynchronous orbit. The orbital period is 24 hours but the inclination
is different to 0º. Thus they typically perform an eight figure pattern in the
sky.

11

The differences on the periods of each orbit are due to the relation that
describes the distance and speed for an orbiting object:

 √

Where v is the speed of the orbiting object, G is the gravity acceleration of
orbited object, M is the mass of the orbited object, and r is the radius of the
orbit, this is the distance from the centre of the orbited body.

As it can be seen, the bigger the distance is, the speed of the object is slower.
That is why LEO satellites orbit the earth every hour and a half, geostationary
satellites stay apparently at the same point in the sky, and HEO satellites seem
to move ―backwards‖ in the sky.

Aside from the speed and altitude, the orbits of satellites can vary regarding the
inclination they have to the equator. For example, geostationary satellites are 0º
to the equator, and the ISS is 51.64º to the equator. This means that the
maximum and minimum latitudes the ISS can reach are 51.64º north and 51.64º
south over the earth.

There is a type of orbit used by some satellites called ―polar orbit‖, shown on
image 3. Polar orbits are orbits with really big inclinations, close to 90º, so they
orbit the earth from pole to pole. The advantage of this kind of satellites is that
they can orbit over the whole globe, which is very useful for earth survey and
recognition.

3 - Sun-synchronous Polar Orbit
16

Satellite Imagery: Copernicus

Copernicus17 is a European Union program for observing and monitoring the
earth and its environments. As explained in the brochure Copernicus: Europe‘s
eyes on Earth, ―the Copernicus programme places a world of insight about our

16

 Source: https://earthobservatory.nasa.gov/Features/OrbitsCatalog/page2.php
17

 Copernicus webpage: http://copernicus.eu/

https://earthobservatory.nasa.gov/Features/OrbitsCatalog/page2.php
http://copernicus.eu/

12

planet at the disposal of citizens, public authorities and policy makers,
scientists, entrepreneurs and businesses on a full, free and open basis‖ (5).
The Copernicus Program has six thematic focuses: Atmosphere, Marine, Land,
Climate, Emergency, and Security (6).

The Copernicus Program operates using several satellites for earth observation
and an on-site sensors network. Furthermore, it has an infrastructure network
composed by ground stations, data centres and others, which allow the
processing and distribution of the data gathered.

The satellites are called Sentinel, and there are several types of them. Sentinel
1 satellites provide radar imaging of the earth regardless of the weather. There
are two Sentinel 1 satellites which operate on a polar orbit.

Sentinel 2 satellites provide optical imagery of the earth. There are two of them,
operating on a polar orbit shifted by 180º.
The Sentinel 2 main instrument, Multispectral Instrument (MSI), allows them to
get images of the earth on 13 spectral bands (7):

4 - Sentinel-2 spectral bands
18

Sentinel 2 satellites have different spatial resolutions depending on the light
band, and they are between 10 meters per pixel and 60 meter per pixel (7).
The revisit frequency for Sentinel 2 satellites is 5 days, which means that every
5 days there will be new images for a given place.

It is important to mention that the Sentinel 2 instrument is sensitive to weather,
and depending on the atmospheric conditions the image validity can vary.
Sentinel 2 imagery is focused on ―land management, agriculture and forestry,
disaster control, humanitarian relief operations, risk mapping and security
concerns‖ (8).

18

 Source: http://www.cesbio.ups-tlse.fr/us/index_sentinel2.html

http://www.cesbio.ups-tlse.fr/us/index_sentinel2.html

13

Sentinel 3 will be a constellation of three satellites used for marine observation,
and they observe sea-surface topography, sea temperatures and ocean
colours. Only one satellite is operative nowadays.

Satellite Imagery: Landsat and private companies

Besides the European Copernicus Program, there are several other enterprises
doing similar things. The most iconic one probably is the Landsat Program19
executed by the National Aeronautics and Space Administration (NASA) from
1972.

Landsat are a series of satellites designated to multispectral Earth observation,
in a similar way to the Sentinel-2 constellation. There has been eight Landsat
missions, the Landsat-1 was launched on 1972, and the last one, Landsat-8,
launched on 2013. Landsat-8 provides 11 spectral bands, and its data is
available freely 24 hours after the acquisition.

Furthermore, several private companies have their own satellite constellations
and sell the images that they capture, such as Planet Labs20. Planet Labs has a
constellation of more than 175 small satellites in LEO, and they are able to
provide images with a resolution up to 0.8 meters per pixel revisited daily (9).

There are more private companies such as Boeing21 or Digital Globe22, among
others.

Land Classification: Spectrum analysis

When it comes to analyse and classify the type of terrain that can be seen in the
satellite images, the easiest approach is Spectrum Analysis.
This technique performs a pixel-by-pixel analysis, by measuring the content of
each spectrum band on each pixel, and creating a ―terrain signature‖ which can
be referenced to a type of land defined by the user.
For example, vegetation is highly reflective for the Near Infrared Band, so it will
be high in their signature, while water surfaces are quite the opposite.
This technique works well when dealing with medium or low spatial resolutions
(more than 10 or 15 meters per pixel). However, for better spatial resolution, the
Object Based Image Analysis gives more accurate results (10).

By combining different spectral bands, different land properties will be
highlighted. Those combinations can be colour composites or indexes.

Colour Composites

In satellite imagery, each pixel from each band contains monochrome
information. In order to obtain a RGB visualization, those bands are assigned to

19

 LandSat webpage: https://landsat.usgs.gov/
20

 Planet Labs: https://www.planet.com/
21

 Boeing Space webpage: https://www.boeing.com/space/
22

 Digital Globe webpage: https://www.digitalglobe.com/

https://landsat.usgs.gov/
https://www.planet.com/
https://www.boeing.com/space/
https://www.digitalglobe.com/

14

one of the three RGB channels. Deppending on the bands selected, the colour
composite will highlight different properties of the selected area.

In the image 5, three different colour composite images of the same area can
be seen.

The left one is a True Colour image, where bands 04, 03 and 02 are assigned
to red, green and blue channels respectively, providing a colour configuration
that looks as if seen by human eyes.

The image on the center is a Short-wave infrared composite, where bands
B12,B08 and B04 are assigned to RGB channels. It highlights vegetation and
land, as well as alterations as burnt areas or fires.

The image on the right hand side has a composition called False Colour, which
is B08,B04 and B03 assigned to RGB channels and highlights in red
vegetations areas. Those three are just a small sample of the colour
compositions that can be done with satellite imagery.

5 - Different Colour Composites
23

Indexes

On the other hand, indexes are monochrome images obtained from performing
algebra with different spectral bands in order to obtain a measurable trace of
any feature. In the image 6 two indexes can be seen: Normalized Difference
Water Index (NDWI) on the left hand side, and Normalized Burn Ratio (NBR) on
the right hand side.

NDWI highlights water areas with brighter pixels, and it is calculated as:

NBR highlights burnt areas with darker pixels, and it‘s calculated as:

6 - NDWI and NBR indexes
24

23

 Source: https://www.sentinel-
hub.com/develop/documentation/eo_products/Sentinel2EOproducts

https://www.sentinel-hub.com/develop/documentation/eo_products/Sentinel2EOproducts
https://www.sentinel-hub.com/develop/documentation/eo_products/Sentinel2EOproducts

15

Another useful index for this project is the Burn Area Index (BAI), which
highlights with brighter pixels areas covered by charcoal after fire events.

By subtracting the indexes of two different dates, a differential index can be
created, where positive values will be new occurrences of the measured
property (e.g. burned areas), while negative values will mean fading of the
measured property (e.g. vegetation growing).
For the NBR difference index, values are characterised as follows25:

ΔNBR Burn Severity

< -0.25 High post-fire regrowth

-0.25 to -0.1 Low post-fire regrowth

-0.1 to +0.1 Unburned

0.1 to 0.27 Low-severity burn

0.27 to 0.44 Moderate-low severity burn

0.44 to 0.66 Moderate-high severity burn

> 0.66 High-severity burn

In the images 7 and 8, a colour composite pre and post fire can be seen, as well
as the same burned area in NBR index and BAI index.

7 - As Neves district, before and after the 2017 October wildfires seen in RGB colour composite of

bands SWIR/NIR/Red. Burnt areas are highlighted.

24

 Source: https://www.sentinel-
hub.com/develop/documentation/eo_products/Sentinel2EOproducts
25

 Land Scape toolbox:
http://wiki.landscapetoolbox.org/doku.php/remote_sensing_methods:normalized_burn_ratio

https://www.sentinel-hub.com/develop/documentation/eo_products/Sentinel2EOproducts
https://www.sentinel-hub.com/develop/documentation/eo_products/Sentinel2EOproducts
http://wiki.landscapetoolbox.org/doku.php/remote_sensing_methods:normalized_burn_ratio

16

8 - As Neves district. NBR index (left) and BAI index (right) after the 2017 October wildfires.

Land Classification: Object Based Image Analysis (OBIA)

When the satellite images have
enough resolution, i.e. the pixel
size is smaller than the objects
measured; Object Based Image
Analysis (OBIA or GEOBIA)
provides an accurate land
classification.

