
Human Authentication through
Signature Recognition

Víctor Nàcher Castellet

Supervisor: Prof. Francesc Serratosa
Doctor of Philosophy in Automatic Control, Robotics and Computer Vision

Universitat Oberta de Catalunya
Universitat Autònoma de Barcelona

Universitat Rovira i Virgili

This dissertation is submitted for the degree of
Master’s Degree in Information and Communications Security

June 2019





I would like to dedicate this thesis to my uncle, my biggest scientific inspiration...





Abstract

This dissertation describes a signature verification algorithm based on k-nearest neighbours
and Levenshtein distance. It is a simple on-line method for classifying handwritten signatures
into either genuines or forgeries. Forgery consists on imitating a signature, a document, a
banknote or a valued work. It is considered a crime in most countries and it still remains a
major problem in nowadays banking.

In first place, a brief introduction to the history of biometric systems and handwritten
signatures is made. After explaining the state of the art of the field the used well-known
methods are explained. Then the used datased is showed and our algorithm presented and
implemented.





Resumen

Este trabajo de fin de máster describe un algoritmo de verificación de firmas basado en
k-nearest neighbours y la distancia de Levenshtein. Es un método simple y on-line para
clasificar firmas hechas a mano en auténticas o falsificaciones. Una falsificación consiste en
imitar una firma, un documento, un billete o una obra de valor. Se considera un delito en la
mayoría de países y sigue siendo un problema importante para los bancos hoy en día.

En primer lugar, se realiza una breve introducción a la historia de los sistemas biométricos
y de las firmas manuscritas. Después de explicar el estado del arte del sector, se explican los
métodos conocidos utilizados. Por último, se muestra la base de datos utilizada y se presenta
e implementa nuestro algoritmo.





Resum

Aquest treball de fi de màster descriu un algoritme de verificació de signatures basat en k-
nearest neighbours i la distància de Levenshtein. És un mètode simple i on-line per classificar
signatures fetes a mà en autèntiques o falsificacions. Una falsificació consisteix en imitar una
firma, un document, un bitllet o una obra de valor. Es considera un delicte en la majoria de
països i segueix sent un problema important per als bancs avui dia.

En primer lloc, es realitza una breu introducció a la història dels sistemes biomètrics i
de les signatures manuscrites. Després d’explicar l’estat de l’art del sector, s’expliquen els
mètodes coneguts utilitzats. Finalment, es mostra la base de dades utilitzada i es presenta i
implementa el nostre algoritme.





Table of contents

List of figures xiii

List of tables xv

Objectives xvii

1 Introduction 1
1.1 History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Biometric Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Handwritten Signatures . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3.1 Our approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 State of the Art 5

3 Nomenclature and Methods 7
3.1 Levenshtein Distance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3.1.1 Iterative with full matrix . . . . . . . . . . . . . . . . . . . . . . . 8
3.2 K-nearest Neighbours Approach . . . . . . . . . . . . . . . . . . . . . . . 8

4 Our Algorithm 11
4.1 Data Preprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
4.2 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

5 Implementation 13
5.1 Data splitting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
5.2 Distances Calculation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
5.3 Execution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

6 Experimental Validation 15
6.1 Dataset Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15



xii Table of contents

6.2 Obtained Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

Conclusions and Future Work 17

References 19

Appendix A Pyhton implementations 23

Appendix B Tables V and VI from Impedovo and Pirlo [1] 29



List of figures

1.1 First known use of fingerprints for crime solving in 1892. . . . . . . . . . . 2

2.1 Non-exhaustive list of verification methods grouped by principle . . . . . . 6

3.1 Example of 3-nearest neighbour algorithm applied to a two classes dataset . 9

4.1 Character allocation in function of relative position of next point with respect
to the actual point. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

6.1 Example of original and forged signatures contained in the dataset [2]. . . . 16
6.2 K-neighbour algorithm parameter optimisation . . . . . . . . . . . . . . . 16





List of tables

6.1 Dataset signature features . . . . . . . . . . . . . . . . . . . . . . . . . . . 15





Objectives

Whilst taking the Biometrics course from the Master’s, I discovered this area and I got
amazed by the endless possibilities that this field could bring. Pursuing my studies as
a telecommunication engineer I specialised in image processing so when this work was
proposed I found it as the perfect junction between this two domains.

