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The rapid growth of population in urban areas is jeopardizing the mobility and air quality worldwide. One
of the most notable problems arising is that of traffic congestion which in turn affects air pollution. With the
advent of technologies able to sense real-time data about cities, and its public distribution for analysis, we are in
place to forecast scenarios valuable to ameliorate and control congestion. Here, we analyze a local congestion
pricing scheme, hotspot pricing, that surcharges vehicles traversing congested junctions. The proposed tax is
computed from the estimation of the evolution of congestion at local level, and the expected response of users
to the tax (elasticity). Results on cities’ road networks, considering real-traffic data, show that the proposed
hotspot pricing scheme would be more effective than current mechanisms to decongest urban areas, and paves
the way towards sustainable congestion in urban areas.

INTRODUCTION

Urban life is characterized by a huge mobility, mainly mo-
torized. Amidst the complex urban management problems
there is a prevalent one: traffic congestion. INRIX Traffic
Scorecard (http://www.inrix.com/) reports the rank-
ings of the most congested countries worldwide in 2014. US,
Canada and most of the European countries are in the top 15,
with averages that range from 14 to 50 hours per year wasted
in congestion, with their corresponding economic and envi-
ronmental negative consequences. Several approaches exist
to efficiently design road networks [1, 2] and routing strate-
gies [3, 4], however, the establishment of collective actions to
prevent or ameliorate urban traffic congestion require further
improvements, given the complex behavior of drivers.

An striking, as well as controversial, strategy to address the
problem is congestion pricing [5–7]. It consists in taxing ve-
hicles for accessing a road/area, at certain times, based on the
supply-demand model [8]. Since the supply quantity is fixed
(no more lanes or roads are usually added to the transporta-
tion network) the access to demanded areas is taxed. Two
main types of congestion pricing [9] exist: i) road pricing,
where vehicles are charged for using a particular road section
—such as freeways, ring roads, tunnels or bridges—, and ii)
cordon pricing, where vehicles are charged to access a partic-
ular zone susceptible to traffic congestion —such as historical
towns, business districts or simply crowded areas—. A simi-
lar variant is area pricing, where the tax applies per day. While
road pricing is usually understood as a Pigovian tax to com-
pensate for the externalities caused by drivers [10], cordon
pricing can be understood solely as an incentive for reducing
the traffic congestion and improving the air quality of the city
[11], but eventually also becomes a tax income for urban ar-
eas.

Generally speaking, cordon/area pricing is, in general, ef-
fective in reducing the overall amount of cars accessing re-
stricted areas and reducing pollution [12, 13] but it is still in-
sufficient to reduce congestion hotspots within the taxed zone.
These hotspots usually correspond to junctions and are prob-

lematic for the efficiency of the network as well as for the
health of pedestrians and drivers. It has been shown [14] that
drivers in-queue are the most affected collective to car exhaust
pollution inhalation. In addition, these hotspots are usually
located in the city center, magnifying the problem [15]. As-
suming that congestion is an inevitable consequence of urban
motorized areas, the challenge is to develop strategies towards
a sustainable congestion regime at which delays and pollution
are under control.

Since ten years ago the scientific community has proposed
models to analyze the problem of traffic congestion [16–19]
and decongestion [20–22], pollution generated by traffic [23–
26], transitions between traffic states [27–29], and the design
of optimal topologies [30–33] and algorithms [34, 35] to avoid
it. The focus of attention of most of the previous works was
the onset of congestion, which corresponds to a critical point
in a phase transition, and how it depends on the topology of
the network and the routing strategies used. However, the
proper analysis of the system after congestion has remained
analytically slippery. It is known that when a transportation
network reaches congestion, the travel time and the amount of
vehicles queued in a junction diverge [36].

