Hindawi Publishing Corporation

Mobile Information Systems

Volume 2015, Article ID 916262, 10 pages
http://dx.doi.org/10.1155/2015/916262

Research Article

Hindawi

AirPrint Forensics: Recovering the Contents
and Metadata of Printed Documents from iOS Devices

Luis Gémez-Miralles and Joan Arnedo-Moreno

Internet Interdisciplinary Institute (IN3), Universitat Oberta de Catalunya, Roc Boronat Street 117, 7th Floor,

08018 Barcelona, Spain

Correspondence should be addressed to Luis Gomez-Miralles; pope@uoc.edu

Received 10 June 2013; Accepted 22 October 2013

Academic Editor: David Taniar

Copyright © 2015 L. Gomez-Miralles and J. Arnedo-Moreno. This is an open access article distributed under the Creative
Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the

original work is properly cited.

Since its presentation by Apple, both the iPhone and iPad devices have achieved great success and gained widespread popularity. This
fact, added to the given idiosyncrasies of these new portable devices and the kind of data they may store, opens new opportunities in
the field of computer forensics. In 2010, version 4 of the iOS operating system introduced AirPrint, a simple and driverless wireless
printing functionality supported by hundreds of printer models from all major vendors. This paper describes the traces left in the
iOS device when AirPrint is used and presents a method for recovering content and metadata of documents that have been printed.

1. Introduction

Information technologies have grown rapidly in the last
decades, changing the way we live, work, and commu-
nicate. Portable devices such as smartphones and tablets
have evolved from simple phones and agendas into liter-
ally full-fledged, always-online computers. In this scenario,
where mobile devices become ubiquitous, privacy and cyber-
security become a great concern since such devices may
contain huge amounts of sensible valuable data about us:
contacts, calendar, e-mails, and photographs as well as a pile
of logs: phone calls, chat, geographic positions, and so forth.

The practice of digital forensics has needed to adapt
quickly to the emerging mobile technologies. We once had a
homogeneous personal computer market, mainly dominated
by a few different Windows versions, with minor representa-
tions of Mac OS or Unix-based systems. Now we find that the
most personal devices, the ones that always accompany their
users and are more prone to contain sensitive information,
run software environments which simply did not exist a few
years ago, namely, Android and iOS. Furthermore, because of
the competitive nature of the market, with each new version
of these systems, new functionalities are added in order to
appeal to a greater set of users and thus become their device
of choice. However, some of these new features may manage

personal user data and are worth analyzing from a forensic
investigation standpoint.

This paper focuses on the AirPrint feature of iOS devices
(iPhone, iPad, and iPod Touch), which allows them to print
wirelessly to compatible printers [1]. In a previous paper
[2] we observed that printing a document through AirPrint
leaves a trace in the filesystem of the iOS device in the form
of a temporary file containing the printed content and with
a specific metadata that allows for the identification of this
precise kind of files in the filesystem. This paper extends our
previous research to analyze if these temporary files can be
recovered even in modern iOS versions which use hardware-
based data encryption. Considering the rise of mobile devices
and applications in general [3, 4] and the hundreds of millions
iOS devices in particular [5], any available process which
allows to recover user data becomes especially relevant from
both a computer forensics and a privacy concern standpoint.

The main contribution of this paper is the exposition of
a method to recover from an iOS device the contents and
metadata of documents printed through AirPrint, even in
modern devices which feature hardware-based data encryp-
tion. Analyzing the behavior of AirPrint posed an interesting
challenge since iOS is a closed operating system and lacks
public documentation about many internal aspects. In addi-
tion, even when the mobile threat landscape has been covered

by other authors [6], there seems to be no additional research
on how AirPrint works behind the scenes and the forensic
traces it may leave. Several authors [7, 8] have reviewed the
existing (mostly commercial) forensic investigation tools for
iOS devices; however, analysis of AirPrint activity does not
seem to be covered by any of the existing software solutions.

This paper is structured as follows. First of all, in
Section 2, AirPrint and its mode of operation both from a
user’s and technical standpoints are presented. The analysis of
the traces left by AirPrint and the information they contain
is shown in Section 3. In Section 4, basic experiments are
performed to assess the recoverability of the AirPrint traces
in devices where encryption has been purposely disabled.
Following, in Section 5, the recoverability is evaluated for the
modern devices and OS versions that feature data encryption.
Finally, concluding the paper, Section 6 summarizes the
paper contributions and outlines further work.

2. Description of AirPrint Network Printing

Briefly explained, AirPrint is an iOS feature that allows
applications to send content to printers using the iOS device’s
wireless connection. Apple is directly quoted [1]: “AirPrint
automatically finds printers on local networks and can print
text, photos and graphics to them wirelessly over Wi-Fi without
the need to install drivers or download software”

Apple announced AirPrint in September 2010. Two
months later, i0OS 4.2 was released for the iPhone, iPad, and
iPod Touch, being the first iOS version to offer this feature
to users. Its standard functionality allows printing only to
specific, AirPrint-enabled printers. Nevertheless, as of July
2013 there were more than seven hundred AirPrint-enabled
printer models in the market from sixteen different vendors
[9]. Apple does not support sharing a common printer via the
computer it is connected to, even when it was possible with
some Mac OS X 10.6.5 beta versions; however, it can be done
by using software tweaks such as AirPrintActivator [10].

