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Abstract

Airlines require reserve crew to replace delayed or absent crew,
with the aim of preventing consequent flight cancellations. A re-
serve crew schedule specifies the duty periods for which different
reserve crew will be on standby to replace any absent crew. For
both legal and health-and-safety reasons the reserve crew’s duty
period is limited, so it is vital that these reserve crew are avail-
able at the right times, when they are most likely to be needed and
will be most effective. Scheduling a reserve crew unnecessarily,
or earlier than needed, wastes reserve crew capacity. Scheduling
a reserve crew too late means either an unrecoverable cancella-
tion or a delay waiting for the reserve crew to be available. De-
termining when to schedule these crew can be a complex prob-
lem, since one crew member could potentially cover a vacancy
on any one of a number of different flights, and flights interact
with each other, so a delay or cancellation for one flight can af-
fect a number of later flights. This work develops an enhanced
mathematical model for assessing the impact of any given reserve
crew schedule, in terms of reduced total expected cancellations
and any resultant reserve induced delays, whilst taking all of the
available information into account, including the schedule struc-
ture and interactions between flights, the uncertainties involved,
and the potential for multiple crew absences on a single flight.
The interactions between flights have traditionally made it very
hard to predict the effects of cancellations or delays, and hence to
predict when best to allocate reserve crew and lengthy simulation
runs have traditionally been used to make these predictions. This
work is motivated by the airline industry’s need for improved
mathematical models to replace the time-consuming simulation-
based approaches. The improved predictive probabilistic model
which is introduced here is shown to produce results that match a
simulation model to a high degree of accuracy, in a much shorter
time, making it an effective and accurate surrogate for simula-
tion. The modelling of the problem also provides insights into
the complexity of the problem that a purely simulation based ap-
proach would miss. The increased speed enables potential de-
ployment within a real time decision support context, comparing
alternative recovery decisions as disruptions occur. To illustrate
this, the model is used in this paper as a fitness function in meta-
heuristics algorithms to generate disruption minimising reserve
crew schedules for a real airline schedule. These are shown to be
of a high quality, demonstrating the effectiveness and reliability
of the proposed approach.

Keywords: Airline scheduling, reserve crew, crew absence,
uncertainty, probabilistic model

1 Introduction

Airlines operate in an uncertain environment due to the effects
of weather, congestion, crew unavailability and unscheduled air-
craft maintenance. Airlines also operate in a competitive busi-
ness environment, competing to provide customers with a desir-
able product (the schedule), whilst trying to minimise expendi-
ture. Economic pressure pushes airlines towards schedules that
maximise resource utilisation and have minimal slack. Such tight
schedules are susceptible to delay propagation and cancellations
when there is crew or aircraft unavailability. In addition, flights
are often interlinked. For example an aircraft may arrive at a hub
airport with one crew team, then take off for a later flight with
another one, and the first crew may then join a different aircraft,
so that any delays to the previous flight’s arrival may also have
an effect on this other flight. Predicting a delay for a flight may
require consideration of a number of other flights, each of which
may have a different predicted delay distribution and slack.

Airlines have limited capacity to recover from disruptions
caused by delay or resource unavailability. One method of re-
covery is to utilise reserve crew—alternative crew members who
will be available to cover for other crew who are absent. The reg-
ular crew schedule is the input for reserve crew scheduling. Re-
serve crew scheduling could be viewed as the process of patching
up the operational robustness of the regular crew schedule. An
improved allocation of the available reserve crew to standby duty
periods is an attractive route to increased operational robustness,
however the question is how to determine the number of reserve
crew that should be available at different times.

The traditional way to determine the benefits from a specific
allocation is to run Monte-Carlo simulations using delay distri-
butions, but this can be very time consuming. An emerging di-
rection of research has been the use of alternative mathematical
approaches, which are becoming more common in recent years.
The accuracy of these models for evaluating the effects of differ-
ent reserve crew allocations has a huge effect upon the validity of
the decisions which are made by utilising them. In contrast, this
paper helps to solve the problem of scheduling reserve crew to
minimise cancellations due to crew unavailability, by providing
an improved method for evaluating the likely effects of different
allocations of reserve crew (a descriptive model of the problem),
and evaluating the benefits of these improvements within a (pre-
scriptive) method for actually scheduling the crew.

This work focusses on the off-line problem of scheduling re-
serve crew duty times before the day of operation, before any
information about day of operation uncertainties (crew absence
and delays) is available. Our descriptive model evaluates candi-
date reserve crew schedules using a propagating-probabilities ap-
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proach. In contrast to the off-line reserve crew scheduling prob-
lem, the on-line reserve use problem is concerned with decisions
regarding the use of already scheduled reserve crew on the day
of operation in response to disruptions such as absent crew and
flight delays. In Sections 3 and 6 we discuss how the proposed
model can also be used in an on-line context to evaluate alterna-
tive reserve use decisions such as using reserve crew or holding
them back for larger disruptions later on for which they may be
better utilised.

This work introduces an improved formulation of a model
which was introduced by Bayliss et al. (2012) and featured a
probabilistic model of crew absence and reserve crew utilisation.
The improved model introduces a consideration of any delays
which the use of reserve crew may actually introduce (in ex-
change for a cancellation) due to having to wait for reserves to
be available (see Section 4.6).

