
1

Secure Communication Setup for a P2P based
JXTA-Overlay Platform

Abstract— At present time, the maturity of the P2P research
field has pushed through new problems such as those related
with security. For that reason, it is important to provide security
mechanisms to P2P systems, since security starts to become one of
the key issues when evaluating them. The JXTA-Overlay project
is an effort to use JXTA technology to cater a generic set of
functionalities that can be used by developers to deploy P2P
applications. However, since its design focused on issues such as
scalability or overall performance, it did not take security into
account. This work proposes a security framework specifically
suited to JXTA-Overlay’s idiosyncrasies. The main features of the
proposal presented in this paper include a completely modular
approach which may cater to a broad set of scenarios, an effective
secure key distribution method and a hybrid key authenticity
scheme which balances the need for meaningful information at
end-user level and simplicity at the lower middleware layers.

Index Terms— Peer-to-Peer, security, XMLdsig, JXTA, JXTA-
Overlay, distributed systems, encryption.

I. INTRODUCTION

Peer-to-peer (P2P) systems have become highly popular
in recent times due to its great potential to scale and the
lack of a central point of failure, turning to one of the main
spearheads in digital ecosystems [1], [9]. Just as the popularity
of P2P systems has risen, so has concerns regarding their
security, specially since their decentralized nature prevents
the use of a single server which may act as a trusted party
for the whole network, capitalizing all security operations. As
P2P applications move from simple data sharing to a broader
spectrum, they become more sensitive to security threats and
it becomes very important to include security mechanisms that
can fit into a broad set of scenarios. Even at the cost of some
impact on performance, a minimum baseline must be kept in
any P2P system in order to ensure some degree of security
even when system components will not act properly.

JXTA [20] (or ”juxtapose”) is a set of open protocols that
enable the creation and deployment of P2P networks, provid-
ing applications the capability to discover and observe peers,
exchange messages and publish resources. Such protocols are
generic enough so they are not bound to a narrow application
scope, being adaptable to a large set of application types. For
that reason, they keep implementation independence and can
be deployed under any programming language or lower level
transport protocols.

JXTA-Overlay [8] is a JXTA-based framework. Its main
goal is to improve the original JXTA protocols, increasing the
reliability of JXTA-based P2P applications and enhancing its
group management and file sharing capabilities. However, the
design focus of JXTA-Overlay was completely concerned with
system performance and did not take into account security at
all, a situation which may become a great constraint under
today’s required standards for distributed systems.

The contribution of this paper is a modular security
framework specifically suited to the characteristics of JXTA-
Overlay. The proposed framework enables the setup of a
secure communication environment. Our proposal fully real-
izes the messaging capabilities and functions of both JXTA
and JXTA-Overlay and uses them in order to provide a
security baseline in an invisible manner. As a result, minimum
effort is necessary by application developers and end-users
to deploy a security baseline. Furthermore, because of the
framework’s modular approach, it may be easily ported to
different scenarios, according to the final application’s security
needs.

This paper is organized as follows. Section II provides a
general overview of JXTA and JXTA-Overlay’s architecture
and functions, as well as some insights on the current state of
its security. Section III presents the current related work on
securing JXTA-based systems, so it is possible to study which
approaches may be ported to JXTA-Overlay. The proposal of a
basic security framework is presented in Section IV, providing
a description of the global security layer’s architecture and
how the cryptographic data setup is performed. Section V
formalizes the new set of secure primitives and functions that
will enable a secure framework. In Section VI, a brief study
of the impact that the security layer has on performance is
presented. The short Section VII briefly provides some insights
regarding how the proposed approach may be used in industrial
processes. Concluding the paper, Section VIII summarizes the
paper contributions and further work.

II. JXTA-OVERLAY OVERVIEW

JXTA-Overlay is a middleware built on top of the JXTA
specification [21], which defines a set of protocols that stan-
dardize how different devices may communicate and collabo-
rate among them. JXTA-Overlay extends the JXTA protocols
with the aim to overcome some of its limitations: the need
for the developer to directly manage the presence mechanism,
peer group publication and message exchange. To achieve this
end, JXTA-Overlay provides a set of basic functionalities,
named primitives and functions, intended to be as complete
as possible to satisfy the needs of most P2P applications.

A. The JXTA-Overlay network

A JXTA-Overlay network is structured in the following
types of interacting entities:

End-users may connect to the JXTA-Overlay network by
previously authenticating via a username and password. Once
the authentication process is successfully completed, they are
organized into distinct overlapping groups. It is also important
to take in to account that JXTA-Overlay end-users are mobile,



2

they may connect at different times using different client peers,
as well as may be connected through several client peers at the
same time. Only end-users from the same group may interact.

A client peer represents an application through which end-
users communicate and share resources. They authenticate to
a broker and forward end-user data to other client peers.

Brokers control access to the network, by requesting end-
user authentication, and help client peers interact by propagat-
ing their related information. Brokers are very important, since
they exchange information about all client peers, maintaining
a global index of available resources, thus allowing all peers
to find network services. Brokers also act as beacons for client
peers which have recently gone online use to join the network.
For that reason, they usually have well-known identifiers, such
as a DNS name or a static IP address. Each group is assumed
to have at least one broker available, even though the same
broker may be shared across several groups.

All the information related to end-user configuration (user-
name, password and group membership) is stored in a special
single entity within the JXTA-Overlay network: the central
database. Only brokers may access the database data, in order
to check end-user authentication attempts and properly orga-
nize them into groups. It is assumed that some administrator
takes care of properly configuring the database, registering
new end-users. Nevertheless, JXTA-Overlay does not impose
any constraint on the database architecture.

B. General architecture

The architecture of the JXTA-Overlay middleware defines
three modules, which enable interaction between the different
entities described in Section II-A: the Client Module, the
Broker Module and the Control Module. Altogether, they
form an abstraction layer on top of JXTA, as shown in Figure
1.

