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ABSTRACT

This  paper  proposes  a  new hybrid  algorithm for  solving  the  Arc  Routing  Problem with  Stochastic
Demands  (ARPSD).  Our  approach  combines  Monte  Carlo  simulation  (MCS)  with  the  RandSHARP
algorithm, which is designed for solving the Capacitated Arc Routing Problem (CARP) with deterministic
demands.  The RandSHARP algorithm makes use of a CARP-adapted version of the Clarke and Wright
Savings heuristic,  which was originally designed for the Vehicle Routing Problem.  The RandSHARP
algorithm also integrates a biased-randomized process, which allows it to obtain competitive results for
the CARP in low computational times. The RandSHARP algorithm is then combined with MCS to solve
the ARPSD. In order to do that, the vehicle maximum capacity is restricted somewhat during the routing-
design stage. This allows keeping a safety stock which can then be used during the actual delivery stage
to cover  possible  unexpected demands.  A reliability index is  used  to  evaluate  the  robustness  of  the
solution. Some numerical experiments contribute to illustrate the potential benefits of our approach.

1 INTRODUCTION

The Capacitated Arc Routing Problem (CARP) is a well known NP-hard optimization problem which was
first introduced by Golden and Wong (1981). It can be informally described as follows. Consider: (a) an
incomplete graph or network; (b) a set of customers located on some of the edges of the network with a
demand to be satisfied; (c) a cost matrix representing the costs (or distances) of traversing each edge; and
(d) an homogeneous fleet of vehicles with limited capacity. Then, the goal is to find a set of routes which
minimizes  total  routing  costs  while  satisfying  all  customers’  demands.  Notice  that  the  Arc  Routing
Problem with Stochastic Demands (ARPSD) is a generalization of the CARP where customers’ demands
are not deterministic in nature but stochastic, i.e. each demand can be modeled as a random variable.
Considering stochastic demands over deterministic ones is a more realistic but also difficult scenario.
Unfortunately, most of the existing literature focuses on the deterministic case. Therefore, the main goal
of our approach is to contribute to fill the lack of scientific works on the stochastic case by proposing a
hybrid algorithm which takes advantage of both heuristics and simulation techniques.

Thus,  the  main  difference between the CARP and ARPSD is  that  in  the  former,  the  customer’s
demands are known beforehand while in the latter, they have a stochastic nature, which means that only
its statistical distribution and expected value are known beforehand, but its exact value is not revealed
until the vehicle reaches the customer’s edge. This random behavior of the customer’s demands could
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cause an expected feasible solution to become an unfeasible one if the final demand of any route exceeds
the actual vehicle capacity. This situation is referred to as “route failure”, and when it occurs corrective
actions must be introduced to obtain new feasible solutions.

The CARP has application in real life problems such as refuse collection, snow removal, inspection
of distributed systems or routing of street sweepers. These applications have an stochastic behavior which
makes the ARPSD more suitable to model them.

The remaining of this paper is structured as follows. First of all, in Section 2 a literature review on
the ARPSD is presented, including some of the most remarkable results on the area. Next, in Section 3,
the ARPSD is briefly described.  Section 4 describes the approach we propose for solving the ARPSD.
Section  5 presents  some  numerical  results  which  are  discussed  in  Section  6.  Finally,  Section  7,
summarizes the main conclusions of this work.

2 LITERATURE REVIEW

The research body concerning the ARPSD is very sparse. As far as we known, the ARPSD was first
considered in  Fleury et al.  (2002) and further extended in  Fleury et al.  (2005).  In these works, the
ARPSD was not approached directly. Instead, the scope was to evaluate the robustness of solutions for
the  CARP  if  the  demands  were  in  fact  stochastic,  and  how this  robustness  could  be  improved.  In
particular,  the  work of  Fleury et  al.  (2005) contains  an application of  the  Hybrid  Genetic heuristic,
originally proposed by  Lacomme et  al.  (2001) for  the  CARP.  Different  solutions  were obtained by
varying the vehicle capacity in each run of the heuristic. The solutions obtained were then evaluated by
means of simulation studies. The ARPSD with Normal distributed demands was first approached directly
by  Fleury  et  al.  (2004).  The  authors  propose  a  Memetic  Algorithm,  which  is  an  extension  of  the
algorithm suggested by  Lacomme et al. (2004). For each edge, the Normal distribution describing the
demand was truncated to avoid negative demands and demands that exceeded the vehicle capacity. The
problem was further restricted, since a route could only fail once, and if a failure occurred on a route it
would always be immediately returned to the depot before serving the last edge. 