The ultimate objective during this dissertation project was to come up with an algorithm
to verify handwritten signatures from images. The main constraint was to keep it as simple
as possible.

The system evolved in the form keeping its essence. A handwritten verification system
was developed assuming a preprocessed input of data. The SVC2004: First International
Signature Verification Competition dataset was used.

With that purpose, other main objectives were set for this thesis: to set the basis for a
possible future mobile application of handwritten signature verification, that is, convert the
method to be able to apply it as an offline system. Last but not least, as aforementioned,
keep used processing and algorithms as simple as possible while maintaining significant
performance rates.





Chapter 1

Introduction

1.1 History

It was not until the last few decades that automated biometric systems became available. This
does not necessarily mean that they are new concepts since most of them apply traditional
techniques enhanced by the revolution of computer processing. A clear example of this is
the identification of individuals through their fingerprints. The Croatian born Argentinian
anthropologist and police official Juan Vucetich is considered one of the pioneers in the use
of them. In 1892 he discovered the real murderer of his sons thanks to a bloody fingerprint
left in the postbox [3]. Later on, Sir Francis Galton was the first man to design a fingerprint
classification method in 1888 based on Sir William Herschel works in the 1860s [4]. Some
of nowadays identification algorithms still use his theories.

There are many kinds of identification methods based on the used materials such as
the possession of a token (card, key, etc.) or the knowledge of a secret (password, key
phase,etc.). In opposition to this, biometrics refers to individual recognition based on a
person’s distinguishing characteristics [1]. The term derives from ancient Greek: "bio" which
means life and "metrics", to measure. This is why nothing else but our own characteristics
should be used. Furthermore, it is easy to see that better discriminating characteristics will
be more interesting no matter which is the purpose of the biometric system.



2 Introduction

(a) Juan Vucetich, anthropolo-
gist and police official pioneer
in the use of fingerprints.

(b) Right thumb fingerprint of
Francisca Rojas.

Fig. 1.1 First known use of fingerprints for crime solving in 1892.

1.2 Biometric Systems

Biometric systems can be divided into two groups depending on its intention: verification or
identification. In the first mode the goal is to authenticate the person’s identity comparing it
to the one he or she claims to have. On the other hand, when identifying the system is the
one in charge of stating the individual’s identity. There are a great variety of possible features
used such as voice, iris, fingerprints, behavioural traits, face, retina, handwritten signature,
etc. [5], [6], [7], [8].

1.3 Handwritten Signatures

In this project we will be focused in verification systems since the goal is to reject or accept
handwritten signatures as genuine or forged ones. Forgery consists on imitating a signature,
a document, a banknote or a valued work. It is considered a crime in most countries and it
still remains a major problem in nowadays banking.



1.3 Handwritten Signatures 3

Plenty of methods have been proposed and they are mainly divided in two groups since
Even, Goldreich and Micali established a classification criterion [9]. Depending on the
availability of the data they are usually classed as offline and online verification systems.
In offline verification the full finished signature is used, for example, we receive a signed
bank check and we analyse the signature to decide if it has been forged or it is rather genuine.
On the other hand, online verification disposes of "live" data, that is data that feeds the
verification algorithm while the process is being done. An example could be when the
postman arrives at your place to deliver a parcel, the machine where you digitally sign could
be live-feeding data to a verification algorithm.

Online methods have shown better performance in the last years (see tables V and VI
in [1]. However, they are much more difficult to implement in most cases. Let us take the
example of bank checks. When a person tries to cash a check, the bank worker receives it
with the signature already on it so there are no means to implement an online verification
system.

1.3.1 Our approach

In this work we decided to follow the approach of an online system with the premise of
making it as simple as possible without a loss of performance. Our algorithm needs to be fed
with an ordered sequence of points. When people sign, they usually do it in the same order.
For writing Victor I would write first the V, then the i, and so on. Even for each letter, like
the V I will always start from top left and end at the top right.

