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Abstract

Abstract

We employ methods from deep learning for image recognition. We use a dataset with +70k
images and 73 classes in order to compare the performance of several well known deep network
architectures. The approaches used include the full training of these networks and also the
techniques of transfer learning and fine tuning with the weights pretrained on the ImageNet
set. We show the superiority of the latter approach in our dataset. We also experiment with a
reorganization of the labels in our dataset by grouping several classes shown by the confusion
matrix to be indistinguishable for the models. In this case we obtain a classification accuracy
score higher than 50%.

Keywords: computer vision, convolutional neural network, deep learning, transfer learning.

Resumen

Utilizamos métodos de aprendizaje profundo en el contexto de reconocimiento de imégenes.
Utilizamos un conjunto de més de 70 mil imagenes y 73 clases diferentes para comparar el
rendimiento de diferentes arquitecturas comunmente empleadas. Los enfoques utilizados en
este trabajo incluyen en un entrenamiento completo de estas redes y también estrategias de
transferencia del aprendizaje y calibracion de modelos con redes preentrenadas en el conjunto
ImageNet. Mostramos la superioridad de este ultimo enfoque en nuestro conjunto de imégenes.
También experimentamos con una reorganizacén de las categorias de nuestro conjunto, fu-
sionando aquellas categorias que la matriz de confusiéon muestra que son mas comunmente

confundidas por nuestros modelos. En este caso obtenemos una precision superior al 50%.

Palabras clave: computer vision, convolutional neural network, deep learning, transfer learn-

ing.
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Chapter 1

Preface

1.1 Introduction

In this work we apply Deep Learning techniques to a recognition problem in Computer Vision.
The goal of this project is to develop and train deep network architectures for recognizing
objects in a dataset consisting of 73 labelled categories of images commonly found in hygiene
and beauty retail stores. We will refer to it as the Beauty dataset. Our approach consists in
applying transfer learning and fine tuning to some well known deep neural network architectures.
We will also conduct a complete training of some of these models, with full random initialization
of their weights. The different methodologies will be evaluated in terms of performance and
compared among them.

For the technical side, due to the inherent demanding nature of deep neural networks, it has
been necessary to use a GPU. Therefore the whole process has been carried out on a Google
Cloud virtual machine with 4 CPU cores, 15GB of RAM memory, 250GB of disk space and a
Tesla K80 GPU. We have used the Keras API to the TensorFlow backend and the code has
been written in Python using Jupyter notebooks. A big part of the code used in this work has
been adapted from or inspired by [1].

This work is organized as follows: The remainder of this chapter is devoted to a high level,
self contained explanation of the general framework, usual practices and state of the art about
which this project revolves. Chapter 2 introduces the Beauty dataset and shows how to organize
its folder structure in such a way that the analysis can be performed on it. In particular, we
set up different sets for training, validation and test purposes. Chapter 3 introduces the main
concepts and features of the InceptionV3 architecture, which is the main tool used in this work
for doing transfer learning and fine tuning with pretrained deep networks. In Chapter 4 we
apply transfer learning and fine tuning to the Beauty dataset using a pretrained InceptionV3

network. We do this in several stages. In Chapter 5 we analyze the confusion matrix for the
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best classification model obtained so far and regroup those classes more commonly mistaken by
the algorithm, obtaining a new dataset with the same images but with 42 labels instead of 73.
The same training process is then applied to this new dataset. In Chapter 6 we train several
other networks from scratch, with full weight initialization and no transfer learning. We also
do a comparison of several performance scores across all the different models. As the final step
of the learning process, we obtain a real life accuracy estimate on the test set.

Finally, the conclusions of the whole research project are summarized in Chapter 7. The
full output of all the code used for the learning and evaluation processes of all the models is
collected in the Appendix, for future reference and its potential interest for possible future

extensions of our work.

1.2 Preliminaries

Object recognition (OR) is one of the main applications of the field of Computer Vision (CV).
The main idea underlying this discipline is to automatically extract from digital 2D images
(or video) information about the different objects present in the image, therefore performing a
classification task, in which each image is labelled with the object or objects showed, without
human intervention. This is part of the interdisciplinary field of CV, that has evolved parallel to
developments in the engineering and technological applications to image treatment, as well as
(more recently) to developments in Artificial Intelligence, and more importantly Deep Learning
(DL).

There are several reasons and advances behind this evolution. Some of the most important

ones are:

(i) The availability of larger datasets already labelled and available for public use. These
have been intensively used for research in CV and OR and typically used as benchmarks
for testing the superiority of different models and algorithms. Some of the most important

ones are

— MNIST dataset [2], consisting on 70000 greyscale images representing handwritten
numeric digits. This is also one of the most widely studied datasets on which OR

techniques, and most notably DL approaches have superseded human performance.

— Imagenet [3] a database with over 14 million images from every aspect of the visual
world, which aims to be a repository for creating models that can recognize every

possible image.

— Cifar10/100 [4], consisting on 60000 color images divided in 10 or 100 categories. It
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has been developed at the university of Toronto and is extensively used for proto-

typing and benchmarking new network architectures.

(ii) More powerful CPU’s and the introduction of GPU’s and parallel computing on com-
modity hardware. This allowed to the implementation of previously existing algorithms
that were not physically applicable due to the computing limitations of the available

technology at the time.

(iii) Theoretical advances in the design of algorithms that can perform automatic image clas-
sification. In particular, the introduction of convolutional neural networks, together with
their regularization methods and the implementation of backpropagation has allowed to

implement in practice previously intractable neural network architectures.

1.3 Traditional Computer Vision

Traditional methods for computer vision (i.e. before the advent of DL) differ fundamentally
from the modern machine learning approach for image recognition. Although the subject of
computer vision is very wide we can identify the two main differences in which these traditional
methods diverge from DL: feature extraction and preprocessing. These are routine tasks in
computer vision (including shallow machine learning algorithms like support vector machines)
that are inherently performed by human beings on a problem by problem basis essentially
converting each image recognition task in a custom project.

Feature extraction is a routine that is part of every classification or regression problem at-
tacked by methods not based in deep learning. These include most machine learning algorithms
in classification, regression and unsupervised learning. In the case of computer vision feature
extraction consists of manually instructing the software to recognize visual elements like cor-
ners, edges, etc...in order to later use these elements as tags in each image, which will then
be fed to a classification algorithm. Preprocessing is a very general paradigm that consists of
feeding the software or algorithm with good quality data.

Preprocessing includes manually assessing the quality of the original data in raw form and
performing a series of tasks like rescaling, cleaning, standardizing, as well as some actions of
statistical nature (correcting bias in variable distributions, treating outliers and missing values
etc...). In the field of traditional computer vision preprocessing consists of a series of well
defined actions like resampling, noise reduction, contrast enhancement and scale space [5].
Again, these are performed on a case by case basis. As we shall see in the next paragraph,
the introduction of DL allows, to a great extent, to reduce the efforts in feature extraction and

preprocessing, also providing impressive success in image recognition tasks, which many times
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go beyond the human recognition ability on the same problem.

1.4 Artificial Neural Networks

The methods employed in this work belong to the the field of DL, which is a particular case
of the set of algorithms based on artificial neural networks (ANN). ANN were introduced the-
oretically in the 1940’s as predictive models (regression and classification) loosely inspired by
the interconnection of neurons in the human brain, see [6] for a survey. Among the different
approaches proposed, the nonlinear perceptron algorithm [7] can be considered as the prede-
cessor of modern ANN and DL in general. The simplest model of perceptron consists of a
unique neuron that maps a dataset with m rows (observations) and n columns (variables) to a
m-~dimensional vector with components taking values in the interval [0, 1]. It works by taking a
linear combination of all the elements in each row of the dataset, adding a constant term (bias)
and then passing the result to a nonlinear real function of one variable g as follows:

Let x! = (2%,...,2%) be the i-th observation. The parameters of the perceptron are then
b (the bias term) and w! = (w?, ..., w!) (the weights vector). Then, the perceptron performs

the composite operation

x' — g(b' +w' - x).

Notice that the perceptron consists of an affine transformation (which of course can be
thought as a linear map on a n + 1 linear space) followed by a nonlinearity g. In case g
is the sigmoid (logistic) function the nonlinear perceptron is equivalent to the classic logistic
regression algorithm. However, the power of this approach is that there could be many neurons
(nodes in the following) in the perceptron running the same operations but each with different
weights and biases, forming a layer. Also there could be a concatenation of several layers,
finally arriving to the contemporary architecture known as the multilayer perceptron.

Notice that a multilayer perceptron is nothing else than a more or less complicated com-
position of linear and nonlinear operations in which the coefficients, or weights, of the linear
maps involved are free parameters of the model. These must be “learned” by the algorithm
by an optimization process, typically based on the numeric search of the local minimum of a
cost function with low enough total value. This process for getting the optimal parameters
is usually known as automatic learning and the system is said to learn from the examples or
experience (which is just the dataset fed to the algorithm). These cost functions come in many
flavors but they don’t differ in principle from those used in other classic optimization contexts,
i.e. mean squared error or mean absolute error for regression problems with real outcome,

binary cross-entropy for regression problems with binary output (classification) or categorical
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cross-entropy for linear regression problems with discrete output (multilabel classification).

A great deal of effort has been put in the nature of the nonlinearities used in multilayer
perceptrons and, besides sigmoid functions, other activation functions like relu or softmax are
widely used at this time. Also, the non-convexity of the cost function in multilayer perceptrons
has motivated a lot of research directed towards developing good optimization algorithms for
this task. Besides the backpropagation algorithm previously mentioned, optimizers like the
stochastic gradient descent or the adam algorithm are ubiquitous in models based in ANN.
Collectively, those ANN architectures with more than one layer are referred to as Deep Learning
systems.

An important breakthrough happened when it was realized that DNN systems could be
specially effective for solving tasks based in the paradigm of “perception problems” instead
of being used for traditional function approximation as most traditional ML algorithms do.
Perception problems are those for which the solution must incorporate the way a human would
interpret the problem, and they cannot be solved in an intrinsic way which ignores the human
influence in the process. Typical examples include image and text recognition. These are
perception problems because it is essential how the data are organized and perceived by humans
in order to be able to attack the problem. For instance, we cannot arbitrarily reorganize the
pixels in an image of a house and expect that anyone would still recognize a house in the image.
Typically, as is the case for images and text, perception problems involve non-structured data,
which cannot be presented in a tabular fashion or at least this is not the optimal way to solve
them.

In the field of computer vision one of the main problems is that each observation consists
of a lot of data. Let us take for instance a color image of dimension (in pixels) 100x100.
This implies that its representation actually contains 100 x 100 x 3 = 30000 variables, each of
them representing the intensity of each color channel for each pixel. Notice that for any ML
algorithm to have a decent chance of working with this kind of images, the dataset to be used, if
represented in tabular form, should have a number of rows m > n = 30000. In practice, much
more are needed since the number of parameters in a DL system grows exponentially with the
complexity of the architecture so there is clearly a problem in using the multilayer perceptron
for tasks related to images. At this point is where the introduction of convolutional neural
networks (CNN) steps in. Without going too far into technical details, a CNN architecture is

a particular case of DNN systems with two main properties:

(i) Multiple nodes share all of their parameters, resulting in more tractable models which are
easier to train and that also require significant less data to converge or to avoid overfitting

and underfitting during the optimization process.

(ii) The architectures of CNN models are designed to solve iteratively an image problem in a
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human fashion way. Specifically, the parameters of the nodes are learned in such a way
that each layer is able to recognize geometric and visual objects in the images (corners,
curves, faces, etc...) in a translational and rotational (among other transformations)
invariant manner. Also, as we go deeper into the successive layers of the system, the
partial objects recognized by the network get increasingly more abstract and more oriented

to the specific particularities of the set of images under study.

1.5 Swuccesful Architectures

Due to the trial and error nature of the process of designing good CNN architectures for image
recognition, there several models that are considered as specially successful. Most of the time
the reason for this is that they have obtained a high classification accuracy in the Imagenet
dataset, which is supposed to be a representation of our visual world, and therefore these
architectures are closer to the ideal of a universal algorithm for image recognition. We will
not enter into technical details of how all these models differ among them but only name a
few important ones in chronological order together with their error rate (1-accuracy) on the
ImageNet Large Scale Visual Recognition Challenge (ILSVRC) competition. See [8] for more

in-depth review of these architectures.

e AlexNet (2012). Error rate: 0.153. This was the first time a CNN architecture won the
ILSVRC.

e VGGI16 (2015). Error rate: 0.073.

e InceptionV1 (2014). Error rate: 0.067.

e InceptionV2 (2015). Error rate: 0.056.

e InceptionV3 (2015). Error rate: 0.0358.

e ResNet (2015). Error rate: 0.0357.

e InceptionV4 (Inception-ResNet) (2016). Error rate: 0.0308.

e Squeeze-and-excitation (2017). Error rate: 0.0225.

1.6 Transfer Learning

The concept of transfer learning is rooted in one of the main drawbacks of CNN architectures:

they are prone to overfitting. Technically, this is a direct consequence of the high capacity
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of all deep learning models, which is in turn related to the high number of parameters that
the network needs to learn, as opposed to more traditional (a.k.a. shallow) ML algorithms.
There are ways to mitigate the problem of overfitting in deep learning models for computer
vision: image augmentation, dropout layers, minibatch normalization, etc.. However these are
primarily regularization techniques that do not address the issue of the high capacity of the
model, and mainly control the available ranges for the values of the parameters in the model.
The only real way to deal with high capacity CNN architectures is to use an extremely high

number of independent images, which is not always possible in many fields of interest.

Transfer learning is a novel and extremely effective way of using high capacity models with
small sets of images. The approach is specifically designed to take into account the particular
way that CNN are constructed for solving image perception problems. As it has been mentioned
in Section 1.4, CNN consist of different layers, each of them having a number of different possible
sub-architectures. A common principle to all CNN models, however, is that the initial layers
capture very high level geometric structures, and as we go deeper in the network the remaining
layers capture more problem-specific elements. For instance, if we train a deep network with
the goal of distinguishing among different car models, the first layers may recognize circles,
corners, colors, etc... and the last few layers could identify more car oriented objects like
brakes, wheels, etc... The key point here being that, following this reasoning, if a deep CNN
with very high capacity is trained on a general purpose image set like ImageNet, the weights
of the more external layers are believed to be problem independent, and therefore will do a
good job in image recognition tasks for other image datasets different than the one on which
they have been originally trained. Therefore, one could use one of the models that have been
successfully trained on ImageNet and freeze all the parameters for the most external part of the
network, therefore effectively reducing immensely the model’s capacity, and therefore its natural
tendency to overfit. The rest of the layers will be trained on the new dataset under study and in
this way we will enjoy an architecture that has the predictive power of a high capacity model on
high level visual features, and at the same time this new training (for the most specific-oriented
deeper layers) hopefully will deliver a good predictive power on the particular features of the

new dataset.

A technical and crucial point on adapting pretrained models for transfer learning purposes is
the cardinality of the classification categories set. The subset of the ImageNet dataset used for
the ILSVRC competition has about 1000 different categories, and therefore all the architectures
pretrained on ImageNet have as the top layer a softmax classifier with this number of nodes.
This will be of course incompatible with any other dataset that we would like to study with
these models if the number of categories do not match. Therefore it is necessary to substitute

this top classifier of the pretrained model with another one with as many nodes as labelled
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categories exist in the new dataset. In this project for instance, we will be working in a
classification problem with an image set consisting of 73 classes. Therefore the 1000 node top
classifier of any of the previously mentioned pretrained models would be substituted with a 73
node softmax classifier.

Strictly speaking, we should only refer to transfer learning when the whole pretrained net-
work is frozen and has no free parameters, except for the top classifier that has replaced the
original one. Therefore we are simply training a multiclass linear classifier composed with a
nonlinear softmax vector-valued function. The logic behind this thinking is that all the inner
layers of the CNN provide increasingly better representation of the data, in the sense that
they unwrap they way the images show the discriminant elements of the different categories
and present them in such a way that a simple softmax classifier can separate these categories,
something that was not possible with the original representation of the data. In this way, we
can regard the pretrained CNN minus the top classifier as an immutable pipeline performing
feature extraction on our image set. Afterwards these features are passed to the top classifier
that can then do a good job recognizing the different categories.

Fine tuning, however, is commonly referred to as a further step in this strategy. In this
setting, instead of freezing all the pretrained CNN we could declare some of its last (deeper)
layers trainable, therefore adding all their weights to those of the top classifier, and they would
be jointly trained. In this sense with fine tuning we would be training our final classifier but
also modifying, or tuning, those parameters of the most external layers which, as has been
noted before, are those responsible for recognizing low level features of our particular image

set.