Long before the introduction of AirPrint, different solu-
tions [11, 12] tried to fill in this gap. Usually, such solutions
involved i0OS applications capable of opening different file
formats and sending them to a desktop computer, running
a companion application, which would in turn send the doc-
ument to the printer itself. Some printer vendors developed
specific clients; however, none of these solutions were ever
widely spread among users. Currently, with AirPrint working
out-of-the-box and embedded into all applications, it is hard
to believe that new users will consider using a specific, usually
paid application to handle printing, except maybe in some
very particular environments, such as cases where the use of
these kind of applications was consolidated before AirPrint
was launched or some advanced capabilities are required by
power users.

From a user’s standpoint, Figure 1 summarizes the print-
ing process, showing the screens it is actually possible to
interact with, as seen on an iPhone.

In the client side (iOS device), AirPrint-enabled applica-
tions contain a “Print” button that, when pressed, will present
an extremely simple menu (Figure 1(a)), with only two or
three available options:

Mobile Information Systems

= 508 74|

il & 1509 5%

o | Printer Options.

Printer HP Photosmart 5510 >

Range AllPages >

1Copy ——

started | hoy 15:09

status | Printing 1 of 10...

Cancel Printing

(a) (®) ()

FIGURE 1: Step-by-step AirPrint options screen on an iPhone.

(1) Printer: this option opens a list of all AirPrint-enabled
printers found in the local network, showing a “name”
and “description” field for each one.

(2) Range: (optional) defaulting to “all pages’, this option
opens a selector which allows the user to choose
a range of pages to be printed rather than all the
document.

(3) Copies: this option specifies the number of copies to
be printed.

(4) Depending on the printer features, additional param-
eters such as duplex printing can be controlled.

(5) Print: this button proceeds to send the job to the
printer.

The user cannot specify any other kind of information
usually available in printing menus, such as paper size or
orientation and printing quality. Everything is automatically
handled by AirPrint, using some default options. When the
user chooses to “Print” the job, the device shows some brief
messages (“Contacting Printer”; “Preparing page (...) of (...)s
“Sending to Printer”). However, depending on how long the
print job is, these messages may be barely visible or last for
several seconds.

After the job has been sent to the printer, the printing
menu disappears and the application returns to its previ-
ous state. At this point, invoking the list of recently used
applications, by double-clicking the device “Home” button,
reveals a Print Center application (Figure 1(b)). Unless the
user somehow knows this application has started running in
background, it may be difficult for him to find it, since no
active feedback is provided during the printing process, thus
being invisible at casual glance.

Opening the Print Center application, the user can see the
list of running and pending printing jobs, check their details,
and cancel them (Figure 1(c)). When the last job finishes, that
is, the moment the printer ejects the last page, the application
closes and does not appear anymore in the list of recently used
applications. As far as it is known, there is no way to open the
Print Center as a standalone application. It is only executed
while there are jobs being printed.

From a technical standpoint, the AirPrint service is
known to use the standard IPP protocol at network level for
printer management, and Bonjour/Zeroconf [13] for service

Mobile Information Systems

discovery. A comprehensive description of the printing archi-
tecture and its underlaying API in iOS devices can be found
in [14].

3. Forensic Traces Left by AirPrint

This section presents the preliminary information that must
be considered before more in-depth forensic investigation
may proceed. Mainly, it is important to assess whether any
traces are left in the device after having printed a document
using AirPrint, and if so, how they can be discovered, how
they behave, and which useful information can be extracted
from them. All this information was discovered through
some basic experiments.

3.1. Preliminary Setup. For the experiments described in this
section, the following equipment was used:

(i) iOS device #1: Apple iPhone 4, 16 GB (model A1332)
running i0S 4.3.3 (8J2) and 5.0 (9A334), both jail-
broken using the redsnOw software [15].

(ii) iOS device #2: Apple iPhone 3G, 8 GB (model A1241)
running iOS 4.2.1 (8C148), jailbroken using redsnOw
and enabling multitasking and AirPrint.

(iii) Desktop computer information: Apple MacBook Pro
(model MacBookPro5,1) running Mac OS X 10.7.2
(11C74).

(iv) Printer: HP Photosmart 5510 Bllla (model CQ176B)
running firmware version EPL2CN1122AR.

(v) Wireless connectivity: all devices were connected to a
wireless 802.11g network to perform the experiments.

(vi) Physical connectivity: all devices were using physical
wires for AC power only.

3.2. The “Jailbreak” Process. Given that iOS enforces the
device to run only code signed by Apple (downloaded
from the App Store), during our experiments we used the
“jailbreak” technique to bypass that restriction in order to
have full access to the devices and be able to run shell
commands on them. The jailbreak process is exempted from
prosecution under the anticircumvention section of the U.S.
Digital Millenium Copyright Act [16], and it has been very
useful for forensic research in the past [17, 18].

Both iOS devices were jailbroken in order to gain full
access and install an SSH server and basic UNIX tools.

3.3. Traces Found. Once we were able to execute code in
the device, we invoked a series of commands before, during,
and after printing, and we compared the results looking for
remarkable differences. The most relevant commands used
were:

(1) find / -type (b,c,d,f,l,p,s) for listing, res-
pectively, all the block special devices, character spe-
cial devices, directories, regular files, symbolic links,
FIFOs, and sockets, in the filesystem.

(2) netstat -an -f inet for listing any current net-
work connections. This would show active client-
server activity as well as inactive servers awaiting for
incoming petitions.

(3) ps aux for getting information about running pro-
cesses.