Fig. 1. JXTA-Overlay architecture:
Client Application: JXTA-Overlay application.
Client Module: Client application services.
Broker Module: Broker services.
Control Module: Intermediate JXTA-Overlay specific messaging layer.
JXTA: JXTA protocols for data exchange.

• The Client Module defines all necessary primitives for
peer clients to join a JXTA-Overlay network and interact
with other client peers and brokers. In fact, applications
developed on top of JXTA-Overlay are always based

on the invocation of Client Module primitives and the
processing of events thrown upon primitive execution
completion or message reception. Primitives comprise the
following subsets: (a) peer discovery; (b) peer resources
discovery; (c) resource allocation, (d) task submission and
execution; (e) file/data sharing, discovery and transmis-
sion; (f) messenger; (g) peer group functionalities and (h)
monitoring of peers, groups, and tasks.

• The Broker Module defines all the functions that client
peers may call upon a broker in order to be granted access
to the the network, create and publish groups or retrieve
other client peers’ information. Broker functions are
always executed as a result of Client Module primitives
and always produce a reply message from the broker to
the calling client peer.

• The Control Module acts as an intermediate layer be-
tween the Broker and Client Modules, providing generic
functionalities on regards to group management and mes-
saging.

The Control Module provides messaging between JXTA-
Overlay entities using JXTA pipes, a virtual communication
channel between peers. Each client peer has an input pipe for
each group it belongs to, so other group members may send
messages using the input pipe associated to that group. Brokers
have a single input pipe which is shared for all incoming
messaging.

Resource information is propagated across group members
by Brokers, crossing boundaries such as client peers located
beyond broadcast range. Such information is formatted as
JXTA advertisements, special metadata XML documents ex-
changed using the JXTA core protocols. JXTA-Overlay has
a big reliance on both JXTA-defined and custom-defined
advertisements. As a result, their data is critical for the correct
operation of the JXTA-Overlay network. Each client peer
periodically broadcasts a set of advertisements containing
information regarding presence, open input pipes, capabilities,
statistics and shared files. Client peers store received adver-
tisements into a local cache, so they are able to easily retrieve
the published information at a later time.

C. JXTA-Overlay and security

As previously mentioned, JXTA-Overlay’s design is not
concerned with security, end-user authentication via a user-
name and password being the only exception. As a result, it is
vulnerable to different security threats which may jeopardize
the network. A security study must take into consideration
the fact that not only entities external to the JXTA-Overlay
network may try to subvert it, but also malicious end-users
which have properly authenticated to a broker.

Some of the greatest security concerns in the current version
of JXTA-Overlay are the following ones:

• No privacy: Transmitted data may be easily eaves-
dropped, since no encryption is provided at any layer.
Even though it may be argued that data privacy in
message exchanges between end-users is just an optional
feature, there are some cases where privacy should not be
optional, namely the initial authentication via username



3

and password. Currently, both fields are sent as plain text,
and can be easily intercepted.

• Advertisement spoofing: Any legitimate user may forge
advertisements with no fear of reprisal. No integrity or
source authenticity is enforced. False fields, such as the
source client peer identifier or any other relevant infor-
mation, may be added to the advertisement, which will
be automatically distributed by the broker and accepted
by all group members.

• Broker impersonation: Client peers connect to a self-
proclaimed broker, but never check if it is a legitimate
one. Even in the case that client peers are connecting to
the proper broker address, there is no guarantee that the
broker is a legitimate one, since it may be the case that
traffic is being redirected to a fake broker via methods
such as DNS spoofing [6].

As can be seen, some of the current JXTA-Overlay vulner-
abilities are quite glaring, such as transmitting sensitive data
with no real privacy. Therefore, it can be concluded that JXTA-
Overlay does not provide a security baseline and needs serious
improvement on this regard.

III. RELATED WORK ON SECURING JXTA-BASED
FRAMEWORKS

Before a security framework for JXTA-Overlay may be
proposed, it is useful to review which are the current security
mechanisms available to JXTA-based applications. From this
review, it is possible to study which may prove useful and
suitable to JXTA-Overlay’s architecture and network setup
specifics. Therefore, in this section, we provide a general
security overview for JXTA applications. However, a much
more complete survey may be found in [12].

As far as network access control is concerned, one of the
original creators of JXTA proposes a specific trust model in
[3]. Without actually recognizing a specific Certification Au-
thority (CA) for each peer group, he proposes that rendezvous
peers become the system’s trust anchors, providing credentials
to peers, that can be used to prove identity membership. To
acquire a credential, the peer must be authorized via an LDAP
(Lightweight Directory Access Protocol) [19] directory with a
recognized protected password. This proposal is later extended
in [16], basing the security model on a centralized Public Key
Infrastructure (PKI) and a basic challenge-response protocol
[26] as a means for authentication when a peer joins a peer
group. Its main contribution is providing a method which peers
may use in order to also authenticate the group itself.

More elaborated proposals are presented in [17], [18],
based on joint authorization by multiple peers under voting
schemes in order to maximize decentralization. Under these
approaches, credentials are also signed certificates issued by
a CA. However, access is based on an agreement protocol
between several group members. The main difference between
both proposals is that the latter also includes a rank system,
where peers who join the group, named “newbies“, have
the least privileges, but may rise to higher positions as they
contribute to the group.

On regards to message security, the JXTA reference imple-
mentation [14] provides two mechanisms: its own definition

of standard TLS (Transport Layer Security) [24] and a JXTA-
specific protocol named CBJX (Crypto-Based JXTA Transfer)
[5]. The former provides private, mutually authenticated, re-
liable streaming communications, whereas the latter provides
lightweight secure message source verification, but no privacy
at all.

In order to use both mechanisms, TLS and CBJX, a
specific group membership service is required: the Personal
Security Environment (PSE). The membership service is one
of the JXTA core services, taking care of peer group access
control and identity management by providing each group
member with a credential. Peers may include credentials in
messages exchanged between group members in order to prove
identity ownership, group membership and provide a means
for implementing access control in services. However, the
only credentials supported by PSE are X.509 certificates [4],
solely relying on Java keystores (JKS) [22] as a cryptographic
module.