Chapter 2

The Beauty Dataset

2.1 Nature of the Dataset

In this work we will be working with the Beauty dataset. This dataset consists of around
73000 jpg images of different body products for beauty, personal hygiene, etc... There are 73
different categories each of them with 1000 images except for some cases where there are a few
less images. The total size is of about 15GB. The folder structure of the Beauty dataset is the
following:

boxes_Body_AntiCelluliteCream_1186
boxes_Body_BodyExfoliantsScrub_1189
boxes_Body_BodyFirmings_1187
boxes_Body_Bodyemollients_1185
boxes_Body_Bodymoisturizers_1184
boxes_Body_Bodytreatment_1200
boxes_Body_Hairremoversandbodybleaches_1188
boxes_Body_Handstreatment_1192
boxes_Body_SupplementsBody_1193
boxes_Bodyhygiene_Bathcosmetics_1116
boxes_Bodyhygiene_Deodorantsandantiperspiration_1113
boxes_Bodyhygiene_Feethygieniccosmetics_1118
boxes_Bodyhygiene_Liquidsoaps_1115
boxes_Bodyhygiene_SoapsandSyndets_1114
boxes_Bodyhygiene_WipesWetNapkins_1119
boxes_CosmeticGiftwraps_Beautysalonsthermalspa_1202
boxes_CosmeticGiftwraps_Giftwrap_1198
boxes_Cosmeticaccessories_Candles_1164
boxes_Cosmeticaccessories_Combs_1145
boxes_Cosmeticaccessories_Hairbrushes_1147
boxes_Cosmeticaccessories_MakeupBagsKits_1154

boxes_Cosmeticaccessories_Makeupbrushes_1151

11
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boxes_Cosmeticaccessories_Mirrors_1155
boxes_Cosmeticaccessories_Razor_1160
boxes_Cosmeticaccessories_Sponges_1150
boxes_Eyesmakeup_Eyelinerandeyepencils_1176
boxes_Eyesmakeup_Eyeshadows_1174
boxes_Eyesmakeup_Mascara_1175
boxes_Facemakeup_Allinonefacemakeup_1173
boxes_Facemakeup_Blush_1170
boxes_Facemakeup_Concealer_1201
boxes_Facemakeup_Facedecoration_1172
boxes_Facemakeup_Foundationcream_1167
boxes_Facemakeup_Foundationcreampowdercompact_1169
boxes_Facemakeup_Makeupfashionmentions_1208
boxes_Facemakeup_Powder_1168
boxes_Facemakeup_TintedMoisturizer_1171
boxes_Facetreatment_AcneOilySkinTreatment_1161
boxes_Facetreatment_Antiagecreamfirmingcream_1149
boxes_Facetreatment_Eyestreatment_1143
boxes_Facetreatment_FaceExfoliantsScrub_1159
boxes_Facetreatment_Facecleansersanmakeupremovers_1140
boxes_Facetreatment_Facemasks_1158
boxes_Facetreatment_Faceserum_1243
boxes_Facetreatment_Facetoner_1144
boxes_Facetreatment_Facetreatment_1146
boxes_Facetreatment_Lipstreatment_1163
boxes_Fragrances_Fragrances_1195
boxes_Fragrances_HouseFragrances_1356
boxes_HairScalp_Conditioner_1131
boxes_HairScalp_Hairdyes_1127
boxes_HairScalp_Hairfashionmentions_1207
boxes_HairScalp_Hairspray_1129
boxes_HairScalp_Hairtreatment_1121
boxes_HairScalp_Shampoo_1104
boxes_HairScalp_Stylingserumgelmousse_1105
boxes_HairScalp_SupplementsHair_1138
boxes_Handsmakeup_Nailsdecoration_1183
boxes_Handsmakeup_Nailspolish_1181
boxes_Lipsmakeup_Lipliners_1178
boxes_Lipsmakeup_Lipsticksandgloss_1177
boxes_Manline_Mancreamsandlotions_1132
boxes_Manline_PreandAfterShaveLotions_1130
boxes_Oralhygiene_ElectricToothbrush_1124
boxes_0Oralhygiene_Toothbrushes_1123
boxes_0Oralhygiene_Toothpaste_1120
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boxes_Packagingmultiproduct_Multicosmeticspackaging_1179
boxes_Setline_Setline_1205
boxes_Suntanlotions_AfterSunLotion_1109
boxes_Suntanlotions_Selftanninglotion_1111
boxes_Suntanlotions_SunScreenBody_1106
boxes_Suntanlotions_SunScreenFace_1107

boxes_Suntanlotions_Suntanlotions_1110

We will start by looking at some of the images of the dataset in order to grasp an idea of

their nature. The following code will create an array of images, choosing one for each category.

Input:

import os, shutil

%matplotlib inline

import matplotlib.pyplot as plt

from matplotlib.pyplot import figure , imshow, axis

from keras.preprocessing import image

size = 100
hSize = size
wSize = size
col =7

subdirs = list ()

for root, dirs, files in os.walk(’/home/miguelyogur/datasets/Beauty’):
subdirs.append(root)

subdirs = subdirs [1:
images = []
for subdir in subdirs:
name= os.listdir (subdir )[0]
img_path = os.path.join (subdir, name)

images.append (image.load_img (img_-path, target_size=(wSize, hSize)))

fig = figure( figsize=(wSize, hSize))

number_of_files = len(images)

row = number_of_files/col

if (number_of_files%col != 0):
row += 1

for i in range(number_of_files):

a=fig .add_subplot (row,col ,i+1)
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image = images|[1i]
imshow (image)

axis(’off’)

The images produced by this code are shown in Figure 2.1.

2.2 Organization of the Dataset

With its current folder structure, we cannot yet work with this dataset. The main reason being
that it is not feasible to encapsulate all these images in numpy arrays for training, validation
and testing since we would run out of memory. For this reason, we will resort to keras generators
that will read batches of images from disk. A previous housekeeping step in order to implement
this procedure is to reorganize the images in train, validation and test folders, each of them
having a subfolder for each category. We will reserve 80% of the images for training and 10%
for validation and test, respectively. We will also clean the names of the folders, getting rid of
the prefixes and suffixes, which are not informative. The following code will create a copy of

the dataset called “dataset_beauty” having all these practical properties.

Input:

#define folder paths for train, validation , test

import os, shutil

#folders names

original_dataset_dir = ’/home/miguelyogur/datasets/Beauty/’
base_dir = ’/home/miguelyogur/pruebas/dataset_beauty’
train_dir = os.path.join(base_dir, ’train’)

validation_dir = os.path.join (base_dir, ’validation’)

test_dir = os.path.join (base_dir, ’'test’)

#create folders

os.mkdir (base_dir)
os.mkdir(train_dir)

os . mkdir(validation_dir)
os.mkdir(test_dir)

#get list containing all paths for the categories of the Beauty dataset
subdirs = list ()

for root, dirs, files in os.walk(’/home/miguelyogur/datasets/Beauty’):
subdirs.append(root)
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Figure 2.1: Sample images from the Beauty dataset.
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subdirs = subdirs [1:]

#store categories’ mames in list
names = list ({x.replace(’/home/miguelyogur/datasets/Beauty/boxes_’, ’’)[: —=5]

for x in subdirs})

subdirs.sort ()

names. sort ()

#create subfolders for each category inside the train, wvalidation , test folders

folders_list = [train_dir, validation_dir, test_dir]

for folder in folders_list:
for name in names:
new._name = os.path.join (folder , name)

os . mkdir (new_name)

#copy images from each category to the base directory:
#80% for train, 10% for walidation and 10% for test
for i in range(len(names)):

filenames = list ()

for root, dirs, files in os.walk(subdirs[i]):

filenames .append(files)

filenames = filenames [0]

filenames .sort ()

n_test = len(filenames)
n_train = round (0.8*n_test)
n_.val = round(0.9%n_test)

for j in range(n_train):
src = os.path.join (subdirs[i], filenames][j])
dst = os.path.join(train_dir, names[i], filenames[j])

shutil.copyfile(src, dst)

for j in range(n_train ,n_val):
src = os.path.join (subdirs[i], filenames][]])
dst = os.path.join(validation_dir , names[i], filenames][]])

shutil.copyfile(src, dst)

for j in range(n_val, n_test):

src = os.path.join (subdirs[i], filenames][]])
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dst = os.path.join (test_dir , names[i], filenames][]])

shutil.copyfile(src, dst)

We can check the number of images in each category for the original dataset.

Input:

#count images from each category in the original dataset
for root, dirs, files in os.walk(original_dataset_dir):

print (root ,len(os.listdir (root)))

Output:

/home/miguelyogur/datasets/Beauty/boxes_Facemakeup_Blush_1170 1000
/home/miguelyogur/datasets/Beauty/boxes_Body_AntiCelluliteCream_1186 1000
/home/miguelyogur/datasets/Beauty/boxes_Suntanlotions_Suntanlotions_1110 1000
/home/miguelyogur/datasets/Beauty/boxes_Facemakeup_Powder_1168 1000
/home/miguelyogur/datasets/Beauty/boxes_Cosmeticaccessories_Razor_1160 1000
/home/miguelyogur/datasets/Beauty/boxes_Packagingmultiproduct_Multicosmeticspackaging_1179 1000
/home/miguelyogur/datasets/Beauty/boxes_Facetreatment_Facetoner_1144 1000
/home/miguelyogur/datasets/Beauty/boxes_Suntanlotions_SunScreenFace_1107 1000
/home/miguelyogur/datasets/Beauty/boxes_Facemakeup_Makeupfashionmentions_1208 1000
/home/miguelyogur/datasets/Beauty/boxes_Body_Bodyemollients_1185 1000
/home/miguelyogur/datasets/Beauty/boxes_Handsmakeup_Nailsdecoration_1183 1000
/home/miguelyogur/datasets/Beauty/boxes_0Oralhygiene_Toothbrushes_1123 1000
/home/miguelyogur/datasets/Beauty/boxes_Suntanlotions_AfterSunLotion_1109 1000
/home/miguelyogur/datasets/Beauty/boxes_Facetreatment_FaceExfoliantsScrub_1159 1000
/home/miguelyogur/datasets/Beauty/boxes_Cosmeticaccessories_Mirrors_1155 1000
/home/miguelyogur/datasets/Beauty/boxes_Facetreatment_AcneOilySkinTreatment_1161 1000
/home/miguelyogur/datasets/Beauty/boxes_0Oralhygiene_ElectricToothbrush_1124 880
/home/miguelyogur/datasets/Beauty/boxes_Facemakeup_TintedMoisturizer_1171 1000
/home/miguelyogur/datasets/Beauty/boxes_Facetreatment_Facemasks_1158 1000
/home/miguelyogur/datasets/Beauty/boxes_Fragrances_Fragrances_1195 1000
/home/miguelyogur/datasets/Beauty/boxes_Handsmakeup_Nailspolish_1181 1000
/home/miguelyogur/datasets/Beauty/boxes_Facemakeup_Foundationcream_1167 1000
/home/miguelyogur/datasets/Beauty/boxes_Body_Hairremoversandbodybleaches_1188 1000
/home/miguelyogur/datasets/Beauty/boxes_Cosmeticaccessories_Candles_1164 1000
/home/miguelyogur/datasets/Beauty/boxes_Cosmeticaccessories_Hairbrushes_1147 1000
/home/miguelyogur/datasets/Beauty/boxes_Body_Handstreatment_1192 1000
/home/miguelyogur/datasets/Beauty/boxes_Lipsmakeup_Lipliners_1178 1000
/home/miguelyogur/datasets/Beauty/boxes_CosmeticGiftwraps_Beautysalonsthermalspa_1202 1000
/home/miguelyogur/datasets/Beauty/boxes_Cosmeticaccessories_Sponges_1150 1000
/home/miguelyogur/datasets/Beauty/boxes_Facemakeup_Foundationcreampowdercompact_1169 1000
/home/miguelyogur/datasets/Beauty/boxes_Bodyhygiene_SoapsandSyndets_1114 1000
/home/miguelyogur/datasets/Beauty/boxes_0Oralhygiene_Toothpaste_1120 1000
/home/miguelyogur/datasets/Beauty/boxes_Bodyhygiene_Liquidsoaps_1115 1000
/home/miguelyogur/datasets/Beauty/boxes_Facetreatment_Lipstreatment_1163 1000
/home/miguelyogur/datasets/Beauty/boxes_Cosmeticaccessories_Makeupbrushes_1151 1000
/home/miguelyogur/datasets/Beauty/boxes_HairScalp_Hairspray_1129 1000
/home/miguelyogur/datasets/Beauty/boxes_Cosmeticaccessories_Combs_1145 1000
/home/miguelyogur/datasets/Beauty/boxes_Body_BodyFirmings_1187 1000
/home/miguelyogur/datasets/Beauty/boxes_Manline_Mancreamsandlotions_1132 1000
/home/miguelyogur/datasets/Beauty/boxes_Setline_Setline_1205 1000
/home/miguelyogur/datasets/Beauty/boxes_Facetreatment_Eyestreatment_1143 1000
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/home/miguelyogur/datasets/Beauty/boxes_Cosmeticaccessories_MakeupBagsKits_1154 1000
/home/miguelyogur/datasets/Beauty/boxes_Facetreatment_Facecleansersanmakeupremovers_1140 1000
/home/miguelyogur/datasets/Beauty/boxes_Eyesmakeup_Eyeshadows_1174 1000
/home/miguelyogur/datasets/Beauty/boxes_Suntanlotions_SunScreenBody_1106 1000
/home/miguelyogur/datasets/Beauty/boxes_Bodyhygiene_Feethygieniccosmetics_1118 1000
/home/miguelyogur/datasets/Beauty/boxes_HairScalp_Hairdyes_1127 1000
/home/miguelyogur/datasets/Beauty/boxes_Facetreatment_Antiagecreamfirmingcream_1149 1000
/home/miguelyogur/datasets/Beauty/boxes_Eyesmakeup_Mascara_1175 1000
/home/miguelyogur/datasets/Beauty/boxes_Facetreatment_Facetreatment_1146 1000
/home/miguelyogur/datasets/Beauty/boxes_HairScalp_Hairtreatment_1121 1000
/home/miguelyogur/datasets/Beauty/boxes_Facemakeup_Allinonefacemakeup_1173 1000
/home/miguelyogur/datasets/Beauty/boxes_Manline_PreandAfterShaveLotions_1130 1000
/home/miguelyogur/datasets/Beauty/boxes_Body_BodyExfoliantsScrub_1189 1000
/home/miguelyogur/datasets/Beauty/boxes_Eyesmakeup_Eyelinerandeyepencils_1176 1000
/home/miguelyogur/datasets/Beauty/boxes_HairScalp_Conditioner_1131 1000
/home/miguelyogur/datasets/Beauty/boxes_Lipsmakeup_Lipsticksandgloss_1177 1000
/home/miguelyogur/datasets/Beauty/boxes_Facemakeup_Facedecoration_1172 1000
/home/miguelyogur/datasets/Beauty/boxes_Bodyhygiene_Deodorantsandantiperspiration_1113 1000
/home/miguelyogur/datasets/Beauty/boxes_HairScalp_Hairfashionmentions_1207 1000
/home/miguelyogur/datasets/Beauty/boxes_Facetreatment_Faceserum_1243 1000
/home/miguelyogur/datasets/Beauty/boxes_Body_Bodytreatment_1200 1000
/home/miguelyogur/datasets/Beauty/boxes_Fragrances_HouseFragrances_1356 1000
/home/miguelyogur/datasets/Beauty/boxes_Body_Bodymoisturizers_1184 1000
/home/miguelyogur/datasets/Beauty/boxes_Suntanlotions_Selftanninglotion_1111 1000
/home/miguelyogur/datasets/Beauty/boxes_Body_SupplementsBody_1193 1000
/home/miguelyogur/datasets/Beauty/boxes_HairScalp_SupplementsHair_1138 1000
/home/miguelyogur/datasets/Beauty/boxes_CosmeticGiftwraps_Giftwrap_1198 1000
/home/miguelyogur/datasets/Beauty/boxes_HairScalp_Shampoo_1104 1000
/home/miguelyogur/datasets/Beauty/boxes_Bodyhygiene_WipesWetNapkins_1119 1000
/home/miguelyogur/datasets/Beauty/boxes_Facemakeup_Concealer_1201 1000
/home/miguelyogur/datasets/Beauty/boxes_HairScalp_Stylingserumgelmousse_1105 1000
/home/miguelyogur/datasets/Beauty/boxes_Bodyhygiene_Bathcosmetics_1116 1000

And we can also check the structure and number of images for each category in the new

reorganized dataset.

Input:

#count imgages from each category in the train, validation and test datasets

for folder in folders_list:

filenames = list ()
print (’ )
print (str(folder))
print (’ )

for root, dirs, files in os.walk(folder):

print (root ,len(os.listdir (root)))