Here, we rely on our Microscopic Congestion Model
(MCM) to identify urban traffic hotspots in real scenarios and
devise a mechanism to palliate its congestion [37]. The mech-
anism is a taxing scheme that charges directly vehicles cross-
ing congested spots (junctions) considering the overall topo-
logical structure and traffic functionality of the network. The
aim is to eliminate the congestion hotspots using a network
topology pay-per-use scheme. Specifically, we build up a flow
model based on two steps: (1) detection of the hotspots using
MCM, and (2) prediction of the required tax to be applied
to every congested junction to encourage drivers to divert the
excess flow to neighboring and less congested regions. Our
approach follows a similar idea to the one proposed by Vick-
rey back in 1963 [38], with the main difference that we now
can analytically predict the model behaviour considering real
data.
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MICROSCOPIC CONGESTION MODEL FOR HOTSPOT
DETECTION

The taxing scheme we propose relies on the identification
of the city hotspots. Although stochastic micro simulations
could be used to obtain the required parameters, here we focus
on a recently developed analytically tractable model, called
Microscopic Congestion Model (MCM) [37]. The model as-
sumes the following discrete and stylised car-flowing dynam-
ics. At each time step vehicles are injected into each junction
i of the system by exogenous process at rate ρi following a
given distribution. During the following time steps, vehicles
navigate towards their destination following the shortest-path;
the model can also consider other traffic dynamics, such as
diffusion dynamics or random walks, or even other mobility
models such as the gravitational model [39, 40] or the radia-
tion model [41, 42]. To simulate the waiting time of vehicles
at road junctions, we assign a first-in-first-out queue to each
one[43]. We suppose these queues have a maximum process-
ing rate, τi, that mimics the physical constraints of the junc-
tion. That is, at most τi vehicles cross a junction per unit
time. Similar car-flowing dynamics, also based on queues,
have been previously used to develop agent-based models for
traffic analysis [18, 44–46] and pricing policies [21, 23]. As
it is shown in [37] the previous scenario has a critical gen-
eration rate ρc such that, for any generation rate larger than
ρc, the network is not able to route or absorb all incoming
vehicles. In this situation, the total amount of vehicles Q(t)
in the network grows proportionally to time. Locally, each
junction of the network has its own critical injection rate ρci
which is governed by its node effective betweenness Bi [47],
ρci ∝ 1/Bi. The first junction to reach congestion defines the
network critical injection rate, ρc.

The MCM describes the full state of system for any amount
of congested junctions. The MCM is based on assuming that
the growth of vehicles observed in each congested node of the
network is constant, which corresponds to the stationary state.
This assumption allows us to describe, with a set of balance
equations (one for each node), the increment of vehicles in the
junction queues’. Mathematically, the increment of the vehi-
cles per unit time at every junction i of the city, ∆qi, satisfies:

∆qi = gi + σi − di, (1)

where gi is the average number of vehicles entering junction
i from the area surrounding i, σi is the average number of
vehicles that arrive to junction i from the adjacent links of
that junction, and di ∈ [0, τi] corresponds to the average of
vehicles that actually finish in junction i or traverse towards
other junctions. A graphical explanation of the variables of the
model is shown in Fig. 1. The system of eqs. (1) defined for
every node i, is coupled through the incoming flux variables
σi, that can be expressed as

σi =

S∑
j=1

Pjipjdj , (2)

where Pji accounts for the routing strategy of the vehicles
(probability of going from j to i), pj stands for the probabil-
ity of traversing junction j but not finishing at j and S is the
number of nodes in the network.

For each junction i, the onset of congestion is determined
by di = τi, meaning that the junction is behaving at its maxi-
mum capability. Thus, for any flux generation rate (gi), rout-
ing strategy (Pij) and origin-destination probability distribu-
tion, eqs. (1) can be solved using an iterative approach to pre-
dict the increase of vehicles per unit time at each junction of
the network (∆qi). See [37] for further details of the model
and a detailed description on how to obtain the system vari-
ables.

In the following sections, we apply the Hotspot Pricing
scheme in cities that are in the congested regime, ∆qi(t) > 0
for some junctions. We use the MCM to obtain the data-driven
state of the system. The very basic idea of the hotspot pricing
scheme is to reduce the excess of vehicles that accumulate at
the queues of each congested junction to reach to the desired
level.