Guided by this, the chosen data was "Sample Data", taken from the well-known SVC2004:
First International Signature Verification Competition [2]. Only the X and Y data where used
in order to simulate a preprocessed version of an image capturing and processing system.
Any additional information available such as pressure or signing time were ignored.





Chapter 2

State of the Art

The enrolment of features in a knowledge base constitutes the first step in a verification
process. After feature extraction, these features associated to genuine signatures are stored
next to an identity. This allows to test against this knowledge base all new inputs to the
system. It will return either true (identified) or false (not identified), meaning this last that
the input is a forged signature or the person is not enrolled in the database.

In figure 2.1 we can see a non-exhaustive list of different methods grouped by principle.
The input set is tested via simple matching against templates stored in the knowledge base
when using template matching. They can also be tested against forgery templates. The most
used approach within this family is using dynamic time warping (DWT) [10].

When template matching techniques are considered, a questioned sample is matched
against templates of authentic/forgery signatures. In this case, the most common approaches
use DTW for signature matching [10, 11, 12, 13].

Within statistical approaches, distance-based classifiers are a classic option and the
one followed in this dissertation. Artificial neural networks (ANN) have been recently
increasing their presence [14, 15], specially convolutional neural networks (CNN) thanks to
their capability of classifying images [16, 17]. Even more complicated schemes like fuzzy
neural networks [18]. Lately, hidden Markov models (HMM) are getting more and more
attention [19, 20, 21].

Signature descriptions by their elementary elements or primitives are used in structural
approaches. They are compared by matching of graphs, trees, strings, etc [22, 23].



6 State of the Art

Fig. 2.1 Non-exhaustive list of verification methods grouped by principle



Chapter 3

Nomenclature and Methods

3.1 Levenshtein Distance

The Levenshtein distance is a metric used in linguistics [24] and information theory for
measuring the difference between two text sequences [25]. It receives its name after the
Soviet mathematician Vladimir Levenshtein, after he defined it in the sixties.

da,b(i, j) =



max(i, j) if min(i, j) = 0,

min


da,b(i−1, j)+Cdel(bi)

da,b(i, j−1)+Cins(a j)

da,b(i−1, j−1)+Csub(bi) ·1(ai ̸=b j)

otherwise.
(3.1)

Equation 3.1 defines the Levenshtein distance between the first i characters in the a
sequence and the first j characters in sequence b, where 1(ai ̸=b j) is the indicator function
defined as in equation 3.2:

1(ai ̸=b j) =

0 if a = b

1 if a ̸= b
(3.2)



8 Nomenclature and Methods

From these expressions we can see that the Levenshtein distance corresponds to the
minimum number possible of editions of a single character to transform one sequence into
the other. These editions are deletions, insertions and substitutions. Cdel , Cins and Csub

indicate respectively the associated costs for each operation. In our work 1 was considered
for all of them.

Cdel =Cins =Csub = 1

For example, dcare,cast = 2:

1. care → case (substitution of "r" for "s")

2. case → cast (substitution of "e" for "t")

3.1.1 Iterative with full matrix

The way of computing the Levenshtein distance is in a full iterative way, following Wagner
and Fischer implementation [26]. It can be dynamically programmed thanks to the fact that
a matrix is built to maintain all the previously calculated distances (from the first index up
until the current one). The last computed value will be the final distance between the two
sequences.

3.2 K-nearest Neighbours Approach

K-nearest neighbours or k-NN classification is a non-parametric method for splitting data
into classes. The k nearest training samples are the input of the algorithm, who decides
output’s class by voting these neighbours’ classes. k is an integer and usually small [27].

From this definition one can see that a distance metric must be defined since we need to
take the closest samples. In this work we used the Levenshtein distance defined in section
3.1.

In figure 3.1 we can see an example of 3-nearest neighbour algorithm applied to a two
classes dataset. In subfigure 3.1a we observe the available training set. In subfigure 3.1b a
new point has appeared and needs to be classified. The 3 nearest points from the training set
are taken into account, resulting in two votes for class 1 and one vote for class 2. Hence, the
new point will be classified as class 1.