2.2. Organization of the Dataset 19

/home/miguelyogur/pruebas/dataset_beauty/train 73
/home/miguelyogur/pruebas/dataset_beauty/train/Bodyhygiene_WipesWetNapkins 800
/home/miguelyogur/pruebas/dataset_beauty/train/Facetreatment_Facetoner 800
/home/miguelyogur/pruebas/dataset_beauty/train/HairScalp_Stylingserumgelmousse 800
/home/miguelyogur/pruebas/dataset_beauty/train/HairScalp_Hairfashionmentions 800
/home/miguelyogur/pruebas/dataset_beauty/train/Facemakeup_Foundationcream 800
/home/miguelyogur/pruebas/dataset_beauty/train/Facetreatment_Faceserum 800
/home/miguelyogur/pruebas/dataset_beauty/train/Suntanlotions_AfterSunLotion 800
/home/miguelyogur/pruebas/dataset_beauty/train/Oralhygiene_Toothbrushes 800
/home/miguelyogur/pruebas/dataset_beauty/train/Facemakeup_Makeupfashionmentions 800
/home/miguelyogur/pruebas/dataset_beauty/train/Oralhygiene_ElectricToothbrush 704
/home/miguelyogur/pruebas/dataset_beauty/train/Handsmakeup_Nailspolish 800
/home/miguelyogur/pruebas/dataset_beauty/train/Cosmeticaccessories_Combs 800
/home/miguelyogur/pruebas/dataset_beauty/train/Facetreatment_Antiagecreamfirmingcream 800
/home/miguelyogur/pruebas/dataset_beauty/train/Eyesmakeup_Eyeshadows 800
/home/miguelyogur/pruebas/dataset_beauty/train/Body_BodyFirmings 800
/home/miguelyogur/pruebas/dataset_beauty/train/Body_Bodyemollients 800
/home/miguelyogur/pruebas/dataset_beauty/train/HairScalp_Conditioner 800
/home/miguelyogur/pruebas/dataset_beauty/train/Facemakeup_Facedecoration 800
/home/miguelyogur/pruebas/dataset_beauty/train/CosmeticGiftwraps_Beautysalonsthermalspa 800
/home/miguelyogur/pruebas/dataset_beauty/train/Fragrances_Fragrances 800
/home/miguelyogur/pruebas/dataset_beauty/train/Facemakeup_Foundationcreampowdercompact 800
/home/miguelyogur/pruebas/dataset_beauty/train/Cosmeticaccessories_Candles 800
/home/miguelyogur/pruebas/dataset_beauty/train/Facetreatment_Facecleansersanmakeupremovers 800
/home/miguelyogur/pruebas/dataset_beauty/train/Body_SupplementsBody 800
/home/miguelyogur/pruebas/dataset_beauty/train/Facetreatment_AcneOilySkinTreatment 800
/home/miguelyogur/pruebas/dataset_beauty/train/Setline_Setline 800
/home/miguelyogur/pruebas/dataset_beauty/train/Lipsmakeup_Lipsticksandgloss 800
/home/miguelyogur/pruebas/dataset_beauty/train/Facemakeup_Powder 800
/home/miguelyogur/pruebas/dataset_beauty/train/Lipsmakeup_Lipliners 800
/home/miguelyogur/pruebas/dataset_beauty/train/Manline_Mancreamsandlotions 800
/home/miguelyogur/pruebas/dataset_beauty/train/Cosmeticaccessories_Makeupbrushes 800
/home/miguelyogur/pruebas/dataset_beauty/train/Facemakeup_Concealer 800
/home/miguelyogur/pruebas/dataset_beauty/train/Body_Handstreatment 800
/home/miguelyogur/pruebas/dataset_beauty/train/Cosmeticaccessories_Sponges 800
/home/miguelyogur/pruebas/dataset_beauty/train/HairScalp_Shampoo 800
/home/miguelyogur/pruebas/dataset_beauty/train/HairScalp_Hairdyes 800
/home/miguelyogur/pruebas/dataset_beauty/train/HairScalp_Hairtreatment 800
/home/miguelyogur/pruebas/dataset_beauty/train/Suntanlotions_SunScreenBody 800
/home/miguelyogur/pruebas/dataset_beauty/train/Bodyhygiene_Feethygieniccosmetics 800
/home/miguelyogur/pruebas/dataset_beauty/train/Manline_PreandAfterShaveLotions 800
/home/miguelyogur/pruebas/dataset_beauty/train/Facemakeup_TintedMoisturizer 800
/home/miguelyogur/pruebas/dataset_beauty/train/Fragrances_HouseFragrances 800
/home/miguelyogur/pruebas/dataset_beauty/train/Suntanlotions_Suntanlotions 800
/home/miguelyogur/pruebas/dataset_beauty/train/Facetreatment_Lipstreatment 800
/home/miguelyogur/pruebas/dataset_beauty/train/Eyesmakeup_Eyelinerandeyepencils 800
/home/miguelyogur/pruebas/dataset_beauty/train/Facetreatment_Eyestreatment 800
/home/miguelyogur/pruebas/dataset_beauty/train/Bodyhygiene_Deodorantsandantiperspiration 800
/home/miguelyogur/pruebas/dataset_beauty/train/Body_Bodymoisturizers 800
/home/miguelyogur/pruebas/dataset_beauty/train/Cosmeticaccessories_MakeupBagsKits 800
/home/miguelyogur/pruebas/dataset_beauty/train/Facetreatment_FaceExfoliantsScrub 800
/home/miguelyogur/pruebas/dataset_beauty/train/Body_AntiCelluliteCream 800
/home/miguelyogur/pruebas/dataset_beauty/train/Suntanlotions_SelftanningLotion 800
/home/miguelyogur/pruebas/dataset_beauty/train/Body_Bodytreatment 800
/home/miguelyogur/pruebas/dataset_beauty/train/Body_Hairremoversandbodybleaches 800
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/home/miguelyogur/pruebas/dataset_beauty/train/Handsmakeup_Nailsdecoration 800
/home/miguelyogur/pruebas/dataset_beauty/train/Facemakeup_Allinonefacemakeup 800
/home/miguelyogur/pruebas/dataset_beauty/train/Facetreatment_Facemasks 800
/home/miguelyogur/pruebas/dataset_beauty/train/Suntanlotions_SunScreenFace 800
/home/miguelyogur/pruebas/dataset_beauty/train/Body_BodyExfoliantsScrub 800
/home/miguelyogur/pruebas/dataset_beauty/train/Eyesmakeup_Mascara 800
/home/miguelyogur/pruebas/dataset_beauty/train/Facemakeup_Blush 800
/home/miguelyogur/pruebas/dataset_beauty/train/Oralhygiene_Toothpaste 800
/home/miguelyogur/pruebas/dataset_beauty/train/Bodyhygiene_SoapsandSyndets 800
/home/miguelyogur/pruebas/dataset_beauty/train/Facetreatment_Facetreatment 800
/home/miguelyogur/pruebas/dataset_beauty/train/Cosmeticaccessories_Hairbrushes 800
/home/miguelyogur/pruebas/dataset_beauty/train/Bodyhygiene_Liquidsoaps 800
/home/miguelyogur/pruebas/dataset_beauty/train/HairScalp_SupplementsHair 800
/home/miguelyogur/pruebas/dataset_beauty/train/Cosmeticaccessories_Razor 800
/home/miguelyogur/pruebas/dataset_beauty/train/Packagingmultiproduct_Multicosmeticspackaging 800
/home/miguelyogur/pruebas/dataset_beauty/train/CosmeticGiftwraps_Giftwrap 800
/home/miguelyogur/pruebas/dataset_beauty/train/HairScalp_Hairspray 800
/home/miguelyogur/pruebas/dataset_beauty/train/Bodyhygiene_Bathcosmetics 800

/home/miguelyogur/pruebas/dataset_beauty/train/Cosmeticaccessories_Mirrors 800

/home/miguelyogur/pruebas/dataset_beauty/validation 73
/home/miguelyogur/pruebas/dataset_beauty/validation/Bodyhygiene_WipesWetNapkins 100
/home/miguelyogur/pruebas/dataset_beauty/validation/Facetreatment_Facetoner 100
/home/miguelyogur/pruebas/dataset_beauty/validation/HairScalp_Stylingserumgelmousse 100
/home/miguelyogur/pruebas/dataset_beauty/validation/HairScalp_Hairfashionmentions 100
/home/miguelyogur/pruebas/dataset_beauty/validation/Facemakeup_Foundationcream 100
/home/miguelyogur/pruebas/dataset_beauty/validation/Facetreatment_Faceserum 100
/home/miguelyogur/pruebas/dataset_beauty/validation/Suntanlotions_AfterSunLotion 100
/home/miguelyogur/pruebas/dataset_beauty/validation/Oralhygiene_Toothbrushes 100
/home/miguelyogur/pruebas/dataset_beauty/validation/Facemakeup_Makeupfashionmentions 100
/home/miguelyogur/pruebas/dataset_beauty/validation/Oralhygiene_ElectricToothbrush 88
/home/miguelyogur/pruebas/dataset_beauty/validation/Handsmakeup_Nailspolish 100
/home/miguelyogur/pruebas/dataset_beauty/validation/Cosmeticaccessories_Combs 100
/home/miguelyogur/pruebas/dataset_beauty/validation/Facetreatment_Antiagecreamfirmingcream 100
/home/miguelyogur/pruebas/dataset_beauty/validation/Eyesmakeup_Eyeshadows 100
/home/miguelyogur/pruebas/dataset_beauty/validation/Body_BodyFirmings 100
/home/miguelyogur/pruebas/dataset_beauty/validation/Body_Bodyemollients 100
/home/miguelyogur/pruebas/dataset_beauty/validation/HairScalp_Conditioner 100
/home/miguelyogur/pruebas/dataset_beauty/validation/Facemakeup_Facedecoration 100
/home/miguelyogur/pruebas/dataset_beauty/validation/CosmeticGiftwraps_Beautysalonsthermalspa 100
/home/miguelyogur/pruebas/dataset_beauty/validation/Fragrances_Fragrances 100
/home/miguelyogur/pruebas/dataset_beauty/validation/Facemakeup_Foundationcreampowdercompact 100
/home/miguelyogur/pruebas/dataset_beauty/validation/Cosmeticaccessories_Candles 100
/home/miguelyogur/pruebas/dataset_beauty/validation/Facetreatment_Facecleansersanmakeupremovers 100
/home/miguelyogur/pruebas/dataset_beauty/validation/Body_SupplementsBody 100
/home/miguelyogur/pruebas/dataset_beauty/validation/Facetreatment_Acne0ilySkinTreatment 100
/home/miguelyogur/pruebas/dataset_beauty/validation/Setline_Setline 100
/home/miguelyogur/pruebas/dataset_beauty/validation/Lipsmakeup_Lipsticksandgloss 100
/home/miguelyogur/pruebas/dataset_beauty/validation/Facemakeup_Powder 100
/home/miguelyogur/pruebas/dataset_beauty/validation/Lipsmakeup_Lipliners 100
/home/miguelyogur/pruebas/dataset_beauty/validation/Manline_Mancreamsandlotions 100
/home/miguelyogur/pruebas/dataset_beauty/validation/Cosmeticaccessories_Makeupbrushes 100

/home/miguelyogur/pruebas/dataset_beauty/validation/Facemakeup_Concealer 100
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/home/miguelyogur/pruebas/dataset_beauty/validation/Body_Handstreatment 100
/home/miguelyogur/pruebas/dataset_beauty/validation/Cosmeticaccessories_Sponges 100
/home/miguelyogur/pruebas/dataset_beauty/validation/HairScalp_Shampoo 100
/home/miguelyogur/pruebas/dataset_beauty/validation/HairScalp_Hairdyes 100
/home/miguelyogur/pruebas/dataset_beauty/validation/HairScalp_Hairtreatment 100
/home/miguelyogur/pruebas/dataset_beauty/validation/Suntanlotions_SunScreenBody 100
/home/miguelyogur/pruebas/dataset_beauty/validation/Bodyhygiene_Feethygieniccosmetics 100
/home/miguelyogur/pruebas/dataset_beauty/validation/Manline_PreandAfterShaveLotions 100
/home/miguelyogur/pruebas/dataset_beauty/validation/Facemakeup_TintedMoisturizer 100
/home/miguelyogur/pruebas/dataset_beauty/validation/Fragrances_HouseFragrances 100
/home/miguelyogur/pruebas/dataset_beauty/validation/Suntanlotions_Suntanlotions 100
/home/miguelyogur/pruebas/dataset_beauty/validation/Facetreatment_Lipstreatment 100
/home/miguelyogur/pruebas/dataset_beauty/validation/Eyesmakeup_Eyelinerandeyepencils 100
/home/miguelyogur/pruebas/dataset_beauty/validation/Facetreatment_Eyestreatment 100
/home/miguelyogur/pruebas/dataset_beauty/validation/Bodyhygiene_Deodorantsandantiperspiration 100
/home/miguelyogur/pruebas/dataset_beauty/validation/Body_Bodymoisturizers 100
/home/miguelyogur/pruebas/dataset_beauty/validation/Cosmeticaccessories_MakeupBagsKits 100
/home/miguelyogur/pruebas/dataset_beauty/validation/Facetreatment_FaceExfoliantsScrub 100
/home/miguelyogur/pruebas/dataset_beauty/validation/Body_AntiCelluliteCream 100
/home/miguelyogur/pruebas/dataset_beauty/validation/Suntanlotions_SelftanningLotion 100
/home/miguelyogur/pruebas/dataset_beauty/validation/Body_Bodytreatment 100
/home/miguelyogur/pruebas/dataset_beauty/validation/Body_Hairremoversandbodybleaches 100
/home/miguelyogur/pruebas/dataset_beauty/validation/Handsmakeup_Nailsdecoration 100
/home/miguelyogur/pruebas/dataset_beauty/validation/Facemakeup_Allinonefacemakeup 100
/home/miguelyogur/pruebas/dataset_beauty/validation/Facetreatment_Facemasks 100
/home/miguelyogur/pruebas/dataset_beauty/validation/Suntanlotions_SunScreenFace 100
/home/miguelyogur/pruebas/dataset_beauty/validation/Body_BodyExfoliantsScrub 100
/home/miguelyogur/pruebas/dataset_beauty/validation/Eyesmakeup_Mascara 100
/home/miguelyogur/pruebas/dataset_beauty/validation/Facemakeup_Blush 100
/home/miguelyogur/pruebas/dataset_beauty/validation/Oralhygiene_Toothpaste 100
/home/miguelyogur/pruebas/dataset_beauty/validation/Bodyhygiene_SoapsandSyndets 100
/home/miguelyogur/pruebas/dataset_beauty/validation/Facetreatment_Facetreatment 100
/home/miguelyogur/pruebas/dataset_beauty/validation/Cosmeticaccessories_Hairbrushes 100
/home/miguelyogur/pruebas/dataset_beauty/validation/Bodyhygiene_Liquidsoaps 100
/home/miguelyogur/pruebas/dataset_beauty/validation/HairScalp_SupplementsHair 100
/home/miguelyogur/pruebas/dataset_beauty/validation/Cosmeticaccessories_Razor 100
/home/miguelyogur/pruebas/dataset_beauty/validation/Packagingmultiproduct_Multicosmeticspackaging 100
/home/miguelyogur/pruebas/dataset_beauty/validation/CosmeticGiftwraps_Giftwrap 100
/home/miguelyogur/pruebas/dataset_beauty/validation/HairScalp_Hairspray 100
/home/miguelyogur/pruebas/dataset_beauty/validation/Bodyhygiene_Bathcosmetics 100

/home/miguelyogur/pruebas/dataset_beauty/validation/Cosmeticaccessories_Mirrors 100

/home/miguelyogur/pruebas/dataset_beauty/test 73
/home/miguelyogur/pruebas/dataset_beauty/test/Bodyhygiene_WipesWetNapkins 100
/home/miguelyogur/pruebas/dataset_beauty/test/Facetreatment_Facetoner 100
/home/miguelyogur/pruebas/dataset_beauty/test/HairScalp_Stylingserumgelmousse 100
/home/miguelyogur/pruebas/dataset_beauty/test/HairScalp_Hairfashionmentions 100
/home/miguelyogur/pruebas/dataset_beauty/test/Facemakeup_Foundationcream 100
/home/miguelyogur/pruebas/dataset_beauty/test/Facetreatment_Faceserum 100
/home/miguelyogur/pruebas/dataset_beauty/test/Suntanlotions_AfterSunLotion 100
/home/miguelyogur/pruebas/dataset_beauty/test/Oralhygiene_Toothbrushes 100
/home/miguelyogur/pruebas/dataset_beauty/test/Facemakeup_Makeupfashionmentions 100
/home/miguelyogur/pruebas/dataset_beauty/test/Oralhygiene_ElectricToothbrush 88
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/home/miguelyogur/pruebas/dataset_beauty/test/Handsmakeup_Nailspolish 100
/home/miguelyogur/pruebas/dataset_beauty/test/Cosmeticaccessories_Combs 100
/home/miguelyogur/pruebas/dataset_beauty/test/Facetreatment_Antiagecreamfirmingcream 100
/home/miguelyogur/pruebas/dataset_beauty/test/Eyesmakeup_Eyeshadows 100
/home/miguelyogur/pruebas/dataset_beauty/test/Body_BodyFirmings 100
/home/miguelyogur/pruebas/dataset_beauty/test/Body_Bodyemollients 100
/home/miguelyogur/pruebas/dataset_beauty/test/HairScalp_Conditioner 100
/home/miguelyogur/pruebas/dataset_beauty/test/Facemakeup_Facedecoration 100
/home/miguelyogur/pruebas/dataset_beauty/test/CosmeticGiftwraps_Beautysalonsthermalspa 100
/home/miguelyogur/pruebas/dataset_beauty/test/Fragrances_Fragrances 100
/home/miguelyogur/pruebas/dataset_beauty/test/Facemakeup_Foundationcreampowdercompact 100
/home/miguelyogur/pruebas/dataset_beauty/test/Cosmeticaccessories_Candles 100
/home/miguelyogur/pruebas/dataset_beauty/test/Facetreatment_Facecleansersanmakeupremovers 100
/home/miguelyogur/pruebas/dataset_beauty/test/Body_SupplementsBody 100
/home/miguelyogur/pruebas/dataset_beauty/test/Facetreatment_AcneOilySkinTreatment 100
/home/miguelyogur/pruebas/dataset_beauty/test/Setline_Setline 100
/home/miguelyogur/pruebas/dataset_beauty/test/Lipsmakeup_Lipsticksandgloss 100
/home/miguelyogur/pruebas/dataset_beauty/test/Facemakeup_Powder 100
/home/miguelyogur/pruebas/dataset_beauty/test/Lipsmakeup_Lipliners 100
/home/miguelyogur/pruebas/dataset_beauty/test/Manline_Mancreamsandlotions 100
/home/miguelyogur/pruebas/dataset_beauty/test/Cosmeticaccessories_Makeupbrushes 100
/home/miguelyogur/pruebas/dataset_beauty/test/Facemakeup_Concealer 100
/home/miguelyogur/pruebas/dataset_beauty/test/Body_Handstreatment 100
/home/miguelyogur/pruebas/dataset_beauty/test/Cosmeticaccessories_Sponges 100
/home/miguelyogur/pruebas/dataset_beauty/test/HairScalp_Shampoo 100
/home/miguelyogur/pruebas/dataset_beauty/test/HairScalp_Hairdyes 100
/home/miguelyogur/pruebas/dataset_beauty/test/HairScalp_Hairtreatment 100
/home/miguelyogur/pruebas/dataset_beauty/test/Suntanlotions_SunScreenBody 100
/home/miguelyogur/pruebas/dataset_beauty/test/Bodyhygiene_Feethygieniccosmetics 100
/home/miguelyogur/pruebas/dataset_beauty/test/Manline_PreandAfterShaveLotions 100
/home/miguelyogur/pruebas/dataset_beauty/test/Facemakeup_TintedMoisturizer 100
/home/miguelyogur/pruebas/dataset_beauty/test/Fragrances_HouseFragrances 100
/home/miguelyogur/pruebas/dataset_beauty/test/Suntanlotions_Suntanlotions 100
/home/miguelyogur/pruebas/dataset_beauty/test/Facetreatment_Lipstreatment 100
/home/miguelyogur/pruebas/dataset_beauty/test/Eyesmakeup_Eyelinerandeyepencils 100
/home/miguelyogur/pruebas/dataset_beauty/test/Facetreatment_Eyestreatment 100
/home/miguelyogur/pruebas/dataset_beauty/test/Bodyhygiene_Deodorantsandantiperspiration 100
/home/miguelyogur/pruebas/dataset_beauty/test/Body_Bodymoisturizers 100
/home/miguelyogur/pruebas/dataset_beauty/test/Cosmeticaccessories_MakeupBagsKits 100
/home/miguelyogur/pruebas/dataset_beauty/test/Facetreatment_FaceExfoliantsScrub 100
/home/miguelyogur/pruebas/dataset_beauty/test/Body_AntiCelluliteCream 100
/home/miguelyogur/pruebas/dataset_beauty/test/Suntanlotions_Selftanninglotion 100
/home/miguelyogur/pruebas/dataset_beauty/test/Body_Bodytreatment 100
/home/miguelyogur/pruebas/dataset_beauty/test/Body_Hairremoversandbodybleaches 100
/home/miguelyogur/pruebas/dataset_beauty/test/Handsmakeup_Nailsdecoration 100
/home/miguelyogur/pruebas/dataset_beauty/test/Facemakeup_Allinonefacemakeup 100
/home/miguelyogur/pruebas/dataset_beauty/test/Facetreatment_Facemasks 100
/home/miguelyogur/pruebas/dataset_beauty/test/Suntanlotions_SunScreenFace 100
/home/miguelyogur/pruebas/dataset_beauty/test/Body_BodyExfoliantsScrub 100
/home/miguelyogur/pruebas/dataset_beauty/test/Eyesmakeup_Mascara 100
/home/miguelyogur/pruebas/dataset_beauty/test/Facemakeup_Blush 100
/home/miguelyogur/pruebas/dataset_beauty/test/Oralhygiene_Toothpaste 100
/home/miguelyogur/pruebas/dataset_beauty/test/Bodyhygiene_SoapsandSyndets 100
/home/miguelyogur/pruebas/dataset_beauty/test/Facetreatment_Facetreatment 100