The  first  exact  algorithm for  the  ARPSD,  and the only one we  are  aware  of,  was  proposed by
Christiansen et al. (2009). Their work is further motivated by a previous work for solving the Vehicle
Routing  Problem  with  Stochastic  Demands  (VRPSD)  presented  in  Christiansen  et  al.  (2007).  In
particular,  they formulate  the ARPSD as a Set  Partitioning Problem and develop a Branch-and-Price
algorithm in which the pricing incorporates  demands’  stochastic  nature.  Laporte  et  al.  (2010) have
recently developed a local  search approach for the stochastic version of the undirected CARP in the
context of garbage collection. In their paper, the problem was cast within the framework of a stochastic
program with recourse. A first-stage solution is constructed by means of a developed Adaptative Large
Neighborhood Search Heuristic (ALNS), which considers the expected cost of recourse. Closed form
expressions were derived for the expected cost  of  recourse by extending the concept of  route failure
commonly used in the VRPSD. Their computational results show that ALNS solutions were better than
those obtained by first optimally solving a deterministic CARP and then computing the expected cost of
recourse actions using random variables for the demands.

Finally, other works related to the ARPSD which are worth to be mentioned are found in Chen et al.
(2009) and  Ismail et al. (2011). In the former, the authors address an realistic ARP based on a small-
package delivery real-world application. In this problem, uncertainty as whether a street segment requires
service on a particular day is considered and incorporated to a proposed model called Probabilistic Arc
Routing Problem (PARP). To solve the PARP, they use a solution procedure which incorporates the street
segments presence probabilities into an adapted local search. The local search they use was primarily
designed by  Bertsimas et al. (1993) for solving the Probabilistic Traveling Salesman Problem (PTSP)
(Jaillet 1988). Regarding the work of Ismail et al. (2011), these authors consider a real-life condition of
the CARP in waste collection operations. In particular, they study how rain drops affect the total collected
waste  weight.  Two  CARP  models  were  suited  for  the  case  study,  each  one  considering  stochastic
demands  and  time  windows.  The  authors  developed  a  constructive  heuristic,  the  so-called  Nearest
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Procedure Based on Highest Demand/Cost (NPHDC), which works in conjunction with switching rules to
search for the best feasible solution.

3 THE ARC ROUTING PROBLEM WITH STOCHASTIC DEMANDS

The Stochastic (or Probabilistic) Arc Routing Problem (SCARP or PCARP) is a family of arc routing
problems characterized by the random nature of at least one of their parameters or structural variables.
This uncertainty is usually modeled by means of suitable random variables which, in most  cases, are
assumed to be independent.  The ARPSD is a case of this family where the random parameter is the
demand of the customers which is modeled by a random variable. Thus, the ARPSD is a combinatorial
optimization problem that can be defined as follows. Let  G = (V, E, C, Q) be a connected undirected
graph which is incomplete, where:

1. V is a set of nodes, including the one representing the depot or distribution center.
2. E is a set of edges or arcs connecting some of the nodes of V.
3. C is  a cost  matrix representing the positive costs related to the movement  from one node to

another.  These  costs  are  usually  based  on  the  distances  or  lengths  of  the  edges  which  are
traversed on the movement from one node to another.

4. Q is a vector of demands representing the non-negative random demand associated with each
edge. Every one of these demands  Qi  is considered to be a random variable with known mean
E[Qi]=qi  and statistical distribution.