3.2 K-nearest Neighbours Approach 9

(a) Available training dataset (b) New point and its 3 nearest neighbours

Fig. 3.1 Example of 3-nearest neighbour algorithm applied to a two classes dataset





Chapter 4

Our Algorithm

4.1 Data Preprocessing

In order to be able to use K-Nearest neighbours with Levenshtein distance as a metric (see
chapter 3), we first need to manipulate the raw input data. We need text sequences so the
followed approach was to convert signatures to text following the following algorithm:

We go through the whole signature point by point performing the following steps:

1. If it is the first point, skip following steps and move to the next one

2. Compare (x2,y2) coordinates of next point with actual point (x1,y1).

• if x1 > x2 and y1 > y2 → substitute point with ’b’.

• if x1 > x2 and y1 < y2 → substitute point with ’h’.

• if x1 < x2 and y1 > y2 → substitute point with ’d’.

• if x1 < x2 and y1 < y2 → substitute point with ’f’.

• if x1 > x2 and y1 = y2 → substitute point with ’a’.

• if x1 < x2 and y1 = y2 → substitute point with ’e’.

• if x1 = x2 and y1 > y2 → substitute point with ’c’.

• if x1 = x2 and y1 < y2 → substitute point with ’g’.

3. If it is not the last point, move to the next one and go back to first step.

Following this steps we end up with a text sequence generated from the original signature
in accordance with figure 4.1.



12 Our Algorithm

Fig. 4.1 Character allocation in function of relative position of next point with respect to the
actual point.

4.2 Algorithm

Once we have the text sequences generated from the signatures we just need to use the
well-known k-Neighbours algorithm (see section 3.2) using the Levenshtein’s distance as the
metric (see section 3.1). In the next chapter we will see the details of the implementation.



Chapter 5

Implementation

5.1 Data splitting

We split all the data present in the dataset [2] into a training set and a test set. These are of
size 66% and 33% of the original one. Code is available in listing A.3. Once this is done for
the 5 users, we proceed to compute the Levenshtein distances.

5.2 Distances Calculation

In order to implement the proposed algorithm in chapter 4 we firstly compute all distances
between the signatures. That is, the Levenshtein distance (see 3.1) between the first signature
to all the other 19 from user one. Then, the second one from the 18 remaining and so on. See
listing A.4.

5.3 Execution

We are then ready to execute the whole algorithm, calculating training and test errors. In
listing A.5 we see how we obtain the best parameter k for the algorithm minimising the
training error and then apply it to classify the test set.





Chapter 6

Experimental Validation

6.1 Dataset Structure

As aforementioned, the used data was "Sample Data", taken from the well-known SVC2004:
First International Signature Verification Competition [2]. This dataset is composed of 5
users with 40 signatures each: 20 original ones and 20 skilled forgeries.

For each signature, we dispose of a text representation of a sequence of points. The first
line is an integer indicating the total number of points conforming the signature and the rest
corresponds to one point per line. Each line has 7 features:

Table 6.1 Dataset signature features

Feature Details

X-coordinate scaled cursor position along the x-axis

Y-coordinate scaled cursor position along the y-axis

Time stamp system time at which the event was posted

Button status current button status (0 for pen-up and 1 for pen-down)

Azimuth clockwise rotation of cursor about the z-axis

Altitude angle upward toward the positive z-axis

Pressure adjusted state of the normal pressure

Only the X and Y data where used in order to simulate a preprocessed version of an image
capturing and processing system. Any additional information available such as pressure or
signing time were ignored.



16 Experimental Validation

(a) 5 original signatures from user 3 (b) 5 forged signatures from user 3

Fig. 6.1 Example of original and forged signatures contained in the dataset [2].

6.2 Obtained Results

As seen in section 5.3 we obtain the best parameter k for the algorithm minimising the
training error and then apply it to classify the test set.

Figure 6.2 shows the optimisation of parameter k of the algorithm. We obtained 2 as the
number of neighbours with a training error of 9.2308%.