In this work, we have used two real source and destination
distributions, obtained through Open Data portals, that con-
sider the ingoing and outgoing flux of vehicles of the cities of
Milan (Italy) and Madrid (Spain). Although different origin
and destination models can be used (e.g. gravity and radiation
models), here we assume a “Home-to-Work” travel pattern,
where vehicles arrive from the outskirts of the city and go to
the city center. Consequently, traffic is generated at rate ρi in
the peripheral junctions of the network (arrival to the city), go
to a randomly selected junction (arrival to work) and then re-
turns back to a peripheral junction (return home). We do not
consider trips with origin and destination inside the city cen-
ter since public transportation systems (e.g., train or subway)
usually constitute a better alternative than private vehicles for
those trips.

HOTSPOT PRICING SCHEME

To reduce congestion levels, we propose to tax the junc-
tions where ∆qi > 0. Clearly, the higher the tax, the fewer
the drivers that will want to pass through the taxed junction
and consequently the lower the congestion. To estimate the
required tax for each junction, we use the economic concept
of elasticity [48]. The elasticity measures the response of the
demand of a good in terms of an increase of its price and it
is formally obtained as the ratio between the relative increase
of the demand of a good and the relative increase of its price.
The elasticity has been successfully used to predict the elec-
tricity demand given an increase of its price [49], to forecast
fuel consumption [50], to price in the Internet transit market
[51] or to obtain airport charges given their passengers pro-
files [52] and, within the context of transportation planning, to
measure the effect of an increase of fares on the public trans-
port demand [53] or to model the effect and consequences of
toll roads [54, 55]. Here, we use the elasticity the other way
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FIG. 1. Illustration of the variables of the MCM model. (A) Vehicles entering junction i from the area surrounding i. (B) Vehicles entering
junction i from its neighboring junctions. (C) Vehicles leaving junction i, either to go to other neighboring junctions or to finishing the trip in
its surrounding area.

around. Instead of predicting the traffic demand that we would
observe given a tax, we predict the tax to obtain the desired re-
duction in the congestion. The elasticities of road taxing and
cordon pricing are negative, meaning that an increase of tax
produces a decrease of the traffic [5, 56]. These elasticities
lay between−0.2 to−0.9 for cordon pricing schemes and be-
tween −0.03 to −0.5 for road tolls, and they depend on the
country and on the application. The lower the elasticity the
less reactive is the society towards taxing schemes. Thus, the
demand curve with respect to price follows a power law func-
tion which can be fitted given an observation and a slope (the
elasticity). This curve can be used to predict how traffic is af-
fected by a change of tax. In the rest of the article, we assume
that an equivalent tax produces the same effect on the incom-
ing flow at each junction. Note that this assumption has been
made because of a lack of actual information about the real
elasticities, although this does not undermine the essential be-
havior of the model that can be fitted with observed elasticities
when available.

The predicted fraction of flow of vehicles after a tax c is ap-
plied (i.e. those vehicles that decide to pay instead of diverting
their paths) is given by:

φ = φ0

(
c

c0

)µ
(3)

where φ0 is the observed fraction of flow after applying the
tax c0, and µ is the elasticity value (see [9] for a detailed de-
scription of the technological implementation of taxes).

To approach zero congestion, the proposed hotspot pricing
scheme consists in taxing each congested junction i (that is,
junctions with ∆qi > 0) to eliminate the accumulation of ve-
hicles,

ci = c0

(
φi
φ0

)1/µ

= c0

(
1− ∆qi

ρi + σi

)1/µ

. (4)

where σi is the total amount of vehicles arriving at junction
i per unit time coming from the neighbouring junctions. The

FIG. 2. Topology of the road network inside the Area-C of
Milan. Data gathered from Open Street Map (http://www.
openstreetmap.org).

term between parentheses represents the maximum flux, with
respect to the original incoming flux, the junction can deal
with without being congested.