In addition, there is a fleet of identical vehicles, each of them with a maximum capacity W >> { E[Qi] /
Qi in  Q }.  Under  these circumstances,  the  usual  goal  is  to  find a  set  of  feasible  vehicle  routes  that
minimizes the total delivering costs while satisfying the following constraints:

1. Each route starts and ends at the depot node, so every route is a roundtrip.
2. All edges demands are satisfied.
3. Each edge with positive demand is served by exactly one vehicle. Notice, however, that every

edge can be traversed as many times as required by the same or different vehicle.
4. The total demand to be served by any route cannot exceed the vehicle capacity W.

4 OVERVIEW OF OUR APPROACH

Our methodology is based on two main ideas: (a) the ARPSD can be seen as a generalization of the
CARP, i.e. the CARP can be considered a special case of the ARPSD where the random demands have
zero variance; and (b) while the ARPSD is yet  an emerging research area, efficient metaheuristics do
already exist for solving the CARP –in fact, state-of-the-art metaheuristics based on the use of Genetic
Algorithms, Tabu Search, Simulated Annealing, Ant Colony Optimization or hybrid GRASP are able to
provide near-optimal solutions for most known CARP benchmarks.

Accordingly,  the  key idea behind our  approach is  to  transform the ARPSD instance into a new
problem which  consists  of  solving  several  “conservative”  CARP instances,  each  characterized  by  a
specific risk (probability) of suffering route failures. The term conservative refers to the fact that only a
certain  percentage  of  the  vehicle  total  capacity  is  considered  during  the  routing  design  phase.  The
remainder capacity will be free in this phase in order to have it available in case actual demands included
in the route served by the vehicle are greater than expected. With that we are protecting somehow from
route failures. This empty vehicle capacity can be considered as a safety stock since it reflects the level of
extra stock that is maintained to buffer against possible route failures.

This idea is adapted from Juan et al. (2011), where the VRPSD is presented as a generalization of
the CVRP. In that paper, a Biased Randomized version of the Clarke and Wright Savings (CWS) heuristic
as  the  algorithm  to  solve  the  conservative  CVRP  instances.  In  the  current  paper,  we  will  use  the
Randomized Savings Heuristic for the Arc Routing Problem (RandSHARP), proposed in Gonzalez et al.
(2012).  The  RandSHARP  algorithm is  a  Biased  Randomization  of  the  SHARP  heuristic,  being  the
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SHARP an adaption of the CWS heuristic to solve the CARP. The methodology defined to solve the
ARPSD in the described way, consists on the following steps (see Fig. 1):

1. Consider an ARPSD instance defined by a set of n customers. Each customer has associated an
stochastic demand characterized by its mean and statistical distribution. For simplicity, assume
that all the customers have the same statistical distribution despite everyone have its own mean.

2. Considering the maximum vehicle capacity,  W,  set a value for  k, the percentage of the vehicle
capacity that can be used in the route design phase. Compute W* = k W.

3. Consider a CARP problem named CARP(k),  consisting on the CARP version of the ARPSD
where the customer’s demands are represented by their means and the vehicle have the capacity
restricted to W*.

ARPSD instance 
with W and Q

Selec
t k

Obtain CARP(k) 
instance with W*=k·W 

and q
i

*=E[Qi]

Solve CARP(k) with 
RandSHARP and obtain v 

fixed cost for ARPSD

Estimate reliability per route 
with Monte Carlo simulation

Estimate reliability of 
ARPSD solution

Estimate variable costs 
for ARPSD

Estimate cost of potential 
corrective actions per each 

subroute

Determine if 
more iterations 

are required

Provide ARPSD 
solution with the best 
estimated total cost
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Figure 1 – Flow diagram of the methodology

4. Solve the CARP(k) problem with the RandSHARP algorithm. This solution will be an aprioristic
solution for the original ARPSD. Furthermore, it will be a feasible solution as long as there are
not any route failures. This means that the additional demand that might be originated during the
execution phase in each route does not exceed the vehicle reserve capacity.