GEOBIA works by segmenting
images grouping similar
neighbour pixels into objects, and
then it looks for common patterns
regarding their spectral and
geometrical characteristics,
performing the classification.
Those algorithms can be trained
in order to improve their
segmentation and classification
precision (11).

An example is shown on image
926.

26

 Source: https://gisgeography.com/obia-object-based-image-analysis-geobia/

9 - Segmentation and classification Example

https://gisgeography.com/obia-object-based-image-analysis-geobia/

17

6. State of the art. Technologies

This chapter describes the technologies used during the project implementation.

Web-based Maps: Introduction

There are several ways to present an interactive map in a webpage. Companies
like Google, Apple or Microsoft have their own Map engines called Google
Maps, Apple Maps and Bing Maps respectively. They not only provide a
standard web map, but also allow developers to use their engine to build
customized maps.

On the Open Source Side, the Open Street Maps (OSM) aims to provide an
open source world web-map, elaborated collaboratively by the users.

Also, there are some pieces of open source geographical software that can be
stacked to provide a complete Web-map engine, composed of the following
parts: a geographical database, a map server and a web to display the maps.
On top of that geographical processing tools can be added. This third option is
the one chosen for this project.

Open Source Geographical databases

Geographical databases are simply databases that allow storing geo-referenced
objects, such as points, lines and polygons. The two more relevant open source
geographical databases are SpatiaLite and PostGIS.

SpatiaLite is a spatial extension for SQLite, an open-source relational database
that doesn‘t use the client-server paradigm; which allows geospatial queries.

PostGIS is a spatial extension for PostgreSQL, an open-source object-relational
database, allowing geospatial queries.

PostGis

In this project PostGIS27 will be used as database. PostGIS is a geographical
information database based on PostgreSQL28. It is open source and it is
available for Windows and Linux systems. PostGIS was selected because it is
widely used, it has a powerful user community and it is easy to develop.

Web Map servers

In order to analyse the data contained in the database and render it for the final
user, a web map server is needed. They can work with both vectorial and raster
files (images and geometric objects), and provide an image of the map

27

 PostGIS webpage: http://postgis.net/
28

 PostgreSQL webpage: https://www.postgresql.org/

http://postgis.net/
https://www.postgresql.org/

18

according to the style assigned for each layer, and the zoom level and position
required. The more relevant open source web map servers are MapServer29,
Mapnik30 and Geoserver.

MapServer was developed by the University of Minnesota. It is described as ―an
Open Source platform for publishing spatial data and interactive mapping
applications to the web‖ (12).

Mapnik is a mapping toolkit which works with almost every geographical data
formats, and it is widely used by institutions like OSM and companies as
MapQuest or MapBox.

As Mapnick, Geoserver can work with most geographical data format and it is
fairly popular. It is written on Java, so it needs to run over a Java Applet
Container such as Apache Tomcat. It provides integrated tile caching and a web
based control panel.

GeoServer

For this project, GeoServer is the chosen server. GeoServer31 is an open
source map server. It runs over Apache Tomcat.

Web Map libraries

In order to manage the map request and allow user interaction, a Web Map
library must be used. Open Layers and Leaflet are the most popular ones.

Open Layers is an open-source, JavaScript library which allows the creation of
complex interactive maps, supporting almost every geographical data format.
The current version is Open Layers 4, and it has a vast community behind it.

Leaflet, as Open Layers, is an open-source JavaScript library. Although it is not
as profuse as Open Layers, among its advantages are its simplicity, small size
and easiness of use. Complex functions can be added through a considerable
collection of plugins.

For this project, Leaflet is the chosen web map library,

Web servers: Apache

Apache32 is a web server created by The Apache Software Foundation33, which
is open source and runs in different platforms. It is nowadays a de facto
standard for http servers and it is used in this project to host the web map.

29

 Map Server webpage: http://mapserver.org/
30

 Mapnik web page: http://mapnik.org/
31

 Geoserver web page: http://geoserver.org/
32

 https://httpd.apache.org/
33

 https://www.apache.org/

http://mapserver.org/
http://mapnik.org/
http://geoserver.org/
https://httpd.apache.org/
https://www.apache.org/

19

Java Applet Containers

To execute Java code on web services, a Java applet container is needed. As
Geoserver is partially written on Java, a Java Applet Container is needed. The
more popular Java Applet Containers are Jetty34 and Apache Tomcat.

Jetty is a web server with an integrated Java Applet Container, and it is
maintained by the Eclipse Foundation.

Although the last versions of Geoserver are shipped with Jetty, for this project
Apache Tomcat is the preferred Java Applet Container. The reason is that the
combination of Tomcat+Geoserver is better tested and documented.

Apache Tomcat

Apache Tomcat35 is a Java Applets container that runs on top of Apache. It is
needed to execute Geoserver.

Python

Python36 is an open source interpreted programming language.

There are two versions of this language, Python 2.7 and Python 3.6. The former
is the legacy version of the language, and the latter is the present and the future
of it37.

In this project Python 3.6 is used as main language for the backend.

There is an immense collection of libraries to many different purposes, which
enormously facilitate the implementation. For this project the following ones will
be used:

GDAL

GDAL38 ―is a translator library for raster and vector geospatial data formats‖.
GDAL provides a wide variety of tools to manipulate and calculate both raster
and vector files. It is open source and it has a python API.
In this project, the following tools are used:

-Gdal_calc.py39: provides a command line tool for raster calculations. It
relies on numpy syntax, as the whole GDAL library is based on numpy40,
a python package for scientific calculations.

34

 Jetty web page: https://www.eclipse.org/jetty/
35

 http://tomcat.apache.org/
36

 https://www.python.org/
37

 https://wiki.python.org/moin/Python2orPython3
38

 http://www.gdal.org/
39

 http://www.gdal.org/gdal_calc.html

https://www.eclipse.org/jetty/
http://tomcat.apache.org/
https://www.python.org/
https://wiki.python.org/moin/Python2orPython3
http://www.gdal.org/
http://www.gdal.org/gdal_calc.html

20

-Gdal_warp41: command line tool to perform reprojections and warp
operations such as clips.

-Ogr2ogr42: command line tool that allows multiple operations on vector
files.

-Gdal_polygonize43: command line tool to create vector files from rasters.

-Ogrinfo44: command line tool that provides several functions related to
vectorial layers management.

 -Gdal

SentinelSat

“Sentinelsat makes searching, downloading and retrieving the metadata of
Sentinel satellite images from the Copernicus Open Access Hub easy. It offers
an easy-to-use command line interface and a powerful Python API.”45

Sentinelsat is currently maintained by
Kersten Fernerkundung46 and Martin
Valgur47. It comes with a broad
documentation48 and it is reliable and
multiplatform.

Sentinelsat is able to filter Sentinel
products regarding cloud coverage and
date. Also, a geojson file can be
provided to indicate which area should
be downloaded. The file created for
this project is shown on image 11, and
was created using the web tool
geojson.io49.

Sentinel files are organised in tiles,
each one covering a rectangle of
approximately 110 square kilometres. These rectangles are named following a
convention that takes into account the UTM zone, latitude and other

40

 http://www.numpy.org/
41

 http://www.gdal.org/gdalwarp.html
42

 http://www.gdal.org/ogr2ogr.html
43

 http://www.gdal.org/gdal_polygonize.html
44

 http://www.gdal.org/ogrinfo.html
45

 https://github.com/sentinelsat/sentinelsat
46

 https://github.com/Fernerkundung
47

 https://github.com/valgur
48

 http://sentinelsat.readthedocs.io/en/stable/index.html
49

 http://geojson.io/

10 - Geojson file covering area of interest

http://www.numpy.org/
http://www.gdal.org/gdalwarp.html
http://www.gdal.org/ogr2ogr.html
http://www.gdal.org/gdal_polygonize.html
http://www.gdal.org/ogrinfo.html
https://github.com/sentinelsat/sentinelsat
https://github.com/Fernerkundung
https://github.com/valgur
http://sentinelsat.readthedocs.io/en/stable/index.html
http://geojson.io/

21

parameters50. There is a .kml file provided by the European Space agency with
the vectorial data of this grid51, shown on image 12. Sentinelsat calculates
which tiles have to be downloaded.

11 - Sentinel Tiles

Sentinelsat also needs a user name and password to access the SciHUB
services. The account is free and only two concurrent download per user are
allowed.

Cloud Detection

Cloud detection is fundamental for satellite imagery processing. Although with
cirrus type clouds image correction can be performed, when it comes to opaque
clouds, there is no way to avoid them.

Sentinel-2 data comes with a cloud mask, which is not very accurate. There are
many different cloud detection algorithms, from which Fmask stands out.