/home/miguelyogur/pruebas/dataset_beauty/test/Cosmeticaccessories_Hairbrushes 100
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/home/miguelyogur/pruebas/dataset_beauty/test/Bodyhygiene_Liquidsoaps 100
/home/miguelyogur/pruebas/dataset_beauty/test/HairScalp_SupplementsHair 100
/home/miguelyogur/pruebas/dataset_beauty/test/Cosmeticaccessories_Razor 100
/home/miguelyogur/pruebas/dataset_beauty/test/Packagingmultiproduct_Multicosmeticspackaging 100
/home/miguelyogur/pruebas/dataset_beauty/test/CosmeticGiftwraps_Giftwrap 100
/home/miguelyogur/pruebas/dataset_beauty/test/HairScalp_Hairspray 100
/home/miguelyogur/pruebas/dataset_beauty/test/Bodyhygiene_Bathcosmetics 100

/home/miguelyogur/pruebas/dataset_beauty/test/Cosmeticaccessories_Mirrors 100

With this setup we are already in position of designing deep learning algorithms for the

predictive classification of the dataset.
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Chapter 3

The InceptionV3 Architecture

The inception architecture for deep convolutional neural networks was originally introduced in
[14]. Since then, there have been several versions and improvements (see [9] and [10] for a sur-
vey). The main novelty of this family of architectures with respect to other CNN architectures
at the time of the introduction of InceptionV1 is the use of the so called inception modules.
In this work we have used the InceptionV3 version, introduced in [13]. In this chapter we will
provide a very basic introduction to the main ideas behind the inception family of CNN and
the specific block diagram structure of the InceptionV3 network, in order to prepare for its use

in subsequent chapters.

3.1 Inception Modules

All the inception architectures are organized in blocks, the inception modules (to which we will
refer indistinctly as blocks), with some common and very particular design concepts. The main
idea behind these blocks is to use several convolution kernels in parallel.

Recall that the kernel in a convolutional layer is directly related to the size of the geometric
objects that the network learns to recognize. A recurrent problem in image recognition is that
the portion of the image occupied by the object to be recognized can vary a lot, therefore also
varying its size. This can happen not only from one dataset to another, but more importantly,
among different images in the same dataset. For this reason, in the inception blocks several
kernels (of dim 1, 3 and 5) are used at the same level instead of stacked in successive layers in
a linear fashion. The outputs of these convolutions are then concatenated and the results are
passed to the following block. In this fashion, the network can adapt itself to different sizes of
the relevant objects during the training process. A schematic representation of the most basic

form of an inception block is shown in Figure 3.1.
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Filter
concatenation
/“\
1x1 convolutions 3x3 convolutions 5x5 convolutions 3x3 max pooling

A

Previous layer

Figure 3.1: An inception block (source [14])

3.2 Block Diagram

The full InceptionV3 network block diagram is shown in Figure 3.2.

Grid Size Reduction o -
(with some modifications) Grid Size Reduction

Input: 299x299x3, Output:8x8x2048 2x Inception Module C
. 5x Inception Module A 4x Inception Module B
L N
o ‘ ;"‘X:}és£ . -.-X}é§{:

Convolution Input: Output:

AvgPool 299x299x3 8x8x2048
- MvagxP‘:)l Final part:8x8x2048 -> 1001
== Concat o .
== Dropout Auxiliary Classifier
== Fully connected
&= Softmax

Figure 3.2: InceptionV3 block diagram (source [10])

It consists of 11 inception blocks, an input block and an output block (top classifier). It also
contains an auxiliary classifier, with the purpose of helping with the backpropagation process
and mitigate the problem of vanishing gradientes, ubiquitous in deep architectures. Notice that
the inner structure of the inception blocks is not exactly the same as the one showed in 3.1.

However, the basic designing principles are similar.
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3.3 Top Classifier

As we can see from Figure 3.2 the top classifier actually consists of 4 layers: an average pooling
layer, a dropout layer (for regularization purposes) and two dense layers, the final one being a
softmax classifier. In the remaining part of this work we will replicate this structure, replacing
the last softmax dense layer with a similar one having the necessary number of nodes for our
datasets. This will be in fact the only modification done to the InceptionV3 architecture in
Chapters 4 and 5.
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Chapter 4

Transfer Learning on the Full Dataset

In this chapter we will use the InceptionV3 network previously trained on the ImageNet dataset.
Keras includes this architecture already programmed, including the weights of the different
nodes trained on the ImageNet dataset. We will develop a program that will download this
network, replace the top classifier with one adapted to the Beauty dataset, initialize the model
freezing the blocks that we wish to declare non-trainable, train the model and finally compute

some quality scores like validation and loss curves and confusion matrices.

4.1 Building the Model

We will start by loading the necessary packages for the full implementation of the training stage
of the project, and also define a function that will build and initialize the model.

Input:

import os, shutil

from keras import models

from keras import layers

from keras import optimizers

from keras.applications import InceptionV3

from keras.preprocessing.image import ImageDataGenerator
from keras.callbacks import EarlyStopping, ModelCheckpoint
from keras.models import load_model

import matplotlib.pyplot as plt

Y%matplotlib inline

import numpy as np

import pandas as pd

from sklearn.metrics import confusion_matrix

import itertools

29
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def init_model ():
conv_base = InceptionV3(weights=’imagenet’,
include_top=False ,
input_shape=(input_dim , input_dim, 3)

)

print (conv_base.summary ())

model = models. Sequential ()

model.add(conv_base)

model.add(layers . GlobalAveragePooling2D ())
model.add(layers.Dropout (0.2))
model.add(layers.Dense(class_.dim , activation = ’'relu’))
model.add(layers.Dense(n_classes , activation=’softmax’))

print (model.summary ())

for layer in model.layers [0].layers:

layer.trainable = False

return model

The init_function function first downloads the inceptionV3 network with the weights
pretrained in ImageNet. We have included an option to exclude the top classifier and also the
dimensions of the image are passed as a variable that will be initialized later to 299, since the
original InceptionV3 architecture expects to be fed 299 x 299 x 3 sized images. This will be the
main component of our model, stored under the name conv_base. If we examine the summary

of this component so far we obtain:

Output:

Layer (type) Output Shape Param # Connected to

input_1 (InputLayer) (None, 299, 299, 3) O

conv2d_t (Comv2D)  (Nome, 149, 149, 32) 864  imput_tlOJ[O]
batch_nornalization_i (BatchNor (Nome, 149, 149, 32) 96 comv2d_tl0Jl0]
activationi (Activation) (Nome, 149, 149, 32) 0 batch_normalization 1ol (0]
comv2d.2 (Comv2D)  (Nome, 147, 147, 32) 9216 activation_tfolf0)
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activation_2 (Activation) (None, 147, 147, 32) 0 batch_normalization_2[0] [0]

cov2d_3 (Conv2D)  (Nome, 147, 147, 64) 18432 activation2[0][0]
batch_normalization_3 (Batchlor (Nome, 147, 147, 64) 192 comv2d.3l0}f0]
activation3 (Activatiom) (Nome, 147, 147, 60) 0 batch_normalization (0] (0]
nax_pooling2d_1 (MaxPooling2D) (lNome, 73, 73, 64) 0 activation 3[0][0]
comv2d_4 (Comv2D)  (Nome, 73, 73, 80) 5120 max_pooling2d_tfolfo]
batch_nornalization 4 (Batchlor (Nome, 73, 73, 80) 240 comv2d 4aloJl0]
activation 4 (Activation) (Nome, 73, 73, 80) 0 batch_normalization_4[0] (0] |
comv2d5 (Comv2D)  (Nome, 71, 71, 192) 136240 activation_afolfo]
batch_normalization 5 (Batchlor (Nome, 71, 71, 192) 576 comv2d.s{0}(0]
activation s (Activation) (Nome, 71, 71, 192) 0 batch_normalization 5(01(0] |
nax_pooling2d_2 (MaxPooling2D) (Nome, 35, 35, 192) 0 activation 5[0][0]
cov2d_@ (Comv2D)  (lNome, 35, 35, 64) 12288 max_pooling2d_2(0J(0]
batch_normalization 9 (Batchlor (Nome, 35, 35, 64) 192 comv2d.9fo}f0]
activation9 (Activatiom) (Nome, 35, 35, 60) 0 batch_normalization 90l (0]
cov2d_7 (Comv2D)  (Nome, 35, 35, 48) 9216 max_pooling2d_2(01(0] |
comv2d_10 (Comv2D)  (Nome, 35, 35, 96) 55296 activation ofo][0]
batch_nornalization 7 (Batchlor (Nome, 35, 35, 48) 144  com2d700J[O]
batch_normalization_10 (Batchllo (Nome, 35, 35, 96) 288 comv2d_tofo}(0]
activation.7 (Activation) (Nome, 35, 35, 48) 0 batch_normalization_7(0][0] |
activation 10 (Activation)  (Nome, 35, 35, 96) ©0 batch_normalization_100] (0] |
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conv2d_6 (Conv2D) (None, 35, 35, 64) 12288 max_pooling2d_2[0] [0]

conv2d.8 (Comv2D) ~ (Nome, 35, 35, 64) 76800 activation7lo}l0]
comv2d_11 (Comv2D) ~ (Nome, 35, 35, 96) 82044 activation_tofofo]
conv2d_12 (Comv2D)  (Nome, 35, 35, 32) 6144 average_pooling2d_1[01[(0]
batch_normalization_6 (Batchlor (Nome, 35, 35, 64) 192 comv2d.6{0}(0]
batch_normalization_8 (Batchlor (Nome, 35, 35, 64) 192 comv2d.8lo}fo]
batch_nornalization_11 (Batchlo (Nome, 35, 35, 96) 288 comv2d_til0J[0]
batch_normalization_12 (Batchllo (Nome, 35, 35, 32) 96 comv2d_12(0}f0]
activation 6 (Activation) (Nome, 35, 35, 64) O batch_normalization_60][0] |
activation 8 (Activation) (Nome, 35, 35, 64) 0 batch_normalization 801 (0] |
activation i1 (Activation)  (Nome, 35, 35, 96) 0 batch_normalization_11[0J (0] |
activation 12 (Activation)  (Nome, 35, 35, 82) 0 batch_normalization_12(0] (0] |
mixed0 (Concatemate) ~ (lNome, 35, 35, 256) 0 activation 6[0][0]

activation_8[0] [0]
activation_11[0] [0]
activation_12[0] [0]

conv2d_16 (Conv2D) (None, 35, 35, 64) 16384 mixedO[0] [0]

batch_normalization 16 (Batchlo (Nome, 35, 35, 64) 102 comv2d_t6[01(0]
activation_16 (Activation) (Nome, 35, 35, 64) O batch_normalization 16[01[0]
conv2d_14 (ComvD) ~ (Nome, 35, 35, 48) 12288 mixedolo](O]
conv2d_17 (Comv2D) ~ (Nome, 35, 35, 96) 55206 activation_t6f0l(0]
batch_normalization_14 (Batchlo (Nome, 35, 35, 48) 144 comv2d_talo}f0]
batch_normalization 17 (Batchlo (Nome, 35, 35, 96) 288 comv2d_i7[01(0]

activation_14 (Activation) (None, 35, 35, 48) 0 batch_normalization_14[0] [0]



4.1. Building the Model 33

activation_17 (Activation) (None, 35, 35, 96) 0 batch_normalization_17[0] [0]

average_pooling2d_2 (AveragePoo (Nome, 35, 35, 256) O mizedofO}[0]
conv2d_13 (Comv2D) ~ (Nome, 35, 35, 64) 16384 mixedolol(0]
conv2d_15 (Conv2D)  (Nome, 35, 35, 64) 76800 activation_tafolf0]
conv2d_18 (ComvaD) ~ (Nome, 35, 35, 96) 82044 activation_17[01(0]
conv2d_19 (ComvaD) ~ (Nome, 35, 35, 64) 16384 average_pooling2d_2{01[0]
batch_normalization 13 (Batchlo (Nome, 35, 35, 64) 102 comv2d_13f0l0)
batch_normalization 15 (Batchlo (Nome, 35, 35, 64) 192 comv2d_ts[0lf0]
batch_normalization_18 (Batchlo (Nome, 35, 35, 96) 288 comv2d_18lo}(0]
batch_normalization 19 (BatchlNo (Nome, 35, 35, 64) 102 comv2d_tofolf0)
activation_13 (Activation)  (Nome, 35, 35, 64) O batch_normalization_13[01[0]
activation 15 (Activation)  (Nome, 35, 35, 64) 0 batch_normalization_15(01 (0] |
activation_18 (Activation)  (Nome, 35, 35, 96) 0 batch_normalization 18[0][0]
activation_19 (Activation)  (Nome, 35, 35, 64) O batch_normalization_19[01[0]
mized! (Concatenate) (Nome, 35, 35, 288) 0 activation_taf0lf0]

activation_15[0] [0]
activation_18[0] [0]
activation_19[0] [0]

conv2d_23 (Conv2D) (None, 35, 35, 64) 18432 mixed1[0] [0]

batch_normalization 23 (Batchlo (Nome, 35, 35, 64) 102 comv2d_23[01(0]
activation 23 (Activation) (Nome, 35, 35, 64) O batch_normalization 23[01[0]
convad_21 (ComvaD)  (Nome, 35, 35, 48) 13624 mixeatloll0]
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batch_normalization_21 (BatchNo (None, 35, 35, 48) 144 conv2d_21[0] [0]

batch_normalization 24 (Batchlo (Nome, 35, 35, 96) 288 comv2d_2af0}(0]
activation 21 (Activation)  (Nome, 35, 35, 48) 0 batch_normalization_21[0] (0] |
activation 24 (Activatiom)  (Nome, 35, 35, 96) 0 batch_normalization 2401 (0]
average_pooling2d_3 (AveragePoo (Nome, 35, 35, 288) 0 mixeatfolfo)
comv2d_20 (Comv2D) ~ (Nome, 35, 35, 64) 18432 mixeatfolf0]
conv2d.22 (Comv2D)  (Nome, 35, 35, 64) 76800 activation2if0}f0]
conv2d_25 (Conv2D) ~ (Nome, 35, 35, 96) 82044 activation_24f0J(0]
conv2d_26 (Comv2D)  (Nome, 35, 35, 64) 18432 average_pooling2d_3[0][0]
batch_normalization 20 (Batchlo (Nome, 35, 35, 64) 192 comv2d20{0}(0]
batch_normalization_22 (Batchllo (Nome, 35, 35, 64) 192 comv2d_22(0}(0]
batch_normalization_25 (Batchllo (Nome, 35, 35, 96) 288 comv2d_2sfo}fo]
batch_normalization_26 (Batchlo (Nome, 35, 35, 64) 192 comv2d_26{0}(0]
activation 20 (Activation)  (Nome, 35, 35, 64) 0 batch_normalization_20(0] (0] |
activation22 (Activatiom) (Nome, 35, 35, 60) 0 batch_normalization_22(0] (0]
activation 25 (Activation)  (Nome, 35, 35, 96) 0 batch_normalization 2501 (0] |
activation 26 (Activation)  (Nome, 35, 35, 64) 0 batch_normalization_26[01 (0] |
mixed? (Concatenate) ~  (lNome, 35, 35, 288) 0 activation20f0l(0]

activation_22[0] [0]
activation_25[0] [0]
activation_26[0] [0]

activation_28 (Activation) (None, 35, 35, 64) 0 batch_normalization_28[0] [0]
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conv2d_29 (Conv2D) (None, 35, 35, 96) 55296 activation_28[0] [0]

batch_normalization 20 (Batchlo (Nome, 35, 35, 96) 288 comv2d 20[010]
activation 20 (Activation) (Nome, 35, 35, 96) 0 batch_normalization 20[01[0]
conv2d_27 (ComvaD) ~ (Nome, 17, 17, 384) 995328 mixea2(0ll0]
conv2d_30 (ComvaD) ~ (Nome, 17, 17, 96) 82044 activation_20f0](0]
batch_normalization 27 (Batchlo (Nome, 17, 17, 384) 1152 comv2d27[01(0]
batch_normalization 30 (BatchNo (Nome, 17, 17, 96) 288 comv2d_s0f0lf0)
activation 27 (Activation)  (Nome, 17, 17, 388) 0 batch_normalization 27[01[0]
activation 30 (Activation)  (Nome, 17, 17, 96) ©0 batch_normalization 3001 (0] |
max_pooling2d 3 (MaxPooling2D) (Nome, 17, 17, 288) ©O mized2001(0]
mized3 (Concatenate) (Nome, 17, 17, 768) O activation_27[0l(0]

activation_30[0] [0]
max_pooling2d_3[0] [0]

conv2d_35 (Conv2D) (None, 17, 17, 128) 98304 mixed3[0] [0]