The current JXTA reference may also provide some degree
of security in resource publication and discovery by option-
ally signing advertisements. No distinction between different
types of advertisements is made, all become a new type
of advertisement when signed: the Signed Advertisement. A
Signed Advertisement encapsulates the original XML data
as plain text encoded via the Base64 algorithm [7]. Signed
advertisements are also constrained to the PSE membership
service.

An alternative method for advertisement security is pro-
posed in [13]. This method is based on XMLdsig [27] and
can be applied to those advertisement types defined by JXTA
as well as those custom made by JXTA-based applications.
The resulting secure advertisement maintains its original type,
instead of becoming a completely different new type of
advertisement, maintaining peer interoperability.

IV. A SECURITY FRAMEWORK FOR JXTA-OVERLAY

In this section, we present a secure framework for JXTA-
Overlay which provides a baseline for protecting end-user
applications against the current vulnerabilities exposed in Sec-
tion II-C. This framework establishes a secure communication
setup which may be used as a starting point to add secure
capabilities to all JXTA-Overlay primitives and functions.

In our proposal, we combine several methods of those
previously described in Section III, adapting them to JXTA-
Overlay’s specific architecture and network setup. Client peers
are protected against impersonation by using broker-issued
credentials in a similar way to the approach in [3]. However,
we further extend this approach to brokers, so legitimate ones
may be told apart from malicious ones. We also provide an
alternate lightweight method for message source authenticity
between client peer endpoints. Advertisement integrity and
authenticity, as well as a transparent method for key transport,
is also provided by adapting the method defined in [13] to the
particularities of JXTA-Overlay.

The following notation will be used from now on to
describe the secure framework:



4

• SKi: Peer i’s secret key.
• PKi: Peer i’s public key.
• Credj

i : Entity i’s credential, issued by j. It is assumed
that the credential contains a public key owned by i.

• EPKi
(x): A string x encrypted using the PKi by means

of a wrapped key encryption scheme (such as the one
defined in [2]).

• SSKi(x): A string x signed using the SKi.
• i −→ j : {m1, · · · , mn}: A message sent from peer i to

peer j, with the content m1, · · · , mn.

A. Secure architecture overview

An overview of the main components in our security
framework proposal for JXTA-Overlay is presented in Figure
2. All modules are located at different layers within JXTA-
Overlay and JXTA’s own architecture.

Fig. 2. Security architecture for JXTA-Overlay:
Secure Primitives and Functions: API to secure services.
Secure Manager: Main security service provider.
Crypto Manager: Key management and storage.
Adv Signer and Secure Adv Modules: Advertisement security layer.

The following modules are not JXTA-Overlay specific,
but have been designed as an extension to the JXTA core
protocols. As such, they may be used in any JXTA-based
application:

• The Crypto Manager provides an abstraction layer for
any cryptographic module and key management method.
It enables the integration of security services with any
kind of cryptographic module, such as hardware crypto-
graphic tokens. This approach takes into account the fact
that secure modules have different access methods and,
in some processes require secure hardware tokens, such
as smart cards [25]. The Crypto Manager is completely
modular and accepts different implementations, according
to the needs of the specific cryptographic module being
used. Developers need only provide a proper implemen-
tation of the Crypto Manager that will support the chosen
cryptographic module and credential type. This is in
contrast with PSE, as exposed in Section III, which is
restricted to a single type of cryptographic module, Java
keystores, which can only use text password based access
control.

• The Secure Adv Module defines the secure advertisement
format, providing a method for key transport, and addi-

tional fields related to its signature. This module is based
on the work proposed in the JXTA-XMLsec project [10].

• The Adv Signer Module manages JXTA advertisement
signature and validation by interacting with the Crypto
Manager. Secure advertisement management is provided
such a way that there is no need to modify the standard
JXTA libraries.

The JXTA-Overlay specific modules follow:
• The Secure Manager is the common interface to all

additional security capabilities within the JXTA-Overlay
Control Module, operating as a single entry point for all
secure services.

• The Secure Functions and Primitives Modules just extend
the base Broker and Client Modules, discussed in sub-
section II-B, providing a set of additional primitives and
functions which take into account security considerations.

As far as the secure framework management is concerned,
the end-user application developer just has to choose which
primitives to use in order to create a P2P application, just
as in standard JXTA-Overlay. The secure versions of JXTA-
Overlay’s primitives do not replace JXTA-Overlay’s original
insecure versions, but just complement them, leaving the final
choice on which primitives to use up to the developer.

B. Communications system initial setup

In order to deploy a secure framework, JXTA-Overlay
entities must be provided with cryptographic data beforehand.
In our framework, such data exchange is performed using a
setup divided in three distinct stages: deployment, boot and
login.

1) Deployment stage: Deployment stage data is generated
only once in the full system’s lifecycle. Whenever a new
JXTA-Overlay network is deployed, the administrator gener-
ates a public key PKAdm and secret key SKAdm. From both
keys, also generates a self-signed credential, CredAdm

Adm, thus
acting as trusted party for all peers. This is a sensible stance,
since, nevertheless, the system administrator has absolute
control on the legitimate end-user database.

Each broker, Bri, is provided a well-known identifier
IDBRi

by the administrator (in fact, JXTA-Overlay already
does this: a DNS name or static IP address), which will be the
one client peers will use to connect to it. Bri also generates a
public and secret key, PKBri and SKBri . From PKBri , the
administrator will provide Bri with a credential CredAdm

Bri
,

by signing PKBri
and IDBRi

with SKAdm. Therefore, only
legitimate brokers will hold a proper credential and be able to
prove its ownership.

Each client peer, Cli, who wants to connect to the JXTA-
Overlay network is provided with a copy of CredAdm

Adm by the
administrator.

It must be pointed out that all cryptographic data at
this stage is created outside of the scope of a running
P2P application and distributed out-of-band, since the
administrator himself is a JXTA-Overlay entity but not an
application. For for example, CredAdm

Adm may be provided
to Cli’s end-user when the administrator delivers him the



5

username and password. All broker cryptographic data is
deployed along broker installation into the network.