Fmask

Fmask is an algorithm for cloud, cloud shadows, water and snow detection (13).
It was developed for Landsat imagery but it was adapted to Sentinel-2 imagery.
There are several implementations of this algorithm such as Pythonfmask52 or
matlab based Fmask53

50

 http://www.cesbio.ups-tlse.fr/multitemp/?p=5610
51

https://sentinel.esa.int/documents/247904/1955685/S2A_OPER_GIP_TILPAR_MPC__201512
09T095117_V20150622T000000_21000101T000000_B00.kml
52

 Pythonfmask web page: http://pythonfmask.org
53

 Fmask github page: https://github.com/prs021/fmask

http://www.cesbio.ups-tlse.fr/multitemp/?p=5610
https://sentinel.esa.int/documents/247904/1955685/S2A_OPER_GIP_TILPAR_MPC__20151209T095117_V20150622T000000_21000101T000000_B00.kml
https://sentinel.esa.int/documents/247904/1955685/S2A_OPER_GIP_TILPAR_MPC__20151209T095117_V20150622T000000_21000101T000000_B00.kml
http://pythonfmask.org/
https://github.com/prs021/fmask

22

The results of Fmask are far better than the cloud mask provided with sentinel
imagery, as can be seen in the images below. Image 13 is a cloudy scene in the
B08 band. Image 14 shows the Sentinel cloud mask superimposed to it. Image
15 shows Fmask detection for clouds and shadows.

12 - Sentinel-2 B08 band cloudy scene

13 - Superimposed cloud mask

23

14 - Superimposed Fmask detection. Cluds and shadows

Although Fmask is more powerful, it requires a lot of time and processing power
to perform the cloud detection, and the existing implementations are not as
stable and reliable as they should be to perform unsupervised tasks. For those
reason, Fmask is not used in this project. Instead, the cloud mask provided is
preferred although it can introduce false positives.

24

7. Design Stage

This chapter describer the general structure of the system proposed.

System Overview

This project is structured in three levels. There is a Backend Tier, which
performs duties as downloading imagery, processing it and upload it to the
database. There is a Middle Tier, a PostGIS database where the backend
places the processed data, and from where the Presentation Tier takes the
data. Figure 16 shows the general architecture of the system.

15 - System Architecture

25

It is worth to mention that the three different parts of the system can work on
different but coordinated machines.

Backend Tier

The Backend level provides a complete imagery download and processing tool.
It is made from different python scripts coordinated by an administration tool.

The architecture of the backend tier is structured as shown on figure 17.

16 - Backend Architecture

Admin Script

The admin script provides a management system that can be accessed via
python interpreter. It allows the user to manage the backend tier and interact
with it, requesting downloads under certain parameters, or ordering different
processes such as image processing, file creation, etc. It also provides system
information to the user.

Furthermore, this tool checks if the data provided by the user is correct (e.g.
non existing dates, wrong folders, etc.), and provides information about the
ongoing processes.

It allows to program batch processing, in order to perform unsupervised
operations.

26

Download Tool

The download tool is a python script that can perform imagery downloading. It
works as an interface between the admin script and the Sentinel Sat software,
adapting date formats, cloud coverage and other options, and calling the
function. It also checks data integrity (e.g no future dates, etc.).

Unzip and Order Tool

This tool provides two functions: one for ordering the downloaded files, i.e.
move them to the folder system; and another one to unzip the files into named
folders, select the bands of interest, and remove the rest of the file.

It also provides tools to view the content of the folder system, and to purge
empty folders.

Processing tool

the Processing tool provides several methods to manipulate raster data,
polygonize, clip and upload to postGIS image data.

It contains the following functions:

 Clip Tool: Clips the original raster data with a shape of the interest area,

in order to avoid processing unnecessary data.

 NBR Tool: Calculates the NBR index for a given date and area.

 NBR difference Tool: Calculates the difference between two given date‘s

NBR index.

 Polygonize Tool: Transforms NBR indexes and NBR difference indexes

from raster to vector files, categorizing fire severity in four different

grades, and dismissing other data. This method saves up plenty of

storage.

 Uploading Tool: Connects to a given database and uploads the vector

data.

27

Folder System

Instead of a database, the backend works by directly manipulating files. The
folder scheme has the structure indicated on figure 18 once the files are
processed.

17 - Folder Structure

Middle Tier

The Middle Tier consists on a PostGIS Geographical database, which will
accept remote connections from the Backend Tier to update data, and from the
Map Server on the Presentation Tier to retrieve data.

28

Presentation Tier

This tier manages data visualization on a web map.

It is made with a stack of a web server, a Java applet container, a maps server
and, a web map library, and a web map.

It is structured as indicated on figure 19.

18 - Presentation Tier Structure

Webmap

To display the data, a webmap was created using Leaflet54 and Geoserver55.

The webmap has a main display with a Bing satellite base layer. Optional base
layers are Open Street Maps56 and Toner, a OSM based layer optimized for
printers.

There is a mini-map with OSM base layer for orientation purposes.
Furthermore, a cadastral layer can be displayed over the main layer. A time
slider bar is located at the bottom. The interval time is 1 day, and it requests
wms images from Geoserver, containing NBR difference and NBR data for each
date. Additionally, an opacity control for the NBR difference layer is located
under the layer control.

54

 https://leafletjs.com/
55

 http://geoserver.org/
56

 https://www.openstreetmap.org/

https://leafletjs.com/
http://geoserver.org/
https://www.openstreetmap.org/

29

8. Implementation Stage

This chapter describes how the project was implemented.

Backend Tier: Dependencies

The Backend tier has many dependencies. They will be discussed in this
section.

Numpy

Numpy is a scientific package for python, on which rely GDAL and OGR.
Installation is done with pip, the python package manager:

pip3 install numpy

GDAL

GDAL is in the core of the backend system.

GDAL installation depends on the operative system, and it is well documented
for windows57 .

It consists on downloading an installer and, after installation, add the path to the
windows system path.

Alternatively, it can be installed by downloading a pre-compiled version and
developing it with pip58.

In linux systems is as easy as:

Sudo apt-get install python-gdal

GDAL comes integrated in some other packages as OSGeo59, but it was
avoided in this project due to potential compatibility problems.

Sentinel Sat

Sentinelsat installation is done via pip with the following command:
pip3 install sentinelsat

Winrar

For windows systems, winrar path must be added to the system environment
variables60. Linux systems already have unzip installed.

57

 https://viewer.nationalmap.gov/tools/rasterconversion/gdal-installation-and-setup-guide.html
58

 https://www.lfd.uci.edu/~gohlke/pythonlibs/#gdal
59

 https://www.osgeo.org/projects/gdal/
60

 https://cects.com/using-the-winrar-command-line-tools-in-windows/

https://viewer.nationalmap.gov/tools/rasterconversion/gdal-installation-and-setup-guide.html
https://www.lfd.uci.edu/~gohlke/pythonlibs/#gdal
https://www.osgeo.org/projects/gdal/
https://cects.com/using-the-winrar-command-line-tools-in-windows/

30

Shape and Geojson

A shapefile and a geojson file are included inside the folder ―shape‖. They are
used by the system to determine which area must be downloaded (geojson file)
and which area must be clipped from the rasters to avoid processing
unnecessary parts. Geojson file was already mentioned on chapter 6.

The shapefile for this project corresponds to the Galician Autonomous
Community, and was made by merging the four provinces from the shapefile
provided by CNIG61. Then, using the shape of water masses provided by Xunta
de Galicia62, those areas where subtracted, to avoid false positives. A
comparison between the original shapefile and the shapefile modified can be
seen in the images 20 and 21.

19 - Original Shapefile

20 - Modified Shapefile

61

http://centrodedescargas.cnig.es/CentroDescargas/equipamiento.do?method=mostrarEquipami
ento
62

 http://mapas.xunta.gal/produtos-cartograficos/capas-six/hidrografia

http://centrodedescargas.cnig.es/CentroDescargas/equipamiento.do?method=mostrarEquipamiento
http://centrodedescargas.cnig.es/CentroDescargas/equipamiento.do?method=mostrarEquipamiento
http://mapas.xunta.gal/produtos-cartograficos/capas-six/hidrografia

31

Backend Tier: Implementation

Admin Script

Implementation of Admin Script was made in python. It uses datetime and os
packages. It clears the screen and prints a menu on the screen and waits for
user input. Those are the clear screen and menu code:

def cls():
 os.system('cls' if os.name=='nt' else 'clear')

def main_menu():
 print ('1 - Download Imagery')
 print ('2 - Order and unzip downloaded files')
 print ('3 - Utils - Purge imagery folder')
 print ('4 - Utils - Show folders content')
 print ('5 - Processing - Clip rasters')
 print ('6 - Processing - Calculate NBR index')
 print ('7 - Processing - Calculate difference between NBR indexes')
 print ('8 - Processing - Vectorize NBR an NBR difference')
 print ('9 - Upload vector files to PostGIS')
 print ('')
 print ('10 - Batch Processing')
 print ('')
 print ('')
 print ('0 - Exit')
 print ('')
 print ('Select an option')

Note that depending on the operative system, the code is slightly different.