AN APPLICATION OF THE MODEL TO THE TRAFFIC IN
MILAN

We have analyzed the potential effect of the proposed
hotspot pricing scheme using the predictions of our simula-
tions in the city with largest INRIX value, Milan (Italy). Milan
actually applies a cordon pricing scheme to reduce the transit
of vehicles inside the historical city center; they call “Area-C”
to this restricted traffic area. Their taxing scheme is moni-

http://www.openstreetmap.org
http://www.openstreetmap.org
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tored by camcorders at 43 gates. The individual tax applied
depends on the type of car and also on its activity. The tax
ranges from free tax for electric vehicles, scooters and public
transport to 5AC for non-resident vehicles. Results published
by “Comune di Milano” show that, after the cordon charge es-
tablishment, there has been a reduction of approximately 45%
of non-resident vehicles and around 35% of the total traffic.
This observation allows to assimilate the tax value c0 = 3AC
corresponding to an average reduction of φ0 = 0.35. We re-
cover the original flux of vehicles, previously to the establish-
ment of the Area-C, rescaling the observed flux considering
the observed reduction. With respect to the value of the elas-
ticity, we cannot predict precisely how responsive will be ve-
hicle users to the hotspot pricing (the elasticity) but current
elasticities observed for cordon pricing and toll roads should
be closely related in sign (negative) and in magnitude. In the
following, we assume an elasticity of µ = −0.1 which is com-
patible with the values observed for road tolls in other cities.

To apply the hotspot pricing scheme, we first gather data
about the road network topology using Open Street Map
(OSM), a well-known data source for traffic analysis [57, 58].
OSM data represents each road (or way) with an ordered list
of nodes which can either be road junctions or simply changes
of the direction of the road. We have obtained the required ab-
straction of the road network building a simplified version of
the OSM data which only accounts for road junctions (nodes).
Then, for each pair of adjacent junctions we have queried the
real travel distance (i.e. following the road path) using the API
provided by Google Maps. The resulting network corresponds
to a spatial weighed directed network [59] where the driving
directions are represented and the weight of each link indi-
cates the expected traveling time between two adjacent junc-
tions (see Fig. 2). We build up the dynamics of the model
analyzing real traffic data provided by Telecom Italia for their
Big Data Challenge. The data provides, for every car entering
the cordon pricing zone in Milan during November and De-
cember 2013, an encoding of the car’s plate number, time and
gate of entrance. This allows us to obtain the (hourly) average
incoming and outgoing traffic flow, for each gate of the cor-
don taxed area. Without any extra information, we are forced
to consider all vehicles of the same type, and we assume that
all are required to pay the same type of tax. Given the pre-
vious topology and traffic information, we first compute the
expected traffic within the city (see Sect. ), and then calculate
the required tax (see Sect. ).

The cost of zero congestion

For illustration purposes, we first analyze the predicted cost
to remove all congestion within the Area-C of Milan. To this
aim, we have gathered for each hour of the day and each day
of the week the ingoing flow of vehicles. Given the values
of di, σi and ∆qi, obtained using Monte Carlo simulations,
we have computed the junction taxes to redistribute the re-
quired vehicles to achieve ∆qi = 0 at all junctions i. Figure 3

reports the obtained results applying the double-step process
described above only once. We see that most of the junc-
tions have an increment, per unit time, ∆qi, below 5 vehicles
per minute which yields in general to a price per traversal be-
low 10AC. Extending the analysis to the full year, the annual
income predicted by our model is 145MAC in the case of taxing
from 7 a.m. to 7 p.m., as it is done at present, or an income
of 167MAC in case of extending the taxing scheme to the full
day. Note that even though the distribution is heavy tailed, the
price at a set of junctions is almost prohibitive (around 25 AC).

Figure 4 shows the reduction of travel times when the zero
congestion hotspot taxing scheme is applied. Here we have
supposed equal waiting times at all intersections except at the
congested ones, where waiting times take into account the size
of the queues. It is remarkable that the total travel times of the
vehicles that cross and pay at the hotspots are only slightly
better than the times for those vehicles avoiding the hotspots.
This also evidences that the excess time for a driver not paying
the tax is not substantial, being around a minute.