2) Boot stage cryptographic data: Only client peers gen-
erate additional cryptographic data at boot time, immediately
before going online: a key pair PKCli and SKCli . The main
reason for such keys not enduring the whole node’s life, in
contrast with brokers, is the fact that end-users are mobile, and
therefore, different end-users may use the same exact node at
different stages during the client peer’s lifecycle. In that case,
that would mean end-users would also use the same key pair.
In addition, requiring the end-user to transport and manage
the key pair between nodes quickly becomes a hassle.

Once the key pair has been generated, the client peer
identifier is set as a Crypto Based IDentifier (CBID), further
described in section IV-C.1. At this point, it is sufficient to
say that it is a method to univocally bind the identifier to
PKCli .

3) Login stage cryptographic data: Each time an end-user
logs into the network through a client peer, the broker issues
a temporary credential, CredBri

User, containing the client peer’s
PKCli and the end-user’s username. An end-user connecting
to the network via several client peers will be provided several
credentials, each one assigned and managed by each specific
client peer. Credentials are only valid for a single end-user’s
session. This accounts for the fact that, since end-users are
mobile, PKCli may be a different one each time the end-user
logs into the network.

A summary of the final cryptographic data distribution
after setup is shown in Figure 3. The figure legend states at
which stage each particular data is initialized.

Fig. 3. Cryptographic data setup summary, by stage:
Credj

i (k): End-user’s i’s credential, issued by j for peer k.
PKi: Peer i’s public key.
CBIBi: Peer i’s Crypto Based Identifier.
IDi: Peer i’s identifier.

C. Key distribution and advertisement security

The final step for a correct cryptographic data setup requires
that all participating entities exchange their public keys, so

secure protocols may be initiated at any time. However, any
public key distribution method must take into account the fact
that in a P2P network nodes may go online and offline at any
moment. To achieve this goal, we apply the scheme defined
in [13], based on XMLdsig, where the public key is included
into JXTA advertisements.

Key distribution is achieved via JXTA-Overlay’s standard
information propagation mechanism based on advertisements,
as exposed in section II-B. This approach is unobtrusive and
seamlessly integrates with JXTA-Overlay’s messenger prim-
itives by making use of exactly the same core mechanisms,
instead of relying on additional protocols for key distribution.
Pipe Advertisements have been chosen as the ones which hold
peer credentials. The reasons for this choice are twofold.

First of all, JXTA-Overlay’s messaging capabilities between
group members completely rely on input pipes, as explained
in section II-B. Client peers cannot exchange messages unless
they have each other’s Pipe Advertisement. Consequently, by
publishing keys using this advertisement type, it is also always
guaranteed that both parties have each other’s public key
before any message exchange may actually begin.

Additionally, the chosen scheme allows the signature of
Pipe Advertisements, providing effective protection against
advertisement forgery (during transport or even when already
stored at the local cache), a vulnerability exposed in section
II-C. It must be heavily remarked the importance of each
client peer’s JXTA input pipe in JXTA-Overlay. Once a broker
has granted access to a client peer, absolutely all incoming
messages are received via this pipe. Therefore, it is very
important to secure the distribution of each client peer’s Pipe
Advertisement to avoid that a rogue peer may publish a forged
advertisement, claiming that its own input pipe is assigned to
some other Peer ID. In such scenario, all incoming messages
towards that Peer ID would be automatically redirected to the
rogue peer. By signing Pipe Advertisements, advertisement
fields cannot be tampered and it is easy to detect spoofers.

However, any secure scheme on JXTA-Overlay advertise-
ments must take into account that their fields are used to
specify which client peer and end-user is the input pipe owner.
Therefore, it is important to keep such field visible, so they
may be easily located by the indexing services. The chosen
approach accomplishes this requirement. Another crucial ad-
vantage, in contrast with JXTA’s Signed Advertisement, is its
capability to become invisible to standard JXTA-Overlay oper-
ation, instead of adding a new advertisement type, completely
opaque to advertisement indexing and retrieval services.

A sample signed Pipe Advertisement is shown in Listing 1
(some fields have been shortened to improve readability).

1) Guaranteeing key authenticity: An additional require-
ment for key distribution is that it must always guarantee pub-
lic key authenticity, so anyone may check whether an endpoint
is the legitimate owner of any particular public key. In JXTA-
Overlay, messaging may occur between two different endpoint
types: client peers and end-users. The former comprises con-
trol messaging such as advertisement propagation whereas the
latter is concerned with direct communication exchanges such
as chatting or file sharing. Hence, key ownership must consider



6

XML Listing 1 - Signed Pipe Advertisement
<?xml version="1.0" encoding="UTF-8"?>
<jxta:PipeAdvertisement xmlns:jxta="..." ID="signed">
<Id>urn:jxta:uuid-59...904</Id>
<Type>JxtaUnicast</Type>
<Name>urn:jxta:uuid-59...B03</Name>
<Desc>username</Desc>
<Signature xmlns="...">
<SignedInfo>
<CanonicalizationMethod
Algorithm="..."/>

<SignatureMethod Algorithm="..."/>
<Reference URI="#signed">

<Transforms>
<Transform Algorithm="..."/>

</Transforms>
<DigestMethod Algorithm="..."/>
<DigestValue>/dL...yo=</DigestValue>

</Reference>
</SignedInfo>
<SignatureValue>
dg...NGg=

</SignatureValue>
<KeyInfo>
<X509Data>

<X509SubjectName>
CN=username,O=Overlay

</X509SubjectName>
<X509Certificate>

MII...Qw==
</X509Certificate>

</X509Data>
</KeyInfo>

</Signature>
</jxta:PipeAdvertisement>

both types of endpoint data exchanges. It must also take into
account the fact that a single end-user may be connected to
the JXTA-Overlay network using several client peers at the
same time.