By reviewing the lists of files and directories generated
with the find commands explained above, it was observed
that when a device prints via AirPrint for the first time the
following folder is created:

/var/mobile/Library/com.apple.printd/

We observed that everytime a document is sent to a
printer, a new file named 1.pdf is created under this folder.
With additional tests, it was observed that this PDF file
exists in disk only while the document is being printed. The
moment the printer ejects the last page and considers the job
finished, the PDF file is deleted. This is also the moment at
which the Print Center application disappears from the list of
recently used applications.

By printing some documents and copying the resulting
temporary PDF files to another location before their deletion
and then examining them we observed that these files are
regular PDF files with the same content that is being sent to
the printer (no matter whether it was originally in PDF format
or not). Hence, an obvious trace is being left in the filesystem,
and it reflects exactly what was printed.

It must be noted that, in some of the preliminary tests,
before the physical printer was available, we set up a virtual
PDF printer in a Mac computer and shared, making it look
like an AirPrint printer. It worked as expected and it was
possible to print to it from an iPhone; however, the printing
of the document (in this case, the generation of a file in the
hard drive of the Mac) was much shorter than the actual
printing of a page through a real printer with real ink and
paper. We observed that this greatly reduces the chances of
the temporary files being flushed to physical storage from
the buffer cache in the iOS device before deletion and thus
their chances of recoverability. Therefore, to obtain accurate
results, the experiments need to be performed with a real
printer.

3.4. Properties of the AirPrint Temporary Files. From the
execution of the different tests we extracted the following
conclusions. Unless otherwise specified, every finding applies
to all available iOS versions with AirPrint support (versions
4.2 through 6.1 and possibly later versions as well).

(1) For every print job sent via AirPrint, a file with the
name of 1.pdf is created in the directory

/var/mobile/Library/com.apple.printd/

(2) This file is in PDF format, containing the docu-
ment sent to the printer. This observed behavior
is consistent across internal iOS applications (Mail,
Safari) as well as third party ones (GoodReader,
Papers, Keynote, ...). The only exception found is
the iOS Photos app, which seems not to generate

any temporary files on disk when printing, thus not
leaving these traces.

(3) The file 1.pdf is deleted as soon as the printing
job finishes. The timing observed indicates that this
happens not just after finishing the task of submitting
the job to the physical printer, but after the document
has been completely printed.

(4) When one job is being printed, subsequent jobs
arriving to the queue generate files named 2.pdf,
3.pdf, and so forth. The behavior observed suggests
that in iOS 4 the counter resets as soon as the queue
is empty (if a new job arrives later it will be named
1.pdf again), whereas starting from iOS version 5 the
counter seems to keep increasing (each new job gets
a higher number even if the queue is empty) until the
device reboots.

(5) When a job asks for more than one copy of the same
document, the temporary PDF file contains only one
copy of it. The information on the number of copies
to be printed is being sent to the printer in a separate
channel (standard PS commands or similar).

(6) When a page range is specified, the temporary
PDF file contains only this page range. There is an
exception when some applications print files that are
themselves PDFs, which is studied later in Section 3.5.

3.5. PDF Metadata of the Temporary Files. Using a standard
PDF reader, the metadata contents inside different temporary
files generated by AirPrint were extracted and compared.
The use of document metadata in forensic investigations has
proven useful in different scenarios before [19-22]. A good
analysis of the PDF format itself from a forensics point of
view, considering its security and privacy aspects, can be
found in [23].

Generally, all the temporary PDF files created by AirPrint
can be identified as such by their metadata: they all show
the same “PDF producer” entry (“iPhone OS x.y.z Quartz
PDFContext; with x.y.z being the iOS version number),
and the creation and modification dates both indicate the
date and time when the document was sent to the printer
(see Figure 2). Therefore, knowing what has been printed
from a device looks as simple as recovering deleted PDF
files from it and focusing on those with the strings “iPhone
OS x.y.z Quartz PDFContext” Moreover, the creation and
modification dates contained inside those PDF files in the
form of PDF metadata will indicate precisely the printing date
and time.

Only one exception was found to this behavior. When
printing PDF files, that is, when the content to be printed is
itself in PDF format, some applications behave like described
earlier, but others (including iOS built-in applications such
as Safari or Mail) actually copy the original PDF file to the
com.apple.printd directory as 1.pdf instead of generat-
ing a new PDF file with fresh metadata. In these cases, PDF
metadata cannot be used to tell whether one given file is a
trace from AirPrint printing: the only peculiar thing about
that PDF file is the fact that it resides under such directory.

Mobile Information Systems

8.0.0 General Info.
B Q & rd *

File name: l.pdf
Document type: Portable Document Format (PDF)

File size: 66 KB (66.477 bytes)

PDF version: 1.3
Page count: 2
Page size: 20,99 x 29,71 cm

Title: -
Author: -
Subject: -
PDF Producer: iPhone OS5 4.3.3 Quartz PDFContext
Content creator: -
Creation date: 17/05/2011 11:00
Modification date: 17/05/2011 11:00

FIGURE 2: Metadata of one temporary PDF file generated by
AirPrint, as shown by the OS X “Preview” tool.

Considering this, an eventual automated tool aimed at
recovering the traces left by AirPrint should go further than
just carving for PDF files: it should correctly interpret the
internals of the HFSX filesystem and tell whether each recov-
ered file existed within the com.apple.printd/ directory
or somewhere else.