Comparison with cordon pricing

We now compare the effectiveness of hotspot pricing with
respect to cordon pricing without requiring zero congestion.
The main advantage of hotspot pricing is that it does not pre-
vent vehicles from entering the Area-C zone, but it encour-
ages that vehicles crossing conflicting hotspots avoid them,
decongesting the hotspot and possibly its surrounding area.
To compare the possible effects on the congestion of the city
after the establishment of the two pricing schemes, we fix for
both models the same revenue P and the same number of ve-
hicles entering Area-C (which is equivalent to fixing the elas-
ticity value). Specifically, P is the tax income received using
the cordon pricing scheme (20MAC reported in the literature).
We then compute the maximum number of vehicles that will
avoid the taxed junctions, such that the remaining vehicles that
accept to pay the tax produce total income equal to P (see ap-
pendix ). As in Eq. 4, we consider that taxing junction i at
some price ci is enough to encourage a fraction 1− φi of ve-
hicles currently traversing i to bypass it by choosing another
non-taxed route. Under these conditions, we measure for ev-
ery junction the accumulation of vehicles per minute (conges-
tion), and compare their averaged distributions during week-
days for both models, see Fig. 5A. We observe that the median
of the hotspot model is on average half the value of the cor-
don tax model, affording an improvement on the congestion
of approximately 50%.

Note that the number of vehicles within the Area-C is now
different: while in the cordon taxing scheme it was reduced,
in the hotspot pricing scheme it corresponds to the original
flow of vehicles, but with a very different distribution over the
city. Essentially, the distribution of congestion after the estab-
lishment of cordon tax scheme is not altered and it is still con-
centrated at the hotspots, as observed in real data. However,
applying the hotspot scheme, the redistribution of vehicles is
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FIG. 3. Congestion and hotspot pricing for zero congestion in Milan. (A) Distribution of the predicted congestion, ∆qi, of a week. (B)
Distribution of the required junction prices (in euros) to eliminate the congestion of a week. (C) Average predicted congestion per hour of the
day (in vehicles per minute).
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FIG. 4. Comparison of the expected travel times (in minutes) of the trips affected by congested junctions before and after the zero congestion
hotspot taxing scheme is applied, in Milan. For the hotspot pricing model, we show the distribution of travel times of trips crossing congested
junctions after the hotspot establishment (labeled ‘Hotspot pay’), of the trips that now avoid the hotspots (’Hotspot diverted’), and of both of
them together (‘Hotspot average’).

spread among neighboring junctions of the hotspots, which
summarizes in less congested points even though the num-
ber of vehicles within Area-C is larger; remind we do not en-
courage vehicles to avoid entering the area. Graphical results
about the congestion distribution in both cases are presented in
Figs. 5B and 5C, respectively. We also report in Fig. 6 the dis-
tribution of travel times without and with the taxing schemes.
The hotspot pricing approach is able to yield significantly bet-
ter travel times despite handling more vehicles in the Area-C
than the cordon pricing.

POTENTIAL EFFECTS OF THE HOTSPOT PRICING ON
AIR QUALITY IN MADRID

The previous results show the hotspot pricing scheme could
be a good alternative for managing traffic congestion in cities
and this will probability have effects in their air quality. To

give some hints of these effects, we have analyzed also the po-
tential impact on the air quality of the city of Madrid (Spain)
with a supposed establishment of the hotspot pricing scheme.
Madrid city center is one of the most polluted areas in Spain,
to the point that the Spanish government is pushing the city of
Madrid to apply an urban tax to reduce pollution. Madrid is
also the city of Spain where drivers waste more time in con-
gestion (with an INRIX index of 10.8), followed by Bilbao
(10.2) and Barcelona (8.6). The city plan of mobility includes
the definition of a series of restricted traffic areas in the near
future. To obtain the expected benefit of the hotspot pricing,
we gathered data of the city topology and real traffic and pol-
lution from Open Street Map and Open Data Madrid (http:
//datos.madrid.es/portal/site/egob/) respec-
tively. Madrid open data portal provides the necessary infor-
mation to obtain the expected contribution of cars to the over-
all city pollution. Madrid does not have any pricing zone so
we apply the analysis to the zone delimited by the Madrid ring

http://datos.madrid.es/portal/site/egob/
http://datos.madrid.es/portal/site/egob/
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A