We accommodate to these constraints by using a joint
scheme were different authenticity mechanisms are used
depending on the endpoint type. On one hand, since
exchanges between client peer endpoints are very frequent, a
lightweight method is desirable. Thus, CBIDs are used. On
the other hand, exchanges between end-users require some
method that provides additional information that may be
presented to the user, such as the source username and an
easily recognizable identifier of a trusted entity, so he may
decide whether to accept the exchange or not. Therefore,
signed credentials are used in this case. The schematics of
this key authenticity method are shown in Figure 4.

Fig. 4. Key authenticity model:
End-user: JXTA-Overlay application user.
Client peer: JXTA-Overlay application.

The concept of CBIDs, or Statistically Unique and Crypto-
graphically Verifiable IDs (SUCV IDs), was initially conceived

for IPv6 addressing in order to solve the issue of address own-
ership [23]. We adapt this scheme to our security framework
by applying it to the client peer identifier. The client peer
public key PKCli is bound to the client peer identifier by
applying a pseudo-random function on the public key. The
result is henceforth used as the JXTA peer identifier. Secure
messages between client peer endpoints are signed using
SKCli . In order to check CBID ownership, the message’s
signature is validated. If validation is correct, it is proved
that the source peer holds the associated private key. Then,
the validating public key is used to generate the source peer
identifier, the CBID. If the obtained identifier is the same as
the claimed one, the message is deemed authentic.

Key authenticity via credentials is checked by verifying the
credential’s signature against the issuer’s public key, validating
the full certificate path: end-user, broker and administrator
(being the latter trusted by all entities in the system). The
brokers’ credentials are available to client peers, since they
are also distributed within their Pipe Advertisements. The
administrator’s single credential is provided at deployment, as
explained in section IV-B.

It must be pointed out that this hybrid approach is nec-
essary, since CBIDs cannot be used for end-user endpoint
data exchanges nevertheless. It is not possible generate one
that conforms to a particular username. In addition, CBIDs
which could be considered secure enough, being about 40
hexadecimal digits long, would not be easy to remember for
end-users.

V. SECURE PRIMITIVES AND FUNCTIONS

The secure framework is based on a set of secure primitives,
handled by the Secure Manager module, which coexists with
the original JXTA-Overlay modules. Each original primitive
may be mirrored in a secure version, however, because of the
sheer number of different primitives, about 122 primitives and
84 events related to different functions, we will only focus
on two important primitive types: discovery primitives and
messenger primitives.

A. Secure discovery primitives

Discovery primitives negotiate how client peers locate and
connect to a broker when they want to join the JXTA-Overlay
network and retrieve miscellaneous client peer information.
The proposed secure extension exclusively focuses on the
initial interactions with the broker in order to join the JXTA-
Overlay network, and the eventual cryptographic data setup
and exchange.

Joining the network via the broker is divided into two
distinct steps, each one handled by a specific primitive:

• connect: Locates a broker and waits for a connection to
open.

• login: Authenticates the current client peer end-user by
sending a username and password that will be checked
against the database.

The secure extension maintains the separation in two steps:
the secureConnection and secureLogin primitives.



7

1) secureConnection: The description of the connection
process, initiated by the primitive invocation, follows:

1) The client Cl waits for a broker Br to become available
and initiates the connection attempt.

2) Cl chooses a byte array, chall, as a random challenge.
3) Cl −→ Br: {chall}
4) Br generates a sufficiently long random session identi-

fier sid, and stores it.
5) Cl←− Br: {sid, SSKBr

(chall), CredAdm
Br }

6) Cl checks the authenticity of CredAdm
Br by verifying its

signature using PKAdm (contained in the administra-
tor’s credential, CredAdm

Adm).
• If its is not authentic, it can be concluded that Br

is not a legitimate Broker.
7) Cl checks SSKBr

(chall) using PKBr (which is con-
tained within CredAdm

Br ).
• If signature validation fails, it can be concluded

that Br does not possess SKBr, and thus is an
impersonator.

8) If all checks succeed, it can be concluded that Br is a
legitimate Broker.

9) Cl stores sid and CredAdm
Br .

The main attack at the Broker location and connection stage
is Broker impersonation. The digital signature mechanism in
step 5 provides Broker authenticity, since only a legitimate
Broker has a public key PKBr in a proper credential,
CredAdm

Br , issued by the Administrator. Additionally, the
challenge-response approach in steps 2-5 avoids replay
attacks, where an attacker patiently intercepts and stores
signatures generated by the Broker at step 5 and tries to reuse
them in future exchanges, passing as the Broker. Each time a
secureConnection primitive is called, different data must be
signed by the Broker.

2) secureLogin: Once the Broker Br’s credential has been
retrieved, and its authenticity has been established, it is possi-
ble to use the secureLogin primitive to actually join the JXTA-
Overlay network. As required by JXTA-Overlay’s entities and
architecture, a username and password are provided by the
client application’s end-user.

The description of the underlying protocol follows:

1) Cl generates the login request req =
SSKCl

(username, password, PKCl)
2) Cl retrieves PKBr and sid, obtained during the secure-

Connection primitive call.
3) Cl −→ Br: {EPKBr

(req, sid)}
4) Br decrypts the message using SKBr.
5) Br checks if sid is currently stored. If that is not the

case, login is aborted. Otherwise, Br no longer stores
sid and the login process continues.

6) Br checks username and password matching according
to JXTA-Overlay’s standard procedures (for example, a
secure back-end database connection).
• If they do not match, it can be assumed that Cl’s

end-user is an impersonator and login is aborted.

7) Br checks key authenticity against the claimed client
peer identifier according to the mechanism described in
Section IV-C.1.
• If the check fails, it can be concluded that the

request was not received from a client peer with
the claimed identifier. The login attempt is aborted
by Br.

8) If both checks were correct, Br generates a credential
cr = CredBr

Cl , containing PKCl and Cl’s current end-
user’s username.

9) Cl←− Br: {cr}
10) Cl stores the received credential into its cryptographic

module. From now on, Cl’s end-user may use cr as
proof of identity, until cr’s expiration.