batch_normalization_35 (Batchllo (Nome, 17, 17, 128) 384 comv2ddsfo}fo]
activation 35 (Activation)  (Nome, 17, 17, 128) 0 batch_normalization 3501 (0] |
conv2d_36 (Comv2D)  (Nome, 17, 17, 128) 114688 activation_ssfolfo]
batch_normalization_36 (Batchllo (Nome, 17, 17, 128) 384 comv2d_3lo}lo]
activation 36 (Activation)  (Nome, 17, 17, 128) O batch_normalization_36[01 (0] |
comv2d_32 (Comv2D)  (Nome, 17, 17, 128) 98304 mixeasfolf0]
conv2d_37 (Comv2D)  (Nome, 17, 17, 128) 114688  activation.36l0}(0]
batch_normalization 32 (Batchlo (Nome, 17, 17, 128) 384 comv2d_32(0}(0]

batch_normalization_37 (BatchNo (None, 17, 17, 128) 384 conv2d_37[0] [0]
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activation_32 (Activation) (None, 17, 17, 128) O batch_normalization_32[0] [0]

activation 37 (Activation)  (Nome, 17, 17, 128) O batch_normalization_37(0] (0] |
conv2d_33 (Comv2D)  (Nome, 17, 17, 128) 114688  activation_s2f0lfo]
conv2d_38 (Conv2D)  (Nome, 17, 17, 128) 114688 activation_s7[0J(0]
batch_normalization_33 (Batchlo (Nome, 17, 17, 128) 384 comv2d_33[0}(0]
batch_normalization_38 (Batchllo (Nome, 17, 17, 128) 384 comv2d_dslo}lo]
activation 33 (Activation)  (Nome, 17, 17, 128) O batch_normalization 3301 (0] |
activation 38 (Activation)  (Nome, 17, 17, 128) 0 batch_normalization_38[0] (0] |
average_pooling2d_4 (AveragePoo (Nome, 17, 17, 768) 0 mixedsf0][0]
conv2d_31 (Conv2D)  (Nome, 17, 17, 192) 147456  mixeasfolfo)
comv2d_34 (Comv2D)  (Nome, 17, 17, 192) 172082 activation_ssfolfo]
conv2d.39 (Comv2D)  (Nome, 17, 17, 192) 172082  activation.38lo}f0]
conv2d_40 (Conv2D)  (Nome, 17, 17, 192) 147456 average_pooling2d_af0](0]
batch_normalization_31 (Batchlo (Nome, 17, 17, 192) 576 comv2d3ifo}fo]
batch_normalization 34 (Batchlo (Nome, 17, 17, 192) 576 comv2d_3alo}fo]
batch_normalization_39 (Batchllo (Nome, 17, 17, 192) 576 comv2d_39l0}(0]
batch_normalization_40 (Batchllo (Nome, 17, 17, 192) 576 comv2d_aofo}fo]
activation 31 (Activation)  (Nome, 17, 17, 182) O batch_normalization_31[0] (0] |
activation 34 (Activation)  (Nome, 17, 17, 192) O batch_normalization_34[0] (0] |
activation39 (Activatiom) (Nome, 17, 17, 192) 0 batch_normalization 3901 (0]
activation 40 (Activation)  (Nome, 17, 17, 182) O batch_normalization_40[0] (0] |

mixed4 (Concatenate) (None, 17, 17, 768) O activation_31[0] [0]
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activation_34[0] [0]
activation_39[0] [0]
activation_40[0] [0]

conv2d_45 (Conv2D) (None, 17, 17, 160) 122880 mixed4[0] [0]

batch_normalization 45 (Batchllo (Nome, 17, 17, 160) 480 com2a.dsloll)
activation 45 (Activation)  (lome, 17, 17, 160) 0 batch_normalization_4s[0][0]
conv2d_46 (Comv2D)  (ome, 17, 17, 160) 179200  activationasfolf]
batch_normalization 46 (Batchllo (Nome, 17, 17, 160) 480 comv2d_gsloll)
activation 46 (Activation) (lome, 17, 17, 160) 0 batch_normalization_46[0][0]
conv2d_42 (Comv2D)  (ome, 17, 17, 160) 122880 mixeadlo][0]
comv2d_47 (Com2D)  (ome, 17, 17, 160) 179200  activation_aslolf)
batch_normalization_42 (Batchllo (Nome, 17, 17, 160) 480 com2d_d2lollo]
batch_normalization 47 (Batchllo (Nome, 17, 17, 160) 480 com2da7lolfo]
activation 42 (Activation) (lome, 17, 17, 160) 0 batch_normalization_42[0][0]
activation 47 (Activation) (lome, 17, 17, 160) 0 batch_normalization_47[0][0]
con2d.43 (Comv2D)  (lome, 17, 17, 160) 179200 activation_d2lolf0)
conv2d_48 (Com2D)  (ome, 17, 17, 160) 179200 activationarfolf)
batch_normalization_43 (Batchllo (Nome, 17, 17, 160) 480 com2d_3lollo]
batch_normalization 48 (Batchllo (Nome, 17, 17, 160) 480 comv2d_dsloll)
activation 43 (Activation) (lome, 17, 17, 160) 0 batch_normalization_43[0][0]
activation 8 (Activation) (lome, 17, 17, 160) 0 batch_normalization_48[0][0]
average_pooling2d_s (AveragePoo (Nome, 17, 17, 768) 0 mixeaalolll
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conv2d_44 (Conv2D) (None, 17, 17, 192) 215040 activation_43[0] [0]

conv2d 49 (Comv2D)  (Nome, 17, 17, 102) 215040 activation_asfolf0]
conv2d_50 (Comv2D)  (Nome, 17, 17, 192) 147456 average_pooling2d_5(0J(0]
batch_nornalization a1 (Batchlo (Nome, 17, 17, 192) 576 comv2d atfollo]
batch_normalization 44 (Batchlo (Nome, 17, 17, 192) 576 comv2d_.aafo}fo]
batch_normalization 49 (Batchllo (Nome, 17, 17, 192) 576 comv2d_.asfo}fo]
batch_nornalization 50 (Batchlo (Nome, 17, 17, 192) 576 comv2d_s0[01[0]
activation 41 (Activation)  (Nome, 17, 17, 192) O batch_normalization_41[0J (0] |
activation 44 (Activation)  (Nome, 17, 17, 192) O batch_normalization_safo] (0]
activation 49 (Activation)  (Nome, 17, 17, 182) O batch_normalization_49[0] (0] |
activation 50 (Activation)  (Nome, 17, 17, 192) O batch_normalization 5001 (0] |
mixeds (Concatemate) ~ (Nome, 17, 17, 768) 0 activation aifo][0]

activation_44[0] [0]
activation_49[0] [0]
activation_50[0] [0]

conv2d_55 (Conv2D) (None, 17, 17, 160) 122880 mixed5[0] [0]

batch_normalization 55 (Batchlo (Nome, 17, 17, 160) 480 comv2d_s5{0Jf0]
activation 55 (Activation)  (Nome, 17, 17, 160) O batch_normalization 5501 (0] |
conv2d_56 (Comv2D) ~ (Nome, 17, 17, 160) 179200 activationssfolfo]
batch_normalization 56 (Batchlo (Nome, 17, 17, 160) 480 comv2d_s6f0}(0]
activation 56 (Activation)  (Nome, 17, 17, 160) 0 batch_normalization_56[01 (0] |
conv2d.52 (Comv2D)  (Nome, 17, 17, 160) 122880  mixedsfo]l0]
conv2d 57 (Conv2D)  (Nome, 17, 17, 160) 179200 activations6f0J(0]

batch_normalization_52 (BatchNo (None, 17, 17, 160) 480 conv2d_52[0] [0]
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batch_normalization_57 (BatchNo (None, 17, 17, 160) 480 conv2d_57[0] [0]

activation 52 (Activation)  (Nome, 17, 17, 160) 0 batch_normalization 52[01[0]
activation 57 (Activation)  (Nome, 17, 17, 160) O batch_normalization 57[01[0]
conv2d_53 (ComvaD)  (Nome, 17, 17, 160) 179200 activations2[01[0]
conv2d_58 (ComvD)  (Nome, 17, 17, 160) 179200 activation 57[01[0]
batch_normalization 53 (Batchlo (Nome, 17, 17, 160) 480 comv2d_s3[01f0]
batch_normalization 58 (Batchlo (Nome, 17, 17, 160) 480 conv2d s8[0lf0)
activation 53 (Activation)  (Nome, 17, 17, 160) 0 batch_normalization 53[01[0]
activation 58 (Activation)  (Nome, 17, 17, 160) 0 batch_normalization_58[01 (0]
average_pooling2d_6 (AveragePoo (Nome, 17, 17, 768) 0 mizedsfo}f0]
conv2d_51 (ComvaD)  (Nome, 17, 17, 192) 147456  mixeasfolfo]
conv2d 54 (Conv2D)  (Nome, 17, 17, 102) 215040 activation s3folf0]
conv2d_59 (ComvD)  (Nome, 17, 17, 192) 215040 activations8[0][0]
conv2d_60 (Comv2D) ~ (Nome, 17, 17, 192) 147456 average_pooling2d_6[01[(0]
batch_normalization 51 (Batchlo (Nome, 17, 17, 192) 576 comv2d si[01(0)
batch_normalization 54 (Batchlo (Nome, 17, 17, 192) 576 comv2d_safolf]
batch_normalization 59 (Batchlo (Nome, 17, 17, 192) 576 comv2d_sof0lf]
batch_normalization 60 (Batchlo (Nome, 17, 17, 192) 576 comv2d_6of0lf0)
activation 51 (Activation)  (Nome, 17, 17, 192) 0 batch_normalization 51[01[0]
activation 54 (Activation)  (Nome, 17, 17, 182) O batch_normalization 5401 (0] |
activation 59 (Activation)  (Nome, 17, 17, 192) 0 batch_normalization 59[01[0]

activation_60 (Activation) (None, 17, 17, 192) 0 batch_normalization_60[0] [0]
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mixed6 (Concatenate) (None, 17, 17, 768) O activation_51[0] [0]
activation_54[0] [0]
activation_59[0] [0]
activation_60[0] [0]

conv2d_65 (Conv2D) (None, 17, 17, 192) 147456 mixed6[0] [0]

batch_normalization 65 (Batchlo (Nome, 17, 17, 192) 576 comv2d_esfolfo)
activation 65 (Activation)  (Nome, 17, 17, 192) 0 batch_normalization 65[01[0]
conv2d_66 (Conv2D)  (Nome, 17, 17, 102) 258048 activation_esfol(0]
batch_normalization 66 (Batchlo (Nome, 17, 17, 192) 576 comv2d_es[0lf)
activation 66 (Activation)  (Nome, 17, 17, 192) 0 batch_normalization 66[01[0]
convad_62 (ComvaD)  (Nome, 17, 17, 192) 147456  mixeasloll0]
conv2d_67 (Comv2D) ~ (Nome, 17, 17, 192) 258048 activation66[0][0]
batch_normalization 62 (Batchlo (Nome, 17, 17, 192) 576  comv2d_62[01(0]
batch_normalization 67 (Batchlo (Nome, 17, 17, 192) 576 comv2d 67[01(0)
activation 62 (Activation)  (Nome, 17, 17, 192) 0 batch_normalization 62[01[0]
activation 67 (Activation)  (Nome, 17, 17, 182) O batch_normalization_67(01(0] |
conv2d_63 (ComvD) ~ (Nome, 17, 17, 192) 258048 activation62[0][0]
conv2d_68 (Comv2D) ~ (Nome, 17, 17, 192) 258048 activation 67[0][0]
batch_normalization 63 (Batchlo (Nome, 17, 17, 192) 576 comv2d_e3lo}f0]
batch_normalization 68 (Batchlo (Nome, 17, 17, 192) 576  comv2d_eslolfo)
activation 63 (Activation)  (Nome, 17, 17, 192) 0 batch_normalization 63[01[0]
activation 68 (Activation)  (Nome, 17, 17, 192) 0 batch_normalization 68[01[(0]
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conv2d_61 (Conv2D) (None, 17, 17, 192) 147456 mixed6[0] [0]

conv2d_64 (Conv2D)  (Nome, 17, 17, 102) 258048 activation_63fol(0]
conv2d_69 (Comv2D)  (Nome, 17, 17, 192) 258048 activatiom_esfolfo]
conv2d70 (Comv2D) ~ (Nome, 17, 17, 192) 147456 average_pooling2d_7(0l(0]
batch_normalization 61 (Batchlo (Nome, 17, 17, 192) 576 comv2d_61{0}f0]
batch_normalization_64 (Batchllo (Nome, 17, 17, 192) 576 comv2d_ealo}fo]
batch_nornalization 69 (Batchlo (Nome, 17, 17, 192) 576 comv2d_69[01[0]
batch_normalization 70 (Batchlo (Nome, 17, 17, 192) 576 comv2d_70l0}(0]
activation 61 (Activation)  (Nome, 17, 17, 192) O batch_normalization 6101 (0] |
activation 64 (Activation)  (Nome, 17, 17, 182) O batch_normalization_64[01 (0] |
activation 69 (Activation)  (Nome, 17, 17, 192) O batch_normalization_69[01 (0] |
activation.70 (Activation)  (Nome, 17, 17, 192) O batch_normalization_70[0] (0] |
mixed7 (Concatemate)  (Nome, 17, 17, 768) 0 activation 61[0][0)

activation_64[0] [0]
activation_69[0] [0]
activation_70[0] [0]

conv2d_73 (Conv2D) (None, 17, 17, 192) 147456 mixed7[0] [0]

batch_normalization 73 (Batchlo (Nome, 17, 17, 192) 576 comv2d_73[0}(0]
activation.73 (Activation)  (Nome, 17, 17, 192) O batch_normalization 7301 (0] |
conv2d_74 (Conv2D)  (Nome, 17, 17, 102) 258048 activation_73(0J(0]
batch_normalization 74 (Batchlo (Nome, 17, 17, 192) 576 comv2d_7alo}l0]
activation74 (Activatiom) (Nome, 17, 17, 192) 0 batch_normalization 740l (0]
comv2d_71 (Conv2D)  (Nome, 17, 17, 192) 147456 mixea7(0l(0)

conv2d_75 (Conv2D) (None, 17, 17, 192) 258048 activation_74[0] [0]
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batch_normalization_71 (BatchNo (None, 17, 17, 192) 576 conv2d_71[0] [0]

batch_normalization 75 (Batchlo (Nome, 17, 17, 192) 576  comv2d7s[01f0)
activation 71 (Activation)  (Nome, 17, 17, 192) 0 batch_normalization 71[0][0]
activation 75 (Activation)  (Nome, 17, 17, 192) 0 batch_normalization 75[01[0]
conv2d_72 (Comv2D) ~ (Nome, 8, 8, 320) 552060 activation 7i[0][0]
conv2d_76 (Comv2D)  (Nome, 8, 8, 192) 331776 activation_7s[0][0]
batch_normalization 72 (Batchlo (Nome, 8, &, 320) 960 comv2d72(01(0)
batch_normalization 76 (Batchlo (Nome, 8, 8, 192) 576 comv2d76[01(0]
activation 72 (Activation)  (Nome, 8, 8, 320) 0 batch_normalization 7201 (0] |
activation 76 (Activation)  (Nome, 8, 8, 192) 0 batch_normalization 76[0][0]
max_pooling2d 4 (MaxPooling2D) (Nome, 8, 8, 768) 0 mizearfo}(0]
nixeds (Concatemate)  (lome, 8, 8, 1280) 0 activation 72[01[0)

activation_76[0] [0]
max_pooling2d_4[0] [0]

conv2d_81 (Conv2D) (None, 8, 8, 448) 573440 mixed8[0] [0]

batch_normalization 81 (Batchlo (Nome, 8, 8, 448) 1344 comv2d 8i{0}(0]
activation 81 (Activation)  (Nome, 8, 8, 448) 0 batch_normalization_81[0J (0] |
comv2d_78 (Comv2D) ~ (Nome, 8, 8, 384) 491520 mixeaslolf0]
conv2d 82 (Conv2D)  (Nome, 8, 8, 384) 1548288  activation.sifol(0]
batch_normalization 78 (Batchllo (Nome, 8, 8, 384) 1152 comv2d_78l0}(0]
batch_nornalization 82 (Batchlo (Nome, 8, 8, 334) 1152 comv2d 8200J[0]
activation 78 (Activation)  (Nome, 8, 8, 388) 0 batch_normalization 7801 (0] |

activation_82 (Activation) (None, 8, 8, 384) 0 batch_normalization_82[0] [0]
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conv2d_79 (Conv2D) (None, 8, 8, 384) 442368 activation_78[0] [0]

conv2d_80 (ComvaD) ~ (Nome, 8, 8, 384) 442368 activation_78[0][0]
conv2d_83 (Comv2D) ~ (Nome, 8, 8, 384) 442368 activations2[0][0]
conv2d_84 (ComvD)  (Nome, 8, 8, 384) 442368 activationg2[0][0]
average_pooling2d_8 (AveragePoo (Nome, 8, 8, 1280) 0 mizedsfo}[0]
conv2d 77 (Comv2D) ~ (Nome, 8, 8, 320) 409600  mixeasfolf0]
batch_normalization 79 (Batchlo (Nome, 8, &, 384) 1152 comv2d7o[0l(0)
batch_normalization 80 (Batchlo (Nome, 8, &, 384) 1152 comv2d_sofolf]
batch_normalization 83 (Batchlo (Nome, 8, 8, 384) 1152 comv2d_83[0}(0]
batch_normalization 84 (Batchlo (Nome, 8, &, 384) 1152 conv2d_safolf0)
conv2d_85 (Comv2D) ~ (Nome, 8, 8, 192) 245760 average_pooling2d_8[01[(0]
batch_normalization 77 (Batchlo (Nome, 8, 8, 320) 960 comv2d_77{0}(0]
activation 79 (Activation)  (Nome, 8, 8, 384) 0 batch_normalization 79[0][0]
activation 80 (Activation)  (Nome, 8, 8, 388) 0 batch_normalization 80[01[0]
activation 83 (Activation)  (Nome, 8, 8, 384) 0 batch_normalization 83[01[0]
activation 84 (Activation)  (Nome, 8, 8, 388) 0 batch_normalization 84[0][0]
batch_normalization 85 (Batchlo (Nome, 8, 8, 192) 576 comv2d_ssfolfo]
activation 77 (Activation)  (Nome, 8, 8, 3200 0 batch_normalization 77[01[0]
mized9 0 (Concatenate) (Nome, 8, 8, 768) 0 activation_7of0l(0]