4. Recoverability of AirPrint Traces without
iOS Data Protection

Given that the temporary PDF files generated by AirPrint
only exist in the filesystem for a limited time and are
deleted when the document has been printed, the possibility
that, depending on disk scheduling and other factors, these
files might never be actually flushed to the physical disk
must be considered. In that case, they are unrecoverable
by a subsequent forensic analysis. This section studies such
possibility and assesses the probability that a given trace may
be actually recovered at a later time.

4.1. Preliminary Setup. For the experiments described in this
section, the following equipment was used:

(i) iOS device: Apple iPhone 3G, 8 GB (model A1241)
running iOS 4.2.1 (8C148), jailbroken using redsnOw
and enabling multitasking and AirPrint.

(ii) Desktop computer information: Apple MacBook Pro
(model MacBookPro5,1) running Mac OS X 10.7.2
(11C74).

(iii) Printer: HP Photosmart 5510 Bllla (model CQ176B)
running firmware version EPL2CN1122AR.

(iv) Wireless connectivity: all devices were connected to a
wireless 802.11g network to perform the experiments.

(v) Physical connectivity: all devices were using physical
wires for AC power only.

By using older equipment (an iPhone 3G) in this set of
experiments, we had a device without iOS “data protection”

Mobile Information Systems

mechanisms (hardware-based encryption), which allowed us
to analyze the behavior of AirPrint without having to avoid
the added pitfall of encryption.

The AirPrint feature depends on the multitasking capa-
bilities of the device, which are disabled by default in older
models (such as an iPhone 3G). However, it is possible to
enable those features during the jailbreak process using the
redsnOw tool. Having AirPrint capabilities and an unen-
crypted filesystem made this device the perfect testbed for our
experiments.

4.2. Experiments. There are several factors that increase the
chances of the temporary PDF files being flushed to disk,
making them potentially recoverable in the future. Some of
these factors are listed as follows:

(i) Documents that take a long time to be printed
because they have many pages or because they contain
graphics. Note that, when sending a document to the
printer, the user can control very few options: printer,
page range, number of copies, and nothing else. There
is neither an option for printing in “draft mode” nor
one for using only the black cartridge, meaning that
everything sent via AirPrint is printed in full color,
good quality. .. and may require quite a lot of time to
finish.

(ii) The quality of the wireless link between the iOS device
and the printer. It can also affect the time needed to
transmit and print the document.

(iii) Documents that are sent while there are other print-
ing tasks running.

(iv) Periods of printing interruptions due to the need of
human interaction, such as the printer running out of
paper or out of ink.

In order to test the recoverability of AirPrint traces in the
form of deleted temporary files, a series of experiments was
run. The goals of these experiments were twofold. The first
goal is to determine whether the temporary files generated by
AirPrintare actually written to the physical disk at some point
and thus may be recoverable after deletion. The second goal is
to asses whether, even if the previous case is true, each of those
temporary files would still be recoverable after generating
more of them (i.e., what are the chances that the AirPrint
temporary files overlap each other in disk, always overwriting
the same space and thus making each other unrecoverable?).

Some steps in the testing process involved printing
documents, while others were just aimed at simulating some
casual user activity in the device (mail browsing, software
update, and reboot). For those tests that involve printing, 10
documents of a given kind are printed in each test. Five of the
tests involve printing, which means that, after completing all
the tests, 50 documents had been printed.

After each of the tests, a dump of the iPhone filesystem
was obtained. For those tests that involved printing, the dump
process was not started until the printer had finished printing
all of the submitted jobs sent.

The test was performed as follows:

(1) Various sets of 10 items each were printed using dif-
ferent applications (Safari, Photos, Mail, GoodReader,
)

(2) A dump of the device storage was obtained after each
set of 10 items.

(3) Additional batches of activity were performed in the
device (download email, install a software update, and
reboot the device) and additional storage dumps were
obtained after performing each of these tests.

We transferred the disk image on-the-fly via Wi-Fi to the
desktop computer using the method proposed by Zdziarski
[18], based on the dd and netcat commands.

Each filesystem dump was analyzed in order to determine
whether the temporary files generated by AirPrint at each
stage were recoverable both immediately after their genera-
tion and at later stages.

With no data encryption in place, we were able to use the
file carving [24] method for recovering deleted files. Carving
is a data recovery method consisting of going through a
raw data stream (a filesystem dump in this case) looking
for possible “headers” and “footers” (beginnings and ends)
of known, chosen file types, such as JPEG pictures, MPEG
video files, and PDF documents. The more strict a file
type specification is, the easier it is for the carving tool to
identify and recover that file type. In addition, some tools
perform sanity checks such as establishing a file size limit or
checking each recovered item against its format specification
to determine whether it may be corrupt.

One of the benefits of the carving technique is that
it can be used, with more or less success, over any kind
of data, be it a known or unknown filesystem, a portion
of it, or something completely different, such as network
captures or RAM memory dumps. Note, however, that many
tools implement specific strategies for common filesystems in
order to improve overall success rate and extract items only
from the unallocated space, skipping the disk space used by
normal existing files. This is something very useful when the
user just wants to focus on recovering deleted files.

This technique was applied by means of the open source,
widely used photorec tool [25], which has a long track of
usefulness in this kind of scenarios [24, 26] even on mobile
devices [27].

Every dump obtained during the tests was carved for
PDF files using the default photorec parameters. Fine-
tuning these parameters would have probably improved the
recovery success rate; however, after the tests were completed,
it was found unnecessary given that the results achieved were
indeed positive.

