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  Resumen del Trabajo (máximo 250 palabras): Con la finalidad, contexto de
aplicación, metodología, resultados y conclusiones del trabajo.

El objetivo de este trabajo fin de máster ha sido el de predecir tres tipos de
anomalías  corporales  relacionadas  con  la  calidad  de  hueso
(osteoporosis/osteopenia), la redistribución de grasa (lipodistrofia) y una baja
masa muscular, para un conjunto de pacientes con VIH. Dichas anomalías son
efecto de la terapia antiretroviral y la inflamación crónica del sistema inmune
causada por el propio virus. 

Para la realización de este estudio,  se dispuso de un conjunto de medidas
corporales  procedentes  de un análisis  DEXA;  tres  de ellas  se  usaron para
establecer  la  presencia  de  cada  enfermedad  en  base  a  valores  de  corte
extraídos de la bibliografía. 

Varios tipos de modelos de predicción se construyeron usando distintos sets de
variables,  incluyendo  variables  originales  y  variables  sintéticas  creadas  por
análisis de componentes principales, clustering de variables y análisis factorial
múltiple.   Para  la  predicción  de cada enfermedad,  solo  se  usaron aquellas
variables  no-directamente  relacionadas  con  ella.  Se  ajustaron  modelos  de
regresión logística y de machine learning, incluyendo “ensembles” o conjuntos
de modelos; los mejores modelos se seleccionaron en base a su ajuste y el
valor  de  AUC  obtenido.  El  uso  de  “ensembles”  mejoró  sensiblemente  la
predicción  de  lipodistrofia  y  baja  masa  muscular,  con  un  funcionamiento
excelente según  la  escala  de  valores  de  AUC.  La  predicción  de
osteoporosis/osteopenia mostró resultados aceptables pero mucho peores que



para  las  otras  dos  anomalías,  probablemente  debido  a  que  variables
importantes en la definición de la calidad de hueso no estaban disponibles para
la realización de este estudio. 

  Abstract (in English, 250 words or less):

The main aim of this study was to classify a set of patients with HIV as having
different type of body abnormalities (i.e. osteoporosis/osteopenia, lipodystrophy,
low  muscle  mass),  caused  by  the  antiretroviral  therapy  and  the  chronic
inflammation  of  the  immune  system  caused  by  the  virus  itself.  Building
classifiers  may  lead  to  earlier  diagnose,  decreasing  health  effects  and
improving life quality and expectancy of HIV+ patients.

For this study, a set of measurements from a DEXA analysis was available;
three of them were used to establish presence of disease, based on cut-offs
found at the bibliography. 

Models were built with original (“raw”) variables and synthetic variables created
by  principal  component  analysis,  multiple  factor  analysis  and  clustering  of
variables. For the prediction of each disease, just not-directly-related features
were taken into account.  Different type of classification methods were used,
including logistic regression, machine learning and ensemble learning methods.
Models were fitted using training datasets and validated using test datasets;
“best”  models  were  selected  based  upon  their  accuracy  and  AUC  value.
Ensemble models greatly improved prediction of lipodystrophy and low muscle
mass,  with  models  showing  an  excellent  performance,  demonstrating  its
capacity to extract subtle patterns from the data. Performance of models for the
prediction of  bone-related disease was just  acceptable,  probably due to  the
class-imbalance present and the lack of important variables related to the bone
quality. 
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1 Introduction

1.1 Introduction to the topic

The human immunodeficiency virus (HIV) is nowadays considered as a chronic disease, due
to the advances made in antiretroviral therapy (ART). However, it has been shown that
both ART and the chronic inflammation and activation of the immune system caused by the
virus itself, have short and long-term impacts in the body morphology (Nasi et al. 2017)
causing chronic age-associated diseases such as loss of bone mass (osteoporosis, osteopenia)
(Powderly 2012; Lima et al. 2011), muscle mass (Neto et al. 2016) and fat redistribution,
known as lipodystrophy or “HIV-associated lipodystrophy syndrome” (Freitas et al. 2010).
These body composition abnormalities are known to be present in a large percentage of
the population living with HIV; they are closely related with other health and economic
problems such as fractures, metabolic diseases (i.e. diabetes), cardiovascular diseases, higher
healthcare costs and eventually, higher mortality rates. They also cause significant cosmetic
changes that can result in a visible manifestation of the HIV virus, causing stigmatization of
the infected individuals that might lead to an early abandon of the treatment (Montessori
et al. 2004), with the high risk that this implies for the patients’ health.
The “gold standard” technique to measure body composition is Dual-energy X-ray absorp-
tiometry (McClung 2003), known as DEXA or DXA. This method is capable of measuring
lean, fat and mineral bone composition in several body compartments, such as the lumbar
spine or the hip (McClung 2003; Kendler et al. 2013). Three of the measurements provided
by DXA are currently used to identify the presence/absence of morphologic diseases:

• T − scores are used to idenfity low-bone associated diseases (McClung 2003),
• fat mass ratio (FMR) is used to define presence/absence of lipodystrophy (Freitas et

al. 2010), and
• appendicular skeletal muscle mass values (ASM/height2) are used to identify low mus-

cle mass (Cruz-Jentoft et al. 2018).

Based on DXA measurements, classifiers for the prediction of body composition abnormal-
ities can be built, leading to earlier diagnoses. That may avoid more serious health effects
and therefore, increase life quality and expectancy of HIV+ patients, as well as prevent them
from abandoning the treatment. Traditionally, regression models have been used to diagnose
medical diseases. However, over the last decades, newer machine learning models have been
developed, leading to an improvement in the diagnose accuracy. The “best” method to use
depends usually on the task (Kiang 2003); therefore, the usual approach consists of using
different classification algorithms and compare their performance. In order to improve this
performance, ensemble learning methods (combination of classifiers) can be used (Kilic and
Hosgormez 2016); these better classification entails nonetheless a worse comprehensibility of
the model.
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1.2 Objectives and motivation

Knowing that population with HIV are likely to suffer from chronic morphologic diseases
such as osteoporosis and osteopenia, lipodystrophy and loss of muscle mass, and taking into
account that they remain asymptomatic at early stages (McClung 2003), the main aim of this
Master’s Thesis will be to build classifiers in order to predict the presence/absence
of those three body composition abnormalities within an HIV+ population, of
male and female patients from all ages. Different kind of classifiers will be explored
and built, including traditional logistic regression models and machine learning (ML) ones.
Combinations of various classifiers, known as ensemble learning methods, will be studied as
well, these methods being known to be especially suitable for high dimensionality datasets,
like medical ones (Tay et al. 2013). Since there is no “best” model that applies to every
case, our approach will be to apply several regression and ML models to different feature
sets and compare their performance, finally selecting, at least, one model with high accuracy
(regardless of its interpretability), and one “easier-to-interpret” model.
Extracting different feature sets, representative of each disease, is one of the most important
steps in building accurate classifiers, especially in datasets with a big amount of variables,
which may also be highly correlated to each other.
Therefore, our second objective will be to create appropriate feature sets for the pre-
diction of each disease, using original (“raw”) variables and synthetic variables
created by dimensionality reduction techniques.
Following those two main objectives, the main research questions to answer will be:

1. Is there enough information available to accurately predict the presence/absence of
each of the three diseases under study?

2. Does use of dimensionality reduction methods improve the performance of the models?

3. Does use of more complicated models (i.e. machine learning, ensemble learners) improve
predictions?

1.3 State of the art and research gap

Previous studies have shown a relationship between anthropometric and DXA measurements
and the presence of body composition abnormalities. Widely studied seems to be the re-
lationship between bone quality and body mass index (BMI) (Schtscherbyna et al. 2012;
Pinnetti et al. 2014; Bolland et al. 2007), total body fat (Schtscherbyna et al. 2012), (older)
age, lower weight and increasing height (Pinnetti et al. 2014; Carr et al. 2015; Yoo et al.
2013), for both “normal” and HIV+ populations. Therefore, it seems like very basic an-
thropometric measurements may have high predictive capacity. Other kind of data, such as
nutritional status (Schtscherbyna et al. 2012), ethnicity (Carr et al. 2015), diabetes, as well
as female-specific features (i.e. duration of menopause, duration of breast feeding or estrogen
therapy) (Yoo et al. 2013), have also been found to have predictive capacity, but were not
available for this study.
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Logistic regression is still a widely used method in the prediction of morphologic diseases.
In particular, presence of osteoporosis seems to be widely studied in different kind of popu-
lations, including postmenopausal women (Yoo et al. 2013) and HIV+ populations. Results
of logistic regression models are often compared with ML models such as support vector
machines, random forests or artificial neuronal networks (see (Yoo et al. 2013; Ioannidis
et al. 2003) for some examples), with ML models often leading to a better performance.
Ensemble learning techniques have also been lately applied to the classification of patients
as having osteoporosis, osteopenia and normal bone quality (Kilic and Hosgormez 2016).
Most of the studies found on the topic usually focus on the prediction of one type of body
composition abnormality, generally related to low bone mass or fat-redistribution; no pa-
pers have been found for the prediction of low muscle mass. Logistic and artificial neuronal
network models seem to be the most widely used ones, with few papers exploring other
kind of methods. In this thesis, a wider view on the prediction of body composition ab-
normalities associated with the human immunodeficiency virus is proposed. Use of logistic
regression models for classification and some machine learning techniques will be applied
to different datasets, including original variables - extracted from anthropometric and DXA
measurements - and “synthetic” ones, obtained by dimensionality reduction techniques such
as principal component analysis, clustering of variables or multiple factor analysis.

1.4 Planning, timing and tasks

An overview of the planning initially designed can be observed at Figure 1, created with the
GattProject free software. Arrows indicate dependence between tasks (i.e. tasks that need to
be accomplished before starting other tasks), red dots indicate the milestones related with
the Master’s Thesis, while bars indicate tasks, with colour indicating the type of task to be
done:

• bibliography search (dark green);
• statistical analysis/model building (yellow);
• first trials and methods’ search (blue);
• ‘spare’ time or time left to finish incomplete tasks, select best models, get final con-

clusions, etc. (olive green);
• writing assignments, such as the final report and presentation (grey);
• analysis and final writing (black), as the two main tasks in which this study was

initially split.
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Figure 1: Original planning and timing.

After the official start of the Master’s Thesis (see vertical purple bar on Figure 1), five main
steps were followed:

1. Getting familiar with the dataset. This step included checking the available
dataset and a bibliography search. Doing a bibliography search was a really important
step, since it gave an overview of the topic: what has been done, in what kind of
patients, what has not been done yet, etc.

2. Pretreatment of the dataset, including an exploratory analysis and the setting of
presence/absence of disease based on features’ cut-offs found at the bibliography.

3. Dimensionality reduction and features’ selection techniques, in order to di-
crease the dimensionality and the multicollinearity of the dataset.

4. Building classifiers such as logistic regression, machine learning and ensemble learn-
ers, selecting the “best” models based on their performance, and drawing some final
conclusions.

Construction of logistic models (step 4) and use of automated features’ selection techniques
(step 3) overalapped, and so did the timing reserved to those tasks.
Also, wrapping the code into functions was not included in the original plan. However,
after finishing the code, we decided to invest some time in wrapping it into functions, which
improved its quality and usability. Programming those functions did therefore delay the
planned tasks; delay was compensated with a progress on the final writing.
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1.5 Description of contents

This Master’s Thesis has been structerd into:

1. An introduction on the topic, including state of the art, main objectives and original
planning and timing, with comments on the changes done on that planning.

2. A chapter containing an overview of the available dataset and the methodology
followed in order to get the results. This chapter is divided into:

• Software used.
• Pre-treatment and exploratory analysis’ methods used to check the dataset, split

patients into more homogeneous groups, correct class-imbalance and create train-
ing and test datasets used to train/fit and validate model’s performance, respec-
tively.

• Dimensionality reduction methods used to create “synthetic” variables, that will
be used as “normal” variables in the fitting of models. Methods explored include
principal component analysis, clustering of variables and multiple factor analysis.

• Machine learning and ensemble methods used.
• Performance and model’s selection criteria.

3. A chapter containing an overview of the main results obtained by applying the
suggested methodology, and a discussion on those results.

4. A chapter containing the main conclusions and future work.

5. A chapter containing the acronyms used and a glosary clarifying some of the terms
often used.

Also, two appendices can be found at the end of the report, including figures (appendix I)
and the R code used (appendix II).
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2 Methods

The methods and analysis presented in this chapter may vary between diseases, as lipodys-
trophy and low muscle mass have binary outputs (presence/absence of disease), while bone
quality is of multi-class type (normal/osteopenia/osteoporosis); differences will be stated
when needed.

2.1 Software

In order to carry out the analysis that will be presented at this chapter, R will be used. R
is a programming language and environment widely used for statistical computing, since it
integrates a collection of tools for data analysis, wrapped in the so-called “packages”. Version
R-3.6.0 of and 1.1.456 of RStudio will be used. Code, theory and analysis’ results will be
integrated into the final report using R Markdown.
In R, there are usually several functions to carry out one specific analysis. Chosen functions,
and the packages they belong to, will be mentioned at the end of each subchapter. All the
code - including customized functions programmed to extract modelling results - can be
reviewed at the Appendix II.