Applying this parameter to the test set we obtained a test error of 5.7143%. This values
are in concordance with other methods from the state of the art (See Table V from [1]
included in appendix B).

Fig. 6.2 K-neighbour algorithm parameter optimisation



Conclusions and Future Work

Signature verification remains an important field of study in security. With every step of
evolution in forgeries quality, verification methods must do as well.

Here we demonstrated a very simple method, yet significant, to verify signatures. The
main limitation is the need to know the points’ order, which doesn’t yet enable off-line
verification schemes.

Solving this last inconvenient could enable further projects such as a mobile signature
scanning app, installed on portable battery-constrained devices that classify signatures into
original or forgeries.





References

[1] Donato Impedovo and Giuseppe Pirlo. Automatic signature verification: The state of
the art. IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications
and Reviews), 38(5):609–635, 2008.

[2] First international signature verification competition, svc2004. http://www.cse.ust.hk/
svc2004/download.html, 2004.

[3] Juan Vucetich. Dactiloscopía comparada: el nuevo sistema argentino. Establecimiento
Tipográfico Jacobo Peuser, 1904.

[4] Francis Galton. Finger Prints. Macmillan, 1892.

[5] Kevin W Boyer, Venu Govindaraju, and Nalini K Ratha. Introduction to the special
issue on recent advances in biometric systems [guest editorial]. IEEE Transactions on
Systems, Man, and Cybernetics, Part B (Cybernetics), 37(5):1091–1095, 2007.

[6] Kalyan Veeramachaneni, Lisa Ann Osadciw, and Pramod K Varshney. An adaptive
multimodal biometric management algorithm. IEEE Transactions on Systems, Man,
and Cybernetics, Part C (Applications and Reviews), 35(3):344–356, 2005.

[7] Anil K Jain, Patrick Flynn, and Arun A Ross. Handbook of biometrics. Springer
Science & Business Media, 2007.

[8] David D Zhang. Automated biometrics: Technologies and systems, volume 7. Springer
Science & Business Media, 2013.

[9] Shimon Even, Oded Goldreich, and Silvio Micali. On-line/off-line digital signatures.
In Conference on the Theory and Application of Cryptology, pages 263–275. Springer,
1989.

[10] Marc Parizeau and Rejean Plamondon. A comparative analysis of regional correlation,
dynamic time warping, and skeletal tree matching for signature verification. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 12(7):710–717, 1990.

[11] Brigitte Wirtz. Stroke-based time warping for signature verification. In Proceedings of
3rd International Conference on Document Analysis and Recognition, volume 1, pages
179–182. IEEE, 1995.

[12] A Piyush Shanker and AN Rajagopalan. Off-line signature verification using dtw.
Pattern recognition letters, 28(12):1407–1414, 2007.

http://www.cse.ust.hk/svc2004/download.html
http://www.cse.ust.hk/svc2004/download.html


20 References

[13] Oscar Miguel-Hurtado, Luis Mengibar-Pozo, Michael G Lorenz, and Judith Liu-
Jimenez. On-line signature verification by dynamic time warping and gaussian mixture
models. In 2007 41st Annual IEEE International Carnahan Conference on Security
Technology, pages 23–29. IEEE, 2007.

[14] Amir Soleimani, Babak N Araabi, and Kazim Fouladi. Deep multitask metric learning
for offline signature verification. Pattern Recognition Letters, 80:84–90, 2016.

[15] Ruben Tolosana, Ruben Vera-Rodriguez, Julian Fierrez, and Javier Ortega-Garcia.
Exploring recurrent neural networks for on-line handwritten signature biometrics. IEEE
Access, 6:5128–5138, 2018.

[16] Luiz G Hafemann, Robert Sabourin, and Luiz S Oliveira. Learning features for offline
handwritten signature verification using deep convolutional neural networks. Pattern
Recognition, 70:163–176, 2017.

[17] Bernardete Ribeiro, Ivo Gonçalves, Sérgio Santos, and Alexander Kovacec. Deep
learning networks for off-line handwritten signature recognition. In Iberoamerican
Congress on Pattern Recognition, pages 523–532. Springer, 2011.

