

Coding for Life--Battery
Life, That Is
Jeff Sharkey
May 27, 2009

Post your questions for this talk on Google Moderator:
code.google.com/events/io/questions

Why does this matter?

Phones primarily run on battery power, and each device
has a "battery budget"

When it's gone, it's gone

Apps need to work together to be good citizens of that
shared resource

Current measured in mA, battery capacity in mAh

HTC Dream: 1150mAh

HTC Magic: 1350mAh
Samsung I7500: 1500mAh
Asus Eee PC: 5800mAh

Where does it all go?

Source: Values measured using an industrial power
monitor at 5kHz sampling rate, and taking average
power with lowest standard deviation.

Where does it all go?

How do these numbers add up in real life?

Watching YouTube: 340mA = 3.4 hours

Browsing 3G web: 225mA = 5 hours
Typical usage: 42mA average = 32 hours
EDGE completely idle: 5mA = 9.5 days

Airplane mode idle: 2mA = 24 days

What costs the most?

Waking up in the background when the phone would
otherwise be sleeping

App wakes up every 10 minutes to update

Takes about 8 seconds to update, 350mA

Cost during a given hour:

3600 seconds * 5mA = 5mAh resting
6 times * 8 sec * 350 mA = 4.6mAh updating

Just one app waking up can trigger cascade

What costs the most?

Bulk data transfer such as a 6MB song:

EDGE (90kbps): 300mA * 9.1 min = 45 mAh
3G (300kbps): 210mA * 2.7 min = 9.5 mAh
WiFi (1Mbps): 330mA * 48 sec = 4.4 mAh

Moving between cells/networks

Radio ramps up to associate with new cell

BroadcastIntents fired across system

Parsing textual data, regex without JIT

How can we do better?
Networking

Check network connection, wait for 3G or WiFi

Networking
How can we do better?

ConnectivityManager mConnectivity;
TelephonyManager mTelephony;

// Skip if no connection, or background data disabled
NetworkInfo info = mConnectivity.getActiveNetworkInfo();
if (info == null ||
 !mConnectivity.getBackgroundDataSetting()) {
 return false;
}

Check network connection, wait for 3G or WiFi

Networking
How can we do better?

// Only update if WiFi or 3G is connected and not roaming
int netType = info.getType();
int netSubtype = info.getSubtype();
if (netType == ConnectivityManager.TYPE_WIFI) {
 return info.isConnected();
} else if (netType == ConnectivityManager.TYPE_MOBILE
 && netSubtype == TelephonyManager.NETWORK_TYPE_UMTS
 && !mTelephony.isNetworkRoaming()) {
 return info.isConnected();
} else {
 return false;
}

Use an efficient data format and parser

Networking
How can we do better?

Source: Timings obtained by downloading and
parsing a 6-item RSS feed repeatedly for 60
seconds and averaging results.

Use an efficient data format and parser
Use "stream" parsers instead of tree parsers

Consider binary formats that can easily mix binary and
text data into a single request

Fewer round-trips to server for faster UX

Networking
How can we do better?

Use GZIP for text data whenever possible

Framework GZIP libs go directly to native code , and are
perfect for streams

Networking
How can we do better?

import java.util.zip.GZIPInputStream;
HttpGet request =
 new HttpGet("http://example.com/gzipcontent");
HttpResponse resp =
 new DefaultHttpClient().execute(request);
HttpEntity entity = response.getEntity();
InputStream compressed = entity.getContent();
InputStream rawData = new GZIPInputStream(compressed);

Use GZIP for text data whenever possible

Networking
How can we do better?

Source: Timings averaged over multiple trials of
downloading 1800-item RSS feed of textual data.

How can we do better?
Foreground apps

Wakelocks are costly if forgotten

Pick the lowest level possible, and use specific
timeouts to work around unforseen bugs

Consider using android:keepScreenOn to ensure
correctness

Foreground apps
How can we do better?

<LinearLayout
 android:orientation="vertical"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 android:keepScreenOn="true">

Recycle Java objects, especially complex objects

Yes, we have a GC, but usually better to just create
less garbage that it has to clean up

XmlPullParserFactory and BitmapFactory

Matcher.reset(newString) for regex

StringBuilder.setLength(0)

Watch for synchronization issues, but can be safe when
driven by UI thread

Recycling strategies are used heavily in ListView

Foreground apps
How can we do better?