At this stage, the main security concerns are attackers trying
to eavesdrop the end-user’s username and password, and end-
user or client peer impersonation. As far as the former is
concerned, the new secure primitive encrypts data, in contrast
with the original one, which did not, and thus data cannot
be easily intercepted. The cryptographic key used to encrypt
the data was retrieved during the secureConnection primitive
call, and thus can be considered authentic (from a legitimate
Broker).

Since end-user authenticity is still provided using a user-
name and password pair, it might be possible for an attacker
to reuse past messages to try to impersonate an end-user even
when the message content in step 3 cannot be decrypted.
It would be enough that it contained a valid username and
password that will be accepted by the broker. However, the
changing session identifier, sid, avoids this in step 5.

Client peer impersonation is subverted by the CBID mech-
anism enforced in step 7. Since each client peer identifier
is univocally linked to is public key, an attacker cannot try
to publish a Pipe Advertisement which contains any chosen
identifier, but the attacker’s public key. Such maneuver is
easily detected, guaranteeing client peer key authenticity.

B. Secure messenger primitives

Messenger primitives define how to directly exchange sim-
ple text messages between end-users. Once the cryptographic
setup has established key and credential information for all
participating entities, it is finally possible to secure data
exchanges by providing a secure version of each primitive.
The two main messenger primitives are:

• sendMsgPeer: Sends a simple message to some other
client peer.

• sendMsgPeerGroup: Sends a simple message to all mem-
bers of a group. It is actually resolved by iteratively
calling sendMsgPeer.

The secure versions of both primitives provide lightweight
privacy, data integrity and message source authentication in a
stateless, best effort method. This is in contrast, for example,
with JXTA’s secure pipes, which rely on TLS and require
some previous negotiation between endpoints each time a
message exchange is initiated, as explained in section III.



8

1) secureMsgPeer and secureMsgPeerGroup: The neces-
sary steps for some end-user connected to client peer Cli to
send a simple text message to another one connected to Clj
are:

1) Cli retrieves Clj’s Pipe Advertisement. This step also
happens in the original, insecure, primitive and thus
means no additional burden.

2) Cli validates the advertisement signature in order to
ensure that it has not been compromised, using the
method described in [13].
• If the signature does not validate, the advertisement

has been tampered, and is deemed invalid. If the
message is sent nevertheless, no guarantees can be
made on regards to its security.

3) Cli retrieves PKClj from the signed advertisement’s
enclosed credential, CredBr

Clj
.

4) Cli −→ Clj : {EPKClj
(m, SSKCli

(m))}
5) Clj decrypts the message using SKClj .
6) Clj repeats steps 1, 2 and 3.
7) Clj validates the message signature using PKCli , ob-

tained via Cli’s signed advertisement.
The secureMsgPeerGroup primitive just iteratively uses the

secureMsgPeer to send the same message to a group of peers.
As a standard message exchange between end-user end-

points, these primitives are mainly subject to data eaves-
dropping and end-user impersonation. The former is avoided
by encrypting data using a wrapped key approach, whereas
the latter is provided by digitally signing the data (which,
additionally, ensures data integrity). In both cases, the opposite
endpoint’s public key is necessary in steps 2 (signature vali-
dation) and 4 (encryption and signature generation). However,
since both public keys are contained in the credentials provided
to the endpoints by the Broker in step 8 of the secureLogin
primitive call, they can be considered legitimate, and not from
an impersonator.

VI. SECURITY COMPUTATIONAL COST ANALYSIS

Security always comes at a cost in protocol efficiency
by adding some degree of overhead. To assess the impact
on performance, two different sets of scenarios have been
taken into account in order to run a set of tests: overhead
in the expected time until a client peer joins the JXTA-
Overlay network and delay in simple message transmission.
Additionally, advertisement publication overhead because of
key distribution has also been calculated.

All tests have been run using a PC with a 1.20 GHz Intel
Pentium M processor and 1 Gb of RAM under Ubuntu 8.10
and SUN’s Java Runtime Environment version 1.6.0.10 (which
includes the Java Cryptographic Extension, JCE) . We decided
to use a computer which is below today’s average standards
to assess the impact of using JXTA’s security mechanisms on
low end machines. Furthermore, both the client peer and the
broker where at the same 100 Mbps LAN segment, making
network latency almost insignificant. Under this configuration,
we assume an even worse scenario for overhead calculation,
since network latency has almost no effect on the final results.

The analysis of the resulting average overhead when joining
the network via the secureConnection and secureLogin primi-
tives is shown in Table I. Each row represents a particluar set
of the steps specificed in sections V-A.1 and V-A.2 for both
primitives, respectively. Each row also points out if the steps
are executed at the client peer side (Cl) or at the broker side
(Br).

In this table, we calculate overhead as:

Overhead = 100 ∗ cryptographyTime
totalT ime %

Primitive Side Steps Overhead

secureConnection Cl Steps 1-3 1.83%
Br Steps 4-5 1.72%
Cl Steps 6-9 11.80%

secureLogin

Cl Steps 1-3 8.96%
Br Steps 4-9 41.04%
Cl Step 10 16.41%

Total Overhead 81.76%

TABLE I
CRYPTOGRAPHIC SETUP OVERHEAD

As can be seen from the results, the final overhead may be
considered quite high from an absolute standpoint, since the
required time for connecting to the network is almost doubled.
In fact, since no broker authentication existed in the original
version of JXTA-Overlay, the secureConnection primitive can
be considered as full overhead. However, we must take into
account that these results are in comparison to a scenario
where no security exists at all. Furthermore, it must also be
taken into account that client peer login just happens once for
the full session. Therefore, the final overhead actually has a
very low repercussion on overall system performance.

As far as overhead in secure messaging is concerned,
using the secureMsgPeer primitive, it has also been tested for
different data lengths, as shown in Figure 5. Even though the
overhead is a bit high for small messages, the reasons being
the same as the case of the network join process, it quickly
falls as network latency becomes more relevant.

Fig. 5. secureMsgPeer primitive overhead.