activation_80[0] [0]
concatenate_1 (Concatenate) (None, 8, 8, 768) 0 activation_83[0] [0]
activation_84[0] [0]

activation_85 (Activation) (None, 8, 8, 192) 0 batch_normalization_85[0] [0]
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mixed9 (Concatenate) (None, 8, 8, 2048) 0 activation_77[0] [0]
mixed9_0[0] [0]
concatenate_1[0] [0]
activation_85[0] [0]

conv2d_90 (Conv2D) (None, 8, 8, 448) 917504 mixed9[0] [0]

batch_normalization 90 (Batchlo (Nome, 8, &, 448) 1344 comv2d 0[01(0)
activation 90 (Activation)  (Nome, 8, 8, 448) 0 batch_normalization 90[01[0]
conv2d 87 (Conv2D)  (Nome, 8, 8, 384) 786432 mixedofolf0)
conv2d_91 (ComvaD) ~ (Nome, 8, 8, 384) 1548288  activation 0[0][0]
batch_normalization 87 (Batchlo (Nome, 8, 8, 384) 1152 comv2d_s7[0lf0]
batch_normalization 01 (Batchlo (Nome, 8, &, 384) 1152 comv2d oifolf0)
activation 87 (Activation) (Nome, 8, 8, 388) 0 batch_normalization 87[01[0]
activation 91 (Activation)  (Nome, 8, 8, 388) 0 batch_normalization 91[01[0]
conv2d_88 (ComvaD)  (Nome, 8, 8, 384) 442368 activationg7[0][0]
conv2d_89 (Comv2D)  (Nome, 8, 8, 384) 442368 activation87[0][0]
conv2d 02 (Conv2D)  (Nome, 8, 8, 384) 442368 activationoifol(0]
conv2d_93 (ComvaD) ~ (Nome, 8, 8, 384) 442368 activationoi[0][0]
average_pooling2d_9 (AveragePoo (Nome, 8, 8, 2048) 0 mizedfO}[0]
conv2d_86 (Conv2D)  (Nome, 8, 8, 320) 655360  mixeaofolf0]
batch_normalization 88 (Batchlo (Nome, 8, 8, 384) 1152 conv2d_sslolfo)
batch_normalization 89 (Batchlo (Nome, 8, 8, 384) 1152 comv2d_sofolfo]
batch_normalization 92 (Batchlo (Nome, 8, &, 384) 1152 comv2do2[01(0)
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conv2d_94 (Conv2D) (None, 8, 8, 192) 393216 average_pooling2d_9[0] [0]

batch_normalization 86 (Batchlo (Nome, 8, 8, 320) 960 comv2d_86fo}fo]
activation 88 (Activation)  (Nome, 8, 8, 384) 0 batch_normalization_88[0] (0] |
activation89 (Activatiom) (Nome, 8, 8, 388) 0 batch_normalization 8901 (0]
activation @2 (Activation)  (Nome, 8, 8, 388) 0 batch_normalization 9201 (0] |
activation 93 (Activation)  (Nome, 8, 8, 384) 0 batch_normalization 9301 (0] |
batch_nornalization 94 (Batchlo (Nome, 8, 8, 192) 576 comv2d 9al0J[0]
activation 86 (Activation)  (Nome, 8, 8, 3200 0 batch_normalization_86[0] (0] |
mixed9_1 (Concatemate) ~ (Nome, 8, 8, 768) 0 activation ss[0][0]

activation_89[0] [0]
concatenate_2 (Concatenate) (None, 8, 8, 768) 0 activation_92[0] [0]
activation_93[0] [0]

mixed10 (Concatenate) (None, 8, 8, 2048) 0 activation_86[0] [0]
mixed9_1[0] [0]
concatenate_2[0] [0]
activation_94[0] [0]

Total params: 21,802,784
Trainable params: 21,768,352
Non-trainable params: 34,432

As we can see, this component replicates the architecture of the InceptionV3 network. Each
of the layers mixed0 to mixed10 are the concatenation nodes at the end of each convolution
block, as shown in Section 3.2. Notice that mixed10 is the last layer of this component since we
have decided not to download the top classifier. Therefore in order to complete the network,
again according to the block diagram of Section 3.2, we have added on top of this component
the remaining layers, consisting on an Average Pooling, a Dropout, a Dense layer (with relu
activation since it is not the final layer) and finally another Dense softmax layer. In the previous

code, this is what happens with the sentences:

model.add(layers.GlobalAveragePooling2D())
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model .add(layers.Dropout(0.2))
model.add(layers.Dense(class_dim, activation = ’relu’))

model.add(layers.Dense(n_classes, activation=’softmax’))

The class_dim and n_classes variables are the dimensions of the last two Dense layers.
In the original InceptionV3 network these dimensions are 4096 and 1000 respectively (the
ImageNet dataset consists of 1000 classes). In our case, and for the purposes of training on the
full dataset, the number of n_classes is 73, and therefore, in order to control the complexity
of the model, we have decided to limit class_dim to 512. We have decided to leave these
parameters as variables for added flexibility in case we want to modify them later. For instance,
in Chapter 5 we will reorganize the dataset in such a way that n_classes will be 42. If we

print the summary of the full model the result is:

Layer (type) Output Shape Param #
inception_v3 (Model) (None, 8, 8, 2048) 21802784
global_average_pooling2d_1 ( (Nome, 2048) o
aropout_t (Dropout) ~  (Nome, 2048) o
gense_t (Dense)  (Nome, 512) 1049088
dense_2 (Dense)  (Nome, 7) s7ass

Total params: 22,889,321
Trainable params: 22,854,889
Non-trainable params: 34,432

This shows the whole pretrained component previously studied as a block called inception_v3
and after that the top classifier top that we added. The layers of the full model are stored as a
list model.layers. Therefore, if we want to access the individual layers of the inception_v3
component, we can do it with the list model.layers[0] .layers. In order to do transfer learn-
ing we have to freeze all the parameters of the InceptionV3 component, which is what the loop
of the last two lines of code in the init_model() function does.

After running the function, we can check the status of all the layers in the full model and

in the pretrained component as follows:

Input:
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for i, layer in enumerate(model.layers [0].layers):

print (i, layer.name, ’,_.Trainable:.’, layer.trainable)

for i, layer in enumerate(model.layers):

print (i, layer.name, ’,_.Trainable:.’, layer.trainable)

Output:

input_1 , Trainable: False

conv2d_1 , Trainable: False
batch_normalization_1 , Trainable: False
activation_1 , Trainable: False

conv2d_2 , Trainable: False
batch_normalization_2 , Trainable: False
activation_2 , Trainable: False

conv2d_3 , Trainable: False

batch_normalization_3 , Trainable: False

© 0 N O Od W N = O

activation_3 , Trainable: False

max_pooling2d_1 , Trainable: False

=
= O

conv2d_4 , Trainable: False

[
N

batch_normalization_4 , Trainable: False

—
w

activation_4 , Trainable: False

-
S

conv2d_5 , Trainable: False

[
(¢}

batch_normalization_5 , Trainable: False

[
(@)

activation_5 , Trainable: False

e
~

max_pooling2d_2 , Trainable: False

[
0]

conv2d_9 , Trainable: False

[
©

batch_normalization_9 , Trainable: False

N
o

activation_9 , Trainable: False

N
=

conv2d_7 , Trainable: False

N
N

conv2d_10 , Trainable: False

N
w

batch_normalization_7 , Trainable: False

N
=~

batch_normalization_10 , Trainable: False

N
()]

activation_7 , Trainable: False

N
@)

activation_10 , Trainable: False

N
~

average_pooling2d_1 , Trainable: False

N
[o0]

conv2d_6 , Trainable: False

N
©

conv2d_8 , Trainable: False

w
o

conv2d_11 , Trainable: False

w
—

conv2d_12 , Trainable: False

w
N

batch_normalization_6 , Trainable: False

w
w

batch_normalization_8 , Trainable: False

w
=

batch_normalization_11 , Trainable: False

w
¢

batch_normalization_12 , Trainable: False
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36 activation_6 , Trainable: False

37 activation_8 , Trainable: False

38 activation_11 , Trainable: False

39 activation_12 , Trainable: False

40 mixed0 , Trainable: False

41 conv2d_16 , Trainable: False

42 batch_normalization_16 , Trainable: False
43 activation_16 , Trainable: False

44 conv2d_14 , Trainable: False

45 conv2d_17 , Trainable: False

46 batch_normalization_14 , Trainable: False
47 batch_normalization_17 , Trainable: False
48 activation_14 , Trainable: False

49 activation_17 , Trainable: False

50 average_pooling2d_2 , Trainable: False

51 conv2d_13 , Trainable: False

52 conv2d_15 , Trainable: False

53 conv2d_18 , Trainable: False

54 conv2d_19 , Trainable: False

55 batch_normalization_13 , Trainable: False
56 batch_normalization_15 , Trainable: False
57 batch_normalization_18 , Trainable: False
58 batch_normalization_19 , Trainable: False
59 activation_13 , Trainable: False

60 activation_15 , Trainable: False

61 activation_18 , Trainable: False

62 activation_19 , Trainable: False

63 mixedl , Trainable: False

64 conv2d_23 , Trainable: False

65 batch_normalization_23 , Trainable: False
66 activation_23 , Trainable: False

67 conv2d_21 , Trainable: False

68 conv2d_24 , Trainable: False

69 batch_normalization_21 , Trainable: False
70 batch_normalization_24 , Trainable: False
71 activation_21 , Trainable: False

72 activation_24 , Trainable: False

73 average_pooling2d_3 , Trainable: False

74 conv2d_20 , Trainable: False

75 conv2d_22 , Trainable: False

76 conv2d_25 , Trainable: False

77 conv2d_26 , Trainable: False

78 batch_normalization_20 , Trainable: False

79 batch_normalization_22 , Trainable: False
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80 batch_normalization_25 , Trainable:
81 batch_normalization_26 , Trainable:
82 activation_20 , Trainable: False
83 activation_22 , Trainable: False
84 activation_25 , Trainable: False
85 activation_26 , Trainable: False
86 mixed2 , Trainable: False

87 conv2d_28 , Trainable: False

88 batch_normalization_28 , Trainable:
89 activation_28 , Trainable: False
90 conv2d_29 , Trainable: False

91 batch_normalization_29 , Trainable:
92 activation_29 , Trainable: False
93 conv2d_27 , Trainable: False

94 conv2d_30 , Trainable: False

95 batch_normalization_27 , Trainable:
96 batch_normalization_30 , Trainable:
97 activation_27 , Trainable: False
98 activation_30 , Trainable: False
99 max_pooling2d_3 , Trainable: False
100 mixed3 , Trainable: False

101 conv2d_35 , Trainable: False

102 batch_normalization_35 , Trainable:

103 activation_35 , Trainable: False
104 conv2d_36 , Trainable: False

105 batch_normalization_36 , Trainable:

106 activation_36 , Trainable: False
107 conv2d_32 , Trainable: False
108 conv2d_37 , Trainable: False

109 batch_normalization_32 , Trainable:

110 batch_normalization_37 , Trainable:

111 activation_32 , Trainable: False
112 activation_37 , Trainable: False
113 conv2d_33 , Trainable: False
114 conv2d_38 , Trainable: False

115 batch_normalization_33 , Trainable:

116 batch_normalization_38 , Trainable:

117 activation_33 , Trainable: False
118 activation_38 , Trainable: False
119 average_pooling2d_4 , Trainable:
120 conv2d_31 , Trainable: False

121 conv2d_34 , Trainable: False

122 conv2d_39 , Trainable: False

123 conv2d_40 , Trainable: False

False

False

False

False

False

False

False

False

False

False

False

False

False
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124 batch_normalization_31 , Trainable: False
125 batch_normalization_34 , Trainable: False
126 batch_normalization_39 , Trainable: False
127 batch_normalization_40 , Trainable: False
128 activation_31 , Trainable: False

129 activation_34 , Trainable: False

130 activation_39 , Trainable: False

131 activation_40 , Trainable: False

132 mixed4 , Trainable: False

133 conv2d_45 , Trainable: False

134 batch_normalization_45 , Trainable: False
135 activation_45 , Trainable: False

136 conv2d_46 , Trainable: False

137 batch_normalization_46 , Trainable: False
138 activation_46 , Trainable: False

139 conv2d_42 , Trainable: False

140 conv2d_47 , Trainable: False

141 batch_normalization_42 , Trainable: False
142 batch_normalization_47 , Trainable: False
143 activation_42 , Trainable: False

144 activation_47 , Trainable: False

145 conv2d_43 , Trainable: False

146 conv2d_48 , Trainable: False

147 batch_normalization_43 , Trainable: False
148 batch_normalization_48 , Trainable: False
149 activation_43 , Trainable: False

150 activation_48 , Trainable: False

151 average_pooling2d_5 , Trainable: False
152 conv2d_41 , Trainable: False

153 conv2d_44 , Trainable: False

154 conv2d_49 , Trainable: False

155 conv2d_50 , Trainable: False

156 batch_normalization_41 , Trainable: False
157 batch_normalization_44 , Trainable: False
158 batch_normalization_49 , Trainable: False
159 batch_normalization_50 , Trainable: False
160 activation_41 , Trainable: False

161 activation_44 , Trainable: False

162 activation_49 , Trainable: False

163 activation_50 , Trainable: False

164 mixed5 , Trainable: False

165 conv2d_55 , Trainable: False

166 batch_normalization_55 , Trainable: False
167 activation_55 , Trainable: False
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168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211

conv2d_56 , Trainable: False

batch_normalization_56 , Trainable:

activation_56 , Trainable: False
conv2d_52 , Trainable: False

conv2d_57 , Trainable: False

batch_normalization_52 , Trainable:

batch_normalization_57 , Trainable:

activation_52 , Trainable: False
activation_57 , Trainable: False
conv2d_53 , Trainable: False

conv2d_58 , Trainable: False

batch_normalization_53 , Trainable:

batch_normalization_58 , Trainable:

activation_53 , Trainable: False
activation_58 , Trainable: False
average_pooling2d_6 , Trainable:
conv2d_51 , Trainable: False
conv2d_b54 , Trainable: False
conv2d_59 , Trainable: False

conv2d_60 , Trainable: False

batch_normalization_51 , Trainable:
batch_normalization_54 , Trainable:
batch_normalization_59 , Trainable:

batch_normalization_60 , Trainable:

activation_51 , Trainable: False
activation_54 , Trainable: False
activation_59 , Trainable: False
activation_60 , Trainable: False
mixed6 , Trainable: False

conv2d_65 , Trainable: False

batch_normalization_65 , Trainable:

activation_65 , Trainable: False

conv2d_66 , Trainable: False

batch_normalization_66 , Trainable:

activation_66 , Trainable: False
conv2d_62 , Trainable: False

conv2d_67 , Trainable: False

batch_normalization_62 , Trainable:

batch_normalization_67 , Trainable:

activation_62 , Trainable: False
activation_67 , Trainable: False
conv2d_63 , Trainable: False

conv2d_68 , Trainable: False

batch_normalization_63 , Trainable:

False

False

False

False

False

False

False
False
False

False

False

False

False

False

False
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212 batch_normalization_68 , Trainable: False
213 activation_63 , Trainable: False

214 activation_68 , Trainable: False

215 average_pooling2d_7 , Trainable: False
216 conv2d_61 , Trainable: False

217 conv2d_64 , Trainable: False

218 conv2d_69 , Trainable: False

219 conv2d_70 , Trainable: False

220 batch_normalization_61 , Trainable: False
221 batch_normalization_64 , Trainable: False
222 batch_normalization_69 , Trainable: False
223 batch_normalization_70 , Trainable: False
224 activation_61 , Trainable: False

225 activation_64 , Trainable: False

226 activation_69 , Trainable: False

227 activation_70 , Trainable: False

228 mixed7 , Trainable: False

229 conv2d_73 , Trainable: False

230 batch_normalization_73 , Trainable: False
231 activation_73 , Trainable: False

232 conv2d_74 , Trainable: False

233 batch_normalization_74 , Trainable: False
234 activation_74 , Trainable: False

235 conv2d_71 , Trainable: False

236 conv2d_75 , Trainable: False

237 batch_normalization_71 , Trainable: False
238 batch_normalization_75 , Trainable: False
239 activation_71 , Trainable: False

240 activation_75 , Trainable: False

241 conv2d_72 , Trainable: False

242 conv2d_76 , Trainable: False

243 batch_normalization_72 , Trainable: False
244 batch_normalization_76 , Trainable: False
245 activation_72 , Trainable: False

246 activation_76 , Trainable: False

247 max_pooling2d_4 , Trainable: False

248 mixed8 , Trainable: False

249 conv2d_81 , Trainable: False

250 batch_normalization_81 , Trainable: False
251 activation_81 , Trainable: False

252 conv2d_78 , Trainable: False

253 conv2d_82 , Trainable: False

254 batch_normalization_78 , Trainable: False
255 batch_normalization_82 , Trainable: False
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256 activation_78 , Trainable: False
257 activation_82 , Trainable: False
258 conv2d_79 , Trainable: False

259 conv2d_80 , Trainable: False

260 conv2d_83 , Trainable: False

261 conv2d_84 , Trainable: False

262 average_pooling2d_8 , Trainable:
263 conv2d_77 , Trainable: False

264 batch_normalization_79 , Trainable:
265 batch_normalization_80 , Trainable:
266 batch_normalization_83 , Trainable:

267 batch_normalization_84 , Trainable:

268 conv2d_85 , Trainable: False

269 batch_normalization_77 , Trainable:

270 activation_79 , Trainable: False
271 activation_80 , Trainable: False
272 activation_83 , Trainable: False

273 activation_84 , Trainable: False

274 batch_normalization_85 , Trainable:

275 activation_77 , Trainable: False
276 mixed9_0 , Trainable: False

277 concatenate_1 , Trainable: False
278 activation_85 , Trainable: False
279 mixed9 , Trainable: False

280 conv2d_90 , Trainable: False

281 batch_normalization_90 , Trainable:

282 activation_90 , Trainable: False
283 conv2d_87 , Trainable: False
284 conv2d_91 , Trainable: False

285 batch_normalization_87 , Trainable:

286 batch_normalization_91 , Trainable:

287 activation_87 , Trainable: False
288 activation_91 , Trainable: False
289 conv2d_88 , Trainable: False

290 conv2d_89 , Trainable: False

291 conv2d_92 , Trainable: False

292 conv2d_93 , Trainable: False

293 average_pooling2d_9 , Trainable:
294 conv2d_86 , Trainable: False

295 batch_normalization_88 , Trainable:
296 batch_normalization_89 , Trainable:
297 batch_normalization_92 , Trainable:

298 batch_normalization_93 , Trainable:

299 conv2d_94 , Trainable: False

False

False
False
False

False

False

False

False

False

False

False

False
False
False

False
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300 batch_normalization_86 , Trainable: False
301 activation_88 , Trainable: False

302 activation_89 , Trainable: False

303 activation_92 , Trainable: False

304 activation_93 , Trainable: False

305 batch_normalization_94 , Trainable: False
306 activation_86 , Trainable: False

307 mixed9_1 , Trainable: False

308 concatenate_2 , Trainable: False

309 activation_94 , Trainable: False

310 mixed10 , Trainable: False

0 inception_v3 , Trainable: True

1 global_average_pooling2d_1 , Trainable: True

2 dropout_1 , Trainable: True
3 dense_1 , Trainable: True
4 dense_2 , Trainable: True

Notice how the first 311 layers correspond to the InceptionV3 network and are all non-

trainable. The next part of the output, layers 0 to 4, correspond to the full model, for which

layer 0 is the InceptionV3 component seen as a layer in the full model. This layer is declared

trainable, however it doesn’t have any trainable parameter has we have seen from the previous

lines. It is important that the 0 layer of the full model be trainable since in the fine tuning

process we will be unfreezing several of its internal layers, which must be seen as trainable for

the full model.