2.2 Pre-treatment of dataset and exploratory analysis

2.2.1 Original dataset. Available data

The original dataset contained data of 1480 patients with HIV (rows) for 82 features
(columns) columns, including age, DXA measurements (of bone, fat, muscle) and
anthropometric measurements, such as weight, height or BMI.
After checking for missing data and entry errors, 23 patients were eliminated from the
dataset: 22 containing at least one missing value, and one patient with entry errors.
Columns that were empty or redundant were excluded; 63 features were finally included in
the dataset. Since they did not seem to follow any specific order, features were relocated
so that related ones were found to be next to each other, simplifying further analysis. A
review of the variables finally taken into account, with their coded names and meanings can
be found at Figure 2.
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Figure 2: Review of all available features included at the final dataset, used to fit prediction
models.

• Bone measurements included bone mineral density (BMD), T-values and Z-values,1 for
different spine and hip sites; a representation of those sites can be found at Figure 3.
Minimum T-value (for all sites and for hip sites) was calculated and included as well
(minT_gral, minT_hip).

1T-values and Z-values are scores that show the quality of the bone mass, compared with the bone
mass of an average “healthy” population; they are used to diagnose bone-quality related diseases, such as
osteoporosis and osteopenia.
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Figure 3: Examples of DEXA images and data for spine (left) and hip (right) measurements,
extracted from Hain (2006).

• Fat and muscle features included measurements at arms, legs and trunk, as well as
measurements of total fat and total muscle; some ratios were included as well.

It has to be taken into account that not all available features can be used to predict
every disease, but just those that are not directly related to them. For instance,
prediction of lipodystrophy will just use anthropometric, bone-related and muscle-related
features, but none of the fat-related ones. Therefore, a different set of features will be
used for the prediction of each disease, including a different number of features: 31 for
the prediction of osteoporosis/osteopenia, 48 for the prediction of lipodystrophy and 54 for
the prediction of low muscle mass.

2.2.2 Presence of disease

Presence of disease will be established by different cut-offs extracted from the bibliography
(McClung 2003; Freitas et al. 2010; Cruz-Jentoft et al. 2018) (see Figure 4).
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Figure 4: Reference variables and cut-offs used to define presence/absence of disease.

• Presence of low-bone associated disease, such as osteoporosis and osteopenia, will
be defined using T-scores, following the World Health Organization recommendations
(McClung 2003). T-score values are calculated at every measurement site (i.e. hip,
spine) from BMD values, as the number of standard deviations from the “normal pop-
ulation” (i.e. young population with a healthy bone quality) (Powderly 2012). Min-
imum T-score of each patient will be extracted and considered to define the overall
bone quality of the patient.

• Presence of fat-redistribution associated disease or lipodystrophy will be diagnosed
attending to values of fat mass ratio (FMR) extracted from the DXA analysis; cut-offs
from Freitas et al. (2010) will be used. Diagnose of HIV-related lipodystrophy by FMR
was first proposed by Bonnet et al. (2005) and has been proved to be an objective
diagnostic tool (Beraldo et al. 2015).

• Presence of low muscle mass will be defined by cut-offs for Apendicular Skeletal
Muscle Mass (ASM) values, defined at the second European Group on Sarcopenia in
Older People (EWGSOP2) (Cruz-Jentoft et al. 2018).

2.2.3 Exploratory analysis

Previous to any feature selection or models’ fitting, a preliminary and exploratory analysis
will be carried out on the original dataset. This analysis will include a correlation and nor-
mality study of main features, cluster analysis and split of the dataset into more homogeneous
groups.

• Multicollinearity

As previously mentioned, most of the available features are different kind of body measure-
ments from a DXA analysis; therefore, they are expected to be redundant or multicollinear.
If that is the case, relative importance of predictors is difficult to assess and models are
unstable, since small changes in the dataset can strongly affect them (Dormann et al. 2013).
Multicollinearity is not a problem per se. For instance, if the aim of a study is to predict
an output (i.e. presence/absence of a certain disease), and models are applied to a similar
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dataset as the one used to build the classifier, results will be able to be extrapolated, since
new data will be expected to have the same collinearity as the data used to build the model.
Multicollinearity can be avoided by eliminating redundant variables or building models with
“synthetic” variables crated by dimensionality reduction techniques, such as principal com-
ponent anlysis or multiple factor analysis.

• Correlation study

In order to state the correlation between variables, Pearson’s coefficient will be calculated
and used to build a correlogram2. The Pearson’s coefficient is a dimensionless measure of
the relationship between two variables (therefore not affected by changes in the variables’
units). It is calculated as:

r = SXY
SXSY

where Sx, Sy represent the sample standard deviations and SXY represent the sample covari-
ance.
Pearson’s coefficient assumes that variables are normally distributed; therefore, normality
will also be checked for some of the most representative variables, using boxplots.
Correlation between variables used to define presence of disease and those variables not
directly related to them will be calculated as well. The ten most correlated variables for
each case will be used to build logistic regression models, as a case of “manually selected
variables”, as it will be later explained.

2.2.4 Cluster analysis and split of dataset

Two different splits of the dataset into more homogeneous groups will be studied: split by
cluster analysis and split into men and women patients. Building models for different sets
of patients will let us take into account their particularities while improving performance of
classifiers.
Cluster analysis is an unsupervised method of grouping observations into clusters, taking
into account that each observation can just belong to one cluster. In order to determine the
“best” number of clusters, the Silhouette method will be used. First introduced in 1987 by
Peter Rousseeuw, silhouettes are values that represent the quality of the clustering. One
silhouette is calculated for each possible partition; number of clusters that maximize the
average silhouette value will be the optimal one (Rousseeuw (1987)).
Silhouette method for the partition of observations into clusters will be applied by the func-
tion fviz_nbclust() from the package factoextra (Kassambara and Mundt 2017), includ-
ing the arguments x (scaled dataset of patients), kmeans (partition method to use), method
(method to be used for estimating the optimal number of clusters) and k.max (maximum
number of clusters to consider).

2graphic representation of the strength of the relationship between variables.
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fviz_nbclust(x = dexa.clust, kmeans, method = "silhouette", k.max = 10)

Once the optimal number of clusters has been calculated and data has been scaled - to
avoid features with bigger range of values having greater influence in the clusters- K-means
clustering method will be used to actually build the clusters. The goal of this method is to
create a specific amount of clusters, each one having the smallest within-cluster variation,
which is defined by the Euclidean distance between observations. In other words, the K-
means algorithm will try to minimize the value of W (Ck):

W (Ck) = 1
|Ck|

∑
i,i′∈Ck

p∑
j=1

(xij − xi′j)2

where Ck denotes the number of observations in the kth cluster, i represents the ith obser-
vation and (xij − xi′j)2 is the Euclidean distance (between two observations).
Split within clusters will then be compared with a split within male and female patients.

2.2.5 Study of class-imbalance

Final datasets used for prediction will contain one output representing the pres-
ence/absence of disease (previously calculated) and all the features not directly
related to that disease. Those three datasets will then be split into (two) more homoge-
neous groups, as stated at the previous step, and presence of disease within each group will
then be investigated.
A dataset is considered to be “imbalanced” if the classes are not equally represented, as it
is often the case in real-world data. Presence of class-imbalance may lead models to overfit,
just predicting the majority class, not being able to correctly diagnose. Thus, it is important
to check that no substantial class-imbalance exists, and correct it - if possible - in case it
does.
Different approaches exist to deal with class-imbalance; in this case, method SMOTE (syn-
thetic minority over-sampling technique) will be used (Chawla et al. 2002), which creates
new observations of the minority class, in a process that follows the next main steps:

1. All data points are plotted and samples of interest (belonging to the minority class)
are identified (see green points at Figure 5a). Those samples are called feature vectors.

2. K-nearest-neighbours to those feature vectors are then identified (see black and yellow
dots at Figure 5b).

3. Distance between feature vectors is calculated and multiplied by a random number
between 0 and 1.

4. A new datapoint is plotted on the line by adding the calculated number to the feature
vector under consideration (see red dot at Figure 5c).

5. Process is repeated until enough new data points have been created.
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Figure 5: Example of SMOTE process. Figure has been extracted from Schubach et al.
(2017).

Method SMOTE will be applied to each dataset using the function SMOTE() from package
DMwR (L. Torgo and Torgo 2013).

2.3 Dimensionality reduction methods. Creating “synthetic” vari-
ables

As previously mentioned, a big amount of features (63) are available, and multicollinearity is
expected to exist between them. Dimensionality reduction methods will be used to both,
reduce dimensionality of the dataset by replacing the p original variables by k
“new” synthetic variables (i.e. principal components, clusters), while avoiding
for multicollinearity. Those created variables will then be used as predictors at the
construction of classification models; those models will be “simple” in terms of number of
variables included, but will be however very hard to interpret.
Use of three different methods will be explored, namely:

• Principal component analysis or PCA
• Clustering of variables
• Multiple factor analysis or MFA

Each method will be applied to each of the available datasets (i.e. for each sex and disease
under study).
Being the main aim of the study the prediction body composition abnormalities, focus will
be set on extracting synthetic variables to use at modelling. That means, some basics of the
three mentioned methods will be explained, but just one example will be included at this
report (i.e. using the set of features for the prediction of lipodystrophy at female patients).
A deeper analysis of all 18 possible cases (one per each sex, disease and dimensionality
reduction method used) is outside of the scope of this study.
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2.3.1 Principal Component Analysis

PCA is a technique that reduces the dimensionality of a dataset containing X1, ..., Xp more
or less correlated variables, by creating p linear combinations of those variables, known as
principal components (PCs). PCA does not reduce the number of features of the dataset -
they are all included at each of the PCs.
Among all possible linear combinations of the original set of features, the first PC will be
the one explaining most of the variability; it is defined as:

Z1 = φ11X1 + φ21X2 + ...+ φp1Xp

where φ11, ..., φp1 represent the loadings of the first PC. Each PC has a loading vector φi,
which geometrically defines the direction in the features’ space along which the data varies
the most (i.e. the direction of the principal component); X1, ..., Xp are the original variables
and Z1 is the factor for the first PC (the linear combination itself).
The second PC will be the linear combination, orthogonal to the first one, that accounts
for as much of the remaining variation as possible, and so on. In other words, most of the
variability in a dataset containing correlated features will be explained by the first few PCs,
being those not correlated to each other - and therefore, avoiding for multicollinearity.
Scores of each PC are calculated as the projections of the n observations onto the direction
or loading of that PC, and will be used as “synthetic” variables while building prediction
models. For instance, score for the first PC is calculated as:

zi1 = φ11xi1 + φ21xi2 + ...+ φp1xip

The “best” number of PCs to be used can be selected by a scree test plot (see example at
Figure 16). As a rule of thumb, components that appear before the “elbow” at the scree plot
will be selected as being representative of the whole features’ set, since those are the ones
able to explain most of the variability contained in the original dataset.
PCA will be applied by the function prcomp() from the package stats (R Core Team 2013),
indicating that data needs to be normalized (scale = T, center = T), and the number of
principal components to be calculated (rank. = 15):

pca.res <- prcomp(pca.set, scale = T, center = T, rank. = 15)

2.3.2 Clustering of variables

This method consists of creating clusters containing strongly-correlated variables. Each clus-
ter will be a linear combination of the variables contained within it, and will score as a
single numerical variable, which represents how the cluster is correlated to each of the vari-
ables within it. These cluster scores can be then used to build prediction models. For more
information on the method see Chavent, Genuer, and Saracco (2016).

18



Since “best” number of clusters is a priori unknown, hierarchical clustering will be used.
First, p clusters are formed (each one containing one of the p original features) and a dis-
similarity measure, such as the Euclidean distance, is calculated between them. Then, most
near features are joined, forming a new cluster (Von Luxburg and others (2010)). The ro-
bustness of the partitions against random fluctuations in the data will be studied for all
possible partitions and for different sets of n datapoints, created by bootstrap.3 Instability
is then calculated as the mean distance between clusterings:

Instab(K,n) = E(d(Ck(Sn), Ck(S ′
n)))

where K is the number of clusters, n the size of the dataset, d the distance between two
clusters and Sn, S ′

n represent two different sets of n datapoints to compare.
Parameter k that minimizes that distance will be finally chosen.
Clustering of variables will be applied by functions of the package ClustOfVar (Chavent et
al. 2011), including hclustvar() for carrying out hierarchical clustering, stability() to
decide on the adequate number of clusters to use and cutreevar() to create the selected
number of clusters.

hclust.res <- hclustvar(X.quanti = pca.set) # "X.quanti" gets a quantitative
# dataset as input

clust.res <- stability(hclust.res, B = 20) # "B" = bootstrap samples
clust.cut <- cutreevar(hclust.res, k = 15) # "k" = number of clusters

2.3.3 Multiple Factor Analysis

Multiple Factor Analysis or MFA is an extension of PCA, for datasets where features are
structured into groups; in this case of study, variables will be considered to belong to five
different groups:

• Age
• Anthropometric measurements, including BMI, weight and height
• Bone-related measurements, including all BMD measurements, T-scores and Z-scores

from spine and hip.
• Fat-related measurements and ratios
• Muscle-related measurements and ratios

The aim of MFA is the same as that of PCA: to simplify and reduce the dimensionality of
the dataset by extracting a new set of linear combinations of the original variables, that will
be used as new, synthetic variables in the construction of prediction models. As previously

3resampling technique that consists on creating k random samples (with replacement), often used to train
models on them.
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mentioned, the difference between MFA and PCA is that MFA takes into account the struc-
ture of the variables (in groups). Therefore, it needs to balance the influence of each group
in the construction of the dimensions (the synthetic variables).
Each variable of the group j will be weighted by:

1
λj1

where λj1 is the first eigenvalue of the factor analysis applied to set J . These weights are
identical for the variables of the same group, and vary from one group to another. In this
way, a set with high dimensionality will contribute to various axes, but will not necessarily
contribute more to the first one (Pages 2004).
Multiple Factor Analysis will be carried out using the function MFA() from the package
factoMineR (Lê et al. 2008), where:

• group: indicate the grouping of the variables. In the example, variables are grouped
in Age (first variable), anthropometric measurements (next three variables at the
dataset), bone measurements (next 33 variables) and muscle measurements (last 10
variables at the dataset). Each group has to include just one type of variable (i.e. con-
tinuous/categorical)

• type: indicates the type of variables included in each group (“s” indicates “scaled”,
“c” indicates “continuos”).