4.3. Results. Theresults of trace extraction using the photorec
tool were analyzed from two different standpoints:

(1) Recoverability. Tenths of the temporary PDF files
generated by AirPrint were successfully recovered

from each filesystem dump, which confirms that
those files are indeed flushed to disk.

(2) Persistence. The artifacts created during our first tests
were still recoverable after the last tests. This suggests
that, probably due to iOS file allocation strategies, the
temporary files generated by AirPrint are not likely to
overwrite each other.

The results of these tests, which can be seen in more detail
in [2], show that under iOS 4 and with no data encryption
in place the temporary files generated by AirPrint are indeed
written to disk and are potentially recoverable even after
rebooting the device or turning it off.

Considering that the artifacts are stored in unallocated
space, it is unavoidable that using the device for long periods
of time reduces the chance of recovering such artifacts, as
new data stored in the device may overwrite that disk space.
However, the tests show that the probability does not decrease
very quickly, and there is at least a good chance to recover
most of the traces.

5. Impact of iOS Data Protection on
the Recoverability of AirPrint Traces

In this section we describe a new set of experiments aimed at
assessing whether the traces left by AirPrint in the device’s
filesystem can be recovered even when modern iOS data
encryption mechanisms are in place.

5.1. Preliminary Setup. The experiments described in this
section were carried out using the equipment described
below:

(i) iOS device: Apple iPhone 3GS, 32 GB (model A1303)
running i0S 6.1 (10B141), jailbroken using the
evasiOn software [28].

(ii) Desktop computer: Apple iMac (model iMac13,2)
running OS X 10.8.4 (12E55).

(iii) Printer: HP Photosmart 5510 Bllla (model CQ176B)
running firmware version: EPL2CN1122AR.

(iv) Wireless connectivity: all three devices were con-
nected to a wireless 802.11g network to perform the
experiments.

(v) Physical connectivity: the printer and desktop com-
puter used physical wires for AC power. In addition,
the iOS device was connected most of the time to the
desktop computer using the standard Apple USB to
30-pin cable; this powered the device and served as
the transmission channel when dumping the device
internal storage to the desktop computer.

5.2. Mechanisms to Bypass iOS Data Protection. As we intro-
duced in previous sections, all current iOS devices offer
hardware-based encryption, backed with software support at
the OS and application level. As noted by Casey et al. [29],
“the increasing use of full disk encryption can significantly
hamper digital investigations, potentially preventing access to
all digital evidence in a case”

The data encryption mechanisms that Apple calls “data
protection” were introduced in iOS version 4 (June 2010)

Mobile Information Systems

and stood publicly unbreakable for nearly one year until, in
May 2011, a software firm announced a product capable of
bypassing this encryption [30]. This product is restricted to
“established law enforcement, intelligence and forensic organi-
zations as well as select government agencies.”

At the same time, Bedrune and Sigwald published [31]
details about i0S data protection shortly after they released
the tools and source code capable of breaking this encryption
[32]. Even if the device is locked with a passcode, the
tools include a bruteforce script that runs in the i0S device
itself and obtains the user-defined passcode, unless it is an
alphanumeric code, something rarely seen in these devices,
although supported. As of July 2013, their toolkit has been
updated and works successfully with supported devices even
under iOS version 6.1.

Nowadays most forensic tools support a similar function-
ality to one extent or another.

5.3. How iOS Data Protection Affects the Recovery of Deleted
Files. One of the features of iOS encryption is that it relies
on per-file encryption keys, which means that each file in the
filesystem is encrypted using a different key. This, in turn,
means that recovering a deleted file is more difficult than just
retrieving the portion of disk space where the contents of
this file reside: one must also recover the necessary filesystem
metadata containing the encryption key for that given file.

For this reason, commercial tools, even when able to
defeat encryption, do not recover deleted files so far. Instead,
these tools usually opt for (a) examining the device backups
stored in iTunes in a local computer rather than device itself
or (b) just query the device for as much information as
possible using standard APIs; for instance, get every sent
and received SMS from the Messages application, list recent
lookups from the Maps application, or query the Phone
application for the recent calls log. Both these approaches,
however, overlook any deleted data in the device, skipping
a lot of information that could be relevant to the forensic
investigator.

Given that the file contents are encrypted, the carving
technique cannot be used to look for files (allocated or not).
However, a smarter tool looking for deleted file/directory
entries in the HFSX filesystem should succeed at recovering
these files, even when their contents are encrypted.

Bedrune and Sigwald’s ios_examiner tool [32] recently
incorporated an undelete function which applies a novel
technique [33] based on using the additional data stored
in the filesystem’s transaction journal in order to improve
the recovery results. This tool is still very recent and under
improvement, but it is expected that commercial forensic
application developers may include it in later versions of their
products or, at least, use similar techniques to allow forensic
tools to analyze an encrypted filesystem.

5.4. Adapting the Iphone-Dataprotection Toolkit. Aswe
started new experiments, we observed that it was certainly
possible to recover deleted files from our test devices using the
iphone-dataprotection toolkit. However, only certain
file types were recovered (JPG pictures, SQLite databases,
XML files, . ..), whereas no PDF files were recovered at all.