As an illustration of how it works, the code for option 5 is shown:

 if user_choice == '5':
 system_directory=os.getcwd()
 imagery_directory=os.path.join(system_directory, r'imagery')
 imagery_directory_content=os.listdir(imagery_directory)
 print ('Clip raster files')
 print ('Imagery folder content:')
 print ('')
 unzip_script.print_tree()
 print ('')
 print ('Choose folder. Enter 0 to process every folder not yet processed')
 folder_chosen=input()
 while True:
 if folder_chosen in imagery_directory_content:
 print('')
 print ('Starting clip. This can take up to 10 minutes per file. Be
patient...')
 print ('')
 processing_script.clip(folder_chosen)
 break
 if folder_chosen == '0':
 print('')
 print ('Starting clip. This can take up to 10 minutes per file. Be
patient...')
 print ('')
 for folders in imagery_directory_content:
 processing_script.clip(folders)
 break

32

 else:
 print('')
 print('Unknown folder, please try again. Available folders:')
 print ('')
 unzip_script.print_tree()
 print ('')
 print ('Choose folder. Enter 0 to process every folder not yet
processed')
 folder_chosen=input()

As can be seen, it check the existence of the folder before calling the
corresponding function. The same case happens when working with dates, as
illustrated on the following code extract from option 1:

1 print ('Enter Year')
2 year_=input()
3 while True:
4 try:
5 year_=year_.zfill(4)
6 year_test=int(year_)
7 if 1900>year_test or int(datetime.datetime.today().year) < year_test:
8 raise CustomError('Please insert a valid year')
9 break
10 except:
11 print ('Enter Year')
12 year_=input()

First, it forces four digits by filling with zeros if necessary (line 5). Then it checks
if the given year is valid (i.e. no future dates and no dates before 1900).

If any of the conditions is not met, the user is required to input data again.

Called functions are in other files, included at the beginning of the code:

1 #Admin script
2
3 import os
4 import download_script
5 import unzip_script
6 import datetime
7 import processing_script

Download Script

The download_script.py is a script that gets as arguments the imagery date, the
cloud covering percentage and other options, and calls the Sentinelsat script to
perform the file searching for a given area.
It checks the integrity of the data entered by the user (e.g no future dates, etc.),
and prepares the sentinelsat arguments.
User and data information is taken from the file ―apihub.txt‖ in the main folder.
Geojson area mask is taken from the file ―mask.geojson‖ in the folder ―shape‖.
All files are downloaded to the main directory.

1 #Download Script. Carlos Sarille 2018
2
3
4 import datetime

33

5 import os
6
7 system_directory=os.getcwd()
8 auth_file_path=os.path.join(system_directory, r'apihub.txt')
9 mask_folder_path=os.path.join(system_directory, r'shape')
10 mask_file_path=os.path.join(mask_folder_path, r'mask.geojson')
11
12
13 class CustomError(Exception):
14 pass
15
16
17
18 def download(dt, clouds, down_files):
19
20 try:
21 auth_file=open(auth_file_path, 'r')
22 username=auth_file.readline().strip('\n')
23 password=auth_file.readline().strip('\n')
24 auth_file.close()
25 except:
26 raise CustomError('No apihub.txt file in main folder or corrupted file.
Format: 1st line username, 2nd line password.')
27
28 datetime_string_format = '%Y%m%d'
29
30 dt_ant = dt - datetime.timedelta(days=1)
31 dt_ant_str = dt_ant.date().strftime(datetime_string_format)
32 dt_str=dt.date().strftime(datetime_string_format)
33
34
35 #check for clouds
36 cloud_index=int(clouds)
37 if (cloud_index < 0) or (cloud_index > 100):
38 raise CustomError('Cloud coverage index must be between 0 and 100')
39 if (cloud_index==100):
40 clouds_=""
41 else:
42 clouds_=" --cloud "+str(cloud_index).zfill(2)
43 if (down_files is False):
44 lista=""
45 else:
46 lista="-d "

On lines 21 to 27 the script reads the file with username and password. Lines
from 28 to 33 are to adapt date format, and to ensure that only a 1 day period is
downloaded each time. Lines 35 to 42 check validity of clouds percentage and
adapt the format. Finally, if the user doesn‘t want to download files, command ―-
d‖ is appended on lines 43 to 46.

Then, SentinelSat is called with the data collected:

1 sentinel_command='sentinelsat -u '+username+' -p '+password+' -g

"'+mask_file_path+'" -s '+dt_ant_str+' -e '+dt_str+clouds_+' --sentinel 2 –
producttype S2MSI1C '+lista

2 print ("Executing:", sentinel_command)
3 os.system(sentinel_command)
4
5 print ('')
6 print ('Download finished')

34

On line 1, sentinelSat call is prepared, and on line 3 the system is ordered to
execute the sentinel call.

Unzip script

The unzip_script.py file provides four different functions, order(), unzip(),
print_tree() and purge_folders().

Order()

Order() checks the main directory looking for.zip files, which are the type
of files provided by the European Space Agency. If the imagery folder
already exists, it moves all the files inside. Otherwise, it creates the folder
and then moves the files in.
The aim of this script is to keep the main directory clean.

1 def order():
2 print ('')
3 print ('Ordering Directories')
4 print ('')
5
6
7 print('Current system directory: ', str(system_directory))
8 current_directory_content=os.listdir(system_directory)
9
10 #creates imagery directory if it doesn't exist
11 if not os.path.exists(imagery_directory):
12 print ('Directory "imagery" has been created')
13 os.makedirs(imagery_directory)
14 else:
15 print('The folder',str(imagery_directory),' already exists')
16
17 print('')
18 print('The following files have been moved to /imagery:')
19 for name in current_directory_content:
20 name_chunks=name.split('.')
21 if name_chunks[-1] == 'zip':
22 print (name)
23 current_file=os.path.join(system_directory,name)
24 moved_file=os.path.join(imagery_directory,name)
25 os.rename(current_file,moved_file)

Unzip()

Unzip() is a function that, for one compressed file at a time, creates a
temporary folder to unzip the files, creates a folder for the file date, and
moves the desired files from the temporary folder to the file date folder.
Normally these files are the Sentinel Bands of interest (e.g B08 and B12
to calculate the NBR).
The data about the tile name, dates, instrument and others, is extracted
from the file name, which follows a standard naming convention63,
making it easier to automate this part.
After extracting the files of interest, it deletes the temporary folder and
the original.zip file and starts again with the next imagery compressed
file.
When the script finishes, only the files of interest are in the system.

63

 https://earth.esa.int/web/sentinel/user-guides/sentinel-2-msi/naming-convention

https://earth.esa.int/web/sentinel/user-guides/sentinel-2-msi/naming-convention

35

In linux systems, the function calls the unzip command, which is already
included in the linux path.
In windows systems, the function is dependent on Winrar64. The
computer needs to have it installed and it needs to be in the system path,
as described in several places6566.

The following code extract shows how it uses the file name to detect zip
files and create folders named with the correspondent date, and calls the
external unzip software:

1 for name in current_directory_content:
2 name_format=name.split('.')
3 if name_format[-1] == 'zip': #check if the file format is .zip
4
5 name_parts=name_format[-2].split('_')
6 name_date=name_parts[2].split('T')
7 final_folder=os.path.join(imagery_directory,name_date[0])
8 temp_folder=os.path.join(imagery_directory,r'temp')
9 if not os.path.exists(final_folder):
10 print ('Directory',str(final_folder) ,'has been created')
11 os.makedirs(final_folder)
12 if not os.path.exists(temp_folder):
13 print ('Directory',str(temp_folder) ,'has been created')
14 os.makedirs(temp_folder)
15
16 zip_file=os.path.join(imagery_directory,name)
17 unzip_path_linux=r"unzip "+str(zip_file)+" -d "+str(temp_folder)
18 unzip_path_windows=r'winrar x -ibck -o+ "'+str(zip_file)+'"
"'+str(temp_folder)+'" -INUL'
19 os.system(unzip_path_windows if os.name=='nt' else unzip_path_linux)

In the following code fragment it can be seen how the system checks file
names and select only the bands of interest and cloud masks:

1 for path,subdir,files in os.walk(temp_folder):
2 for name2 in files:
3 fileformat=name2.split('.')
4 if fileformat[-1] == 'jp2':
5 band_type=fileformat[-2].split('_')
6 if band_type[-1] == 'B08' or band_type[-1] == 'B12':
7 if os.path.isfile(os.path.join(final_folder,name2)):
8 os.remove(os.path.join(final_folder,name2))
9
10 os.rename(os.path.join(path,name2),os.path.join(final_folder,name2))
11 if fileformat[-1] == 'gml':
12 band_type=fileformat[-2].split('_')
13 if band_type[-2] == 'CLOUDS':
14 new_name=str(name_parts[-2]+'_'+name_date[0]+'_'+name2)
15 if os.path.isfile(os.path.join(final_folder,new_name)):
16 os.remove(os.path.join(final_folder,new_name))
17 os.rename(os.path.join(path,name2),os.path.join(final_folder,new_name))

64

 https://www.winrar.es/
65

 http://www.itprotoday.com/management-mobility/how-can-i-add-new-folder-my-system-path
66

 https://www.howtogeek.com/118594/how-to-edit-your-system-path-for-easy-command-line-
access/

36

Purge_folders()
Purge_folders() provides a method to check if any folder inside the
imagery folder is empty and delete it.

Print_tree()
Print_tree() provides a method to display the content of the imagery
folder and its subfolders.

1 def print_tree():
2 for root, dirs, files in os.walk(imagery_directory):
3 level = root.replace(imagery_directory, '').count(os.sep)
4 indent = ' ' * 4 * (level)
5 print('{}{}/'.format(indent, os.path.basename(root)))
6 subindent = ' ' * 4 * (level + 1)
7 for f in files:
8 print('{}{}'.format(subindent, f))

Processing script

Processing Script contains six different processing functions: clip(), get_tiles(),
NBR(), difference_NBR(),vector() and load_postgis(). Most of them use GDAL
tools.