• ncp: indicates the number of dimensions to be extracted.
• name.group: let us name the groups of variables used.

res.mfa <- MFA(pca.set, group=c(1,3,33,10), type=c(rep("s",4)), ncp=15,
name.group=c("age","antrop","bone","muscle"))

As for PCA, “best” number of MFA components will be selected by studying its scree plot,
selecting the number of components over the “elbow”.

2.4 Logistic regression models and features’ selection techniques

2.4.1 Logistic regression models

Logistic regression models the probability that an output variable belongs to a particular
category or class; predicting a qualitative response is therefore referred as “classification”.
Logistic regression also allos for the prediction of more than two classes, such as for “nor-
mal/osteopenia/osteoporosis”.
Linear regression is the equivalent to logistic regression, for quantitative responses. However,
while linear regression models the outcome directly, logistic regression models the probability
p of the outcome belonging to a particular category, using the logistic function:
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p(X) = eβ0+β1X1+...+βpXp

1 + eβ0+β1X1+...+βpXp

where X1, ..., Xp respresent the predictors and βi are the regression coefficients.
In linear regression, coefficients that minimize the sum of squared residuals are chosen, while
in logistic regression they will be estimated by the maximum likelihood method, which looks
for values of β such that the predicted probability for each individual are the closest to the
actually observed outcome. In mathematical terms, coefficients β are chosen to maximize
the next function:

`(β0, β1) =
∏
i:yi=1

p(xi)
∏

i′:yi′ =0
(1− p(xi′))

Models will be built using a training set, containing 2/3 of the patients; classifier will be
then validated using a new set of observations or test set, that will contain the rest of the
patients.
Logistic models will be fit using different sets of features, including:

1) original or “raw” features, including whole available sets and smaller sets of man-
ually and automated selected features;

2) synthetic features, including principal components extracted by principal component
analysis and multiple factor analysis, as well as scores from clustering of variables

Logistic regression models will be fit in R using the function multinom() from the package
nnet (B. Ripley, Venables, and Ripley 2016). In general, just two arguments are necessary:
formula (formula to build the model with) and data = trainSet (dataset to fit the model
at).

log.mod <- multinom(formula, data = trainSet)

2.4.2 Manual selection of features’ sets

Sets of manually selected features will include:

1) A set of basic features (same for male and female patients), including those features
that summarize the most important information in the dataset. Set of “basic” features
will include:

• Age
• anthropometric features, such as Weight, Height and BMI
• main features explaining bone quality of the patient, including total bone mineral

density (TotalBMD) and minimum T-value (minT_gral)
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• main features related with fat quality, including total amount of fat and fat mass
ratio (TotalFg, FMR, FMI)

• main features related with muscle quality, such as total lean (muscle) mass and
Apendicular lean mass (TotalLg, Apendicularleanmas, FFMI)

As already explained, features directly related to a certain disease will not be used in the
prediction of that disease.

2) A set of correlated features, extracted from the results of the correlation analysis. For
each disease, correlation between the variable used to establish presence of that disease
and the rest of the variables will be studied, and the ten most-correlated variables will
be extracted. Sets of correlated features may vary within sexes and within diseases.

2.4.3 Automated selection of features’ sets

Stepwise and LASSO (least absolute shrinkage and selection operator) methods will be
applied to automatically select variables, reducing dimensionality and/or multicollinearity
within the dataset.

• Stepwise

Stepwise is a widely used method for selecting subsets of predictors. Stepwise cannot really
avoid multicollinearity in a model (Dormann et al. 2013), but at least we expect it to help
eliminating some of the redundant variables from it. Its name comes from “step”, because
the model selection is based on adding/removing one predictor at a time:

1) Forward stepwise selection begins with the “null” model (the one without any predic-
tors) and adds one predictor at a time

2) Backward stepwise selection starts with a model containing all the available predictors
and removes one at a time

3) Mixed stepwise selection begins with the “null” model and adds, at each step, the
predictor that leads to a better model fit. However, and especially if multicollinearity
exists, statistical significance of each parameter depends on the rest of the predictors;
therefore, whenever we add or remove one predictor, significance of the rest may vary;
mixed stepwise will then get rid of those predictors which are not significant any more.

Stepwise selection will be applied with the function stepAIC() from the MASS package (W.
N. Venables and Ripley 2002), specifying the type of stepwise at the argument direction,
using the logistic model previously fitted.
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step.mod <- stepAIC(log.mod, direction = "backward", trace = 0)

Another way of dealing with multicollinearity is using robust logistic regression methods,
such as LASSO. LASSO shrinks the coefficient estimates, forcing some of them to be zero
and consequently, performing variable selection (James et al. 2013). LASSO will be applied
using the argument alpha = 1 while fitting a regression model with the function glmnet()
from the package glmnet (Hastie and Qian 2014).

# Create predictor matrix + extract response variable (y)
X <- model.matrix(formula, data = trainSet)[,-1]
Xtest <- model.matrix(formula, data = testSet)[,-1]
y <- trainSet[,labelName]

set.seed(params$models.seed)
if (disease == "bone") {
family.type <- "multinomial"

} else {
family.type <- "binomial"

}

# Extract lambda for best fit by CV
cv.lasso <- cv.glmnet(X, y, alpha = 1, type.measure = "mse",

nfold = 10, family = family.type)
bestLam <- cv.lasso$lambda.min # lambda for best result is stored at

# "lambda.min"
# Fit model
grid <- 10^seq(10, -2, length = 100) # create a grid
lasso.mod <- glmnet(X, y, alpha = 1, lambda = grid, # fit models using grid

type.multinomial = "grouped",
family = family.type)

# Predict using model built with best lambda value (bestLam)
predClass <- predict(lasso.mod, newx= Xtest,

s = bestLam, type = "class")

2.5 Building machine learning classifiers

Machine learning (ML) refers to the creation and evaluation of algorithms that facilitate
tasks such as classification or prediction, taking advantage of computational power (Tarca
et al. 2007). This kind of models are more flexible and expected to perform better, but they
are also more complicated and hard to interpret, since it is often difficult to understand the
relationship between the output and any of the predictors (Lantz 2015).
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Two of the most widely used machine learning algorithms will be applied, namely Support
Vector Machines (SVM) and Decision Trees (DT); those two algorithms were selected based
on their usability, and the fact that they lead to reasonibly good prediction results with low
training times. Whole sets of features (or “raw” and “synthetic” type) will be used to fit
machine learning models.
In order to achieve better predictions, some ensemble learning approaches will be considered
as well; this technique consists on integrating the output from several learners to reduce
their variance and better generalize to future prediction problems (Lantz 2015).
All machine learning models will be fitted using the function train() from the caret
package (Kuhn and others 2008); algorithm to use will be specified at the argument method,
with the following options:

• method = "svmLinear" for a SVM model with a linear kernel
• method = "C5.0" for a DT model, using the algorithm C5.0
• method = "treebag" for a bagged-tree algorithm
• method = "rf" for a random forest algorithm
• method = "gbm" for fitting a model with stochastic gradient boosting

Use of the function train() has the advantage of simplifying the process of parameter
tuning. In order to select the “best” parameter values a resampling method will be carried
out, specifying it at the argument trControl. Other arguments to be used are metric
(metric to use at the fitting of models) and preProc, in case we want a pre-processing of the
data to be done.

# trainControl() function to specify resampling method, used at the
# parameter tuning
myControl <- trainControl(method="boot",

number=25,
classProbs = T)

# Metric used at the tuning will be "ROC" curve, if possible; if not,
# "Accuracy" will be used (default value)
myMetric <- "ROC"
# Preprocessing will be used at SVM method
preProc <- c("center", "scale")

# Example for SMV (with linear kernel)
ml_method <- "svmLinear"
ml.model <- train(x = trainSet[,predictors], #"predictors"=s et of features

# for the prediction of a
# specific disease

y = trainSet[,labelName], #"labelName"= output (diagnose)
method = ml_method,
metric = myMetric,
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trControl = myControl,
preProc = preProc)

Ensembles with different type of learners (stacking-ensembles) will be built using functions
from the package caretEnsemble4 (Deane-Mayer and Knowles 2016) for the prediction of
lipodystrophy and low muscle mass. Function caretList() will be used to fit a list of models,
specified at the argument methodList. Function caretStack() takes those fitted models
as input (at the argument all.models), and specifies the learner supervisor that should
combine the predictions of the fitted models (argument method).

# Fit a list of different models
model.list <- caretList(x = trainSet[,predictors],

y = trainSet[,labelName],
trControl = myControl,
methodList = c("C5.0","nnet", "glmnet", "gbm",

"svmLinear"),
metric = myMetric)

# Combine them (stack them) using a supervisor learner
stack.mod <- caretStack(all.models = model.list,

method="glmnet",
metric=myMetric,
trControl=myControl)

caretEnsemble is not available nowadays for the prediction of multi-class models. Therefore,
an ensemble of models will be manually simulated for the prediction of bone abnormalities.
The process will consist of fitting some models, calculate their predictions and manually
extract the majority voting of all of them - in order to calculate their accuracy. AUC
values will be calculated from the averate of each class’ probability predictions, using the
multiclass.roc() function.
Code used can be found at the end of Appendix II.

2.5.1 Support Vector Machines

Support Vector Machines (SVM) is a ML algorithm, widely used due to their high accuracy.
“Support Vectors” are the points of each class closest to the maximum margin hyperplane, a
line that leads to the greatest separation between classes (see Figure 6, extracted from Lantz
(2015)). The main goals of SVM are then:

• to create a flat boundary (or “hyperplane”) that divides the space, separating groups
of similar classes;

4Package caretEnsemble should be installed from the repository at github (dev-
tools::install_github(‘zachmayer/caretEnsemble’) in order to assure the correct predictions of the
model.
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• to find the maximum margin hyperplane, as the line that will generalize the best to
future data.

Figure 6: Representation of classes, support vectors and maximummargins. Figure extracted
from Lantz (2015).

SVM can be used for linearly and non-linearly separable data, using for the last case kernels
that make non-linear relationships to seem linear by adding new features or dimensions into
the dataset. The adequate type of kernel to be used will depend on the learning task and
the relationships between features, and there’s no rule to choose a specific one. In this case,
linear kernel will be used.

2.5.2 Decision Trees

Decision Trees (DT) are also widely used ML algorithms, because they are easy to fit,
interpretable (they select variables and show the importance of them in the final output)
and can be applied to all kind of data. DT use tree structures to model the relationship
between features and outcomes; the process starts with a root node (for the input data),
which is successively separated into decision nodes or “choices to be made”. Data is then
split across branches in new decision nodes until a “final decision” is made, reaching the
output in the terminal node. In order to carry out that process, a splitting criterion is used,
such as the information gain F :

F = S1 − S2

where S1 represents the entropy (randomness) present within a set of class values, in the
tree segment before the split, and S2 represents the entropy value in the partition resulting
from the split.
Entropy values range from zero, for a low class-diversity, to a maximum, for a very diverse
partition; entropy depends then on the diversity of classes within the partitions.
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2.5.3 Model Ensembling: boosting, bagging and stacking

Some ML models, such as DT, artificial neural networks (ANN) or SVM, are called to be
“unstable” because they suffer from high variance; that means, applied to different splits of
the same dataset, obtained results may be quite different. In contrast, other models, such
as k-Nearest-Neighbors (kNN) or logistic regression ones, are known to be stable and have
low variance, yielding similar results while applied to different datasets.
Ensemble machine learning consists on integrating the output from a diverse set of weak,
“base” learners in order to achieve better predictions (Sarkar and Natarajan 2019) and reduce
their variance, avoiding overfitting and in general, better generalizing to future prediction
problems (Lantz 2015).
Learners of same or different type can be combined using different ensembling approaches,
such as bagging, boosting and stacking; they all consist in fitting a number of “base learners”
and combine their results into a final single prediction.

• Bagging

The bagging-ensemble technique, also known as “bootstrap aggregation” consists on fitting
multiple independent models, usually of DT type, in k different training sets created by
bootstrap. The predictions from the k sets will then be combined, creating a “single predictive
model”.
In this case, two different algorithms will be applied:

• Treebag algorithm

• Random forests (RF), which are a special case of bagged trees. Random forests fit DT
in different boostrap samples, but also uses different (smaller) features’ sets to build
those trees.

• Boosting

Boosting consists in sequentially building multiple models, usually of DT type, where
weighted votes are given to the fitted models depending on their performance, so that the
final prediction will be more influenced by those that achieved a better performance (Lantz
2015). In this case, Stochastic gradient boosting will be used, being one of the most known
boosting methods.5

• Stacking

The stacking-ensemble method consists on building multiple models, usually of different
type, using a supervisor model to combine their predictions. In general, predictions obtained
must have a low correlation in order to get a good result.