5. Using the previous solution with m routes, estimate the expected cost due to possible failures on
any  route.  This  is  done  using  Monte  Carlo  simulation.  To  this  end,  random  demands  are
generated  and whenever  a  route  failure  occurs  a  corrective  policy  is  applied  registering  the
associated cost of this action. Every time a route fails, the cost of a round-trip from the depot to
the failing customer’s edge is computed as cost of corrective action. After iterating this process
some thousands of times,  a random sample of observations regarding these variable costs are
obtained and an estimate for its expected value can be calculated. Then, the expected total costs
due to possible route failures can be computed by the addition of these variable costs and the
costs of the deterministic solution obtained in the design phase.

6. Using the aprioristic solution with m routes, obtain an estimate for the reliability of each route. In
such context, the reliability index is defined as the probability that a route will not suffer a route
failure. This reliability index is computed by direct Monte Carlo simulation using the statistical
distribution  that  model  customer  demands  in  each  route.  Remark  that  in  each  route,  over-
estimated demands could sometimes be compensated by under-estimated demands.

7. Obtain an estimate for the reliability index associated with the aprioristic solutions. Under the
assumption that customer demands are independent, which is a reasonable hypothesis, this can be
attained by simply multiplying the reliability of each route. A solution reliability level can be
considered as a measure for the feasibility of the solution in the ARPSD context.

8. Depending on the total  costs  and the reliability indices associated with the solutions  already
obtained, repeat the process from Step 1 with a new value of the parameter k to explore different
scenarios.

9. Finally,  provide  a  sorted  list  with  the  best  ARPSD  solutions  found  so  far  as  well  as  their
corresponding properties such as cost or reliability index.

5 COMPUTATIONAL EXPERIMENTS

The  methodology  described  in  the  previous  section  has  been  implemented  as  a  Java  application  to
evaluate its performance. Java SE6 over Netbeans IDE was used here instead of a more efficient language
such as C or C++ for several reasons: (a) being an object-oriented programming language with advanced
memory management features like the garbage collection and with a readily-available data structures, it
allows a somewhat faster  development  of algorithmic software;  (b) it  offers immediate  portability to
different operating systems; and (c) it offers better replicability and duplicability than other languages.
However, it has the counterpart that having a poorer performance than C or C++, mainly due to the fact
that Java is executed over a virtual machine, adding this some overload to execution. To perform our
experiments a standard personal computer was used to perform all tests, an Intel® Core™2 Quad CPU
Q9300 at 2.50 GHz and 8 GB RAM running in Windows® 7 Pro operating system.

In order  to  generate  the  random demands,  and for  its  use  in  Biased Randomized process  of  the
RandSHARP algorithm implementation,  a state-of-the-art  pseudo random number  generator has  been
employed.  Specifically,  we  used  the  LFSR113  from the  SSJ  library  (L’Ecuyer  2002).  To  test  our
methodology,  the  gdb dataset originally proposed in  Golden et al. (1983) has been used. This dataset
consists of 23 small-medium CARP problem instances, so we will consider the instances assuming that
the customer demand defined on the instance is the mean of the stochastic variable which defines actual
customer demand on ARPSD. Furthermore, we will consider that this demand is distributed following a
Log-Normal statistical distribution. In order to assess the methodology on different circumstances, we
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have performed the tests in three different scenarios, each one with a different variance for the Log-
normal random variable: (1) 0.05·E[Qi], (2) 0.25·E[Qi] and (3) 0.75·E[Qi].

The experiments were run varying the k parameter from 0.75 to 1.00, with a step of 0.01, to evaluate
both  conservative  and  non-conservative  scenarios.  For  each  k parameter,  a  complete  execution  was
performed with a duration of 180 seconds. Then, the best  k value vas selected and compared with the
result  obtained with the solution without  safety stock.  Results  are displayed on  Tables 1-3.  In these
tables, results of computational experiments are displayed. The tables are structured in two halves. The
first, marked as Best Known Solution, contains the results for the deterministic solutions without safety
stock.  These  solutions  correspond  to  solve  the  ARPSD  as  a  CARP  considering  the  demands  as
deterministic with value qi. In the other half, marked as Our Best Solution, the result for the best k found
is displayed. These solutions are obtained selecting CARP(k) solution which obtains less total expected
costs computed with Monte Carlo simulation.