Mobile Information Systems

magics=["SQLite", "bplist", "<?xml", "\xFF\xD8\xFF", "\xCE\xFA\xED\xFE",
"\x89PNG", "\x00\x00\x00\x1CftypM4A", "\x00\x00\x00\x14ftypqt", "\x25PDF-"]

ALGORITHM 1

", pngvl s

knownExtensions = (".m4a", ".plist", ".sqlite", ".sqlitedb", ".jpeg", ".jpg",
n ‘dbll s n .jSOl’l" . " .Xml" , n . Sql" s n ‘pdfll)

ALGORITHM 2

There are two modifications that must be applied to the
software to have it recover PDF files.

The undelete algorithm used by the tool considers that
a file is correctly recovered only if the initial bytes of the
file match a given set of patterns. The stock list includes a
limited set: SQLite databases, XML files, binary property lists,
JPEG pictures, Mach-O executable binaries, PNG graphics,
and M4A audio files. In order to have the tool recover deleted
PDF files, the file signature of the PDF type must be added
in hg/python_scripts/hfs/journal.py (lines 58-59) as
shown in Algorithm 1.

In order to have these files stored in a separate direc-
tory, we declare .pdf as a known extension by modifying
hg/python_scripts/nand/carver.py (line 119) as shown
in Algorithm 2.

After performing this modification we observed that the
ios_examiner tool successfully recovered (where techni-
cally possible) deleted PDF files. In fact it is even possible to
acquire one or more dumps of the device’s internal storage
using the original (unmodified) tool, apply our described
modifications afterwards, and then run the modified tool
against the acquired images to recover any deleted PDF files
they might contain, some of which can be traces left by the
use of AirPrint, whereas others will be regular PDF files that
have been deleted or reallocated in disk for whatever reason.

Given a set of recovered PDF files, we wrote a Perl
script that outputs a CSV table indicating which of the files
correspond indeed to contents printed through AirPrint, and
if so, when were the documents printed and under which iOS
version as shown in Algorithm 3.

5.5. Experiments. In this series of experiments we wanted to
verify whether AirPrint traces were recoverable in scenarios
where i0S data protection is enabled and analyze how the
amount of free disk space affects the recoverability rate.

A detailed description of the whole testing process fol-
lows:

(1) Fill the device with some applications (GoodReader,
plus Apple’s Podcasts, iBooks, iTunes U, Find My
Friends, and Find My iPhone) and multimedia con-
tent. Setup an iCloud account for activating the Find
My iPhone service and start syncing email, contacts,
calendars, reminders, Safari tabs, notes, photos, doc-
uments, and data.

(2) After a period of 24 hours for any massive syncing
activity to take place, the device storage as reported
in “Settings” is 4.1 GB available of a total of 28.3 GB
(i.e., 15% free space).

(3) Reboot the device to start from a clean state.

(4) Use the GoodReader application to print a fixed set
of 20 documents amounting to a total of 109 paper
pages; send each document to the printer only when
the previous one has been completely printed.

(5) Turn the device off and acquire forensic image #1.

(6) Boot the device. Remove all optional Apple applica-
tions as well as multimedia content (audio, video) and
iCloud accounts added in step (1).

(7) After a period of 24 hours for any deletion activity to
take place, the device storage as reported in “Settings”
is 27.2 GB available of a total of 28.3 GB (i.e., 96% free
space).

(8) Reboot the device to start from a clean state.
(9) Repeat step (4).
(10) Turn the device off and acquire forensic image #2.

(11) Recover AirPrint traces from both images and com-
pare the results.

5.6. Results. Table 1 shows the results for each individual file.
In each case, we were able to recover between 5% and 10%
of the documents printed through AirPrint, extracting the
following conclusions:

(i) Itis possible to recover the full content of documents
printed through AirPrint as well as relevant metadata
such as print date and iOS version. In some cases the
recovered PDF files may be corrupt but still contain
details such as iOS version used and print date.

(ii) The low recoverability rate observed (5-10% in real-
istic scenarios) could be due to the disk scheduling
algorithm used in the iOS operating system (in this
particular version at least). This would also explain
the fact that the success rate keeps constant regardless
of the amount of free disk space.

(iii) At any particular iOS version (existing or future),
a change in the disk scheduling subsystem could
boost the success rate significantly. Additional work

8 Mobile Information Systems
#!/usr/bin/perl
print "Filename,iOS version,Print date\n";
while($file = shift(QARGV)) {
$ios = 7;
$date = 7;
$pdfinfo = ‘pdfinfo $file 2>&1’;
@metadata = split(/\n/, $pdfinfo);
if (@metadatal[0] ="~ m/iPhone 0S.* Quartz PDFContext/) {
($ios = @metadatal[0]) =" s/.*iPhone 0S ([0-9.]+) Quartz PDFContext/i0S \1/;
($date = @metadatal[l]) ="~ s/CreationDate: //;
print "$file,$ios,$date\n";
} else { print "$file,does not look like an AirPrint temporary file.\n"; }
}
ALGORITHM 3
TABLE 1: Recoverability of AirPrint temporary artifacts under iOS 6.
File Size (bytes) Size (pages) Recovered?
1 000001.D0OC 40.960 2 In image #1
2 000002.D0C 57.856 2 In image #2 and partially in #1
3 000003.D0OC 55.808 2 No
4 000004 .D0OC 175.616 4 No
5 000005.D0OC 180.736 5 No
6 000006.D0OC 67.584 5 No
7 000007 .DOC 179.200 30 No
8 000008.PPT 302.592 12 No
9 000009.PDF 39.586 4 No
10 000010.PDF 120.441 4 No
1 000011.PDF 31.367 1 No
12 000012.PDF 22.857 6 No
13 000013.PDF 38.638 2 No
14 000015.PDF 55.964 2 No
15 000016 .PDF 150.586 4 No
16 000018.PDF 94.424 9 No
17 000019.PDF 124.152 3 No
18 000020.PDF 4.755 2 No
19 000021 .PDF 4.521 2 No
20 000022 .PDF 21.235 8 No

is needed to assess whether the results observed are
kept consistent across different device models and iOS
versions.