For implementing the fine tuning process we create the function unfreeze_cnn which will

selectively unfreeze layers of the pretrained component of the full model. The code is the fol-

lowing;:

Input:

def unfreeze_cnn(first ,
if last = ’end’:

for i,

last ):

layer.trainable = True

else:

layer in enumerate(model.layers [0].layers|[first :]):

for i, layer in enumerate(model.layers[0].layers[first:last+1]):

)

, layer.trainable)

layer.trainable = True
for i, layer in enumerate(model.layers[0].layers):
print (i, layer.name, ’,_.Trainable:.
for i, layer in enumerate(model.layers

print (i, layer.name,

):

’,.Trainable:_.’, layer.trainable)
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For instance, if we want to unfreeze the last inception block we would set the parameters

as first = 280 and last = ’end’. An extract of the result of applying the function would be:

Input:

unfreeze_cnn (280, ’end’)

Output:

268 conv2d_85 , Trainable: False

269 batch_normalization_77 , Trainable: False
270 activation_79 , Trainable: False

271 activation_80 , Trainable: False

272 activation_83 , Trainable: False

273 activation_84 , Trainable: False

274 batch_normalization_85 , Trainable: False
275 activation_77 , Trainable: False

276 mixed9_0 , Trainable: False

277 concatenate_1 , Trainable: False

278 activation_85 , Trainable: False

279 mixed9 , Trainable: False

280 conv2d_90 , Trainable: True

281 batch_normalization_90 , Trainable: True
282 activation_90 , Trainable: True

283 conv2d_87 , Trainable: True

284 conv2d_91 , Trainable: True

285 batch_normalization_87 , Trainable: True
286 batch_normalization_91 , Trainable: True
287 activation_87 , Trainable: True

288 activation_91 , Trainable: True

289 conv2d_88 , Trainable: True

290 conv2d_89 , Trainable: True

291 conv2d_92 , Trainable: True

292 conv2d_93 , Trainable: True

293 average_pooling2d_9 , Trainable: True
294 conv2d_86 , Trainable: True

295 batch_normalization_88 , Trainable: True
296 batch_normalization_89 , Trainable: True
297 batch_normalization_92 , Trainable: True
298 batch_normalization_93 , Trainable: True
299 conv2d_94 , Trainable: True

300 batch_normalization_86 , Trainable: True
301 activation_88 , Trainable: True

302 activation_89 , Trainable: True
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303 activation_92 , Trainable: True

304 activation_93 , Trainable: True

305 batch_normalization_94 , Trainable: True
306 activation_86 , Trainable: True

307 mixed9_1 , Trainable: True

308 concatenate_2 , Trainable: True

309 activation_94 , Trainable: True

310 mixed10 , Trainable: True

0 inception_v3 , Trainable: True

1 global_average_pooling2d_1 , Trainable: True
2 dropout_1 , Trainable: True

3 dense_1 , Trainable: True

4 dense_2 , Trainable: True

4.2 Generators and Image Augmentation

As mentioned before, in order to train high capacity deep models we need a lot of images, which
make impossible the usual approach of feeding the network with a numpy array storing all the
images. For this reason we are going to use the technique of generators. In simple terms, and
in our context, a generator will be composed of two elements, a flow_from_directory method
and a ImageDataGenerator object. The method will read images from disk and will pass
them to the object, which will then apply several transformations. These two processes will
be encapsulated in the generator, which will execute the whole process in batches, producing
numpy arrays that will be used for the training, predicting and validating steps.

We will take now a small detour in order to delve deeper into an important feature (and a
standard procedure in training deep networks for image recognition) of the generator: image
augmentation. Image augmentation is a way to synthetically produce more images than the
ones we have available. This works by applying a number of transformations to a given image
in a randomized and unlimited way, therefore resulting in an infinite set of images representing
the same classification category. These transformations include rotations, stretching, zooming,
altering the color scheme, flipping the image around an axis, etc... In this way we are effectively
enlarging immensely our training set and therefore we will hopefully be able to deal with very
high capacity models without underfitting or overfitting them. We will now provide an example
of how data augmentation works in the Beauty dataset. This code will not form part of the
main scripts training our model, and is included here only for the purpose of illustrating the
kind of new images that we will artificially generate in the training process.

We will choose a single image and load it into an array. Then, a ImageDataGenerator will

generate an infinite number of modified images within certain transformation parameters. We
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will stop the process after 9 images.

Input:

import os

from keras.preprocessing import image

from keras.preprocessing.image import ImageDataGenerator
import matplotlib.pyplot as plt

Y%matplotlib inline

directory = ’/home/miguelyogur/tfm/dataset_beauty/train/Body_AntiCelluliteCream’
fnames = [os.path.join (directory, fname) for fname in os.listdir (directory)]
img_path = fnames [8]

img = image.load_img (img_path)

print (’Original _.image’)
plt .imshow (img)
plt.axis(’off’)

plt .show ()

datagen = ImageDataGenerator (
rotation_range =30,
width_shift _range=0.2,
height_shift _range=0.2,
shear_range=0.2,
zoom_range=0.1,
horizontal_flip=True,

fill_.mode="nearest ’)

X = image.img_to_array (img)

x.reshape ((1,) + x.shape)

print (’Augmented._images’)

fig=plt.figure (figsize = (15, 15))

i =1

for batch in datagen.flow(x, batch_size=1):
fig.add_subplot (3,3, i)
plt .imshow (image.array_-to_img (batch[0]))
plt.axis(’off’)

i4=1
if 1 > 09:
break

plt .show ()
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The outputs images of this example are shown in Figure 4.1.

Returning to our main goal, we will now set up two generators, one for training and one for
validation and testing. Both generators will first read images from disk, which will be further
processed by the ImageDataGenerator. This processing will consist on converting them in
batches of numpy arrays, min-max normalizing them (in this context this consists of dividing
each pixel intensity by the maximum possible value, which is 255 for 8-bit depth images) and
then applying image augmentation. Notice that image augmentation will be performed only in
the training set, since when evaluating the model we need to do it on real images. The code

for creating the generators is:

Input:

train_datagen = ImageDataGenerator (
rescale=1./255
,rotation_range=40
,width_shift _range=0.2
,height_shift _range=0.2
,shear_range=0.2
,zoom_range=0.2
,horizontal _flip=True

,fill _mode="nearest’

)

test _datagen = ImageDataGenerator(rescale=1./255)

train_generator = train_datagen.flow_from_directory (
train_dir ,
target_size=(input_dim , input_dim),
batch_size =64,
class_mode="categorical ’)

validation_generator = test_datagen.flow_from_directory (
validation_dir ,
target_size=(input_dim , input_dim),
batch_size=128,

class_mode=’categorical ”)

The generators include the choice of batch size (that will be the number of images included in
each array passed to the network when fitting or predicting). Also, they include as parameters
the dimension of the images, which has already been used when constructing the full model,
and the folders from which to extract the training, validation or test images. These routes will

be declared when the final piece of code is assembled. Finally, note that we use the categorical
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Original image

Augmented images

Figure 4.1: Artificial augmentation of a single image.
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class mode since we will fit a classification algorithm with more than two classes.

4.3 Functions for Training and Quality

We now create the function that will take care of the training process. This will consist of
compiling the model and then fitting it to the training set by means of the training generator
previously constructed. Since we are dealing with a lot of data, each epoch can take a lot of
time. Therefore we will define a list of callbacks that essentially will stop the training process if
the validation loss does not improve for 3 consecutive epochs, and the best model will be saved.
The validation process will be done after each epoch on the validation set via the validation
generator.

One important point is that, as has been previously mentioned, the two generators that we
introduced will generate endless batches of images. For this reason it is necessary to impose a
halt mechanism for both the training of each epoch and the validation process. This will be
done in the steps_per_epoch and validation_steps respectively, which are chosen in such
a way that these number of steps, together with the number of images produced by the batch
generator for each step, take care of the totality of images in the corresponding set. The code

for the training function is:

Input:

def train_model(lr=2e—4, n_epochs=100):

callbacks_list = |
EarlyStopping (monitor="val_loss
ModelCheckpoint (filepath="best_model .h5’, monitor="val_loss’,

save_best_only=True)

)

, patience=3),

model.compile(loss="categorical _crossentropy ’,
optimizer=optimizers.RMSprop(lr=Ir),

metrics=["acc’])

history = model. fit_generator (
train_generator ,
steps_per_epoch= 911,
epochs=n_epochs,
callbacks=callbacks_list ,
validation_data=validation_generator ,

validation_steps =57,
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workers = 4)
validation_loss , validation_acc = model.evaluate_generator (
generator=validation_generator , steps = 57, workers = 4
)
print (’last .model_validation_loss:’, validation_loss
"last .model_validation_acc:’, validation_acc)

# plot acc and loss curves for training and validation

acc = history. history [ acc’]

val_acc = history.history[’val_acc’]
loss = history.history [’ loss’]
val_loss = history.history[’val_loss’]
epochs = range(len(acc))

plt.plot (epochs, acc, ’bo’, label=’Training.acc’)
plt.plot (epochs, val_acc, ’'b’, label="Validation_.acc’)
plt.title (’Training._.and_validation._accuracy’)
plt.legend ()

plt.figure ()

plt.plot (epochs, loss, ’bo’, label="Training.loss’)
plt.plot (epochs, val_loss, ’'b’, label="Validation.loss”)
plt.title (’Training.and_validation._loss’)

plt.legend ()

plt .show ()

Notice that the second part of the function includes a preliminary assessment of the quality
of the model, once it has stopped by virtue of the callback clause. This part will produce
estimations of the validation loss and accuracy based on the last epoch (which is actually three
epochs later than the best model saved) and also a graphic history of the accuracy and loss
for both the training and validation sets. In this way it will be easier to get an idea of the
bias-variance trade of the algorithm as we add epochs to the training routine.

The last piece of code that we are going to need is a more refined measure of the quality
of the model. This will be obtained by a new function that will produce an accuracy indicator
on the validation set well as a confusion matrix for the best model saved. This will be useful
later for evaluating the accuracy of the model on each category and for grouping those that

are mistaken by the algorithm into a single one, therefore reorganizing the images into a new
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dataset with less categories, which hopefully will improve the model’s performance. This will

be the topic of Chapter 5. The code for this function is:

Input:

val_generator = test_datagen.flow_from_directory (
validation_dir ,
target_size=(input_dim , input_dim),
batch_size=1,

class_mode=’categorical ’)

# Get labels
label_map = list (range(len(val_generator.class_indices)))
for key, value in val_generator.class_indices.items():

label_map [value] = key

def get_quality_model (model):
y-true = []
y-pred = []

i=20

for input_image, input_label in val_generator:
y-true.append ((np.argmax(input_label)))
y_pred .append ((np.argmax (model. predict (input_image))))
i=1i+1

if i > len(val_generator): break

y-true = np.asarray (y-true)

y.-pred = np.asarray (y_pred)

cf = confusion_matrix(y-true, y_pred)
cf_pd = pd.DataFrame(cf, index = label_map, columns = label_map)

cf_pd.to_csv(’best_model_confusion_matrix.csv’, sep="\t")

print ( 'MODEL_RESULTS: ’)

print (’Validation._accuracy: .

)

, np.mean(y_-true = y_pred))

Before the function we have defined a new generator exclusively for validating the model after
the last epoch has finished. It works by feeding images to the trained model one by one (batch
size is 1), predicting the class of each image, and then computing the accuracy over all the
predictions on the validation set. We have also created a list with all the names of the labels
that will be used later for displaying purposes.

The function get_quality_model will use the generator we just created to perform an
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accuracy analysis on the validation set. It will also create a confusion matrix that will be
converted to a pandas dataframe. The previously created list of labels will be then used to
label the rows and columns of the dataframe for further analysis. This confusion matrix is

saved to disk.

4.4 'Training the Model

In this section we will present the full script for training and assessing the model with transfer
learning and also with fine tuning. The code that will take care of the whole process is the

following;:

Input:

# MODEL InceptionV3
# WITH DATA AUGMENTATION
# FINE TUNING

input_dim = 299 #input dimension of the pretrained network.

#the input shape will be (input_dim , input_dim, 3)

class_dim = 512 #number of nodes of the last Dense layer before the classifier
l_unfreeze = 280 #unfreeze last 1 blocks of inceptionV3 and train

n_classes = 73 #number of classes

base_dir = ’/home/miguelrol976/tfm/dataset_beauty’ #directory of the dataset

import os, shutil

from keras import models

from keras import layers

from keras import optimizers

from keras.applications import InceptionV3

from keras.preprocessing.image import ImageDataGenerator
from keras.callbacks import EarlyStopping, ModelCheckpoint
from keras.models import load_model

import matplotlib.pyplot as plt

Y%matplotlib inline

import numpy as np

import pandas as pd

from sklearn.metrics import confusion_matrix

import itertools
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#folders mnames

train_dir = os.path.join(base_dir, ’train’)
validation_dir = os.path.join(base_dir, ’validation’)

test_dir = os.path.join (base_dir, ’test’)

20

Define train data generator with image augmentation and test data generator without
The test generator is wused for both wvalidation and test data
train_datagen = ImageDataGenerator (

rescale=1./255

,rotation_range=40

,width_shift _range=0.2

,height_shift_range=0.2

,shear_range=0.2

,zoom_range=0.2

,horizontal _flip=True

,fill_mode="nearest’

)

test_datagen = ImageDataGenerator(rescale=1./255)

train_generator = train_datagen.flow_from_directory (
train_dir ,
target_size=(input_-dim, input.-dim),
batch_size=64,

class_mode="categorical )

validation_generator = test_datagen.flow_from_directory (
validation_dir ,
target_size=(input_-dim, input.-dim),
batch_size=128,

class_mode="categorical ’)

700

Functions for unfreezing layers in the pretrained cnn and for training the model.

The arguments are:

unfreeze_cnn:
— first and last (both included) layers to be unfrozen

train_model:
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— Ir: learning rate of the optimizer

— n_epochs: maximum number of epochs to train

200

def unfreeze_cnn(first , last):
if last = ’end’:
for i, layer in enumerate(model.layers[0].layers|[first :]):
layer.trainable = True
else:
for i, layer in enumerate(model.layers [0].layers[first:last+1]):
layer.trainable = True
for i, layer in enumerate(model.layers[0].layers):

print (i, layer.name, ’,.Trainable:.’

, layer.trainable)
for i, layer in enumerate(model.layers):

print (i, layer.name, ’,_.Trainable:.’, layer.trainable)

def train_model(lr=2e—4, n_epochs=100):

callbacks_list = |

EarlyStopping (monitor="val_loss

)

, patience=3),
ModelCheckpoint (filepath="best_model .h5’, monitor="val_loss’,

save_best_only=True)

model.compile(loss="categorical _crossentropy ’,
optimizer=optimizers.RMSprop(lr=Ir),

metrics=["acc’])

history = model. fit_generator (
train_generator ,
steps_per_epoch= 911,
epochs=n_epochs,
callbacks=callbacks_list ,
validation_data=validation_generator ,

validation_steps=57,

workers = 4)
validation_loss , validation_acc = model.evaluate_generator (
generator=validation_generator , steps = 57, workers = 4

)

print (’last .model_validation_loss:’, validation_loss

)

)

"last .model_.validation_acc:’, validation_acc)
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# plot acc and loss curves for training and validation

acc history . history [ acc’]

val_acc history . history [’val_acc’]

loss history . history[’loss ]

val_loss

epochs = range(len(acc))
plt.
plt.
plt.

plt.

plot (epochs, acc,

plot (epochs, val_acc,
legend ()

plt.figure ()
plt.
plt
plt.
plt.

plot (epochs, loss,

.plot (epochs, val_loss ,
legend ()

plt.show ()

20

history . history[’val_loss’]

"bo’, label=’Training.acc’)
'b’, label=’Validation.acc’)

title (’Training._and._validation._accuracy’)

"bo’, label="Training._loss’)
'b’, label=’Validation.loss )

title (’Training.and_validation._.loss’)

Define a generator for wvalidation purposes on the already trained model

We also produce a list of labels for the

rows and colums in the confusion matrix

2002

val_generator

validation_dir

)

categories which will be used for mnaming

test_datagen . flow_from_directory (

target_size=(input_-dim, input.-dim),

batch_size=1,

class_mode="categorical ’)

# Get labels
label_map

list (range(len(val_generator.class_indices)))

for key, value in val_generator.class_indices.items():

label_map [value] = key

P

Define a function for testing the quality of the best model saved

in one iteration of the training process.