Table 1:  gdb dataset results – 0.05·E[Qi] variance

Best Known Solution Our Best Solution

Instance
Name

Routes
Costs

(1)
Expected
Costs (2)

Gap (1) – (2) Reliability Routes k
Expected
Costs (3)

Gap (1) – (3) Reliability

gdb1 5 316 366.3 15.92% 0.73 5 1 366.3 15.92% 0.73
gdb2 6 345 403.1 16.84% 0.74 6 1 403.1 16.84% 0.74
gdb3 5 275 321.7 16.98% 0.73 5 1 321.7 16.98% 0.73
gdb4 4 287 341.9 19.13% 0.69 4 1 341.9 19.13% 0.69
gdb5 6 383 450.8 17.70% 0.74 6 1 450.8 17.70% 0.74
gdb6 5 298 346.3 16.21% 0.73 5 1 346.3 16.21% 0.73
gdb7 5 325 380.6 17.11% 0.73 5 1 380.6 17.11% 0.73
gdb8 11 360 371.5 3.19% 0.96 11 0.98 371.4 3.17% 0.96
gdb9 11 318 338.2 6.35% 0.91 11 0.98 337.3 6.07% 0.94
gdb10 5 285 307.2 7.79% 0.84 5 0.98 305.8 7.30% 0.83
gdb11 6 413 415.2 0.53% 0.98 6 0.93 413.4 0.10% 0.96
gdb12 7 478 480.9 0.61% 0.99 7 1 480.9 0.61% 0.99
gdb13 7 544 544.3 0.06% 1.00 7 0.93 544.2 0.04% 1.00
gdb14 5 104 106.8 2.69% 0.95 5 0.99 106.7 2.60% 0.95
gdb15 4 58 58.1 0.17% 0.99 4 1 58.1 0.17% 0.99
gdb16 6 129 130.7 1.32% 0.95 6 0.99 130.4 1.09% 0.97
gdb17 5 91 92.4 1.54% 0.95 6 0.99 91.0 0.00% 1.00
gdb18 5 168 174.8 4.05% 0.87 5 0.99 173.2 3.10% 0.87
gdb19 3 55 55.9 1.64% 0.96 3 1 55.9 1.64% 0.96
gdb20 5 123 123.5 0.41% 0.98 5 1 123.5 0.41% 0.98
gdb21 7 159 161.0 1.26% 0.96 7 0.96 160.3 0.82% 0.96
gdb22 9 202 204.5 1.24% 0.95 9 0.99 204.2 1.09% 0.97
gdb23 12 237 238.6 0.68% 0.98 12 1 238.6 0.68% 0.98
Averages 6.67% 0.88 0.987 6.47% 0.89

6 DISCUSSION OF PROPOSED METHODOLOGY AND RESULTS

The idea of considering a vehicle safety stock when designing CARP solutions which will be used for
ARPSD is not new. Fleury et al. (2005) proposes four different scenarios with different values of safety
stocks and compared their performance. It differs from our approach since our methodology evaluates a
wider  range  of  safety  stock  values  and  uses  different  criteria  in  the  selection  of  the  best  solution.
Furthermore, our methodology uses an additional Monte Carlo simulation procedure to assure the correct
behavior of the solution for the CARP(k) problem for the ARPSD prior to select it as the solution. When
analyzing the proposed methodology, we can remark some benefits from it:
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 In some sense, it can be said that our methodology is reducing the complex ARPSD to a limited
set of conservative CARP, where high quality algorithms are already available.

 The methodology is not restricted to single CARP algorithm, different algorithms could be used
with the methodology in order to obtain robust solutions for the ARPSD.