B C

FIG. 5. (A) Distribution of the congestion after applying the different taxing schemes in the city of Milan. The value of the congestion is
given by the accumulation rate of vehicles (∆qi), in vehicles per minute, for the different congested junctions. The distributions are computed
considering all data from Monday to Friday and they are shown grouped by hour of the day. Below, maps of Milan showing the expected ratios
between incoming and outgoing vehicles of each junction after the establishment of the cordon pricing tax (B) and the hotspot pricing scheme
(C). Junctions with a ratio greater than 1 are congested since they receive more cars that the ones they can route.

road M-30. The city topology and the entry and exit gateways
have been obtained using Open Street Map. For the city topol-
ogy, we have followed an equivalent procedure to Milan. The
resulting topology can be seen in Fig. 7. For the ingoing and
outgoing gateways, we have manually selected the 108 roads
crossing the M-30. Each cross point was selected to be an in-
going or outgoing gateway, depending on the road direction.
Then, we have gathered traffic count point locations from the
Madrid Open Data portal[60] and have assigned each of the
108 gates to the closer traffic count point. Figure 8 shows the
gateway locations.

To obtain the contribution of each car to the overall pollu-
tion, we have taken data of the pollution and traffic levels of
August 2014, which is one of the most stable months in terms
of meteorology. Air pollution levels of Madrid[61] have been

obtained for each sensing station type “Urbana tráfico”, i.e.
stations located near main roads. See Fig. 8 for the location
of the sensing stations. We have focussed in the NO2 levels
since it is known that, in Madrid, approximately 77% of the
NO2 concentration comes from vehicles[62]. Then, we have
accumulated the flux of vehicles of all count points within a
distance of 100 meters to each sensing station. With this infor-
mation we have built a linear model to predict the contribution
of vehicles to the pollution sensed by every station. The Au-
gust meteorological data, the scatter plots of vehicle flux with
respect to NO2 concentration, and the linear fits are shown in
Fig. 9. We have obtained an average slope of 0.16 meaning
that, in average, each car per hour contributes to 0.16µg/m3

of NO2 to the sensing station. The results are in perfect agree-
ment with similar studies [15].
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FIG. 6. Comparison of travel times (in minutes) between no taxing, cordon pricing and hotspot pricing, with fixed total income, for the city of
Milan.

To simulate the traffic dynamics of Madrid, we have ana-
lyzed the traffic data of October 2014 and obtained the aver-
age flow of vehicles per day and hour of the week. To analyze
the possible effects on the air pollution after the introduction
of the hotspot pricing scheme, we have computed the expected
traffic of each junction of the city and then the expected traffic
after the application of the hotspot pricing scheme. With the
difference of vehicle flux in each junction we have computed
the maximum possible reduction in NO2 concentration. This
maximum reduction assumes that the hotspot pricing moti-
vates vehicles to bypass congested junctions, choosing other
routes outside the 100 meter radius of the sensing station. Re-
sults are shown in Fig. 10. After the hotspot pricing is applied,
we observe a reduction of the level of NO2 in 3 out of 7 air
quality stations inside the ring road M-30 (see Fig. 8 for the
location of the sensing stations). Clearly, this represents a lo-
cal reduction and we cannot claim it implies a global pollution
reduction. Panels (A) and (B) show the expected reduction per
hour of the day for weekdays and weekends respectively. The
larger reductions are observed in the morning rush hour, ap-
proximately from 7 to 10 on the weekdays and from 9 to 14 for
the weekends. Panels (C) and (D) show the expected scenario
before and after the the hotspot pricing. The overall amount
of NO2 is not reduced since the amount of cars in both sce-
narios is exactly the same. However, as expected, congestion,
which was strongly centralized in several junctions, spreads
and ameliorates within neighboring junctions.