It takes as arguments:
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— model: the model name given when loading it from disk

20

def get_quality_model (model):
y-true = []
y-pred = []

i=0

for input_image, input_label in val_generator:
y_true.append ((np.argmax(input_-label)))
y_pred .append ((np.argmax (model. predict (input_image))))
i=1i+4+1
if i > len(val_generator): break

y-true = np.asarray (y-true)

y-pred = np.asarray (y-pred)

c¢f = confusion_matrix(y_true, y_pred)
cf_pd = pd.DataFrame(cf, index = label_map, columns = label_map)

cf_pd.to_csv(’best_-model_confusion_matrix.csv’, sep="\t")

print ( 'MODEL_RESULTS: ’)

print (’Validation._accuracy:.’

, np.mean(y_true = y_pred))

700

We set the model and show its architecture for

future reference when freezing/unfreezing nodes

)00

def init_model ():
conv_base = InceptionV3(weights=’imagenet’,
include_top=False ,
input_shape=(input_-dim , input_-dim, 3)

)

#print (conv_base.summary())

model = models. Sequential ()

model.add (conv_base)
model.add(layers.GlobalAveragePooling2D ())

model.add (layers.Dropout (0.2))
model.add(layers.Dense(class_dim , activation = ’relu’))
model.add(layers.Dense(n_classes , activation=’softmax’))

#print (model. summary())
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2000

Start by freezing the pretrained cnn completely and showing the trainability

status of all layers im the cnn and in the full model

PR A

for layer in model.layers [0].layers:

layer.trainable = False

for i, layer in enumerate(model.layers [0]. layers):

2 7

print (i, layer.name, ’, Trainable: 7, layer.trainable)

for i, layer in enumerate(model.layers):

RN NI N N

print (i, layer.name, ’, Trainable: 7, layer.trainable)

return model

#reset model

model = init_model ()

unfreeze layers for fine tuning

this line should be commented for transfer learning, but not for fine tuning
#unfreeze_cnn (l_unfreeze , ’end’)

#train model an get quality

train_model ()

best_model = load_model (’best_model.h5")

cf, ecr = get_quality _model (best_model)

As we can see, all the necessary parameters are introduced at the beginning of the script,
then all the functions are defined and finally, at the bottom of the script, the initialization,
training, and quality assessment of the model are done. In this part, there is a line invoking
the unfreeze_cnn function. Notice that this line should be omitted for the transfer learning,
and it should be used for fine tuning. According to the output of this function showed in page

47, the values of the 1_unfreeze parameter are:

e 280 for fine tuning one block,
e 249 for fine tuning two blocks,

e 229 for fine tuning three blocks,
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e 197 for fine tuning four blocks,
e 165 for fine tuning five blocks,
e 133 for fine tuning six blocks,

e ctc. ..

4.5 Results and Quality of the Model

All the outputs of each transfer learning or fine tuning step are collected in Section 8.1. We
have trained and evaluated models up to fine tuning 9 inception blocks. We find an increase in
the validation accuracy as we unfreeze more blocks, up to a point where the model cannot learn
anymore. Figure 4.2 shows the comparison of accuracy and loss on training and validation sets
for each training strategy. As we can see, with this approach, the best result occurs when the

last 6 inception blocks are fine tuned, reaching a validation accuracy of 38.73%.
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Figure 4.2: Quality of the different fine tuned models for the Beauty dataset using the Incep-
tionV3 network.



Chapter 5
Grouping Categories

In this chapter we will try to improve the accuracy results of our model by reducing the number
of categories of our dataset. To this end, we will study the confusion matrix for the best model
obtained by the methods of Chapter 4. We will then identify the categories that are most
frequently mixed by the algorithm and regroup them, obtaining a dataset of the same size, but
with 42 classes instead of 73. Afterwards the same steps as in Chapter 4 for preprocessing,
training and assessing the models will be carried out for this grouped dataset. The comparison
of the different quality scores for the model applied to the original categories set or the new

grouped categories set will be the main focus of Chapter 6.

5.1 The Confusion Matrix

The confusion matrix for the best model obtained in the previous chapter is a 73 x 73 pandas
dataframe that is best visualized with a color scheme as in Figure 5.1. This matrix shows
the results of testing the model on the validation set, which has 100 images for each category
(except for one category with only 88 images). The legend, based on the number of examples

in each case, is as follows:

e red: n > 60,

orange 40 < n < 60,

yellow 20 < n < 40,

blue 10 < n < 20,

green 1 < n < 10,

black n = 0.

71
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Figure 5.1: Confusion matrix for the Beauty dataset.
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Figure 5.2: Reordering of categories for the Beauty dataset.

As we can see, the best accuracy results are along the diagonal, which is good. However, the
network has trouble discerning among several classes. This behavior is more clearly exhibited
if we wrangle with the order in which the categories are presented (which corresponds to the
process of changing rows and columns in the matrix while preserving the diagonal). This is

done in Figure 5.2.

5.2 Reorganization of the Categories

A natural way to group categories into clusters in such a way that the occupancy of the off-

diagonal blocks is minimized is shown in Figure 5.3. Here, each red square block is a proposed



74 Grouping Categories

new clusterization of several previously independent categories.

Bodyhygiene_Bathcosmetics

Facetreatment_FaceExfoliantsScrub

Facetreatment_Eyestreatment

Body_Bodytreatment

Body_Handstreatment

Facetreatment_Antiagecreamfirmingcream

Facetreatment_Facetreatment

Body_Bodyemollients

Facetreatment_Faceserum

Body_Bodymoisturizers

Facetreatment_Facemasks

Facetreatment_Facetoner

HairScalp_Shampoo

Hairscalp_Conditioner

HairScalp_Hairtreatment

Facetreatment_Lipstreatment

Lipsmakeup_Lipsticksandgloss

Manline_Mancreamsandiotions

Manline_PreandAftershaveLotions

Suntanlotions_AfterSunLotion

Suntanlotions_SunScreenBody

Suntanlotions_SunScreenFace

Suntanlotions_Suntanlotions

Suntanlotions_SelftanningLotion

Body_BodyFirmings

Body_AntiCelluliteCream

Body_BodyExfoliantsScrub

Bodyhygiene_SoapsandSyndets

Facemakeup_Concealer

Eyesmakeup_Eyeshadows

Facemakeup_Allinonefacemakeup

Facemakeup_TintedMoisturizer

Facemakeup_Foundationcream

Body_

Bodyhygiene_Liquidsoaps

Bodyhygiene_WipesWetNapkins

Facemakeup_Blush

Facemakeup_Powder

Fragrances_Fragrances

Fragrances_HouseFragrances

Facemakeup_Facedecoration

HairScalp_Haird)

HairScalp_Stylingserumgelmousse

HairScalp_Hairspray

Body_SupplementsBody

HairScalp_SupplementsHair

Handsmakeup_Nailsdecoration

Lipsmakeup_Lipliners

Oralhygiene_ElectricToothbrush

Oralhygiene_Toothbrushes

Oralhygiene_Toothpaste

Cosmeticaccessories_Candles

Cosmeticaccessories_Combs

Cosmeticaccessories_Hairbrushes

Setline_setline

CosmeticGiftwraps_Giftwrap

c

2

Cosmeticaccessories_Mirrors

Cosmeticaccessories_Razor

Cosmeticaccessories_Sponges

el
Eyesmakeup_Mascara

HairScalp_Hairfashionmentions 1
Handsmakeup_Nailspolish |

Figure 5.3: New categories for the Beauty dataset.

We will refer to this new organization of the images as the Grouped dataset. In order to
implement the clusterization, we have to reorganize the folder structure of the Beauty dataset

as showed in page 11. We will accomplish this with the following code:

Input:

#define folder paths for train, validation y test

import os, shutil

#folders names
original_dataset_dir = ’/home/miguelyogur/datasets/Beauty/’
base_dir = ’/home/miguelyogur/tfm/Beauty_Grouped_A’

#new groupings
Gl = |

"Bodyhygiene_Bathcosmetics’




5.2.

Reorganization of the Categories

75

G2

G3

G4

G5

G6

GT7

,’Facetreatment_FaceExfoliantsScrub’
,’Facetreatment_Eyestreatment’

, 'Body_Bodytreatment’

, ’Body_Handstreatment’
,’Facetreatment_Antiagecreamfirmingcream’
, 'Facetreatment_Facetreatment’

, ' Body_Bodyemollients’

, 'Facetreatment_Faceserum’

[

"Facetreatment_AcneOilySkinTreatment’

, ' Facetreatment_Facemasks’
,'Facetreatment_Facecleansersanmakeupremovers’
,’Facetreatment_Facetoner’

, ’HairScalp_Shampoo’

,’HairScalp_Conditioner’

[

"Facetreatment_Lipstreatment’

, ' Lipsmakeup_Lipsticksandgloss’

[

’Manline_Mancreamsandlotions’
, ’Manline_PreandAfterShaveLotions’

[

"Suntanlotions_SunScreenBody’

,’Suntanlotions_SunScreenFace’

[

’Suntanlotions_Suntanlotions’

,’Suntanlotions_SelftanningLotion’

[

"Body_BodyFirmings’
,’Body_AntiCelluliteCream’
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G8 = |
"Eyesmakeup_Eyeshadows’

, ’Facemakeup_Allinonefacemakeup’

]

G9 = |
"Facemakeup_TintedMoisturizer’

, 'Facemakeup_Foundationcream’

]

G10 = |
"Facemakeup_Blush’

, '’Facemakeup_Powder’
, 'Facemakeup_Foundationcreampowdercompact’

]

Gl11 = |
"HairScalp_Stylingserumgelmousse’
,’HairScalp_Hairspray’

]

G12 = |
"Body_SupplementsBody’
,’HairScalp_SupplementsHair’

]

G13 = |
"Lipsmakeup_Lipliners’

, ’Eyesmakeup_Eyelinerandeyepencils’

]

Gl4 = |
"Oralhygiene_ElectricToothbrush’
,’Oralhygiene_Toothbrushes’

]

Gl15 = |
"Cosmeticaccessories_Combs’
,’Cosmeticaccessories_Hairbrushes”’

]

Gl16 = |

’Setline_Setline’

,CosmeticGiftwraps_Giftwrap’
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,’Packagingmultiproduct_Multicosmeticspackaging’

, ’Cosmeticaccessories_MakeupBagsKits’

G17 = |
"Facemakeup_Makeupfashionmentions’

,’HairScalp_Hairfashionmentions’

grouped_cat = [G1,
G2,
G3,
G4,
G5,
G6,
G7,
G8,
G9,
G10,
Gl11,
G12,
G13,
Gl4,
G15,
G16,
G17]

grouped_cat_names = ['Gl’,
G2,
G377,
"G4,
"GH
"G67
G777,
"G87,
"G9’,
"G107,
G117,
G127,
"G137,
G147,
"G157,
G167,
"G177 ]
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#get list containing all paths for the categories of the Beauty dataset
subdirs = list ()

for root, dirs, files in os.walk(’/home/miguelyogur/datasets/Beauty’):

subdirs.append(root)

subdirs = subdirs [1:]

)

#store categories’ mames in list

names = list ({x.replace(’/home/miguelyogur/datasets/Beauty/boxes_’, ’’)[: —5]
for x in subdirs})
In [4]:

#create new dataset folder
shutil.rmtree(base_dir)

os.mkdir (base_dir)

In [5]:

#create new groupings and copy the files

for i, group in enumerate(grouped_cat):

dest_dir = os.path.join(base_dir, grouped_cat_names][i])
os.mkdir(dest_dir)
print ( ’Grouping: ’, grouped_cat_names][i])

for subdir in subdirs:

name_subdir = subdir.replace (
’/home/miguelyogur/datasets/Beauty/boxes_’, '’ )[: —5]
if name_subdir in group:
print (name_subdir, ’contained ,.copying.files’)
filenames = []

for root, dirs, files in os.walk(subdir):
filenames .append( files)
filenames = filenames [0]
for file in filenames:
src = os.path.join (subdir, file)
dst = os.path.join (dest_dir, file)
shutil.copyfile(src, dst)

#copy the remaining files for the ungrouped categories
categories_grouped = |[]
for group in grouped_cat:
for name in group:
categories_grouped .append (name)

categories_ungrouped = list (set(names) — set(categories_grouped))
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for subdir in subdirs:

name_subdir = subdir.replace(’/home/miguelyogur/datasets/Beauty/boxes_’,

")l -5)

if name_subdir in categories_ungrouped:

dest_dir
os.mkdir(dest_dir)

print (name_subdir ,

[]

dirs

os.path.join (base_dir ,

filenames

for root,

)

filenames .append( files)

filenames filenames [0]
for file

STrc

in filenames:

dst = os.path.join (dest_dir ,

shutil.copyfile(src, dst)

os.path.join (subdir ,

name_subdir)

"not.grouped , .copying.files ’)

files in os.walk(subdir):

file)
file )

This script creates the Beauty_Grouped_A dataset. At this point, the same process for

creating a new folder structure with train, validation and test folders as we did for the original

dataset is performed. We can then apply the same approach for fitting and evaluating the

model on this new, reorganized version of the Beauty dataset.

5.3 Training on the Grouped Dataset

The training process mimics the one employed for the full dataset. However, since we now have

42 categories instead of 73, and we are also using a different location for the data, we have to

modify the header of the script used for training and evaluating. This new header will be as

follows:

Input:

MODEL InceptionV38
WITH DATA AUGMENTATION
FINE TUNING

#
#
#

input_dim

512 #number of nodes of the
197 #unfreeze last 4 blocks

n_classes = 42 #number of classes

class_dim

#l_unfreeze

299 #input dimension of the pretrained network.
#the input shape will be (input_dim,

3)

last Dense layer before the classificator

input_dim ,

of inceptionV3 and train

base_dir = ’/home/miguelrol976/tfm/dataset_beauty_grouped_A’
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We will save the best model before overfitting for each training round, where for each round
a further inception block is fine tuned. The last block being fine tuned is the ninth one, exactly
like it was the case for the full dataset. The training and evaluation process is summarized in
Figure 5.4.

As we can see, the best accuracy obtained with the transfer learning and fine tuning ap-
proaches reaches a maximum of 50.45% with the last 7 inception blocks fine tuned before
the model starts degrading. Again, the full results of the training and validating process are

collected in Section 8.2.



5.3. Training on the Grouped Dataset 81

0551 — acc_train_grouped
= acc_val_grouped

0.50 1

0.45 A

0.40 1

0.35 1

0.30

0 2 4 6 8
Fine Tuned Blocks (0 for Transfer Learning)

26

= loss_train_grouped
— loss_val_grouped

24 1

22 4

20

18 1

16 1

0 2 4 6 8
Fine Tuned Blocks (0 for Transfer Learning)

Figure 5.4: Quality of the different fine tuned models for the grouped Beauty dataset using the
InceptionV3 network.



82

Grouping Categories




Chapter 6

Additional Models and Quality

Comparison

6.1 Complete Training of other Network Architectures

In this section, and for the sake of comparison, we will fit several other models with standard
state of the art deep network architectures. In these cases, we will not use the transfer learning
approach, and we will train the networks from scratch with full random initialization of the

parameters. The models considered will be
e InceptionV3, introduced in [13]
e ResNet50, introduced in [12]
e SimpleNet, introduced in [11]

For InceptionV3 and ResNet we will use the implementations included in keras. Notice that
we will not use the weights pretrained on ImageNet and that we will include the top classi-
fier layer. In the case of InceptionV3, the keras implementation of this network, although it
adapts to the number of classes of any dataset, is slightly different from the original archi-
tecture, and therefore, does not correspond exactly to the top classifier block that we have
used in the transfer learning and fine tuning processes. The only modification needed to our

code is changing the init_model function in the following ways, depending on the architecture:

Input:

#complete training InceptionV3
def init_model ():
model = InceptionV3(weights=None,

33
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include_top=True,
input_shape=(input_dim , input_dim, 3),
classes = n_classes)

return model

#complete training ResNet50
def init_model ():
model = ResNet50(weights=None,
include_top=True,
input_shape=(input_-dim , input-dim, 3),
classes = n_classes)

return model

For the SimpleNet architecture, we will use the keras implementation developed in [15]. The
fitting and quality assessment processes are identical to the ones carried out in previous sections
of this work. We will only be fitting the models on the full Beauty dataset.

The accuracy scores on the validation set for each model are:
e InceptionV3 0.2846,

e ResNetb0 0.1450,

e SimpleNet, 0.1504.

As we can see, a complete training of these networks, even with image augmentation, cannot
compete with the results obtained by transfer learning and fine tuning techniques. However,
the InceptionV3 network seems to work much better than the two other models. The reason
is, most likely, that the synthetic images generated by image augmentation are not completely
decorrelated from the original ones. Therefore, in the context of a high capacity model such
as the deep networks considered in this section, image augmentation is not enough to avoid

overfitting.

6.2 Quality Comparison for the Full and Grouped Beauty

Datasets

We will now look at a comparison between the quality scores obtained on the full and grouped
Beauty datasets with the methods of Chapters 4 and 5. If we compare the accuracy and loss
on the validation set for each model and each step of the transfer learning and fine tuning
approach, we find the behavior shown in Figure 6.1. Notice that for each step of the process,

the accuracy on the grouped dataset is consistently about 10 percentage points higher. The
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Figure 6.1: Comparison of the performance on the full and grouped datasets

tionV3 network.

using the Incep-
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best model obtained correspond to fine tune 6 and 7 inception blocks respectively, and the
performance on the grouped dataset, for this case, offers a 30 percent relative improvement

with respect to the full dataset.

6.3 Test Accuracies

As explained in the previous section, for each of the two datasets the final model will be
the one with best validation accuracy . Since these are actually different models on different
datasets it makes sense to compute the final test accuracy for both cases. The way of doing
this is a straightforward modification of the validation process used by the get_quality_model,
consisting in changing the origin of the data for the val_generator from the validation set to
the test set. Recall that, since the test set has not yet been used, this score can be considered
a fair estimation of what the performance of each model would be on unseen data. The test

accuracies obtained are:
e 0.3733 for the full dataset, and

e 0.5003 for the grouped dataset.



Chapter 7
Conclusions

In this project we have used deep learning to solve an image recognition problem. Specifically
we have applied transfer learning and fine tuning approaches with the InceptionV3 network
pretrained on the ImageNe