Finally, the cost on performance because of the new Pipe
Advertisement format, allowing key distribution, has been



9

calculated. This cost is twofold, in advertisement data size
and in processing time, because of XML signature generation
and validation.

In order to calculate the data size overhead in advertisement
publication, it must be taken into account that JXTA-Overlay
client peers make heavy use of them in order to publish
all available resources. Different types of advertisements are
periodically published at different default time intervals in
seconds, depending on the resource type. Therefore, it is
possible to calculate the advertisement publication data rate for
a client peer. This data, for each advertisement type, is shown
in Table II, based on a a client peer with no available resources,
which would be the lowest possible data rate scenario.

Advertisement type Interval Size Rate
Peer 10 1081 108.1
Peer Group 10 310 31
Pipe 5 409 81.8
Info 5 953 190.6
Files 25 672 26.88
Criterium 15 5759 383.93
Stats 30 18312 610.5
Total Data Rate 1432.71

TABLE II
ADVERTISEMENT PUBLICATION DATA RATE. (INTERVAL IN SECONDS,

SIZE IN BYTES, RATE IN BYTES/SEC)

The use of signed Pipe Advertisements increases the data
rate from 81.8 (third row) up to 407.2. The final result is
an overhead of about 22.7%, quite acceptable. It must also
be taken into account that about 12% of this overhead is
because of credential size. With smaller credentials, overhead
may decrease. Furthermore, this is our worst case scenario. A
peer sharing a lot of resources will incur in higher data rates,
also decreasing overall overhead. Nevertheless, for sensitive
environments, JXTA-Overlay allows overriding default values
and fine tune Pipe Advertisement publication intervals.

On regards to processing time, Pipe Advertisements are only
signed once, at peer boot time. Therefore the impact of signing
during standard operation was found out to be negligible.
At boot time, the impact is an average delay of 205 ms,
which is very low (just finding a broker is about 2 orders of
magnitude higher). Similarly, each advertisement needs only
be validated when it actually has to be used to exchange data
with another endpoint. Therefore, even though a peer may
receive many advertisements, signature validation only impacts
message sending primitives and functions, since the signature
(and the advertisement content) is ignored until that point. The
average delay because of validation is about 12 ms, which has
different degrees of meaningfulness depending on the primitive
used. For the standard sendMsgPeer primitive (see Section V-
B), considering a 0 network latency, that amounts to a 5-10%
overhead for a message 25-200 bytes long.

VII. APPLICATION TO INDUSTRIAL AND
MANUFACTURING SYSTEMS AND PROCESSES

Even though our proposal uses JXTA-Overlay as the base
scenario, some of the methodological approaches may be used

in scenarios which go beyond pure desktop applications, such
as industrial systems and processes. In some instances, they
can be considered equivalent to a P2P network, where entities
are organized into groups and collaborate to achieve a common
end, such as in cellular manufacturing, with robots being akin
to peers [11]. In these kind of scenarios, when hardware is
being directly controlled, security becomes even more relevant.
As far as this kind of scenario is concerned, in fact, our
security proposal is currently being used as a means for secure
automated interaction of SmartBox hardware devices [15].

Our generic methodology relies on a security baseline of
data privacy and authentication, based on the division of
basic operations in primitives and functions and then adding a
new secure suit which may co-exist with, but not necessarily
replace, them. This minimizes the impact on the developer.
In addition, an effort is made to keep the core protocols
unchanged, being actively reused at lower architecture layers,
so secure and insecure entities may co-exist up to certain point.
Finally, a joint credential scheme provides a trade off between
useful human-readable information and efficient lower layer
data. Thus, we can achieve the goal of a secure subsystem
which operates in the most invisible manner, no matter which
deployment scenario.

VIII. CONCLUSIONS

This paper proposes a security framework for cryptographic
data setup in order to secure JXTA-Overlay communications.
From this setup, it is possible to secure primitives and func-
tions. As an example, a secure version of the discovery and
messenger primitives has been presented. Apart from provid-
ing a baseline for the deployment of security mechanisms in
JXTA-Overlay, which up to now had not been considered in
its design, the main contributions of the chosen approach are
threefold.

First of all, an effective framework for secure key distribu-
tion is provided, by securing Pipe Advertisements and using
standard JXTA-Overlay procedures for key publication and
update, guaranteeing that keys are always available whenever
messages must be exchanged. As a result, key distribution
becomes invisible to the JXTA-Overlay Control Module and
client peers which use the secure framework and those who
do not may coexist in the same JXTA-Overlay network. This
is in contrast with JXTA’s current approaches, which require
that every single peer within the same group agrees to deploy
security protocols.

Second, key authenticity is provided by a combination
of CBIDs and signed credentials. The net result of this
approach is that, on one hand, those cases where no end-
user intervention is necessary can be resolved in a lightweight
manner using CBIDs. On the other hand, it is also possible
to provide meaningful information to the end-user in those
circumstances where his intervention may prove necessary or
helpful, by providing a user credential. The proposed method
also minimizes the amount of effort required for end-users in
order to manage cryptographic data.

Finally, the proposed framework is completely modular and
can be adapted to different scenarios suitable to the application



10

developers’ needs. This is also an improvement over the
security mechanisms originally provided by JXTA, which
constrain end-user applications to a very specific credential
and cryptographic module type.

Further work includes using the proposed security frame-
work to define new secure primitives for those interactions
which are still deemed sensitive to attacks, in a way that
they complement existing ones, but not forcibly replace them.
Of special note are those of the executable set of primitives,
related to remote code execution.

REFERENCES

[1] A. Waluyo, W. Rahayu, D. Taniar, B. Srinivasan. “A Novel Structure and
Access Mechanism for Mobile Broadcast Data in Digital Ecosystems”,
2009 to appear in IEEE Trans. on Industrial Electronics, vol. 56.

[2] B. Kaliski and J. Staddon, “PKCS#1: RSA cryptography specifications.
version 2.0”, 1998.

[3] B. Yeager, “Enterprise strength security on a JXTA P2P network”,
2003 Proceedings of the 3rd International Conference on Peer-to-Peer
Computing (P2P’03).