[18] Nabeel A Murshed, Flavio Bortolozzi, and Robert Sabourin. Off-line signature verifi-
cation using fuzzy artmap neural network. In Proceedings of ICNN’95-International
Conference on Neural Networks, volume 4, pages 2179–2184. IEEE, 1995.

[19] Bao Ly Van, Sonia Garcia-Salicetti, and Bernadette Dorizzi. On using the viterbi
path along with hmm likelihood information for online signature verification. IEEE
Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 37(5):1237–
1247, 2007.

[20] Julian Fierrez, Javier Ortega-Garcia, Daniel Ramos, and Joaquin Gonzalez-Rodriguez.
Hmm-based on-line signature verification: Feature extraction and signature modeling.
Pattern recognition letters, 28(16):2325–2334, 2007.

[21] Edson JR Justino, Flávio Bortolozzi, and Robert Sabourin. Off-line signature verifi-
cation using hmm for random, simple and skilled forgeries. In Proceedings of Sixth
International Conference on Document Analysis and Recognition, pages 1031–1034.
IEEE, 2001.

[22] Ibrahim SI Abuhaiba. Offline signature verification using graph matching. Turkish
Journal of Electrical Engineering & Computer Sciences, 15(1):89–104, 2007.

[23] Siyuan Chen and Sargur Srihari. A new off-line signature verification method based on
graph. In 18th International Conference on Pattern Recognition (ICPR’06), volume 2,
pages 869–872. IEEE, 2006.

[24] Wilbert Jan Heeringa. Measuring dialect pronunciation differences using Levenshtein
distance. PhD thesis, Citeseer, 2004.

[25] Vladimir I Levenshtein. Binary codes capable of correcting deletions, insertions, and
reversals. In Soviet physics doklady, volume 10, number 8, pages 707–710, 1966.



References 21

[26] Robert A Wagner and Michael J Fischer. The string-to-string correction problem.
Journal of the ACM (JACM), 21(1):168–173, 1974.

[27] Thomas M Cover, Peter E Hart, et al. Nearest neighbor pattern classification. IEEE
transactions on information theory, 13(1):21–27, 1967.





Appendix A

Pyhton implementations

Listing A.1 Levesnshtein distance implementation

def levenshtein(seq1, seq2, print_full_matrix=False):
size_x = len(seq1) + 1
size_y = len(seq2) + 1
matrix = np.zeros ((size_x, size_y))
for x in range(size_x):

matrix [x, 0] = x
for y in range(size_y):

matrix [0, y] = y

for x in range(1, size_x):
for y in range(1, size_y):

if seq1[x-1] == seq2[y-1]:
matrix [x,y] = min(

matrix[x-1, y] + 1,
matrix[x-1, y-1],
matrix[x, y-1] + 1

)
else:

matrix [x,y] = min(
matrix[x-1,y] + 1,
matrix[x-1,y-1] + 1,
matrix[x,y-1] + 1

)



24 Pyhton implementations

if print_full_matrix:
print (matrix)

return (matrix[size_x - 1, size_y - 1])

Listing A.2 k neighbours implementation

def my_k_neighbours(distances,y,n_neighbours = 3, debug=False):
errors=0
for j in range(1,6):

if debug:
print("User "+str(j))

for i,val in enumerate(distances[j]):
idx = np.argpartition(distances[j][i], n_neighbours+1)
k_neighbours_idx = idx[0:n_neighbours+1][idx[0:n_neighbours

↪→ +1]!=i]
neighbours_y = [y[j][a] for a in k_neighbours_idx]
if (sum(d for d in neighbours_y if d))/n_neighbours <= 0.5:
# Majority of 0s in the n_neighbours of the i-th signature

if y[j][i]==0:
# estimation OK
pass

else:
if debug:

print(str(k_neighbours_idx)+" --> ", end="")
print(neighbours_y, end="")
print("****** "+str(y[j][i]),end="")
print(" --> ESTIMATION ERROR")

errors+=1
else:
# Majority of 1s in the n_neighbours of the i-th signature

if y[j][i]==1:
# estimation OK
pass

else:
if debug:

print(i,end="")
print(str(k_neighbours_idx)+" --> ", end="")