5AdaBoost.M1 is the most well-known boosting method. However, training time was way too long, so its
use was finally rejected.
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2.6 Performance and models’ selection criteria

All selected models will be fitted on training sets; prediction will be carried out on test sets.
Once prediction has been done, performance of the models will be studied using confusion
matrices and AUC values.

2.6.1 Confusion matrices

Confusion matrices include measurements like overall accuracy, sensitivity and specificity,
being the balance between the last two an indicator of a good performance of the model.
Definitions of those measurements can be found at the glossary. An example of a confusion
matrix can be found at Figure 7.

Figure 7: Example of confusion matrices of two and three classes, extracted from Lantz
(2015).

Confusion matrices will be built with the function confusionMatrix() from the caret
package (Kuhn and others 2008), using arguments predLog (predictions obtained by the
function predict()) and label (vector that contains the class or output of interest):

# calculate predictions from model "log.mod"
predLog <- predict(log.mod, newdata = testSet, type = "class")
# obtain confusionmatrix
c <- confusionMatrix(predLog, testSet[,labelName])

2.6.2 Area under the ROC curve

The area under the ROC curve (AUC) will also be used to study the overall performance of
the classifiers. AUC values range from 0.5 for a classifier with no predictive capacity, to 1.0
for a perfect classifier. In other words: the closer the value of AUC is to 1.0, the better will
be the model’s performance, being the model able to correctly identify presence of disease.

Overall performance AUC value
Excepcional 0.9 to 1.0
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Overall performance AUC value
Great 0.8 to 0.9
Acceptable 0.7 to 0.8
Poor 0.6 to 0.7
No classification capacity 0.5 to 0.6

Although AUC criterion was at first developed to be used at binary classification, some ap-
proaches for multi-class classification exist, such as the Hand and Till one. More information
on the method can be found at Hand and Till (2001).
AUC value for binary classification will be calculated by the function roc(), while function
multiclass.roc() will be used to calculate AUC value for multi-class cases. Both functions
belong to package pROC() (Robin et al. 2011). Main arguments to use are:

• testSet[,labelName] or the output to study
• predProb: probabilities for each class and observation
• print.auc = T: it will let us print the AUC result
• $auc: object where AUC value is stored

# AUC for binary class models
auc <- roc(testSet[,labelName], predProb, smoothed = TRUE, plot=T,

auc.polygon=T, max.auc.polygon=TRUE, grid = T, print.auc=T)
auc <- round(auc2$auc,3)

# AUC for multi-class models
multiRoc <- multiclass.roc(testSet[,labelName], predProb, plot = F,

percent = T)
auc <- multiRoc$auc
auc <- round(auc*0.01, 3)

Final model selection will involve a trade-off over model performance, in terms of accuracy
and AUC value. Simpler logistic models (i.e. models with “raw” and with less number of
variables) will be preferred. Simplicity will not be an important selection criteria for machine
learning models, since those are already very hard to interpret.
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3 Results & Discussion

3.1 Presence of disease

Presence of disease was established based on cut-offs found at the bibliography (McClung
2003; Freitas et al. 2010; Cruz-Jentoft et al. 2018) (see Figure 8).
Male patients were observed to have higher rates of osteopenia and lipodystrophy while
female patients showed much higher rates of low muscle mass. Most frequent combination of
disease was that of low bone quality and low muscle mass for female patients, and low bone
quality with lipodystrophy for male patients. Other combinations of disease were more rare
to find. No-presence of disease was also rare.

Figure 8: Presence of disease, alone and in combination, for male and female patients.
Presence of disease was studied at the original set of patients.

A class-imbalance existed, with an over-representation of “normal” cases, and was corrected
by the method SMOTE. This method did not work for multi-class cases, so original dataset
was used for the prediction of bone quality, while balanced set was used for the prediction
of lipodystrophy and low muscle mass. Class for low muscle mass was originally balanced
for female patients; in that case, SMOTE was still used in order to increase the size of the
dataset to work with. Final class-percentage, for each features’ set can be found at Figure
9.

Figure 9: Final presence of classes at dataset, after using SMOTE method for balance.

A comparison of body composition abnormalities in young versus old patients was also carried
out. Bone quality of patients seemed to decrease with age, with higher rates of osteopenia at
younger patients and osteoporosis at older ones, probably because osteopenia develops into
osteoporosis. Lipodystrophy was more frequently observed at older patients. Low muscle
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mass seemed to be a characteristic body abnormality among female patients, with similar
rates at young and old patients (see Figure 10).
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Figure 10: Presence of bone, fat and muscle disease. Study of the differences between young
(<50 years) and old (>= 50) patients, for both female and male patients.

In general, the population under study showed much higher rates of morphologic disease
than it would be expected for a “normal” (healthy) population, with rates at least twice as
higher for bone-quality abnormalities (Tian et al. 2017; C. N. Y. Lee et al. 2015), as well as
for low muscle mass (Shafiee et al. 2017). Lipodystrophy syndromes are typically observed
in HIV+ patients but are very rare in normal population, with an estimated prevalence of
1.3 to 4.7 cases per million (Chiquette et al. 2017).

3.2 Exploratory analysis

3.2.1 Normality

Normality was visually stated, using boxplots (see Figure 11 for some of the results). In
general, normality was observed at all features related to anthropometric, bone and muscle
mass; some fat-related measurements had skewed distributions towards the right, probably
caused by the abnormal redistribution of fat along the body typically observed in HIV+
patients. An histogram of fat mass ratio can be found at Figure 12.
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Figure 11: Boxplots used to study the distribution of some of the main features. Normal
distribution was accepted for all of them.
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Figure 12: Histogram of FMR, skewed towards the right; probably caused by the abnormal
fat redistribution typically observed on patients with HIV.

3.2.2 Correlation study

Pearson’s coefficient was used to build a correlogram of a selected set of variables, including
age, anthropometric measurements, bone mineral density measurements (from the hip and
the spine), as well as the main fat and lean measurements and ratios. Correlogram can
be found at Figure 13. In general, many variables were found to be highly correlated to
each other, which implied the presence of multicollinearity within them and the need of
applying features’ selection and/or dimensionality reduction techniques as a first step - prior
to building classifiers.
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Figure 13: Correlogram for the most representative variables. Blue and red colours indicate
positive and negative correlation, respectively; darker shades indicate stronger correlation.

Main conclusions extracted from the correlogram were:

• The older the patient, the worse the bone quality and therefore, the higher the risk of
developing osteopenia/osteoporosis. As it can be observed, age is inversely correlated
with the minimum T-score and some of the hip bone measurements.

• A better body condition (in terms of height, weight, higher amount of fat and muscle)
seems to be correlated with a better bone quality.
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As previously stated, three of the available features were used to define presence/absence of
the morphologic abnormalities under study:

• Presence of osteoporosis/osteopenia was defined by the minimum T-value, extracted
from all bone measurements (minT_gral).

• Presence of lipodystrophy was diagnosed by the FMR
• Presence of low muscle mass was diagnosed by the ASM (Apendicularleanmas)

Correlation coefficients were calculated separately for male and female datasets, between
each of those three features and all variables not directly related with the correspondent
disease. Variables that were not common to both sexes have been coloured in green (see
Figure 14).

Figure 14: Calculated correlation coefficients between variables used to define presence of
disease and the rest of not-directly-related variables. Variables that are not common to
female and male patients have been coloured.

• Similar results at male and female datasets were found for the variables that correlate
to minT_gral. Variables included Age (inversely correlated) and lean mass features, in
accordance with the conclusions extracted from the correlogram.

• FMR showed very low correlation values with the rest of the variables. Results differ
within male and female patients, the only common features being Age and three muscle
measurements (FFMI, TLg, Apendicularleanmas). FMR was more correlated to hip
bone measurements for male patients, and to spine bone measurements for female ones.

• Male and female patients showed similar results in terms of correlation between
Apendicularleanmas and the rest of non-related variables, with most correlated vari-
ables including anthropometric measurements (Weight, BMI) and hip measurements
of BMD, as well as T-values. Low muscle mass doesn’t seem to be influenced by age.
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Sets of correlated variables from Figure 14 were then used to build logistic regression models.

3.2.3 Cluster analysis and split of the dataset

The Silhouette method was used to study clustering of variables, with two clusters being the
optimal number, as it can be seen at Figure 15. Then, K-means clustering method was used
to build those two clusters.
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Figure 15: Optimal number of clusters extracted by the Silhouette method, for the original
dataset.

Clusters were analyzed; they seemed to mainly split patients with low bone quality from the
rest, with no other clear or useful separation - for instance, within men and women, patients
of different age, etc. In other words, division of patients between clusters did not seem to be
of any advantage for the main aim of the study and would have worsen the usability of the
final classifiers.
It is widely accepted that men and women have different morphologic characteristics, so
different prediction models are often built for men and women - at least if enough number
of patients are available (see example at A. P. dos Santos et al. (2018)). Also, it was shown
how male and female patients had different rates of disease; therefore, original dataset was
finally split into one male dataset, containing 1103 patients, and one female dataset with
354 patients.

3.3 Dimensionality reduction methods

A big amount of features were originally available, with many of them being correlated
to each other. Therefore, use of dimensionality reduction methods was explored, its aim
being reducing the number of features of the datasets used at modelling, while avoiding for
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multicollinearity. Those methods were applied to each of the six available datasets (one per
each sex and for the prediction of each disease under study), and one set of “new” (synthetic)
variables was then obtained, for each case. Those new variables were then used as “normal”
predictors at the construction of classification models.
At first, “best” number of synthetic variables was decided - using scree plots for PCA and
MFA, or using the stability method for clustering of variables, as already explained at the
methods’ chapter. Models built with that “best” amount of variables did not have prediction
capacity, so a fixed number (15) was finally extracted and used at modelling, yielding better
results.
Being the main aim of the study the prediction of body composition abnormalities among an
HIV+ population, focus was set on extracting the synthetic variables to use at the prediction
of disease. Therefore, and as previously stated, dimensionality reduction methods will be
applied to each possible case and synthetic variables will be extracted, but just one example
will be included at this report: methods applied to dataset of female patients including
features for the prediction of lipodystrophy. An analysis of all possible cases (18) would be
outside the scope of this study.

3.3.1 Principal Component Analysis

PCA was applied using the function prcomp() and “best” number of principal components
was visually stated by using a scree plot (see example at Figure 16); PCs over the “elbow”
were at first extracted, being those able to explain most of the variance contained in the
original dataset (over 90%, see Figure 17). However, and as already mentioned, “best”
number of principal components were later on found to not have much predictive capacity
building classification models, so 15 PCs were finally extracted and used at the models’
fitting process.
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Figure 16: Scree plot of the first 15 principal components, for dataset of female patients for
the prediction of lipodystrophy. PCs over the ‘elbow’ (red dot) were at first selected as the
ones containing most of the variability in the dataset.

Figure 17: Summary of principal components, in terms of explained variability and cummu-
lative variability. For this example (female + lipodystrophy) the first 5 components were
able to explain 90% of the total variability.

A representation of the two first PCs was also studied. At Figure 18, an example for female
patients and presence/absense of lipodystrophy can be found. No clear separation exists
for both dimensions, probably because dataset under study is too complicated. PCA can
therefore not be used as an exploration analysis.
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Figure 18: Graphic representation of two first PCs, for female and lipodystrophy. No clear
separation exists for those two first dimensions.

Results regarding composition of each principal component (in terms of correlation between
each PC and the original features) were inconclusive, with no specific set of variables being
part of each dimension. Therefore, results have not been included. The reason may be the
high number of features available, as well as the overall complexity of the dataset.

3.3.2 Clustering of variables

Variables were grouped using hierarchical clustering and best number of clusters was calcu-
lated by studying their stability, as stated at the methodology; stability of partitions can be
observed at Figure 19.
The “best” (i.e. more stable) number of clusters was very low for all cases under study
and models built with them did not show much prediction capacity. Since higher number
of clusters also had a good stability (see example at Figure 19), 15 clusters were finally
extracted for all cases. Scores from those 15 clusters were then used as predictors at the
model building
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Figure 19: Graphic study of the stability of cluster partitions of features, example for female
and lipodystrophy dataset. A fix number of 15 clusters was finally chosen, for all diseases.

3.3.3 Multiple Factor Analysis

As a result of applying MFA, one set of synthetic variables was obtained; as for the other
dimensionality reduction methods, those were then used to fit classification models.
Figure 20 contains an example of the scree plot for the MFA analysis, using the female
dataset for the prediction of lipodystrophy. Results in terms of “best” number of MFA
components were similar to those obtained from PCA (see Figure 16). Synthetic variables
to use were, in this case, the coordinates for each individual of the studied dataset, stored
at res.mfa$ind$coord.
As for PCA and clustering of variables, 15 components were finally extracted, since models
built with the “best” number of dimensions did not have much prediction capacity.
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Figure 20: Scree plot for the results of MFA, for female and lipodystrophy. Five to six
dimensions would be selected as representative for the dataset.

MFA was a really interesting method that let us extract results for groups, variables and
individuals (observations). For instance, correlations between groups and dimensions could
be visually studied, using the function fviz_contrib(). For the example under study, it
could be easily observed how body measurements, especially muscle-related ones, contributed
the most to the first dimension (see Figure 21), while Age was the one most contributing to
the second one (see Figure 22).
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Figure 21: Contribution of groups to the first dimension. Example for female and lipodys-
trophy dataset.
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Figure 22: Contribution of groups to the second dimension of MFA analysis. Example for
female and lipodystrophy dataset.