Clip()

Clip() gets as an argument a date folder name (e.g. ‗20170810‘). If the
folder is not found inside the imagery folder, it throws an error message.
If the folder is found, for each sentinel .jp2 image, a clipped version is
created, appending ―_clip‖ to the file name. The original file is deleted.
The clip operation is performed using Gdal_warp. The output file is an
unsigned Int16, and the no data value is 0.
The clip mask is taken from the folder ―Shape‖ and it is called
―mask.shp‖.

The following code extract shows how GDAL is called:

1 if files_parts[-1]=='jp2' and files_status[-1]!='clip' and files_status[-
 1]!='NBR':
2 input_file_path=os.path.join(date_folder_directory,str(files))
3 output_file_name=str(files_parts[0])+"_clip.tif"
4 output_file_path=os.path.join(date_folder_directory,output_file_name)
5 print('Input file: '+input_file_path)
6 print("Output_file: "+output_file_path)
7 print('')
8 gdal_call='gdalwarp -ot UInt16 -dstnodata 0 -of GTiff -tr 10.0 -10.0
 -tap -cutline "'+str(mask_path)+'" "'+str(input_file_path)+'"
 "'+str(output_file_path)+'"'
9 os.system(gdal_call)
10 os.remove(input_file_path)
11 print ("Clip done")

Get_tiles()

Get_tiles() gets as an argument a date folder name (e.g. ‗20170810‘). If
the folder is not found inside the imagery folder, it throws an error
message.

37

If the folder is found, it scans every file inside and extracts their tile name.
The function returns a list of tiles found in a given folder.
It is an auxiliary function used by other functions.

NBR()
NBR() gets as an argument a date folder name (e.g. ‗20170810‘). If the
folder is not found inside the imagery folder, it throws an error message.
If the folder is found, it searches the band 08 (Near infrared - 842nm) and
band 12 (short-wavelength infrared – 2190 nm) files, and performs the
calculous using Gdal_calc.py.

The operation to get the NBR67 index is:

The output file is a geotiff Float32 type. Furthermore, if a cloud mask is
found in the folder, the areas covered by clouds are removed from the
output file using gdal_rasterize to give them a value of ―no value‖.

The following extract of code shows how the software searches the
correct bands and calls gdal_calc and gdal_rasterize:

for files in date_folder_content:
 files_parts=files.split('.')
 files_status=files_parts[0].split('_')

 if files_status[-2]=='B08' and files_status[0]==tile_name and files_status[-1] ==
 'clip' and files_parts[-1]=='tif':
 B08=os.path.join(date_folder_directory, files)
 print ("B08 file: ",B08)

gdal_calc_call='gdal_calc.py --type="Float32" -A "'+str(B08)+'" -B "'+str(B12)+'" --
outfile="'+str(NBR_file_path)+'" --calc "(A.astype(float32)-B.astype(float32))
/(A.astype(float32)+B.astype(float32))"'
os.system(gdal_calc_call)
if CLOUDS!=None:
 gdal_call='gdal_rasterize -at -burn 3.40282e+38 -where "maskType=\'OPAQUE\'"
 "'+CLOUDS+'" "'+NBR_file_path+'"'
 print('Applying cloud mask.')
 os.system(gdal_call)
 print ('Output File: ',NBR_file_path)

Difference_NBR()
Difference_NBR() gets as arguments two date folder name (e.g.
‗20170810‘). If the folders are not found inside the imagery folder, it
throws an error message.
If both folders are specified, it gets a list of all the common tiles and
calculates the NBR index difference68 for those tiles.

67

 https://www.sentinel-hub.com/develop/documentation/eo_products/Sentinel2EOproducts
68

 http://gsp.humboldt.edu/olm_2015/Courses/GSP_216_Online/lesson5-1/NBR.html

https://www.sentinel-hub.com/develop/documentation/eo_products/Sentinel2EOproducts
http://gsp.humboldt.edu/olm_2015/Courses/GSP_216_Online/lesson5-1/NBR.html

38

If only the last folder is specified, and the first one has a value of 0, then
the system searches the common tiles in the next more recent folder and
calculates them. If there are still any tile not calculated, the system
searches in the next more recent folder, over and over until a valid tile is
found or all folders are checked.
The output file is a geotiff file, processed with gdal_calc.py.

Vector()
Vector() gets as argument a date folder name (e.g. ‗20170810‘). If the
folder is not found inside the imagery folder, it throws an error message.
This function transforms the NBR file and the NBR difference file in
vectorial files.

The output NBR file is a shape file, with two columns:

-DN: integer type. Fire severity, from 1 to 4. Threshold can be
adjusted in the script, currently a value between -0.15 and -0.2 in
the NBR layer is 1 in the shapefile. -0.2 to -0.25 is 2, -0.25 to -0.3
is 3 and less than -0.3 is 4.
-Date: date type.

Values under the threshold are considered no data.

The output NBR difference file is a shape file, with three columns:

-DN: integer type. Fire severity, from 1 to 4. Threshold can be
adjusted in the script, currently a value between 0.6 and 0.8 in the
difference NBR layer is 1 in the shapefile. 0.8 to 1 is 2, 1 to 1.2 is 3
and more than 1.2 is 4. Also, cloud areas are assigned the value
200.
-Date from: date type. Oldest date in the NBR difference. Form
-Date to: date type. Newest date in the NBR difference.

Values under the threshold are considered no data.
Processing is done using gdal_polygonize.py, ogrinfo and gdal_calc.py

Load_postgis()

Load_postgis() uploads shapefiles to a postgis database. Database
information (username, password, host and database name) is read from
the file ―postgis_data.txt‖..

This function gets as argument a date folder name (e.g. ‗20170810‘). If
the folder is not found inside the imagery folder, it throws an error
message.

This function leaves an empty file called ―this_folder_was_uploaded.txt‖
as a beacon once a folder is uploaded to the database. If this file is found
during the scan of the folders, the function won‘t upload any data to the
database.

39

The upload process is done using ogr2ogr, as can be seen in the
following code extract:

if file_name_parts[-1]=='NBR' and file_name_parts[-2]=='DIF' and file_format=='shp':
 shape_file_path=os.path.join(date_folder_directory, files)
 print('')
 print('Current File: ',shape_file_path)
 ogr_call='ogr2ogr -append -f "PostgreSQL" PG:"host='+db_host+'
 user='+username+' dbname='+db_name+' password='+password+'"
 "'+shape_file_path+'" -nln NBR_DIFF'
 os.system(ogr_call)
 f= open(uploaded_file_path,"w+") #leave beacon file
 f.close()
 print('Database uploaded')

Middle Tier

Middle Tier implementation was just installing and configuring PostGIS.

PostGis

PostGIS installation in linux is done by typing the following commands:

sudo apt-get install postgresql postgis

In windows systems it can be installed as a part of the OsGEO package69.

Setup and configuration is easily done with the software pgAdmin70. Once
PostGIS was running, a database called ―wildfire‖ was created, as seen on
image 22.

21 - Database detail

69

 https://postgis.net/windows_downloads/
70

 https://www.pgadmin.org/

https://postgis.net/windows_downloads/
https://www.pgadmin.org/

40

PostGIS has to be configured to accept remote connections modifying the files
postgresql.conf and pg_hba.conf files71.

Also, on the database, the extension PostGIS must be enabled.

Presentation Tier

Apache

The installation from linux terminal is pretty straight forward, because it is
included in the OS repositories, and it only involves the following commands72:

sudo apt-get install apache2 -y

If the installation was successful, the webpage shown on image 23 will appear
when accessing to the server via web browser.

22 - Apache default web page

Apache Tomcat

As in the previous case, installation was done via terminal. As Tomcat relies on
Java Runtime Environment73, it needs to be installed as well. Depending on the
desired versions, they are included in the repositories or not.

The installation process is not complicated74, and once it is done, the webpage
shown on image 24 will appear when accesing the server port 8080 via web
browser:

71

 https://gis.stackexchange.com/questions/174004/remote-connection-to-postgis
72

 https://www.raspberrypi.org/documentation/remote-access/web-server/apache.md
73

 http://www.oracle.com/technetwork/java/javase/downloads/jre8-downloads-2133155.html
74

 https://wolfpaulus.com/java/tomcat-jessie/

https://gis.stackexchange.com/questions/174004/remote-connection-to-postgis
https://www.raspberrypi.org/documentation/remote-access/web-server/apache.md
http://www.oracle.com/technetwork/java/javase/downloads/jre8-downloads-2133155.html
https://wolfpaulus.com/java/tomcat-jessie/

41

23 - Tomcat default web page

GeoServer

GeoServer runs on top of Apache Tomcat. Installation is done by downloading
the .war file75 and deploying it in the Tomcat webapps folder76. After reseting
the Apache Tomcat service, if everything worked out, access to GeoServer
control panel can be done via web browser in hostaddres:8080/geoserver,
which will display something like image 25:

24 - Geoserver default web page

In order to allow external (i.e. non localhost connections), the CORS77 header
must be activated in Geoserver, modifying the file web.xml. The process is well
documented in the Geoserver78 manual as well as in several sites79.