 The  methodology is  valid  for  any  statistical  distribution,  so  it  can  handle  different  real  life
scenarios.

 As  the  decision-maker  can  consider  different  solutions  with  different  values  of  k,  the
methodology makes the selection more flexible in order to consider different utility functions.

 The methodology is  easily parallelizable as the solution for any value of  k can be computed
independently.

Table 2:  gdb dataset results – 0.25·E[Qi] variance

Best Known Solution Our Best Solution

Instance
Name

Routes
Costs

(1)
Expected
Costs (2)

Gap (1) – (2) Reliability Routes K
Expected
Costs (3)

Gap (1) – (3) Reliability

gdb1 5 316 365.3 15.60% 0.74 5 1 365.3 15.60% 0.74
gdb2 6 355 405.5 14.23% 0.75 6 1 405.5 14.23% 0.75
gdb3 5 275 317.5 15.45% 0.75 5 1 317.5 15.45% 0.75
gdb4 4 287 337.2 17.49% 0.71 4 1 337.2 17.49% 0.71
gdb5 6 377 442.5 17.37% 0.74 6 1 442.5 17.37% 0.74
gdb6 5 298 345.2 15.84% 0.75 5 1 345.2 15.84% 0.75
gdb7 5 325 377.6 16.18% 0.75 5 1 377.6 16.18% 0.75
gdb8 11 360 398.8 10.78% 0.87 11 1 398.8 10.78% 0.87
gdb9 11 322 363.9 13.01% 0.82 11 0,98 362.7 12.64% 0.85
gdb10 4 275 309.8 12.65% 0.68 4 1 309.8 12.65% 0.68
gdb11 6 411 428.2 4.18% 0.90 6 0,95 425.5 3.53% 0.92
gdb12 7 490 506.6 3.39% 0.97 8 0,95 503.4 2.73% 0.97
gdb13 7 544 551.9 1.45% 0.95 7 0,94 551.8 1.43% 0.95
gdb14 6 106 111.0 4.72% 0.90 6 1 111.0 4.72% 0.90
gdb15 4 58 59.4 2.41% 0.91 4 1 59.4 2.41% 0.91
gdb16 7 131 136.0 3.82% 0.91 7 0,93 134.7 2.82% 0.93
gdb17 6 91 92.7 1.87% 0.93 6 0,85 92.2 1.32% 0.95
gdb18 5 166 179.5 8.13% 0.79 5 0,98 177.2 6.75% 0.84
gdb19 3 55 58.4 6.18% 0.85 3 1 58.4 6.18% 0.85
gdb20 5 123 127.1 3.33% 0.91 5 1 127.1 3.33% 0.91
gdb21 7 158 165.7 4.87% 0.87 7 0,98 165.4 4.68% 0.86
gdb22 10 204 210.5 3.19% 0.90 10 0,95 210.0 2.94% 0.90
gdb23 12 237 247.4 4.39% 0.88 12 0,99 246.2 3.88% 0.89
Averages 8.72% 0.83 0.978 8.48% 0.84

Considering  the  results,  it  is  clear  that  the  more  variance  the  customer’s  demand  has,  the  greater
improvement is obtained with the use of safety stocks. Nevertheless, notice also that depending on the
concrete problem instance, we obtain no gain with the use of safety stock. For example, for instances
gdb1 to gdb8 we obtained that always the best solution were not those using a safety stock. Reviewing
each one of these instances, it can be noticed that the total demand to be served is not an exact multiple of
the vehicle capacity.  So these instances, somehow, already have an implicit  safety stock. Despite not
considering this during the design phase,  it  is  improving the robustness of the solutions as it  allows
overcoming some unexpected over-demands. For the instances were an improvement is obtained, it is
clear that it is great as the customer’s demands are more disperse. Notice also that in this case we have no
considered additional penalization when a route failure occurs, than a roundtrip of the vehicle to the depot
to be loaded. In some cases there can be additional penalization costs (e.g due to the time lost in the
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vehicle reload procedure) which will increase the over-cost of these recourse action and then increment
the gap between our best solution and the solution without safety stock.