Contribution of variables to the dimensions was also graphically studied. For the example
under study, the first component seemed to be mainly influenced by anthropometric measure-
ments (Weight, BMI, Height, see Figure 23), while the second one was mainly influenced
by the variable Age (see Figure 24).
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Figure 23: Contribution of variables to the first dimension of MFA. Example for female and
lipodystrophy dataset.
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Figure 24: Contribution of variables to the second dimension of MFA. Example for female
and lipodystrophy dataset.

3.4 Modelling

Logistic and machine learning models were built on different sets of features, depending on
the disease under prediction. Models were fitted for male and female patients separately,
using training sets, and validated using test sets.
Logistic regression models were built using: 1) all the available original features (one
set per each disease); 2) two different smaller sets of manually (original) selected features;
3) three different sets of synthetic variables, extracted by PCA, clustering of variables and
MFA.
Automated feature-selection methods were then applied to the fitted logistic models and
backwards-stepwise method was finally selected, since it needed lower computing timings
and led to models with similar accuracy as those obtained by the “mixed” method. Stepwise
selection was able to create simpler models, in terms of number of variables, with similar or
even better performance than the ones containing the whole features’ sets. LASSO method
did not improve performance, compared with the original models or the ones obtained by
the stepwise method, and had additional disadvantages, like difficulties to extract sets of
variables finally included in the model and estimation of AUC value; therefore, LASSO
results were finally discarded and have not been included in this report.
Main results observed from logistic regression models were:

• Models built from original (raw) variables performed pretty well for all cases, both
using the original complete set and the sets of features selected by stepwise.
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• Models built with manually selected sets of variables performed reasonably well using
the “basic ones”, while performance of models using “correlated variables” was much
worse. The reason may be that the “basic” set of variables were a good representation
of the whole feature set and therefore, included most of the variability from the whole
set of variables, while the “correlated” ones were often of the same type and therefore,
not a good representation of the whole features’ set.

• Use of synthetic variables did not seem to improve the performance of the logistic
regression models, the only exception being clusters of variables for the prediction of
lipodystrophy at male patients (see pink-coloured row at Figure 33 at Appendix I).
Models built from original variables were then preferred.

Machine learning models were built on whole sets of variables, both of original and
synthetic type. For those models containing parameters, training control was used to carry
out an automatic tuning, as previously explained. In this case, no feature selection was
carried out and models were not interpretable.
Trained models used support vector machines (with a linear kernel), decision trees (using
the algorithm C5.0), random forests, bagging of trees and stochastic gradient boosting algo-
rithms. All models were built using the function train() from the package caret, specifing
the method used. Using the same function for the training of all models simplified the flow
analysis and made models’ results comparable. Furthermore, caret package had some ad-
vantages over other model-specific packages, like making tuning process easier, which was
important taking into account the amount of cases under study.
Functions from package ensembleCaret were used to “stack” learners; that means, fit dif-
ferent type of models, not correlated between them, and combine their outputs using a
supervisor learner. Since those could not be applied to the prediction of multi-class cases
(osteoporosis/osteopenia/normal), a majority vote approach was used, with results being
manually extracted. These method consisted of fitting different models and calculating the
most predicted class, comparing it with the original output in order to extract the overall
accuracy of the ensemble.
Performance of models was studied and best ones were selected mainly based on their
overall accuracy and AUC value. For logistic models of similar accuracy and AUC
values, those being simpler were preferred. Simplicity was not taken into account to choose
the “best” machine learning models.
Customized functions and loops were programmed to fit models and get the final results,
improving the usability of the code. Functions included:

• select_sex: to select the patients of interest (female/male).

• select_disease: to select the features’ sets of interest, which depend on the disease
that we would like to predict. Disease options include “fat” (for the prediction of
lipodystrophy), “bone” (for the prediction of osteoporosis/osteopenia) and “muscle”
(for the prediction of low muscle mass).
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• select_formula: to select formula (variables) to use at the model fitting, with options
being: 1) “all”, to use all available variables; 2) “basic” set of raw features; 3) “corr”
(correlated) sets of raw features.

• select_type_data: integrates the previous functions to select sex, disease, formula
and data type, being the data type options “raw”, “pca”, “clust” (clusters of variables)
or “mfa”.

• balance_and_split: to balance classes and split dataset into training and test sets.

• log_results: to fit logistic regression models, for a determined sex, disease under
study and type of data.

• ml_results: to train ML models, using the default tuning.

Loops were programmed in order to apply functions to several/all possible cases at once.
Loops were also used to apply stepwise method to logistic regression models built by
log_results. The whole set of customized functions and loops can be found at the
Appendix II.
Results obtained by applying those functions and loops have been summarized at Figures
31 and 32 for the prediction of bone-related abnormalities by logistic and ML models (re-
spectively); Figures 33 and 34 for the prediction of lipodystrophy; and Figures 35 and 36 for
the prediction of low muscle mass, for both male and female patients. At the tables, “best”
models have been coloured in grey, in case original variables were used to fit the model, and
pink, for models using synthetic variables. All those tables can be found at Appendix I.
In general, it was seen that best results were obtained by models built with raw
variables and synthetic variables from MFA analysis. Results of those two cases will
be shown, for male and female patients and for the prediction of each disease.

3.4.1 Results for the prediction of bone disease

Bone-quality related abnormalities (i.e. osteoporosis/osteopenia) were hard to predict; fitted
models did not get a high accuracy, although overall performance in terms of AUC value for
some models was acceptable, for both male and female patients.
Two logistic regression models were finally selected as the “best” ones, both in terms of inter-
pretability and accuracy. Machine learning models were not able to improve the performance,
with the additional disadvantage of not being interpretable (see Figure 25).
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Figure 25: Performance of main models at the prediction of low bone quality, for female (left)
and male (right). Filled dots show accuracy values, while empty ones show AUC values (in
a scale from 50 to 100, to make them comparable).

A model with 65.25% accuracy and AUC value of 0.77 for female patients was finally selected;
it consisted of nine variables from the set of “basic” features. “Best” model for the male
dataset had an accuracy of 58.97% and AUC value of 0.74, and contained 17 variables; it
was obtained by applying stepwise at the original features’ set.
Variables included in both models, as well as their relative importance, can be observed
at Figure 26. Most important variables included in the model, for both male and female
patients, were rates related to weight, fat and muscle condition (BMI, FMI, FFMI, FMR,
Indexdistributionfat). Surprisingly, age did not seem to have a great importance in the
models, although it was indeed included.
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Figure 26: Importance of variables in the prediction of bone disease, for female (left) and
male (right) patients.

3.4.2 Results for the prediction of lipodystrophy

Models for the prediction of Lipodystrophy were more accurate than bone-quality ones. As
it can be seen at Figure 27, use of machine learning methods greatly improved performance
for both female and male patients.

• Models for male patients showed very similar results for raw and MFA variables, with
best results (in terms of accuracy and AUC values) corresponding to RF, ensemble and
C5.0 algorithms.

• Results for female patients were more variable, with worse performance of logistic
models and higher performance of ML models using MFA variables, especially RF and
treebag algorithms.
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Figure 27: Performance of main models at the prediction of lipodystrophy, for female (left)
and male (right).

A model with 75.74 % accuracy and AUC value of 0.81 for female patients was finally
selected as the “best” one in terms of interpretability; it contained 23 of the original variables,
selected by stepwise. “Best” model for the male dataset contained 25 variables, also selected
by stepwise, and had an accuracy of 76.79 % and AUC value of 0.86, with a good balance
between sensitivity (78.46%) and specificity (75%).
Variables included in the models, as well as their relative importance, can be observed at
Figure 28. Again, results in terms of variable importance seem to be similar for both sexes;
variables with the bigger weight on the models were height and some of the bone variables
at the spine, as well as the bone mineral density at the tronch (hip).
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Figure 28: Importance of variables in the prediction of lipodystrophy, for female (left) and
male (right) patients.

As already mentioned, machine learning models greatly improved the performance, and
two of them were selected as the “best” ones in terms of accuracy. Use of the random forest
algorithm and synthetic variables from MFA obtained the best results for the female dataset,
improving accuracy and AUC values in around 15%. For the male dataset, best results were
obtained by the stacking ensemble applied to the original set of variables, which increased
the accuracy and AUC values in roughly a 10% with respect to the logistic regression models
(see Figure 27).

3.4.3 Results for the prediction of low muscle mass

Best results were obtained for the prediction of low muscle mass. Main results (in terms of
accuracy and AUC value) for raw and MFA variables can be found at Figure 29.
Both, logistic and machine learning models performed very well and results were very good
- and stable - for all the models built from raw and MFA variables (see Figure 29). Again,
logistic models were preferred in terms of interpretability while machine learning ones were
selected as the best accurate ones Both kind of models showed an excellent performance,
with AUC values over 0.95; ensembles were able to get AUC values of roughly 1.
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Figure 29: Performance of main models at the prediction of low muscle mass, for female
(left) and male (right).

Logistic selected models contained ten basic features for the female dataset, and just six for
the male dataset, with BMI and FMI being two of the most important ones, and with height
also greatly influencing the model built at the female dataset (see Figure 30). Those models
did not have the highest accuracy and AUC values, but they showed very good results and
were very simple, so they were preferred over more complicated ones.
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Figure 30: Importance of variables in the prediction of low muscle mass, for female (left)
and male (right) patients. .

As already mentioned, machine learning models were able to improve the performance, with
higher accuracy and AUC values in both female and male datasets (see Figure 29); selected
models correspond, for both sexes, to stacking ensemble applied to the original set of vari-
ables. Model accuracy increased in 6% for female patients and 4% for male patients, with
respect to the logistic models; AUC value also increased, as well as sensitivity value, showing
the capacity of the models to predict almost all true positive cases (“presence of disease”).
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4 Conclusions & Future Works

The main aim of this study was to predict, for a set of male and female pa-
tients with HIV, the presence/absense of different type of body composition ab-
normalities related to bone quality (osteoporosis/osteopenia), fat-redistribution
(lipodystrophy) and low muscle mass. Different sets of features were used for the
prediction of each disease, namely those ones not directly related to the disease itself.
First, an exploratory analysis was done. Rates of disease were found to be much higher
than the ones expected for a “healthy” population, agreeing with the literature. Patients
among HIV+ populations are expected to develop that kind of morphologic diseases, both
because of the effect of antiretroviral treatments, and for the inflammation that the virus
itself causes. Presence/absence of disease was imbalanced, with an over-representation of
“normal” cases; class-imbalance for lipodystrophy and low muscle mass was corrected by the
SMOTE method, which lead to an improvement of the models’ performance.
Male and female patients showed different rates of disease. For instance, male patients were
observed to have higher rates of osteopenia and lipodystrophy, while female patients showed
much higher rates of low muscle mass. Therefore, dataset was finally split within male and
female patients, and different models were built for each sex. Sets were then split into two
parts: a training set, used to fit the models, and a test set, with new observations used to
validate the fitted model.
Since a big amount of features was originally available, with many of them being correlated
to each other, use of different dimensionality reduction methods was explored, with the aim
of reducing dimensionality of the datasets and avoiding for multicollinearity. Chosen tech-
niques were PCA, MFA and clustering of variables, from which some synthetic variables were
extracted, which were then used as “normal” predictors at the construction of classification
models. Models built with the “best” syntehtic variables did not have much prediction ca-
pacity, so a fixed number of 15 variables was finally extracted and used at modelling, yielding
better results.
Original and synthetic variables were used to build logistic regression and machine learning
models. Models were fitted using training sets. Some smaller sets of original variables were
also used (i.e. “basic” and “correlated” variables) in logistic regression models. The “back-
ward” stepwise method of selection of variables was applied to the fitted models, creating
simpler ones (in terms of number of variables) with a similar or even better performance
than the original ones.
Machine learning algorithms explored included some of the most widely used learners found
at the literature, such as C5.0 (decision tree) and support vector machines with a linear
kernel. Some combinations of models’ predictions, known as “ensemble models”, was also
explored. Ensembles explored were of bagging, boosting and stacking type, the last one
consisting on combining the predictions of different types of “base” learners using a supervisor
model. Since stacking functions were not available for multi-class cases (i.e. prediction of
osteoporosis/osteopenia/normal), amajority vote approach was used, consisting of extracting
the majority vote from the prediction of different trained models, comparing that “new”
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vote (prediction) with the original output, in order to calculate the overall accuracy of the
ensemble.
Best models were selected mainly based on their overall accuracy and AUC value, although
sensitivity value and balance between sensitivity and specificity was also taken into account.
For logistic regression models of similar accuracy and AUC values, those being simpler (in
terms of number and kind of variables included) were preferred over more complicated ones.
Since machine learning models are very hard to interpret, selection was based just on accuracy
and AUC values, and not in the type of data used to build the model.
Results obtained from modelling varied within diseases.

• Bone-quality related abnormalities (i.e. osteoporosis/osteopenia) were hard to predict
and use of Machine learning algorithms did not improve the results. The reason may be
that bone abnormalities are affected by more variables than there were available for this
study. For instance, data related to nutritional status, time since antiretroviral therapy
started, diabetes, menopause, etc, have been found to be related to the presence of bone
disease, but were not available. Also, class-imbalance may have negatively affected the
results.