Use coarse network location, it's much cheaper

GPS: 25 seconds * 140mA = 1mAh
Network: 2 seconds * 180mA = 0.1mAh

1.5 uses AGPS when network available

GPS time-to-fix varies wildly based on environment, and
desired accuracy, and might outright fail

Just like wake-locks, location updates can continue
after onPause(), so make sure to unregister

If all apps unregister correctly, user can leave GPS
enabled in Settings

Foreground apps
How can we do better?

Floating point math is expensive

Using microdegrees when doing bulk geographic math

Caching values when doing DPI work with
DisplayMetrics

float density =
 getResources().getDisplayMetrics().density;
int actualWidth =
 (int)(bitmap.getWidth() * density);

Foreground apps
How can we do better?

// GeoPoint returns value 37392778, -122041944
double lat = GeoPoint.getLatitudeE6() / 1E6;
double lon = GeoPoint.getLongitudeE6() / 1E6;

Accelerometer/magnetic sensors

Normal: 10mA (used for orientation detection)

UI: 15mA (about 1 per second)

Game: 80mA

Fastest: 90mA

Same cost for accelerometer, magnetic, orientation
sensors on HTC Dream

Foreground apps
How can we do better?

How can we do better?
Background apps

Services should be short-lived; these aren't daemons

Each process costs 2MB and risks being
killed/restarted as foreground apps need memory

Otherwise, keep memory usage low so you're not the
first target

Trigger wake-up through AlarmManager or with <receiver>
manifest elements

stopSelf() when finished

Background apps
How can we do better?

AlarmManager am = (AlarmManager)
 context.getSystemService(Context.ALARM_SERVICE);
Intent intent = new Intent(context, MyService.class);
PendingIntent pendingIntent =
 PendingIntent.getService(context, 0, intent, 0);
long interval = DateUtils.MINUTE_IN_MILLIS * 30;
long firstWake = System.currentTimeMillis() + interval;
am.setRepeating(AlarmManager.RTC,
 firstWake, interval, pendingIntent);

Start service using AlarmManager

Use the _WAKEUP flags with caution

App that updates every 30 minutes, but only when
device is already awake

Background apps
How can we do better?

Use setInexactRepeating() so the system can bin your
update together with others

Background apps
How can we do better?

Start your service using <receiver> in manifest

Intent.ACTION_TIMEZONE_CHANGED

ConnectivityManager.CONNECTIVITY_ACTION

Intent.ACTION_DEVICE_STORAGE_LOW

Intent.ACTION_BATTERY_LOW

Intent.ACTION_MEDIA_MOUNTED
<receiver android:name=".ConnectivityReceiver">
 <intent-filter>
 <action android:name=
 "android.net.conn.CONNECTIVITY_CHANGE" />
 </intent-filter>
</receiver>

Background apps
How can we do better?

Dynamically enabling/disabling <receiver> components in
manifest, especially when no-ops

Background apps
How can we do better?

ComponentName receiver = new ComponentName(context,
 ConnectivityReceiver.class);
PackageManager pm = context.getPackageManager();
pm.setComponentEnabledSetting(receiver,
 PackageManager.COMPONENT_ENABLED_STATE_ENABLED,
 PackageManager.DONT_KILL_APP);

<receiver android:name=".ConnectivityReceiver"
 android:enabled="false">
 ...
</receiver>

Checking current battery and network state before running
a full update
public void onCreate() {
 // Register for sticky broadcast and send default
 registerReceiver(mReceiver, mFilter);
 mHandler.sendEmptyMessageDelayed(MSG_BATT, 1000);
}
IntentFilter mFilter =
 new IntentFilter(Intent.ACTION_BATTERY_CHANGED);
BroadcastReceiver mReceiver = new BroadcastReceiver() {
 public void onReceive(Context context, Intent intent) {
 // Found sticky broadcast, so trigger update
 unregisterReceiver(mReceiver);
 mHandler.removeMessages(MSG_BATT);
 mHandler.obtainMessage(MSG_BATT, intent).sendToTarget();
 }
};

Background apps
How can we do better?

Beyond 1.5

SpareParts has "Battery history"

1.5 is already keeping stats on
which apps are using CPU,
network, wakelocks

Simplified version coming in
future, and users will uninstall
apps that abuse battery

Consider giving users options for
battery usage, like update intervals,
and check the "no background data"
flag

Users will be watching!

Use an efficient parser and GZIP to make best use of
network and CPU resources

Services that sleep or poll are bad, use <receiver> and
AlarmManager instead

Disable manifest elements when no-op

Wake up along with everyone else (inexact alarms)

Wait for better network/battery for bulk transfers

Give users choices about background behavior

Takeaways

Post your questions for this talk on Google Moderator:
code.google.com/events/io/questions

Q & A