[4] CCITT, “The directory authentication framework. recommendation”,
1988.

[5] D. Bailly, “CBJX: Crypto-based JXTA (an internship report)”, 2002.
[6] D. Sax, “DNS spoofing (malicious cache poisoning)”, 2003, http://

www.sans.org/rr/firewall/DNS spoof.php.
[7] Ed. S. Josefsson, “IETF RFC 3548: the base16, base32, and base64

data encodings”, 2003, http://www.ietf.org/rfc/rfc3548.txt.
[8] F. Xhafa, L. Barolli, T. Daradoumis, R. Fernndez and S. Caball, “JXTA-

Overlay: An interface for efficient peer selection in P2P JXTA-based
systems”, 2009, Computer Standards and Interfaces, vol. 31, no. 5, pp.
886 – 893.

[9] G. Briscoe and P. De Wilde. “Digital Ecosystems: Evolving service-
orientated architectures”, 2006, 1st International Conference on Bio
inspired Models of Network, Information and Computing Systems, vol.
275, no. 17.

[10] J. Arnedo-Moreno, “Project JXTA-XMLsec”, 2009, http://kison.uoc.
edu/research

[11] Y. Yang, X. Dfago, M. Takizawa, “Self-stabilized Flocking of a Group
of Mobile Robots under Memory Corruption, 2009, International
Conference on Network-Based Information Systems, pp.532-538.

[12] J. Arnedo-Moreno and J. Herrera-Joancomartı́, “A survey on security
in JXTA applications”, 2009 Journal of Systems and Software, Volume
82, Issue 9, pp. 1513–1525.

[13] J. Arnedo-Moreno and J. Herrera-Joancomartı́, “Persistent interoperable
security for JXTA”, 2008, in Proceedings of the Second International
Workshop on P2P, Parallel, Grid and Internet Computing (3PGIC’08),
pp. 354–359, IEEEPress.

[14] “JXTA 2.5 RC1”, 2007, http://download.java.net/jxta/build.
[15] K. Matsuo, L. Barolli, F. Xhafa, A. Koyama and A. Durresi, “Imple-

mentation of a JXTA-based P2P e-learning system and its performance
evaluation”, 2008, International Journal of Web Information Systems,
vol. 4, no. 3, pp. 352-371.

[16] L. Kawulok, K. Zielinski, and M. Jaeschke, “Trusted group membership
service for JXTA”, in Computational Science (ICCS’04), 2004, Lecture
Notes in Computer Science Volume 3038.

[17] L. Yunhao and H. Jinpeng, “Access control in peer-to-peer collaborative
systems”, 2005 First International Workshop on Mobility in Peer-to-Peer
Systems (MPPS), pp. 835–840.

[18] M. Amoretti, M. Bisi, F. Zanichelli, and G. Conte, “Introducing secure
peer groups in SP2A”, 2005, Second International Workshop on Hot
Topics in Peer-to-Peer Systems, pp. 62–69.

[19] M. Wahl, T. Howes, and S. Kille, “Lightweight directory access protocol
(v3)”, 1997, http://www.ietf.org/rfc/rfc2251.txt.

[20] SUN Microsystems, “Project JXTA”, 2001, http://www.jxta.org.
[21] SUN Microsystems, “JXTA v2.0 protocols specification”, 2007, https:

//jxta-spec.dev.java.net/nonav/ JXTAProtocols.html.
[22] SUN Microsystems, “Java Cryptography Architecture (JCA)”,

2008, http://java.sun.com/javase/6/docs/technotes/ guides/security/
crypto/CryptoSpec.html.

[23] T. Aura, “Cryptographically generated adresses (CGA)”, 2005, http:
//www.ietf.org/rfc/rfc3972.txt.

[24] T. Dierks and C. Allen, “IETF RFC 2246: The TLS Protocol Version
1.0”, 1999, http://www.ietf.org/rfc/rfc2246.txt.

[25] W. Juang, S. Chen, H. Liaw. “Robust and Efficient Password-
Authenticated Key Agreement Using Smart Cards, 2008, IEEE Trans.
on Industrial Electronics, vol. 55, no. 6, pp. 2551-2556.

[26] W. Simpson, “PPP challenge handshake authentication protocol (chap)”,
1996, http://tools.ietf.org/html/rfc1994.

[27] W3C, “XML-signature syntax and processing”, 2002.

http://www.sans.org/rr/firewall/DNS_spoof.php
http://www.sans.org/rr/firewall/DNS_spoof.php
http://www.ietf.org/rfc/rfc3548.txt
http://kison.uoc.edu/research
http://kison.uoc.edu/research
http://download.java.net/jxta/build
http://www.ietf.org/rfc/rfc2251.txt
http://www.jxta.org
https://jxta-spec.dev.java.net/nonav/
https://jxta-spec.dev.java.net/nonav/
JXTAProtocols.html
http://java.sun.com/javase/6/docs/technotes/
guides/security/crypto/CryptoSpec.html
guides/security/crypto/CryptoSpec.html
http://www.ietf.org/rfc/rfc3972.txt
http://www.ietf.org/rfc/rfc3972.txt
http://www.ietf.org/rfc/rfc2246.txt
http://tools.ietf.org/html/rfc1994

	Introduction
	JXTA-Overlay Overview
	The JXTA-Overlay network
	General architecture
	JXTA-Overlay and security

	Related Work on Securing JXTA-based Frameworks
	A Security Framework for JXTA-Overlay
	Secure architecture overview
	Communications system initial setup
	Deployment stage
	Boot stage cryptographic data
	Login stage cryptographic data

	Key distribution and advertisement security
	Guaranteeing key authenticity


	Secure primitives and functions
	Secure discovery primitives
	secureConnection
	secureLogin

	Secure messenger primitives
	secureMsgPeer and secureMsgPeerGroup


	Security Computational Cost Analysis
	Application to Industrial and Manufacturing Systems and Processes
	Conclusions
	References