The traces of the printing activity from step (9) should
be more easily recoverable given that in step (7) we tried to
improve the recoverability rate by freeing most disk space (to
reduce the probability that some new file, log entry, etc. could
overwrite the AirPrint traces once they’ve been deleted) and
by reducing most of the device’s background activity (iCloud
syncing, e-mail activity, .. .). Hence, the second image should
contain a higher number of AirPrint traces than the first one.

In contrast to what could be reasonably expected, we
observed that in each case we recovered only one or two
AirPrint temporary files out of the 20 possible. It could be
thought that only the latest jobs are being recovered; however

the traces we found corresponded to the first jobs sent to the
printer rather than the last ones.

We performed additional experiments introducing cir-
cumstances such as print interruptions due to lack of paper
and loss of network link between the device and the printer.
In such circumstances, the temporary files remain much
longer in the iOS device’s filesystem and will persist for
an undetermined amount of time (even some time after
rebooting the device). Under these conditions we saw the
success rate increase to 15%.

6. Conclusions and Future Work

This paper analyzes the forensic traces left by usage of
the AirPrint functionality in iOS based devices. We have
developed a method which leverages publicly available tools

Mobile Information Systems

to recover from an iPhone or iPad the contents of documents
that have been printed using the standard AirPrint feature.
The recovery of these artifacts can be valuable from the point
of view of a forensic investigation in scenarios such as infor-
mation leak or distribution of inadequate content; however it
could also pose a privacy risk to the user community.

The traces described could persist even after the original
file has been deleted, or if the original file resides inside some
“vault-type” application which protects its contents on disk
with an additional layer of encryption.

With modern iOS 6 data encryption mechanisms in
place, the described method still succeeded in recovering
between 5 and 15% of the documents printed through
AirPrint. We believe the success rate can depend on factors
such as the disk scheduling strategy, and thus different iOS
versions could throw different results.

Considering the use case of AirPrint in domestic scenar-
ios, probably home users will not be particularly concerned
about this finding, a possible exception to this being explicit
graphic content. In this aspect it is interesting to note that
Apple’s stock Photos application specifically did not generate,
in our experiments, the temporary files described in this
paper, whereas other 3rd party applications offering added
security to store this kind of information are likely to generate
the standard AirPrint traces when printing documents. As
a general solution, in order to limit the possibility of recov-
ering data from the filesystem, some techniques aimed at
performing a secure deletion could be adopted, such as the
one presented in [34] for the Android OS.

Further work must be carried out to assess whether it
is possible to capture the network traffic generated while
printing using techniques similar to [35] and recover the
contents of the documents being printed. It would also be
interesting to extend the research presented in this paper
across a wider range of devices, iOS versions, and 3rd-party
applications and to examine if similar issues affect other
printing solutions for iOS devices and other mobile devices.

Conflict of Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.

Acknowledgment

This work was partly funded by the Spanish Government
through projects TIN2011-27076-C03-02 “CO-PRIVACY”
and SMARTGLACIS (TIN2014-57364-C2-2-R).

References

(1] Apple, Apple’s AirPrint Wireless Printing for iPad, iPhone &
iPod touch Coming to Users in November, 2010, Apple, 2010,
http://www.apple.com/uk/pr/library/2010/09/15airprint.html.

[2] L. Gomez-Miralles and J. Arnedo-Moreno, “Analysis of the
forensic traces left by airprint in apple iOS devices,” in Pro-
ceedings of the 27th International Conference on Advanced
Information Networking and Applications Workshops (WAINA
’13), pp- 703-708, IEEE, Barcelona, Spain, March 2013.

[3] O.Bohl, S. Manouchehri, and U. Winand, “Mobile information
systems for the private everyday life,” Mobile Information
Systems, vol. 3, no. 3-4, pp.- 135-152, 2007.

[4] S. Caball¢é, F. Xhafa, and L. Barolli, “Using mobile devices
to support online collaborative learning,” Mobile Information
Systems, vol. 6, no. 1, pp. 27-47, 2010.

[5] T. Cook, Apple WorldWide Developers Conference keynote,
2013, http://www.apple.com/apple-events/june-2013/.

[6] A. Castiglione, R. de Prisco, and A. de Santis, “Do you trust
your phone?” in E-Commerce and Web Technologies, vol. 5692 of
Lecture Notes in Computer Science, pp. 50-61, Springer, Berlin,
Germany, 2009.

[7] A. Hay, D. Krill, B. Kuhar, and G. Peterson, “Evaluating digital
forensic options for the apple iPad,” in Advances in Digital
Forensics VII, vol. 361 of IFIP Advances in Information and
Communication Technology, pp. 257-273, Springer, Boston,
Mass, USA, 2011.

[8] A. Levinson, B. Stackpole, and D. Johnson, “Third party
application forensics on Apple mobile devices,” in Proceedings
of the 44th Hawaii International Conference on System Sciences
(HICSS ’11), pp. 1-9, January 2011.

[9] Apple, iOS: AirPrint 101, Apple, 2011, http://support.apple
.com/kb/ht4356.