• Results obtained for lipodystrophy and low muscle mass were much better; machine
learning models were able to improve results obtained by logistic regression, showing
an “excellent” performance, with AUC values over 0.9. Algorithms leading to the best
results were random forests combined with MFA variables (for female dataset) and
stacking ensembles applied to original variables (for male dataset). In other words,
it seems like DXA measurements carry enough information to the prediction of those
diseases.

It was interesting to see how synthetic features from MFA analysis lead to very good results.
Considering features as being structured into groups may somehow increase the pattern
discovery of models, leading to better results.
Future works could include:

• Explore a method to balance classes of bone-disease, in order to improve model’s
performance.

• Repeat analysis in a new dataset and compare results. Ideally, more features should be
considered (i.e. variables related to nutritional status, diabetes, presence of menopause,
time since patient takes ART, time since patients has been infected by HIV), especially
for the prediction of bone quality.

• Deeper investigate MFA and the best number of components, building models that
include a different number of them. It has been shown how synthetic variables obtained
by MFA got very good results used at machine learning ensembles. Adjusting the
number of MFA variables may lead to even better performance results.

• Investigate package MLR (https://mlr.mlr-org.com/). Package MLR was also devel-
oped for the creation of ensemble learners and accepts multi-class methods.
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5 Acronyms

ANN: artificial neural networks
ART: antiretroviral therapy
ASM: appendicular skeletal muscle mass
AUC: area under the (ROC) curve
BMD: bone mineral density
BMI: body mass index
DT: decision trees
DXA or DEXA: Dual-energy X-ray absorptiometry
FMR: fat mass ratio
HIV: human immunodeficiency virus
KNN: k-Nearest-Neighbors
LASSO: least absolute shrinkage and selection operator
MFA: multiple factor analysis
MMH: maximum margin hyperplane
ML: machine learning
PCA: principal component analysis
RF: random forests SVM: support vector machines

6 Glossary

Accuracy: proportion of correctly classified cases, calculated as:

Accuracy = TP + TN

TP + TN + FP + FN

where TP are true positives or cases of the considered as “positive” class (i.e. “presence of
disease”) correctly predicted; TN are true negatives, or cases of the “negative class” (“absence
of disease) correctly predicted; FP represent false positives or cases incorrectly classified
as being positive; and FN : false negatives are cases incorrectly classified as belonging to
the”negative" class.
Artificial Neural Networks: algorithm that models the relationship between a set of
input signals and a set of output signals, simulating the biological functioning of the brain.
Bootstrap: technique that consists on creating “new” sets of observations by resampling
with replacement,
Ensemble learners: machine learning method that consists of combining several ML learn-
ers, of the same or different type, to improve model’s performance. There are different ways
of combining predictions of different learners, but one of the most typical one is using a
“supervisor” model.
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K-nearest-neighbours: machine learning algorithm that classifies data into categories by
their similarities.
Lipodystrophy: body abnormality that consists of an abnormal fat-redistribution, typically
found among HIV+ patients, with a typical fat-loss in face, buttocks, arms and legs.
Original or raw variables: anthropometric variables, as well as variables extracted from
a DXA analysis, included in the original dataset under study.
Osteoporosis and osteopenia: morphologic disease consisting of a decrease in the bone
quality, that increases risk of fractures, typically found among post-menopausal women and
HIV+ patients.
Sensitivity or true positive rate: proportion of positive examples correctly classified,
calculated as:

Sensitivity = TP

TP + FN

Specificity or true negative rate: proportion of negative examples correctly classified,
calculated as:

Specificity = TN

TN + FP

Synthetic variables: variables created by applying dimensionality reduction methods to
sets of original features. Different synthetic variables were be created to the prediction of
each disease, since each disease under study used different sets of features.
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7 Appendix I. Figures

Figure 31: Logistic regression models fitted for the prediction of bone abnormalities, for fe-
male and male patients. Finally slected models were chosen based on performance (accuracy,
AUC) and simplicity; those results have been coloured in grey.
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Figure 32: Machine learning models fitted for the prediction of osteoporosis/osteopenia, for
male and female patients. Finally selected models have been coloured.

Figure 33: Logistic regression models fitted for the prediction of lipodystrophy, for female
and male patients. Finally slected models were chosen based on performance (accuracy,
AUC) and simplicity; those results have been coloured in grey.
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Figure 34: Machine learning models fitted for the prediction of lipodystrophy, for male and
female patients. Finally selected models have been coloured.

Figure 35: Logistic regression models fitted for the prediction of low muscle mass, for female
and male patients. Finally selected models were chosen based on performance (accuracy,
AUC) and simplicity; those results have been coloured in grey.
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Figure 36: Machine learning models fitted for the prediction of lipodystrophy, for male and
female patients. Finally selected models have been coloured.

8 Appendix II. Used R code

knitr::opts_chunk$set(echo = TRUE)

# Load/install necessary packages
load.libraries <- c("knitr", "foreign", "corrplot", "cluster",

"factoextra", "NbClust", "RColorBrewer", "ClustOfVar",
"FactoMineR", "caret", "nnet", "pROC", "MASS",
"DMwR","stats", "ROCR", "glmnet", "C50",
"randomForest","kernlab", "caretEnsemble")

install.lib <- load.libraries[!load.libraries %in% installed.packages()]
for(libs in install.lib) install.packages(libs, dependences = TRUE)
sapply(load.libraries, require, character = TRUE)
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# Preliminary check & clean of dataset
#-------------------------------------
#library(foreign)
# Import file
dexa.last <- read.spss(file.path(params$folder.data, params$data.last),

to.data.frame = TRUE)

# Eliminate unnecesary columns
dexa.last <- dexa.last[-c(3,6,9,12,15,18,21,24,27,68,73,76:78,80:82)]

# Eliminate patients with any NAs
dexa.nafree <- dexa.last
dexa.nafree <- na.omit(dexa.nafree)

# Eliminate patient with entry error
dexa.keep <- which(dexa.nafree$Weight > 0)
dexa.nafree <- dexa.nafree[dexa.keep,]

# Establish presence of disease
#------------------------------
## 1. Bone disease

# Extract minimum T-value (from all sites) + add to dataset
v <- c("L1T", "L2T", "L3T", "L4T", "L1L4T", "L2L4T", "NeckFT", "WardsT",

"TrochT", "TotalFT")
minT <- c()
for (i in 1:nrow(dexa.nafree)) {

eachMin <- min(dexa.nafree[i,v])
minT <- c(minT, eachMin)

}

dexa.nafree$minT_gral <- minT

## Extract minimum T-value - from hip + add to dataset
v.hip <- c("NeckFT", "WardsT", "TrochT", "TotalFT")
minT.hip <- c()
for (i in 1:nrow(dexa.nafree)) {

eachMin <- min(dexa.nafree[i,v.hip])
minT.hip <- c(minT.hip, eachMin)

}
dexa.nafree$minT_hip <- minT.hip

## Divide patients by T-scores in osteoporosis/osteopenia/normal
bone.diag <- c()
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for (i in 1:nrow(dexa.nafree)) {
if (dexa.nafree$minT_gral[i] >= -1) {

bone.diag <- c(bone.diag, "normal")
} else {

if ((dexa.nafree$minT_gral[i] < -1 ) & (dexa.nafree$minT_gral[i]
> -2.5)) {

bone.diag <- c(bone.diag, "osteopenia")
} else {

if (dexa.nafree$minT_gral[i] <= -2.5) {
bone.diag <- c(bone.diag, "osteoporosis")

}
}

}
}
# add to dataset - as factor
dexa.nafree$bone_diag <- as.factor(bone.diag)

# 2. Low muscle mass

dexa.nafree$lmm_diag <- NA
# Check for low muscle mass - female
dexa.nafree$lmm_diag[dexa.nafree$gender == "F" &

dexa.nafree$Apendicularleanmas < 6.0] <- "lmm"
dexa.nafree$lmm_diag[dexa.nafree$gender == "F" &

dexa.nafree$Apendicularleanmas >= 6.0] <- "normal"

# Check for low muscle mass - male
dexa.nafree$lmm_diag[dexa.nafree$gender == "M" &

dexa.nafree$Apendicularleanmas < 7.0] <- "lmm"
dexa.nafree$lmm_diag[dexa.nafree$gender == "M" &

dexa.nafree$Apendicularleanmas >= 7.0] <- "normal"

# transform column into factor
dexa.nafree$lmm_diag <- as.factor(dexa.nafree$lmm_diag)

# 3. Lipodystrophy

dexa.nafree$lipo_diag <- NA
# Check for low muscle mass - women
dexa.nafree$lipo_diag[dexa.nafree$gender == "F" &

dexa.nafree$FMR >= 1.329] <- "lipodystrophy"
dexa.nafree$lipo_diag[dexa.nafree$gender == "F" &
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dexa.nafree$FMR < 1.329] <- "normal"

# Check for low muscle mass - men
dexa.nafree$lipo_diag[dexa.nafree$gender == "M" &

dexa.nafree$FMR >= 1.961] <- "lipodystrophy"
dexa.nafree$lipo_diag[dexa.nafree$gender == "M" &

dexa.nafree$FMR < 1.961] <- "normal"

# Transform into a factor
dexa.nafree$lipo_diag <- as.factor(dexa.nafree$lipo_diag)

# Rearrange dataset (order columns) + split into male/female
# ----------------------------------------------------------
#names(dexa.nafree)
dexa.ordered <- subset(dexa.nafree, select=c(1,68,69,70,2,64,65,63,4,51,52,3,21:50,66,67,5,7,9,11,13,

15,17,19,53,56:62,6,8,10,12,14,16,18,20,54,55))
dexa.clean <- dexa.ordered # we will work with "dexa.clean"

## Create male dataset
dexa.m <- dexa.clean[dexa.clean$gender == 'M',]
dexa.m$gender <- NULL

## Create female dataset
dexa.f <- dexa.clean[dexa.clean$gender == 'F',]
dexa.f$gender <- NULL

# Figure to study presence of disease - young vs old patients
#------------------------------------------------------------
#library(RColorBrewer)
# women: 216 young, 138 old
# men: 699 young, 404 old

# 1. Osteoporosis/osteopenia
par(mfrow = c(1,3))
mydata <- data.frame(
Openia = c(
table(dexa.f$Age_cat == "<50" & dexa.f$bone_diag == "osteopenia")[2]/216,
table(dexa.f$Age_cat == ">=50" & dexa.f$bone_diag == "osteopenia")[2]/138,
table(dexa.m$Age_cat == "<50" & dexa.m$bone_diag == "osteopenia")[2]/699,
table(dexa.m$Age_cat == ">=50" & dexa.m$bone_diag == "osteopenia")[2]/404),
Oporosis = c(table(
dexa.f$Age_cat == "<50" & dexa.f$bone_diag == "osteoporosis")[2]/216,
table(dexa.f$Age_cat == ">=50" & dexa.f$bone_diag == "osteoporosis")[2]/138,
table(dexa.m$Age_cat == "<50" & dexa.m$bone_diag == "osteoporosis")[2]/699,
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table(dexa.m$Age_cat == ">=50" & dexa.m$bone_diag == "osteoporosis")[2]/404))
# plot
barplot(as.matrix(mydata), col = brewer.pal(n = 4, name = "RdBu"),

main = "Bone disease", beside = T, ylim = c(0,1))
legend(1,1, c("Women <50", "Women >=50", "Men <50", "Men >=50"),

cex = 1, fill= brewer.pal(n = 4, name = "RdBu"))

# 2. Lipodystrophy
mydata2 <- data.frame(
Lipodystrophy = c(
table(dexa.f$Age_cat == "<50" & dexa.f$lipo_diag == "lipodystrophy")[2]/216,
table(dexa.f$Age_cat == ">=50" & dexa.f$lipo_diag == "lipodystrophy")[2]/138,
table(dexa.m$Age_cat == "<50" & dexa.m$lipo_diag == "lipodystrophy")[2]/699,
table(dexa.m$Age_cat == ">=50" & dexa.m$lipo_diag == "lipodystrophy")[2]/404))
# plot
barplot(as.matrix(mydata2), col = brewer.pal(n = 4, name = "RdBu"),

main = "Fat disease", beside = T, ylim = c(0,1))
legend(1,1, c("Women <50", "Women >=50", "Men <50", "Men >=50"), cex = 1,

fill= brewer.pal(n = 4, name = "RdBu"))

# 3. Low muscle mass
mydata3 <- data.frame(
LMM = c(
table(dexa.f$Age_cat == "<50" & dexa.f$lmm_diag == "lmm")[2]/216,
table(dexa.f$Age_cat == ">=50" & dexa.f$lmm_diag == "lmm")[2]/138,
table(dexa.m$Age_cat == "<50" & dexa.m$lmm_diag == "lmm")[2]/699,
table(dexa.m$Age_cat == ">=50" & dexa.m$lmm_diag == "lmm")[2]/404))
# plot
barplot(as.matrix(mydata3), col = brewer.pal(n = 4, name = "RdBu"),

main = "Muscle disease", beside = T, ylim = c(0,1))
legend(1,1, c("Women <50", "Women >=50", "Men <50", "Men >=50"),

cex = 1, fill= brewer.pal(n = 4, name = "RdBu"))

# Exploratory analysis
#---------------------
## 1. Normality of some main variables
par(mfrow = c(2,2))
boxplot(dexa.clean$Age, main = 'age')
boxplot(dexa.clean$BMI, main = 'BMI')
boxplot(dexa.clean$TotalBMD, main = 'Total BMD')
boxplot(dexa.clean$minT_gral, main = 'min T-score')