25

print(neighbours_y, end="")
print("****** "+str(y[j][i]),end="")
print(" --> ESTIMATION ERROR")

errors+=1

error = 100*errors/(n_users*len(distances[1]))
if debug:

print("\n\nTraining error = ",end="")
print("%.4f" % round(error,4),end="")
print("%")

return error

Listing A.3 Dataset splitting into train and test sets

X_train_all_users = {}
X_test_all_users = {}
y_train_all_users = {}
y_test_all_users = {}
for i in range(n_users):

X_temp = []
for key, value in X.items(): # iter on both keys and values

if key.startswith(str(i+1)+’-’):
X_temp.append(X[key])

X_train, X_test, y_train, y_test = train_test_split(X_temp, yp
↪→ [:40], test_size=0.33, random_state=42)

X_train_all_users[i+1] = X_train
X_test_all_users[i+1] = X_test
y_train_all_users[i+1] = y_train
y_test_all_users[i+1] = y_test

Listing A.4 Distance calculation

# We will build features as the distance with all the rest
#print(" 1 --> Original | 0 --> Fake ")
all_users_distances_train={}
for j in range(1,6):



26 Pyhton implementations

distances = np.zeros((len(X_train_all_users[j]),len(
↪→ X_train_all_users[j])))

for i in range(len(X_train_all_users[j])):
for k in range(len(X_train_all_users[j])):

distances[i,k] = levenshtein(X_train_all_users[j][k],
↪→ X_train_all_users[j][i])

all_users_distances_train[j] = distances

all_users_distances_test = {}
for j in range(1,6):

distances = np.zeros((len(X_test_all_users[j]),len(X_test_all_users
↪→ [j])))

for i in range(len(X_test_all_users[j])):
for k in range(len(X_test_all_users[j])):

distances[i,k] = levenshtein(X_test_all_users[j][k],
↪→ X_test_all_users[j][i])

all_users_distances_test[j] = distances

Listing A.5 Training and test error calculations

tr_err = []
bias = 1 # To prevent overfitting from which k we start. (1-neighbour

↪→ is dangerous, variance too high).
for k in range(1+bias,20):

tr_err.append(my_k_neighbours(all_users_distances_train,
↪→ y_train_all_users,k))

best_k = np.argpartition(tr_err,1)[0]+1+bias
print("Best parameter: k = "+str(best_k))

ax = plt.figure().gca()
ax.plot(np.arange(1+bias,len(tr_err)+1+bias),tr_err,’bo’)
ax.xaxis.set_major_locator(MaxNLocator(integer=True))



27

plt.xlabel("Number of neighbours")
plt.ylabel("Training error (in %)")
plt.title("K-Neighbour algorithm parameter minimisation")
plt.show()

print("\n\nTraining error = ",end="")
print("%.4f" % round(tr_err[best_k],4),end="")
print("%")

############

test_err = my_k_neighbours(all_users_distances_test,y_test_all_users,
↪→ best_k)

print("Test error = ",end="")
print("%.4f" % round(test_err,4),end="")
print("%")





Appendix B

Tables V and VI from Impedovo and
Pirlo [1]



30 Tables V and VI from Impedovo and Pirlo [1]



31




	Table of contents
	List of figures
	List of tables
	Objectives
	1 Introduction
	1.1 History
	1.2 Biometric Systems
	1.3 Handwritten Signatures
	1.3.1 Our approach


	2 State of the Art
	3 Nomenclature and Methods
	3.1 Levenshtein Distance
	3.1.1 Iterative with full matrix

	3.2 K-nearest Neighbours Approach

	4 Our Algorithm
	4.1 Data Preprocessing
	4.2 Algorithm

	5 Implementation
	5.1 Data splitting
	5.2 Distances Calculation
	5.3 Execution

	6 Experimental Validation
	6.1 Dataset Structure
	6.2 Obtained Results

	Conclusions and Future Work
	References
	Appendix A Pyhton implementations
	Appendix B Tables V and VI from impedovo2008automatic impedovo2008automatic