75

 http://geoserver.org/release/stable/
76

 https://geoserver.geo-solutions.it/edu/en/install_run/gs_install.html
77

 https://developer.mozilla.org/es/docs/Web/HTTP/Access_control_CORS
78

 http://docs.geoserver.org/latest/en/user/production/container.html
79

 https://gis.stackexchange.com/questions/210109/enabling-cors-in-geoserver-jetty

http://geoserver.org/release/stable/
https://geoserver.geo-solutions.it/edu/en/install_run/gs_install.html
https://developer.mozilla.org/es/docs/Web/HTTP/Access_control_CORS
http://docs.geoserver.org/latest/en/user/production/container.html
https://gis.stackexchange.com/questions/210109/enabling-cors-in-geoserver-jetty

42

Once installed, a workspace must be created. In this case the name for the
workspace was ―TFG‖, and WMS, WMTS must be enabled.

A new storage must be created, selecting PostGIS database and entering the
data of our PostGIS database. Once it is connected, a new layer can be
created. When creating the layer, time dimension must be enabled, as seen in
the image 26.

25 - Geoserver Time Domain

Also, a style must be given to each layer. Styles can be set up in QGIS,
exported as SLD files and uploaded to Geoserver; or can be chosen from a list
or typed directly on Geoserver. As an annex both styles for NBR and NBR
difference layers can be seen.

Once the layer is published, it can be requested by web map services.

Leaflet

Leaflet80 is a JavaScript library to create interactive web maps. Its installation is
done by linking the .css and the .js files in the html map file.

80

 http://leafletjs.com/

http://leafletjs.com/

43

Web map

The web map is based on Leaflet, and it is made of a HTML file and a
Javascript file, which contains the code for the interactive web map.

WMS layers are requested from Geoserver, as well as base layers from
external sources like Bing maps.

Several Leflet plugins were used:

 Minimap81, which allows showing a mini map.

 Leaflet Time Dimension82, which enables Leaflet to work with temporal series

of data

 Context Menu83, which adds a customizable context menu to the map.

 Opacity Controls84, which allows the user to select layer opacity.

The following code illustrates the map creation on the JS file.

//map creation
var map = L.map('map',{
 contextmenu: true,
 contextmenuWidth: 200,
 contextmenuItems: [{
 text: 'How to get here',
 callback: como_chegar
 }
 , '-',{
 text: 'Center here',
 callback: centerMap
 }, {
 text: 'Zoom in',
 callback: zoomIn
 }, {
 text: 'Zoom out',
 callback: zoomOut
 }, '-',{
 text: 'Restart Webmap',
 callback: reiniciar_visor
 }],
 timeDimension: true,
 timeDimensionOptions: {
 timeInterval: interval,
 period: "P1D"
 },
 timeDimensionControl: true,
}).setView([42.8 , -8] , 8)

The following code illustrates how a base layer is added to the map.

var options_bing = {
 bingMapsKey: 'ApWc1GvXN7a4LGPyvpolzQohUqHSDlbv4598PxCv_djXjfO5lb2YnJIWppQx1x75',

81

 https://github.com/Norkart/Leaflet-MiniMap
82

 https://github.com/socib/Leaflet.TimeDimension
83

 https://github.com/aratcliffe/Leaflet.contextmenu
84

 https://github.com/lizardtechblog/Leaflet.OpacityControls

https://github.com/Norkart/Leaflet-MiniMap
https://github.com/socib/Leaflet.TimeDimension
https://github.com/aratcliffe/Leaflet.contextmenu
https://github.com/lizardtechblog/Leaflet.OpacityControls

44

 imagerySet: 'Aerial',
 culture: 'gl'
 }

var baselayer = L.tileLayer.bing(options_bing).addTo(map);

The following code illustrates how the minimap is added to the map.

//minimap
var osm2 = new L.tileLayer('http://{s}.tile.openstreetmap.org/{z}/{x}/{y}.png', {
 maxZoom: 18
 });
var miniMap = new L.Control.MiniMap(osm2, { toggleDisplay: true , position:
'bottomright' , zoomLevelOffset: -4 , width: 250 , strings: {
 hideText: 'Hide map',
 showText: 'Show map'
 }}).addTo(map);

Production Stage

Linode is a VPS with a Debian system running. Configuration is similar to Linux
configuration described before, but it has to be done through SSL terminal
connection with a software like Putty85.

85

 https://putty.org/

https://putty.org/

45

9. Results

This chapter presents the final results of the project.

Backend Tier

Currently, the backend tier provides ten different options:

 Download imagery

 Order and unzip downloaded files

 Purge imagery folder

 Show folders content

 Clip rasters

 Calculate NBR index

 Calculate difference between NBR indexes

 Vectorize NBR index and NBR difference

 Upload vector files to postgis.

 Batch processing

To execute the admin script, user must use Terminal on linux systems or CMD
on windows systems. After navigating to the folder containing the script, a
python instance must be called by typing

py admin_script.py

Or in some systems

python3 admin_script.py

Note that in order to execute this script in linux environments super user access
must be provided:

sudo python3 admin_script.py

The image 27 shows the main menu.

46

26 - Admin Script Main Menu

1-Download Imagery

Download imagery requires the user to enter the desired date, cloud
coverage percentage and a download yes/no option:

It performs checks to ensure the entered date is valid (i.e. non future or
inexistent dates, no negative values, etc.) and calls the download
function from the download_script.py file.

27 - Download Imagery Option

47

Order and unzip downloaded files

This option calls the functions order() and unzip() from the file
unzip_script.py.

Purge imagery content

This option calls the function purge_folders() from the file unzip_script.py.

Show folder content

This option prints a tree with the folder structure, as can be seen on
image 29.

28 - Show Folder Content Option

Clip rasters

This option displays the content of the imagery folder and requires the
user to enter a folder to process. Alternatively it can check which folders
haven‘t been clipped and clip them automatically.

48

Calculate NBR Index

This option displays the content of the imagery folder and requires the
user to enter a folder to process. Alternatively it can check which folders
don‘t have NBR files and calculate them automatically.

Calculate difference between NBR indexes

This option displays the content of the imagery folder and requires the
user to enter two folders to calculate the difference between the NBR
index of their files. Alternatively only the most recent folder can be
provided by the user and the system will automatically search matching
NBR tiles in past folders starting with the closest one.

29 - Calculate Difference Option

49

Vectorize NBR and NBR difference

This option displays the content of the imagery folder and requires the
user to enter a folder to process. Alternatively it can check which folders
don‘t have ESRI shapefiles and calculate them automatically.

Upload files to PostGIS

This option displays the content of the imagery folder and requires the
user to enter a folder to upload. Alternatively it can check which folders
haven‘t been uploaded and upload them.

Batch Processing

This option allows the user to request all of the previous processes for a
given period of time. It requires a start date and an end date, and
parameters for downloading, as shown on image 31.

30 - Batch Processing Option

Products Obtained

At the end of the process, aside from the files uploaded to the server, the
following products are obtained for each tile, as can be seen on image 32:

 Clipped Sentinel Imagery: Bands B08 and B12

 Cloud Mask

 NBR Index raster file

 NBR Index vector file

 NBR difference raster file

 NBR difference vector file

50

31 - Products Obtained

Presentation Tier

On the Presentation Tier, a web map is obtained, which can display three
different base maps, and can overlay NBR index and NBR difference index
layers, as well as a cadastral layer. Time navigation is done with a time slider.

It also has an opacity control for the NBR index layer, and a zoom control, as
seen on image 33.

32 - Web Map main view

51

Image 34 shows a burned area with the NBR index superimposed and a
satellite base layer on the left hand side, toner bas layer on the centre and map
base layer on the right hand side, all three printed from the web map.

33 - Web Map Base Layer Options

Image 35 shows the NBR difference layer superimposed to the satellite base
layer. Grey areas are clouds, so those parts were not processed.

34 - NBR difference Layer

52

The following image shows a map base layer, with NBR index and Cadastral
parcels superimposed.

36 – Cadastral Parcels and NBR Index

A web map demo with a set of data covering one month time for the south
region of Galicia is available in the following link:

http://178.79.139.171/TFG

http://178.79.139.171/TFG

53

10. Conclusions

To finish this Project, in this section some conclusions will be presented, as well
as an analysis of learned lessons, problems found and future work lines.

Results

For the results of this project, checking the final status of the goals proposed,
the following has been achieved:

 Automatable system for downloading and processing satellite images

and cartography burned areas.

 Interactive Web Map that shows the information gathered.

With those two functionalities, the main goals of the project were achieved.
Also, some useful resources were created (e.g. Shapefiles of Galicia land
mass); and with minimal modifications the project can suit for different areas or
purposes.

Learned Lessons

Geographical Information Systems are a powerful tool to analyse, understand
and improve our world, and they are still at the beginning of their potential.

By combining the data gathered by different sources as sensors, satellites, etc.
and without need for expensive equipment, amazing achievements can be
done.

As student, it was really interesting to research about image processing and
geographical oriented programming.

I would like to highlight the easiness and good behaviour of python as
programming language, although sometimes it was challenging to carry on.

Problems Found

Most of the risks predicted happened, especially the ones related to lack of time
or lack of experience.