## 2. Correlation study for a set of main variables
cor.set <- cor(dexa.clean[,c(8:13,16,19,22,31,34,37,40,43,47,50:60,63,66:70)])
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# Extract correlations between variables
row_indic <- apply(cor.set, 1, function(x) sum(x > 0.3 | x < -0.3) > 1)
# correlation plot
cor.set<- cor.set[row_indic ,row_indic ]
corrplot(cor.set, method="square", tl.cex = 0.55, tl.col = "black")

# Cluster of observations -> K-means + Silhouette
# -----------------------------------------------
## Extract continuous variables + scale
dexa.clust <- dexa.clean[,c(8:70)]
dexa.clust <- scale(dexa.clust)

# Apply method = "silhouette"
fviz_nbclust(dexa.clust, kmeans, method = "silhouette", k.max = 10)

# Study composition of clusters -> SPLIT WAS REJECTED
# kmeans.clust <- kmeans(dexa.clust, centers = 2)
# dexa.clean$cluster <- kmeans.clust$cluster
# summary(dexa.clean[dexa.clean$cluster == 1,])
# summary(dexa.clean[dexa.clean$cluster == 2,])

# CUSTOMIZED FUNCTIONS TO SELECT DATA + EXTRACT RESULTS
# -----------------------------------------------------

# 1. Function to select sex
# --------------------------
# Argument "sex" can get the values "female/male"

select_sex <- function(sex) {
if (sex == "female") {

dataset <- dexa.f
} else if (sex == "male") {

dataset <- dexa.m
}
return(dataset) # returns dataset of interest (dexa.f/dexa.m)

}

# 2. Function to select disease, for a selected sex
# -------------------------------------------------
# Argument "sick": "bone/fat/muscle" (depends on disease under study)

select_disease <- function(sex, sick) {
print(paste0("Selected sex is: ", sex))
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# 1. Select sex (female/male)
dataset <- select_sex(sex)

# Selection of features depending on disease to predict (not-related)
# + extract labelName (diagnose)
if (sick == "bone") {

disease <- dataset[-c(1,3:6,11:43)]
labelName <- "bone_diag"

} else if (sick == "fat") {
disease <- dataset[-c(1:3,5,6,44:59)]
labelName <- "lipo_diag"

} else if (sick == "muscle") {
disease <- dataset[-c(1,2,4:6,60:69)]
labelName <- "lmm_diag"

}
print(paste0("Selected disease is: ", sick))
mylist <- list(disease, labelName)
return(mylist) # returns disease dataset + label name (diagnosis)

}

# 3. Normalization function
# -------------------------
normalize <- function(x) {

return((x - min(x)) / (max(x) - min(x)))
}

# 4. Function to select type of formula
# -------------------------------------
# Argument "type_formula": values "all" (all variables). For "raw" data, also
# "basic"/"corr" (basic or correlated variables) can be used

select_formula <- function(sex,sick, type_formula) {
# 1. Select sex & disease
res.disease <- select_disease(sex, sick)
labelName <- res.disease[[2]]
disease <- res.disease[[1]]
predictors <- names(disease[-1])

if (type_formula == "all") {
formula <- formula(paste(names(disease[labelName]),

paste(names(disease[,predictors]),
collapse = "+"), sep = "~"))

} else {
if (type_formula == "basic") {
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if (sick == "fat") {
formula <- formula(lipo_diag ~ Age + Height + Weight +

BMI + TotalBMD + minT_gral + TotalLg
+ FFMI + Apendicularleanmas)

}
else if (sick == "bone") {

formula <- formula(bone_diag ~ Age + Height + Weight +
BMI + TotalFg + FMI + FMR + FFMI +

Indexdistributionfat +
Apendicularleanmas)

} else if (sick == "muscle") {
formula <- formula(lmm_diag ~ Age + Height + Weight + BMI +

TotalBMD + minT_gral + TotalFg + FMI +
FMR + Indexdistributionfat)

}

} else if (type_formula == "corr") {
if (sex == "female") {

if (sick == "fat") {
formula <- formula(lipo_diag ~ FFMI + TLg + Age + TotalLg +

Apendicularleanmas + LLLg + BothLLg +
L1Z + RLLg + L1L4Z)

}
else if (sick == "bone") {

formula <- formula(bone_diag ~ Age + RALg + BothALg +
LLLg + RLLg + BothLLg + TotalLg +
Apendicularleanmas + LALg + FFMI)

}
else if (sick == "muscle") {

formula <- formula(lmm_diag ~ Weight + BMI + TrochBMD +
TotalFBMD + TotalFT + TrochT + TotalBMD

+ NeckFBMD + NeckFT + LAFg)
}

}
if (sex == "male") {

if (sick == "fat") {
formula <- formula(lipo_diag ~ Age + FFMI + WardsBMD +

WardsT + NeckFT + NeckFBMD + TLg +
minT_hip + minT_gral +
Apendicularleanmas)

}
else if (sick == "bone") {

formula <- formula(bone_diag ~ BothALg + BothLLg + LALg +
RALg + RLLg + LLLg + TotalLg +
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Apendicularleanmas + Age + TLg)
}
else if (sick == "muscle") {

formula <- formula(lmm_diag ~ BMI + Weight + TotalBMD +
TrochBMD + TrochT + TotalFT + TotalFBMD +
NeckFT + NeckFBMD + minT_hip)

}
}

}
}

return(formula)
}

# 5. Function to select sex, disease, type of data and formula
# ------------------------------------------------------------
# This function creates sets of variables (original or synthetic) as
# well as the formula to use in further analysis
# Argument "data_type": "raw/pca/clust/mfa"

select_type_data <- function(sex, sick, data_type, type_formula = "all") {
res.dis <- select_disease(sex, sick)
labelName <- res.dis[[2]]
disease <- res.dis[[1]] # 'disease' dataset contains features to

# predict disease of interest

# Create 'pca.set' with numeric variables within 'disease'
pca.set <- disease[,!grepl("diag",names(disease))]
pca.set <- pca.set[,!grepl("ID",names(pca.set))]

# selection of original data
if (data_type == "raw"){

model.set <- disease
predictors <- names(model.set)[names(model.set) != labelName]
formula <- select_formula(sex, sick, type_formula)
# selection of principal components

} else if (data_type == "pca") {
pca.res <- prcomp(pca.set, scale = T, center = T, rank. = 15)
## Normalization of data
pca.norm <- lapply(as.data.frame(pca.res$x), normalize)
pca.norm <- as.data.frame(pca.norm)
model.set <- data.frame(disease[1], pca.norm)
predictors <- names(model.set)[names(model.set) != labelName]
formula <- formula(paste(names(model.set[labelName]),

paste(names(model.set[,predictors]),
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collapse=" + "), sep=" ~ "))
# selection of MFA dimensions (coordinates)

} else if (data_type == "mfa") {
if (sick == "fat") {

res.mfa <- MFA(pca.set, group=c(1,3,33,10),
type=c(rep("c",4)), ncp=15,
name.group=c("age","antrop","bone","muscle"))

model.set <- data.frame(disease[1], res.mfa$ind$coord)
predictors <- names(model.set)[names(model.set) != labelName]

} else if (sick == "bone") {
res.mfa <- MFA(pca.set, group=c(1,3,16,10),

type=c(rep("c",4)), ncp=15,
name.group=c("age","antrop","fat","muscle"))

model.set <- data.frame(disease[1], res.mfa$ind$coord)
predictors <- names(model.set)[names(model.set) != labelName]

} else if (sick == "muscle") {
res.mfa <- MFA(pca.set, group=c(1,3,33,16),

type=c(rep("c",4)), ncp=15,
name.group=c("age","antrop","bone","fat"))

model.set <- data.frame(disease[1], res.mfa$ind$coord)
predictors <- names(model.set)[names(model.set) != labelName]

}
formula <- formula(paste(names(model.set[labelName]),

paste(names(model.set[,predictors]),
collapse=" + "), sep=" ~ "))

# extract clusters
} else if (data_type == "clust") {

hclust.res <- hclustvar(X.quanti = pca.set)
clust.cut <- cutreevar(hclust.res, 15)
model.set <- data.frame(disease[1], clust.cut$scores)
predictors <- names(model.set)[names(model.set) != labelName]

formula <- formula(paste(names(model.set[labelName]),
paste(names(model.set[,predictors]),

collapse=" + "), sep=" ~ "))
}

res.list <- list(labelName, formula, predictors, model.set)
return(res.list)
}

# 6. Function to balance classes and split into train and test sets
# -----------------------------------------------------------------
# Imbalance of classes exists. SMOTE method will be applied
# Balance works well for "fat/muscle"; for "bone" disease, results
# are similar to original ones.
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# Formula "all" will be used in any case

balance_and_split <- function(sex, sick, data_type) {
results <- select_type_data(sex, sick, data_type)
# 1. Create formula & model.set
labelName <- results[[1]]
formula <- results[[2]]
predictors <- results[[3]]
model.set <- results[[4]]

# 2. Balance data with SMOTE
# ----- perc.over will probably depend on disease -----
if (sick == "bone") { # do nothing

balancedData <- model.set
} else if (sick == "muscle") {

if (sex == "male") {
set.seed(123)
balancedData <- SMOTE(formula, data= model.set,

perc.over = 300, perc.under = 150)
} else { # sex = female

set.seed(123)
balancedData <- SMOTE(formula, data= model.set,

perc.over = 150)
}

} else { # sick = fat
set.seed(123)
balancedData <- SMOTE(formula, data= model.set,

perc.over = 150)
}

# 3. Split into training and test Sets
set.seed(123)
smp_size <- floor(2/3 * nrow(balancedData))

set.seed(123) # split with index
train_ind <- sample(seq_len(nrow(balancedData)), size = smp_size)
trainSet <- balancedData[train_ind, ]
testSet <- balancedData[-train_ind, ]

my.split.list <- list(labelName, formula, predictors, model.set, trainSet,
testSet, balancedData)

return(my.split.list)
}
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# 7. Function to apply logistic regression to (all/selected) cases
# ----------------------------------------------------------------
log_results <- function(sex, sick, data_type, type_formula = "all") {

# Create variables to use
split <- balance_and_split(sex, sick, data_type)
labelName <- split[[1]]
predictors <- split[[3]]
trainSet <- split[[5]]
testSet <- split[[6]]
results.selection <- select_type_data(sex, sick, data_type,

type_formula)
formula <- results.selection[[2]]

# 2. Fit log models
set.seed(123)
log.mod <- multinom(formula, data = trainSet)

# 3. Predict
predLog <- predict(log.mod, newdata = testSet, type = "class")
predProb <- predict(log.mod, newdata = testSet,

type = "prob")
# 4. Extract accuracy
c <- confusionMatrix(predLog, testSet[,labelName])
if (sick == "bone") { # calculate AUC multicurve

#library(pROC)
multiRoc <- multiclass.roc(testSet[,labelName],

predProb, plot = F, percent = T)
auc <- multiRoc$auc
auc <- round(auc*0.01, 3)

} else {
auc2 <- roc(testSet[,labelName],predProb,

smoothed = TRUE, plot=T, auc.polygon=T,
max.auc.polygon=TRUE, grid = T,
print.auc=T)

auc <- round(auc2$auc,3)
}
my.res.list <- list(c, auc, log.mod, labelName, formula, predictors, trainSet,

testSet)
return(my.res.list)

}

# Loop to get results for all combinations of sex/disease/data type/ formula
# NOTE: formulas of type "basic" and "corr" can just be applied to "raw" data
sex.list <- c("female", "male")
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disease.list <- c("bone", "fat", "muscle")
data.type.list <- c("pca", "clust", "mfa") #, "raw")
form.list <- c("all") # , "basic", "corr")
i <- 1
save.results <- data.frame()
final.table.log <- data.frame()
save.mods.log <- list()# save models

# loop to extract results for each case
for (sex in sex.list) {

for (disease in disease.list) {
for (data in data.type.list) {

for (form in form.list) {
log.results <- log_results(sex, disease, data, form)
c <- log.results[[1]]
auc <- log.results[[2]]
acc <- round(c$overall[1]*100,3)
sens <- round(c$byClass[1]*100, 3)
spec <- round(c$byClass[2]*100, 3)

# save model in list
save.mods.log[[i]] <- log.results[[3]]
i <- i + 1

# save combination of sex, disease, data, formula
combo <- paste0(sex, " ",disease, " ", data, " ", form)

# save dataframe of results
save.results <- cbind(combo, acc, sens, spec, auc)
final.table.log <- rbind(final.table.log, save.results)
}

}
}

}
#final.table.log
#str(save.mods.log)

# 8. Loop to apply stepwise to log models
#----------------------------------------
# NOTE: stepAIC() cannot be used inside a customized function

sex.list <- c("female", "male")
disease.list <- c("muscle", "bone", "fat")
data.type.list <- c("raw","clust", "pca","mfa")
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form.list <- c("all") #, "corr", "basic")
save.mods.step <- list()
save.auc <- c()
combo <- c()
final.table.bc.step <- data.frame()
i <- 1

for (sex in sex.list) {
for (disease in disease.list) {

for (data in data.type.list) {
for (form in form.list) {
log.results <- log_results(sex, disease, data, form)
labelName <- log.results[[4]]
formula <- log.results[[5]]
trainSet <- log.results[[7]]
testSet <- log.results[[8]]

# Extract log model + apply stepwise
log.mod <- log.results[[3]]
#library(MASS)
set.seed(params$models.seed)
step.mod <- stepAIC(log.mod, direction = "backward", trace = 0)