CONCLUSIONS

Summarizing, traffic congestion is a common and open
problem whose negative impacts range from wasted time and
energy, unpredictable travel delays, and an uncontrolled in-
crease of air pollution. Here, we have presented a hotspot
pricing scheme, characterized by the application of local tax-

ing policies instead of area taxing. The results are competi-
tive reducing congestion and consequently pollution. We have
shown two real case scenarios computing specific values of
congestion and expected revenues. These results pave the way
to a new generation of physical models of traffic on networks
within the congestion regime, that could be very valuable to
assess and test new traffic taxing policies on urban areas in a
computer simulated scenario.
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Appendix

Optimal traffic redistribution given fixed revenue

We want to compute the maximum fraction of vehicles, 1−
φi, that will avoid the junctions with the hotspot pricing by
fixing the overall tax income for the city P . This may happen
when local authorities want to fix the economic effort of the
drivers to improve the traffic conditions. This is equivalent to
the following minimization problem:

min
{φi}

(∑
i

φiσi

)
s.t.

∑
i

φiσici =
c0

φ
1/µ
0

∑
i

φ
(µ+1)/µ
i σi = P ,

(5)
where σi is the amount of cars junction i receives before the
taxing, c0 is the initial price to obtain a reduction of φ0, µ
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FIG. 7. Topology of the road network inside the ring road M-30
of Madrid. Data gathered from Open Street Map (http://www.
openstreetmap.org).

is the elasticity and ci is defined in eq. 4. The linear prob-
lem stand for the remaining cars that will cross the congested
junctions after the taxing is applied and the restriction stands
for the overall income produced by those cars.

We solve the minimisation problem using Lagrange multi-
pliers. The objective function is

L(φi, λ) =
∑
i

φiσi − λ

(∑
i

φi
k2σi − k1

)
, (6)

where k1 =
Pφ1/µ

0

c0
and k2 = µ+1

µ . Setting the gradient
∇L ({φi}, λ) = 0 we have:

∂L

∂φj
= σj − λk2φjk2−1σj = 0 =⇒ φj =

(
1

λk2

) 1
k2−1

,

(7)
∂L

∂λ
=
∑
i

φi
k2σi − k1 = 0 =⇒

∑
i

φi
k2σi = k1 .

(8)

From Eq. (7) we see that all the φj are equal, i.e. independent
of the node. Substituting Eq. (7) into Eq. (8) we can obtain λ.

FIG. 8. The image shows the manually selected 108 ingoing and
outgoing gateways of Madrid and the 7 air quality stations of type
“Urbana tráfico” within the selected area. City ingoing and outgoing
gateways are symbolized with white and black squares respectively.
Gray squares indicate gateways where vehicles travel in both direc-
tions. Air quality stations are represented by circles of 100 meter ra-
dius, green circles are stations for which the hotspot pricing scheme
is expected to decrease the sensed NO2 levels.

Specifically,(
1

k2λ

) k2
k2−1 ∑

i

σi = k1 =⇒ λ = k2
−1
(

k1∑
i σi

) 1−k2
k2

,(9)

which yields an homogeneous fraction

φ =

(
Pφ01/µ

c0
∑
i σi

) µ
µ+1

. (10)

The local reduction to be applied is given by Eq. 10, and
the tax to apply to every congested junction is

c =

(
cµ0P

φ0
∑
i σi

)1/(µ+1)

. (11)

http://www.openstreetmap.org
http://www.openstreetmap.org
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A B

C

FIG. 9. Panels (A) and (B) show the main meteorological data (wind speed, preassure, temperature and humidity) of Madrid during August
2014. (C) Scatter plots of vehicle flux with respect to NO2 concentration, and the corresponding linear fits for each air quality stations.
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FIG. 10. Panels (A) and (B) show the expected decrement of NO2 concentration for S1, S2 and S3 stations. Plots consider data from Monday
to Friday (A) and weekend (B) and are grouped by hour of the day. Circles colored with green in Fig. 8 indicate the locations of S1, S2 and S3
stations. (C) Map of Madrid showing the ratio between incoming and outgoing vehicles for each congested junction before the establishment
of the hotspot pricing scheme. Junctions with a ratio greater than 1 are congested since they receive more vehicles than the ones they can route.
(D) Ratio between incoming and outgoing vehicles for the same junctions shown in (C) after the establishment of the hotspot pricing scheme.
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