Another problem was cloud detection, which I didn‘t have the time and
resources to solve, and I think that is a key aspect or fully unsupervised burnt
areas detection.

Furthermore, the volume of data in this project is enormous, reason why in
some occasions testing features was really slow and unefficient, both
processing and downloading or uploading.

54

Future work lines

As future work lines, I think there are three important aspects:

 Improve cloud detection using an fmask algorithm or similar.

 Improve web map user experience, by allowing data manipulation and
calendar date selection, etc. Design aspects are important too.

 GEOBIA land analysis and classification would provide better results, as
described on chapter 5.

55

11. Annexes

SLD style for NBR difference layer

<?xml version="1.0" encoding="UTF-8"?>
<StyledLayerDescriptor xmlns="http://www.opengis.net/sld"
xmlns:xlink="http://www.w3.org/1999/xlink"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:ogc="http://www.opengis.net/ogc" xmlns:se="http://www.opengis.net/se"
xsi:schemaLocation="http://www.opengis.net/sld
http://schemas.opengis.net/sld/1.1.0/StyledLayerDescriptor.xsd"
version="1.1.0">
 <NamedLayer>
 <se:Name>nbr</se:Name>
 <UserStyle>
 <se:Name>nbr</se:Name>
 <se:FeatureTypeStyle>
 <se:Rule>
 <se:Name>1</se:Name>
 <se:Description>
 <se:Title>1</se:Title>
 </se:Description>
 <ogc:Filter xmlns:ogc="http://www.opengis.net/ogc">
 <ogc:PropertyIsEqualTo>
 <ogc:PropertyName>dn</ogc:PropertyName>
 <ogc:Literal>1</ogc:Literal>
 </ogc:PropertyIsEqualTo>
 </ogc:Filter>
 <se:PolygonSymbolizer>
 <se:Fill>
 <se:SvgParameter name="fill">#ffd560</se:SvgParameter>
 </se:Fill>
 <se:Stroke>
 <se:SvgParameter name="stroke">#ffd560</se:SvgParameter>
 <se:SvgParameter name="stroke-width">4</se:SvgParameter>
 <se:SvgParameter name="stroke-linejoin">bevel</se:SvgParameter>
 </se:Stroke>
 </se:PolygonSymbolizer>
 </se:Rule>
 <se:Rule>
 <se:Name>2</se:Name>
 <se:Description>
 <se:Title>2</se:Title>
 </se:Description>
 <ogc:Filter xmlns:ogc="http://www.opengis.net/ogc">
 <ogc:PropertyIsEqualTo>
 <ogc:PropertyName>dn</ogc:PropertyName>
 <ogc:Literal>2</ogc:Literal>
 </ogc:PropertyIsEqualTo>
 </ogc:Filter>
 <se:PolygonSymbolizer>
 <se:Fill>
 <se:SvgParameter name="fill">#ffbc7d</se:SvgParameter>
 </se:Fill>
 <se:Stroke>
 <se:SvgParameter name="stroke">#ffbc7d</se:SvgParameter>

56

 <se:SvgParameter name="stroke-width">4</se:SvgParameter>
 <se:SvgParameter name="stroke-linejoin">bevel</se:SvgParameter>
 </se:Stroke>
 </se:PolygonSymbolizer>
 </se:Rule>
 <se:Rule>
 <se:Name>Clouds</se:Name>
 <se:Description>
 <se:Title>Clouds</se:Title>
 </se:Description>
 <ogc:Filter xmlns:ogc="http://www.opengis.net/ogc">
 <ogc:PropertyIsEqualTo>
 <ogc:PropertyName>dn</ogc:PropertyName>
 <ogc:Literal>200</ogc:Literal>
 </ogc:PropertyIsEqualTo>
 </ogc:Filter>
 <se:PolygonSymbolizer>
 <se:Fill>
 <se:SvgParameter name="fill">#c3c3c3</se:SvgParameter>
 </se:Fill>
 <se:Stroke>
 <se:SvgParameter name="stroke">#000000</se:SvgParameter>
 <se:SvgParameter name="stroke-width">4</se:SvgParameter>
 <se:SvgParameter name="stroke-linejoin">bevel</se:SvgParameter>
 </se:Stroke>
 </se:PolygonSymbolizer>
 </se:Rule>
 <se:Rule>
 <se:Name>3</se:Name>
 <se:Description>
 <se:Title>3</se:Title>
 </se:Description>
 <ogc:Filter xmlns:ogc="http://www.opengis.net/ogc">
 <ogc:PropertyIsEqualTo>
 <ogc:PropertyName>dn</ogc:PropertyName>
 <ogc:Literal>3</ogc:Literal>
 </ogc:PropertyIsEqualTo>
 </ogc:Filter>
 <se:PolygonSymbolizer>
 <se:Fill>
 <se:SvgParameter name="fill">#fc7050</se:SvgParameter>
 </se:Fill>
 <se:Stroke>
 <se:SvgParameter name="stroke">#fc7050</se:SvgParameter>
 <se:SvgParameter name="stroke-width">4</se:SvgParameter>
 <se:SvgParameter name="stroke-linejoin">bevel</se:SvgParameter>
 </se:Stroke>
 </se:PolygonSymbolizer>
 </se:Rule>
 <se:Rule>
 <se:Name>4</se:Name>
 <se:Description>
 <se:Title>4</se:Title>
 </se:Description>
 <ogc:Filter xmlns:ogc="http://www.opengis.net/ogc">
 <ogc:PropertyIsEqualTo>
 <ogc:PropertyName>dn</ogc:PropertyName>
 <ogc:Literal>4</ogc:Literal>
 </ogc:PropertyIsEqualTo>

57

 </ogc:Filter>
 <se:PolygonSymbolizer>
 <se:Fill>
 <se:SvgParameter name="fill">#d42020</se:SvgParameter>
 </se:Fill>
 <se:Stroke>
 <se:SvgParameter name="stroke">#d42020</se:SvgParameter>
 <se:SvgParameter name="stroke-width">4</se:SvgParameter>
 <se:SvgParameter name="stroke-linejoin">bevel</se:SvgParameter>
 </se:Stroke>
 </se:PolygonSymbolizer>
 </se:Rule>
 </se:FeatureTypeStyle>
 </UserStyle>
 </NamedLayer>
</StyledLayerDescriptor>

SLD style for NBR difference layer

<?xml version="1.0" encoding="UTF-8"?>
<StyledLayerDescriptor xmlns="http://www.opengis.net/sld"
xmlns:xlink="http://www.w3.org/1999/xlink"
xsi:schemaLocation="http://www.opengis.net/sld
http://schemas.opengis.net/sld/1.1.0/StyledLayerDescriptor.xsd"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:se="http://www.opengis.net/se" xmlns:ogc="http://www.opengis.net/ogc"
version="1.1.0">
 <NamedLayer>
 <se:Name>nbr</se:Name>
 <UserStyle>
 <se:Name>nbr</se:Name>
 <se:FeatureTypeStyle>
 <se:Rule>
 <se:Name>1</se:Name>
 <se:Description>
 <se:Title>1</se:Title>
 </se:Description>
 <ogc:Filter xmlns:ogc="http://www.opengis.net/ogc">
 <ogc:PropertyIsEqualTo>
 <ogc:PropertyName>DN</ogc:PropertyName>
 <ogc:Literal>1</ogc:Literal>
 </ogc:PropertyIsEqualTo>
 </ogc:Filter>
 <se:PolygonSymbolizer>
 <se:Fill>
 <se:SvgParameter name="fill">#ffd560</se:SvgParameter>
 </se:Fill>
 <se:Stroke>
 <se:SvgParameter name="stroke">#ffd560</se:SvgParameter>
 <se:SvgParameter name="stroke-width">1</se:SvgParameter>
 <se:SvgParameter name="stroke-linejoin">bevel</se:SvgParameter>
 </se:Stroke>
 </se:PolygonSymbolizer>
 </se:Rule>
 <se:Rule>
 <se:Name>2</se:Name>
 <se:Description>
 <se:Title>2</se:Title>
 </se:Description>