# predictions
predClass <- predict(step.mod, newdata = testSet)
predProb <- predict(step.mod, newdata = testSet, type = "prob")
c <- confusionMatrix(predClass, testSet[,labelName])
acc <- round(c$overall[1]*100,3)
sens <- round(c$byClass[1]*100, 3)
spec <- round(c$byClass[2]*100, 3)

# save model in list
save.mods.step[[i]] <- step.mod
i <- i + 1

# extract number of features after stepwise
num.coefs <- length(step.mod$coefnames)

# print combination of sex, disease, data used, features (formula)
combo <- paste0(sex, " ",disease, " ", data, " ", form)

if (disease == "bone") { # calculate AUC multicurve
multiRoc <- multiclass.roc(testSet[,labelName],

predProb, plot = F, percent = T)
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auc <- multiRoc$auc
auc <- round(auc*0.01, 3)

} else {
auc2 <- roc(testSet[,labelName],predProb,
smoothed = TRUE, plot=T, auc.polygon=T,
max.auc.polygon=TRUE, grid = T,
print.auc=T) # ci would compute CI
auc <- round(auc2$auc,3)

}
save.auc <- cbind(combo, num.coefs, acc, sens, spec, auc)
final.table.bc.step <- rbind(final.table.bc.step, save.auc)
}

}
}

}
names(final.table.bc.step) <- c("model", "num. features", "Accuracy",

"Sensitivity", "Specificity", "AUC")
# step.mod # step models are stored here
# final.table.bc.step # final results are stored here

# Extract features from selected models (created by stepwise)
#------------------------------------------------------------

# 9. Function to apply LASSO to logistic models
# ---------------------------------------------
# NOTE: LASSO did not let extract AUC values or sets of variables, so it
# was finally not used
# lasso_results <- function(sex, disease, data, form) {
# set.seed(params$models.seed)
# log.results <- log_results(sex, disease, data, form)
# labelName <- log.results[[4]]
# formula <- log.results[[5]]
# predictors <- log.results[[6]]
# trainSet <- log.results[[7]]
# testSet <- log.results[[8]]
#
# # 0. Create predictor matrix + extract response variable
# X <- model.matrix(formula, data = trainSet)[,-1]
# Xtest <- model.matrix(formula, data = testSet)[,-1]
# y <- trainSet[,labelName]
#
# ## Extract lambda for best fit by CV
# set.seed(params$models.seed)
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# if (disease == "bone") {
# family.type <- "multinomial"
# } else {
# family.type <- "binomial"
# }
# cv.lasso <- cv.glmnet(X, y, alpha = 1, type.measure = "mse",
# nfold = 10, family = family.type)
# bestLam <- cv.lasso$lambda.min
# ## Fit models
# grid <- 10^seq(10, -2, length = 100)
# set.seed(params$models.seed)
# lasso.mod <- glmnet(X, y, alpha = 1, lambda = grid,
# type.multinomial = "grouped",
# family = family.type)
# ## confusionmatrix
# predClass <- predict(lasso.mod, newx= Xtest,
# s = bestLam, type = "class")
# predClass <- as.factor(predClass)
# c <- confusionMatrix(predClass, testSet[,labelName])
# my.res.list <- list(lasso.mod, c, l )
# return (my.res.list)
# }

# 10. Function to apply ML models, using default tuning method
# ------------------------------------------------------------
ml_results <- function(sex, sick, data_type, type_formula = "all",

ml_method) {
# Balance and split + Extract necessary information
split <- balance_and_split(sex, sick, data_type)
labelName <- split[[1]]
predictors <- split[[3]]
trainSet <- split[[5]]
testSet <- split[[6]]

# Set training parameters
myControl <- trainControl(method="boot",

number=25,
classProbs = T)

myMetric <- "ROC"
preProc <- c("center", "scale")

# Fit ML model/s. Parameters will depend on model
if (ml_method == "svmLinear") {

set.seed(params$models.seed)
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ml.model <- train(x = trainSet[,predictors],
y = trainSet[,labelName],
method = ml_method,
metric = myMetric,
trControl = myControl,
preProc = preProc)

} else {
set.seed(params$models.seed)

ml.model <- train(x = trainSet[,predictors],
y = trainSet[,labelName],
method = ml_method,
metric = myMetric,
trControl = myControl)

}
# Some models let us extract the "best tune"
#best.tune <- ml.model$bestTune

# Predict
ml.predClass <- predict(ml.model, testSet[,predictors])

# Performance
c <- confusionMatrix(ml.predClass, testSet[,labelName])

## auc -> different function for binary and multi-class
predProb <- predict(ml.model, newdata = testSet[,predictors], type = "prob")

if (sick == "bone") {
multiRoc <- multiclass.roc(testSet[,labelName],

predProb, plot = F, percent = T)
auc <- multiRoc$auc
auc <- round(auc*0.01, 3)

} else {
auc2.plot <- roc(testSet[,labelName],predProb[,1],

smoothed = TRUE, plot=T, auc.polygon=T,
max.auc.polygon=TRUE, grid = T,
print.auc=T)

auc <- round(auc2.plot$auc,3)
}

# Extract + store results
acc <- round(c$overall[1]*100,3)
sens <- round(c$byClass[1]*100,3)
spec <- round(c$byClass[2]*100,3)

combo <- paste0(sex, " ",sick, " ", data_type, " ", ml_method)
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res.list.ml <- list(combo, acc, sens, spec, auc) #, best.tune)
return(res.list.ml)

}

# Loop to extract results for ML models

sex.list <- c("female", "male")
disease.list <- c("bone","fat", "muscle")
data.list <- c("raw", "pca", "clust", "mfa")
form.list <- c("all")
method.list <- c("C5.0","rf","treebag", "svmLinear", "gbm")
res.vector <- data.frame()
res.ml.table <- data.frame()

for (sex in sex.list) {
for (disease in disease.list) {

for (data in data.list) {
for (form in form.list) {

for (method in method.list) {
set.seed(params$models.seed)
ml.res <- ml_results(sex, disease, data, form, method)

# extract results - will depend on model
#best.tune <- ml.res[[6]] # for C5.0, rf, gbm

# Example for gbm
res.vector <- cbind(ml.res[[1]], ml.res[[2]], ml.res[[3]], ml.res[[4]],

ml.res[[5]])
res.ml.table <- rbind(res.ml.table, res.vector)

}
}

}
}

}

# extract results - without tuning parameters
names(res.ml.table) <- c("model", "Acc.", "Sens.", "Spec.", "AUC")
res.ml.table

# 11. Function for stacking models -> only lipodystrophy and muscle mass
# ----------------------------------------------------------------------
# NOTE: Function can just be applied to lipodystrophy and low muscle mass

stacking_models <- function(sex, sick, data_type, type_formula = "all") {
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# Balance and split.
split <- balance_and_split(sex, sick, data_type)
labelName <- split[[1]]
predictors <- split[[3]]
trainSet <- split[[5]]
testSet <- split[[6]]

# Set training parameters
myControl <- trainControl(method="boot",

number=25,
classProbs = T)

stackControl <- trainControl(method="repeatedcv",
number=10, repeats = 3,
savePredictions = TRUE,
classProbs = T,
verboseIter = TRUE)

myMetric <- "ROC"

# Fit (list of) models
set.seed(params$models.seed)
model.list <- caretList(x = trainSet[,predictors],

y = trainSet[,labelName],
trControl = stackControl,
methodList = c("C5.0","nnet", "glm", "gbm",
"svmLinear"),

metric = myMetric)

# Extract results of training
set.seed(params$models.seed)
stack.res <- resamples(model.list)
models.summary <- summary(stack.res) # summary of models
models.corr <- modelCor(stack.res) # correlation - desired to be low

# Stack models using a supervisor (glm)
# Stacking needs a differnt type of control to the one used for fitting
set.seed(params$models.seed)
stack.mod <- caretStack(model.list, method="glmnet",

metric=myMetric,
trControl=myControl)

# Predictions + accuracy -> for ensemble with supervisor
predClass.s <- predict(stack.mod,

newdata = testSet[,predictors])
predProb.s <- predict(stack.mod,
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newdata = testSet[,predictors], type = "prob")
c.s <- confusionMatrix(predClass.s, testSet[,labelName])

# Extract AUC value
aucRoc.s <- roc(testSet[,labelName],predProb.s, smoothed = TRUE, plot=T,

auc.polygon=T, max.auc.polygon=TRUE, grid = T,
print.auc=T)

auc.s <- round(aucRoc.s$auc, 3)

# Extract + store results
acc.s <- round(c.s$overall[1]*100,3)
sens.s <- round(c.s$byClass[1]*100,3)
spec.s <- round(c.s$byClass[2]*100,3)
combo <- paste0(sex, " ",sick, " ", data_type)
res.list.ensemble <- list(combo, models.summary, models.corr, acc.s,

sens.s, spec.s, auc.s)
return(res.list.ensemble)

}

# Loop to extract results for stacking method (fat and muscle only)
sex.list <- c("female", "male")
disease.list <- c("fat", "muscle")
data.list <- c("mfa", "pca", "clust", "all")
model.summary <- list()
model.corr <- list()
stack.res <- data.frame()
table.stack <- data.frame()
i <- 1

for (sex in sex.list){
for (sick in disease.list) {

for (data in data.list) {
stacking <- stacking_models(sex, sick, data)
# 1. combo, 2. models. summary, 3. models corr, 4. acc stack,
# 5. sens stack, 6. spec. stack, 7. auc stack
model.summary[[i]] <- stacking[[2]] # # save list of model summaries
model.corr[[i]] <- stacking[[3]] # # save list of model correlations

# get stacking results
stack.res <- cbind(stacking[[1]], stacking[[4]], stacking[[5]],

stacking[[6]], stacking[[7]])
# store in table
table.stack <- rbind(table.stack, stack.res)
i <- i + 1
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}
}

}
# extract results - without tuning parameters
names(table.stack) <- c("model", "Acc.stack", "Sens.stack", "Spec.stack", "AUC stack")
#table.stack

# 12. Stacking models by majority vote -> alternative for bone disease
# --------------------------------------------------------------------
# create list of models to use
mod.list <- list("C5.0", "treebag", "gbm", "rf", "svmLinear")
sex.list <- c("male") #, "female")
data.list <- c("all") #, "pca", "clust", "mfa")

myControl <- trainControl(method="boot",
number=25,
classProbs = T)

myMetric <- "ROC"
res.bone <- data.frame()
final.table.ensembl.bone <- data.frame()
pred.list <- list()
predProb.list <- list()
i <- 1

# 1. Fit different models (5)
for (sex in sex.list) {

for (data in data.list) {
split <- balance_and_split(sex, "bone", data)
labelName <- split[[1]]
predictors <- split[[3]]
trainSet <- split[[5]]
testSet <- split[[6]]

for (sel.model in mod.list) {
# 1. fit models + predict
mod.fit <- train(y = trainSet[,labelName],

x = trainSet[,predictors],
trControl = myControl,
method = sel.model)

# store predictions of each model (class)
pred.list[[i]] <- predict(mod.fit, testSet[,predictors])
predProb.list[[i]] <- predict(mod.fit, testSet[,predictors],

type = "prob")
i <- i + 1
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}

# Extract majority vote
maj.vote <- cbind.data.frame(pred.list[[1]], pred.list[[2]],

pred.list[[3]],pred.list[[4]],
pred.list[[5]])

names(maj.vote) <- c("C5.0", "treebag", "gbm", "rf", "svmLinear")
maj.vote$maj.vote <- apply(maj.vote,1,function(x)

X = names(which.max(table(x))))
maj.vote$maj.vote <- as.factor(maj.vote$maj.vote)
maj.vote$real.case <- testSet[,labelName]

# compare maj.vote with real output - confusion matrix
c.bone <- confusionMatrix(maj.vote$maj.vote, testSet[,labelName])
acc.ensemb.bone <- round(c.bone$overall[1]*100, 3)

# 5. Apply average probability-> to calculate AUC
all.probs <- data.frame(predProb.list[[1]], predProb.list[[2]],

predProb.list[[3]],predProb.list[[4]],
predProb.list[[5]])

## extract each class' probability
normal.prob <- data.frame(all.probs[1], all.probs[4], all.probs[7],

all.probs[10], all.probs[13])
osteopenia.prob <- data.frame(all.probs[2], all.probs[5],

all.probs[8],all.probs[11],
all.probs[14])

osteoporosis.prob <- data.frame(all.probs[3], all.probs[6],
all.probs[9],all.probs[12], all.probs[15])

# calculate average probability, for each cases and for all models
av.normal <- apply(normal.prob, 1, mean)
av.osteopenia <- apply(osteopenia.prob, 1, mean)
av.osteoporosis <- apply(osteoporosis.prob, 1, mean)
av.probs <- cbind(av.normal, av.osteopenia, av.osteoporosis)
colnames(av.probs) <- c("normal", "osteopenia", "osteoporosis")

# Calculate AUC with the extracted probabilities
multiRoc.stack <- multiclass.roc(testSet[,labelName],

av.probs, plot = F, percent = T)
auc.bone.stack <- multiRoc.stack$auc

# Save final results
combo <- paste0(sex, " ","bone", " ", data)
res.bone <- cbind(combo, acc.ensemb.bone, auc.bone.stack)
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final.table.ensembl.bone <- rbind(final.table.ensembl.bone, res.bone)
}}

# final.table.ensembl.bone
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