Table 3:  gdb dataset results – 0.75·E[Qi] variance

Best Known Solution Our Best Solution

Instance
Name

Routes
Costs

(1)
Expected
Costs (2)

Gap (1) – (2) Reliability Routes k
Expected
Costs (3)

Gap (1) – (3) Reliability

gdb1 5 316 362.9 14.84% 0.77 5 1 362.9 14.84% 0.77
gdb2 6 345 395.1 14.52% 0.78 6 1 395.1 14.52% 0.78
gdb3 5 275 315.0 14.55% 0.77 5 1 315 14.55% 0.77
gdb4 4 287 330.7 15.23% 0.75 4 1 330.7 15.23% 0.75
gdb5 6 377 435.8 15.60% 0.76 6 1 435.8 15.60% 0.76
gdb6 5 298 340.0 14.09% 0.77 5 1 340 14.09% 0.77
gdb7 5 325 373.6 14.95% 0.77 5 1 373.6 14.95% 0.77
gdb8 10 366 416.5 13.80% 0.79 10 1 416.5 13.80% 0.79
gdb9 11 318 382.9 20.41% 0.72 11 0.98 381.2 19.87% 0.77
gdb10 4 275 309.0 12.36% 0.70 4 1 309 12.36% 0.70
gdb11 6 411 440.9 7.27% 0.83 6 0.92 440 7.06% 0.83
gdb12 7 474 527.9 11.37% 0.87 7 1 527.9 11.37% 0.87
gdb13 7 544 566.6 4.15% 0.88 7 0.97 565.8 4.01% 0.88
gdb14 6 106 114.0 7.55% 0.86 6 0.95 113.8 7.36% 0.86
gdb15 4 58 61.3 5.69% 0.81 4 0.84 60.9 5.00% 0.83
gdb16 6 129 138.8 7.60% 0.81 6 0.92 138.5 7.36% 0.81
gdb17 6 91 94.8 4.18% 0.87 6 0.86 94.2 3.52% 0.88
gdb18 5 170 187.5 10.29% 0.71 5 0.98 182.8 7.53% 0.73
gdb19 3 55 60.9 10.73% 0.80 3 1 60.9 10.73% 0.80
gdb20 5 123 130.4 6.02% 0.85 5 0.93 130.3 5.93% 0.84
gdb21 8 162 172.4 6.42% 0.86 7 0.95 170.6 5.31% 0.80
gdb22 10 204 216.6 6.18% 0.83 10 0.93 214.6 5.20% 0.84
gdb23 12 237 253.2 6.84% 0.81 12 0.94 252.1 6.37% 0.81
Averages 10.64% 0.79 0.963 10.29% 0.80

Finally,  regarding  the  reliability  index,  remark  that  the  greater  the  variance  is,  lesser  values  of  the
reliability index are obtained. This is due to the fact that in case of high variances, over-demands can
occur with greater values, so route failures are more likely to occur. Notice also that the gap obtained is
greater as greater is the variance for the same reason, as more over-demand is get, greater penalty due to
recourse actions is incurred.

7 CONCLUSIONS

This  paper  has  presented  a  hybrid  methodology  for  solving  the  ARPSD.  The  methodology,  which
combines Monte Carlo simulation with heuristics, is based on the idea of using safety stocks during the
design stage so that unexpected demands can be satisfied during the delivery stage. The results for small-
and medium-size instances have shown that an improvement on solutions robustness can be achieved by
employing the appropriate safety stocks. However, sometimes the over-cost of this improvement on the
robustness does not compensate the cost of corrective actions required with less robust solutions obtained
without  safety stocks.  For  future  work  it  will  be  required  to  study high-size  instances  to  check the
performance of the methodology in those larger problems. In addition, a parallelization of the algorithm
will be required as greater instances will require greater execution times to obtain high-quality solutions.
Also, the addition of local search processes to the RandSHARP algorithm could be helpful to improve the
quality of solutions in medium- and high-size instances.
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