58

 <ogc:Filter xmlns:ogc="http://www.opengis.net/ogc">
 <ogc:PropertyIsEqualTo>
 <ogc:PropertyName>DN</ogc:PropertyName>
 <ogc:Literal>2</ogc:Literal>
 </ogc:PropertyIsEqualTo>
 </ogc:Filter>
 <se:PolygonSymbolizer>
 <se:Fill>
 <se:SvgParameter name="fill">#ffbc7d</se:SvgParameter>
 </se:Fill>
 <se:Stroke>
 <se:SvgParameter name="stroke">#ffbc7d</se:SvgParameter>
 <se:SvgParameter name="stroke-width">1</se:SvgParameter>
 <se:SvgParameter name="stroke-linejoin">bevel</se:SvgParameter>
 </se:Stroke>
 </se:PolygonSymbolizer>
 </se:Rule>
 <se:Rule>
 <se:Name>3</se:Name>
 <se:Description>
 <se:Title>3</se:Title>
 </se:Description>
 <ogc:Filter xmlns:ogc="http://www.opengis.net/ogc">
 <ogc:PropertyIsEqualTo>
 <ogc:PropertyName>DN</ogc:PropertyName>
 <ogc:Literal>3</ogc:Literal>
 </ogc:PropertyIsEqualTo>
 </ogc:Filter>
 <se:PolygonSymbolizer>
 <se:Fill>
 <se:SvgParameter name="fill">#fc7050</se:SvgParameter>
 </se:Fill>
 <se:Stroke>
 <se:SvgParameter name="stroke">#fc7050</se:SvgParameter>
 <se:SvgParameter name="stroke-width">1</se:SvgParameter>
 <se:SvgParameter name="stroke-linejoin">bevel</se:SvgParameter>
 </se:Stroke>
 </se:PolygonSymbolizer>
 </se:Rule>
 <se:Rule>
 <se:Name>4</se:Name>
 <se:Description>
 <se:Title>4</se:Title>
 </se:Description>
 <ogc:Filter xmlns:ogc="http://www.opengis.net/ogc">
 <ogc:PropertyIsEqualTo>
 <ogc:PropertyName>DN</ogc:PropertyName>
 <ogc:Literal>4</ogc:Literal>
 </ogc:PropertyIsEqualTo>
 </ogc:Filter>
 <se:PolygonSymbolizer>
 <se:Fill>
 <se:SvgParameter name="fill">#d42020</se:SvgParameter>
 </se:Fill>
 <se:Stroke>
 <se:SvgParameter name="stroke">#d42020</se:SvgParameter>
 <se:SvgParameter name="stroke-width">1</se:SvgParameter>
 <se:SvgParameter name="stroke-linejoin">bevel</se:SvgParameter>
 </se:Stroke>

59

 </se:PolygonSymbolizer>
 </se:Rule>
 <se:Rule>
 <se:Name></se:Name>
 <se:Description>
 <se:Title>DN is ''</se:Title>
 </se:Description>
 <ogc:Filter xmlns:ogc="http://www.opengis.net/ogc">
 <ogc:PropertyIsEqualTo>
 <ogc:PropertyName>DN</ogc:PropertyName>
 <ogc:Literal></ogc:Literal>
 </ogc:PropertyIsEqualTo>
 </ogc:Filter>
 <se:PolygonSymbolizer>
 <se:Fill>
 <se:SvgParameter name="fill">#67000d</se:SvgParameter>
 </se:Fill>
 <se:Stroke>
 <se:SvgParameter name="stroke">#232323</se:SvgParameter>
 <se:SvgParameter name="stroke-width">1</se:SvgParameter>
 <se:SvgParameter name="stroke-linejoin">bevel</se:SvgParameter>
 </se:Stroke>
 </se:PolygonSymbolizer>
 </se:Rule>
 </se:FeatureTypeStyle>
 </UserStyle>
 </NamedLayer>
</StyledLayerDescriptor>

60

Windows 10 Installation

This annex will cover how to install the backend system on a Windows 10
machine.

1 Python

 Download Python 3.486

 Install Python following the instructions.Make sure the ―Add Python 3.4 to

PATH‖ is checked, as seen in the image below.

 Finally, to check the installation, open the Command Prompt and type

py --version

If the installation was successful, information about python version
should appear.

Numpy

 Open the Command Prompt and type

pip3 install numpy

86

 https://www.python.org/downloads/release/python-340/

https://www.python.org/downloads/release/python-340/

61

 If everything goes right, something like the image below should appear.

GDAL

Installing GDAL on windows systems can be a bit tricky. First of all, by typing
―py‖ in the Command Prompt, some information needs to be gathered from
python.

As can be seen, there is a bracket with the letters ―MSC v.1900‖. The number is
needed to download the right GDAL compilation. Type ―exit()‖ to exit python.

Once in the download page87 select the adequate release for your system
architecture and for your python version (the number inside brackets).

Then select the package with GDAL core only, download it and install it
selecting ―Typical Installation‖.

87

 http://www.gisinternals.com/release.php

http://www.gisinternals.com/release.php

62

Once installed, download GDAL bindings for python:

63

And install them.

Last step is to configure system Path. In order to do that, type environment
variables on the windows search bar, as in the image below

64

And click on Edit the system environment variables. A system properties
windows will open. Click on Environment Variables as shown in the image
below:

The following window will open:

65

Double click on Path on the section System Variables, and a new window will
open:

On this window, double click on an empty line, and add the path to GDAL,
which should be either ―C:\Program Files\GDAL\‖ or ―C:\Program Files
(x86)\GDAL‖. Press Ok to save the configuration.

In the same System variables pane, click on ―New‖ and then add the following
in the dialogue box:

Variable name: GDAL_DATA
Variable value: C:\Program Files (x86)\GDAL\gdal-data

And once more:

66

Variable name: GDAL_DRIVER_PATH
Variable value: C:\Program Files (x86)\GDAL\gdalplugins

To check if the installation was successful, open a new command prompt and
type ―gdalwarp‖. If some information about how to use gdalwarp appears
installation was ok, as in the image below.

SentinelSat

To install SentinelStat, type on the command prompt:

pip3 install sentinelsat

If everything was fine, the following screen will appear:

67

To check sentinelSat installation, type ―sentinelsat‖ on the command prompt. A
how to use message should appear as in the image below.

Winrar

Download winrar from the webpage88 and install it normally. Finally, and
following the same steps as in GDAL, add the winrar folder to the system path:

88

 https://www.win-rar.com/

https://www.win-rar.com/

68

Run the backend!

In the command prompt, navigate to the folder containing the python scripts:

And press enter.

69

12. Glossary

CNIG Centro Nacional de Información Geográfica.

GDAL Geospatial Data Abstraction Library. Library for Geographical imagery
processing.

GeoJson Open standard format for graphical information, based on Json,
JavaScript Object Notation.

GIS Geographical Information Systems.

Java Object Oriented and interpreted programing language.

JavaScript Interpreted programming language used for web pages.

OGR Library for vector file processing.

Raster Image format based on a matrix of points containing information about
colour or/and brightness values.

RGB Red Green Blue. Colour system used in dark background devices.

Shapefile Vector file format, developed by ESRI, which is a de facto standard.

Vector Graphics Images that are defined using lines, curves and points in a 2D
space instead of as a matrix of pixels.

70

13. Bibliography

1. Consellería de Medio Rural. mediorural.xunta.gal. [Online] 2006. [Cited: 30
December 2017.]
http://mediorural.xunta.gal/fileadmin/arquivos/estatisticas/2010/11401/11401_lu
mes_2006.pdf.
2. La Opinión A Coruña. www.laopinioncoruna.es. [Online] 29 11 2017. [Cited:
30 12 2017.] http://www.laopinioncoruna.es/galicia/2017/11/07/galicia-acapara-
tercio-superficie-quemada/1233262.html.
3. LA MAGNITUD DE LA CRISIS INCENDIARIA DE 2006 EN GALICIA.
BALSA BARREIRO, JOSÉ. [ed.] Revista Montes. 109, A Coruña : s.n., 2012,
pp. 39-44.
4. Consellería de Medio Rural. PLADIGA. mediorural.xunta.gal. [Online] 2017.
[Cited: 30 12 2017.]
http://mediorural.xunta.gal/fileadmin/arquivos/forestal/pladiga/2017/2_MEMORI
A.pdf.
5. European Commission. Copernicus, Europe's eyes on Earth. [Online] 2015.
[Cited: 3 January 2018.]
http://copernicus.eu/sites/default/files/documents/Brochure/Copernicus_brochur
e_EN_web_Oct2017.pdf.
6. —. Copernicus in Brief. [Online] [Cited: 3 January 2018.]
http://www.copernicus.eu/main/copernicus-brief.
7. European Space Agency. MultiSpectral Instrument (MSI) Overview. [Online]
[Cited: 3 January 2018.] https://sentinels.copernicus.eu/web/sentinel/technical-
guides/sentinel-2-msi/msi-instrument.
8. —. Sentinel-2 Overview. [Online] [Cited: 3 January 2018.]
https://sentinels.copernicus.eu/web/sentinel/missions/sentinel-2/overview.
9. Planet Labs. High Resolution Monitoring. [Online] [Cited: 4 January 2018.]
https://www.planet.com/products/hi-res-monitoring/.
10. OBJECT-BASED CLASSIFICATION VS. PIXEL-BASED CLASSIFICATION:
COMPARITIVE IMPORTANCE OF MULTI-RESOLUTION IMAGERY. Robert
C. Weih, Jr. and Norman D. Riggan, Jr. Arkansas : The International Archives
of the Photogrammetry, Remote Sensing and Spatial Information Sciences,
Vols. Vol. XXXVIII-4/C7 .
11. GISGeography. OBIA – Object-Based Image Analysis (GEOBIA) – Think
Objects, Not Pixels. [Online] [Cited: 10 January 2018.]
http://gisgeography.com/obia-object-based-image-analysis-geobia/.
12. Open Source Geospatial Foundation. MapServer. [Online] [Cited: 5
January 2018.] http://www.mapserver.org/.
13. "Improvement and expansion of the Fmask algorithm: Cloud, cloud shadow,
and snow detection for Landsats 4–7, 8, and Sentinel 2 images. Zhu, Zhe,
Shixiong Wang, and Curtis E. Woodcock. Remote Sensing of Environment
159, 2015, pp. 269-277.