[10] Netputing, AirPrint Activator, 2011, http://netputing.com/
airprintactivator.

[11] Avatron Software Inc, Print Sharing, 2011, http://avatron.com/
apps/print-sharing/.

[12] EuroSmartz, PrintCentral for iPad, iPhone or iPod Touch, 2012,
http://mobile.eurosmartz.com/products/printcentral.html.

[13] D. Steinberg and S. Cheshire, Zero Configuration Networking:
The Definitive Guide, O'Reilly, 2005.

(14] Apple Inc, How Printing Works in iOS, 2011, https://developer
.apple.com/library/ios/.

(15] iPhone Dev Team, redsnOw, 2011, http://blog.iphone-dev.org/
post/5239805497/tic-tac-toe/.

[16] US Copyright Office, Rulemaking on Exemptions from Prohi-
bition on Circumvention of Technological Measures that Con-
trol Access to Copyrighted Works, US Copyright Office, 2010,
http://www.copyright.gov/1201/2010/.

[17] J. R. Rabaiotti and C. J. Hargreaves, “Using a software exploit to
image RAM on an embedded system,” Digital Investigation, vol.
6, no. 3-4, pp. 95-103, 2010.

[18] J. Zdziarski, iPhone Forensics: Recovering Evidence, Personal
Data, and Corporate Assets, O'Reilly Media, 2008.

[19] E Buchholz and E. Spafford, “On the role of file system metadata
in digital forensics,” Digital Investigation, vol. 1, no. 4, pp. 298-
309, 2004.

[20] A. Castiglione, A. De Santis, and C. Soriente, “Taking advan-
tages of a disadvantage: digital forensics and steganography
using document metadata,” Journal of Systems and Software, vol.
80, no. 5, pp. 750-764, 2007.

[21] A.]. Clark, “Document metadata, tracking and tracing,” Net-
work Security, vol. 2007, no. 7, pp. 4-7, 2007.

[22] M. S. Olivier, “On metadata context in database forensics,”
Digital Investigation, vol. 5, no. 3-4, pp. 115-123, 2009.

[23] A. Castiglione, A. De Santis, and C. Soriente, “Security and
privacy issues in the portable document format,” Journal of
Systems and Software, vol. 83, no. 10, pp. 1813-1822, 2010.

[24] M. L. Cohen, “Advanced carving techniques,” Digital Investiga-
tion, vol. 4, no. 3-4, pp. 119-128, 2007.

10

[25] CGSecurity, PhotoRec, Digital Picture Recovery, 2009, http://
www.cgsecurity.org/wiki/PhotoRec.

[26] S. L. Garfinkel, “Forensic feature extraction and cross-drive
analysis,” Digital Investigation, vol. 3, pp. 71-81, 2006.

[27] 1. Pooters, “Full user data acquisition from Symbian smart
phones,” Digital Investigation, vol. 6, no. 3-4, pp. 125-135, 2010.

[28] Y. D. Wang, N. Bassen et al., evasiOn, 2013, http://evasiOn.com/.

[29] E. Casey, G. Fellows, M. Geiger, and G. Stellatos, “The growing
impact of full disk encryption on digital forensics,” Digital
Investigation, vol. 8, no. 2, pp. 129-134, 2011.

[30] ElcomSoft, ElcomSoft investigates iPhone hardware encryp-
tion, provides enhanced forensic access to protected, 2011,
http://www.elcomsoft.com/PR/eppbl10524en.pdf.

[31] J. B. Bedrune and J. Sigwald, iPhone Data Protection in Depth,
HITB, Amsterdam, The Netherlands, 2011.

[32] J. B. Bedrune and J. Sigwald, iPhone data protection tools, 2011,
http://code.google.com/p/iphone-dataprotection/.

[33] A. Burghardt and A. J. Feldman, “Using the HFS+ journal for
deleted file recovery,” Digital Investigation, vol. 5, supplement,
pp. $76-582, 2008.

[34] A. Castiglione, G. Cattaneo, G. De Maio, and A. De Santis,
“Automatic, selective and secure deletion of digital evidence;
in Proceedings of the 6th International Conference on Broad-
band and Wireless Computing, Communication and Applications
(BWCCA ’11), pp. 392-398, October 2011.

[35] A. Castiglione, G. Cattaneo, G. de Maio, and A. de Santis,
“Forensically-sound methods to collect live network evidence,
in Proceedings of the 27th IEEE International Conference on
Advanced Information Networking and Applications (AINA '13),
pp- 405-412, Barcelona, Spain, March 2013.

Mobile Information Systems

Advances in k& - - . Journal of

o 0 Industrial Engineerin
. WNultimedia J .

Applied
Computational
Intelligence and Soft
. g nternational Journal of T P - Com tll'lg"
The Scientific Dieenel Qumalof e iR e

World Journal Sensor Networks

Advances in

Fuzzy
Systems

Modelling &
Simulation
in Engineering

e

Hindawi

Submit your manuscripts at
http://www.hindawi.com

Computer Networks
and Communications

Advances in »
Artificial
Intelligence

i ‘ Advances in
Biomedica ‘H'\{'ii Artificial
‘ & NS Neural Systems

International Journal of
Computer Games in
Technology S re Engineering

Intel ional J na
Reconfigurable
Computing

Computational i

Ad S
uman-Computer Intelligence and 2y Electrical and Computer
Interaction Neuroscience Engineering

Journal of

Robotics