In Bayliss et al. (2012), the inputs to the model were the prob-
abilities of crew absence for a sequence of departures from an
airport at which a number of reserve crew are based. These crew
absence probabilities were then used to evaluate the effects that
a given reserve crew schedule would have upon the probabilities
of flight cancellations due to crew absence. The model was used
as a surrogate objective function to provide a single valued mea-
sure of the quality of reserve crew schedules and is much faster
than evaluation by simulation. The model itself is descriptive, in
that it determines the likely effects rather than suggesting how to
change the effects. It was used within a prescriptive system in
Bayliss et al. (2012), where meta-heuristic algorithms utilised it
in a search for reserve crew schedules that would minimise the
expected cancellations due to crew absence, and that approach is
continued here for evaluating the improved model.

This current work also addresses the question of when to
schedule reserve crew, providing an improved model which can
be utilised in the same way, but also addresses the simplify-
ing assumptions which were discussed in Bayliss et al. (2012).
The improved model is validated in terms of cancellation predic-
tion accuracy by comparing the results against those of a large
(and time consuming) simulation. The model is also used as the
evaluation function in an off-line search through reserve crew
schedules. The results will show that the validity of the de-
scriptive model of the problem has been improved, and that this
has enabled improvements in the (prescriptive) decision making
model, resulting in allocation decisions which reduced the de-
lays/cancellations.

This work provides: 1) a focussed investigation of an impor-
tant problem faced by airlines; 2) a model which accurately pre-
dicts cancellation probabilities as a function of any given reserve
crew schedule; 3) a validation of the model in terms of improved
prediction accuracy and improved benefits from its use within a
reserve crew scheduling application when applied to a realistic
test instance.

The main motivations and contributions of this work are sum-
marised as follows: 1) A previous probabilistic (descriptive)
model of the impact of any given reserve crew schedule on the
probabilities of flight cancellations due to crew absence has been
extended and enhanced to increase its accuracy and applicabil-
ity; 2) The simplifying assumptions made previously have been
replaced with real world information; 3) The new model required
the development of a tree generation algorithm for enumerating
all of the sensible combinations of reserve crew for all possible
combinations of simultaneously absent crew whilst also comput-
ing their associated probabilities; 4) An additional contribution
comes in the form of a model refinement which enables our ap-
proach to explicitly take account of the variance present in the to-

tal number of crew absence that can occur in a given scheduling
horizon. This refinement improves the accuracy of the descrip-
tive model and as a consequence the quality of the reserve crew
schedules that are derived from it; 5) The proposed approach is
shown to be a suitable replacement for time consuming simula-
tion approaches whilst also offering the potential for real-time
evaluations of alternative recovery actions.

The remainder of the paper is structured as follows: Section
2 reviews the related literature. Section 3 describes the problem
which the airlines have to solve. Section 4 presents the prob-
abilistic model which has been developed for this work, and
details the important enhancements to this model over that in
Bayliss et al. (2012). Section 5 gives experimental results, show-
ing first the improvements in the accuracy of the predictions of
the descriptive model, then the benefits that are gained for the
decision makers from using this model within a system to deter-
mine when to schedule reserve crew. Section 6 concludes with
a summary of the main findings and considers future research
directions based on this work.

2 Related Literature

Previous literature on reserve crew scheduling includes Gaballa
(1979), Dillon and Kontogiorgis (1999) Paelinck (2001) and So-
honi et al. (2006). Gaballa Gaballa (1979) uses the probabilities
of callouts as a guide to reserve sizing. Gaballa (1979) assumes
that reserve crew are used when flights are delayed such that
the scheduled crew would exceed their maximum duty length if
they start the delayed flight. The author observed that the re-
serve policy used by Quantas at the time meant that overnight
delays due to reserve crew unavailability had a 1 in every 166
years chance of occurring, and this was what convinced Quantas
that their reserve policy was over-conservative. The presented
alternative approach was estimated to save $600,000 (1979) a
year. In contrast to the work of Gaballa (1979) who consider
overnight delay probabilities and reserve crew with fixed duty
times, this proposed approach relaxes the fixed duty start time
constraint and focuses on the minimisation of cancellations due
to crew absence.

Dillon and Kontogiorgis (1999) present an approach for pilot
reserve crew scheduling that generates reserve duty patterns (re-
serve pairings) which are then allocated using preferential bid-
ding. They focus on quality of life considerations such as reg-
ularity. Dillon and Kontogiorgis (1999) generate call out day
pairings of varying lengths which also exhibit regularity. Longer
call out pairings allow reserve crew to be used for more different
types of pairings including long haul pairings. Generating vary-
ing length pairings allows for reserve crew who have different
amounts of time off in a given month. In contrast, this work uses
reserve pairings which have a fixed length, since this reflects the
practices used by the airline on whose data this work is based.

Paelinck (2001) describes a practical approach which was im-
plemented at KLM to optimise cabin crew reserve duties. The
approach calculates daily demands for reserves and the expected
number of reserve crew remaining each day, and uses a reserve
block stacking approach. The aim is to always have standby re-
serve crew (reserve crew stationed at the airport ready to cover
for disrupted crew) available. The work of Paelinck (2001)
highlights some of the difficulties associated with the planning
and scheduling of reserve crew, including how many should be
scheduled, and when and what the best way is to use them in re-
sponse to disruptions. The work of Paelinck (2001) provided the
starting point for Bayliss et al. (2012).
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Sohoni et al. (2006) minimise the requirement for reserve
cockpit crew (the most expensive crew type) by better predicting
the requirement for reserves. They report that reserve crew utili-
sation is about 40% and claim that, if recurring training is taken
into account during crew scheduling, the estimated requirement
for reserves will be more accurate because conflicts with recur-
ring training is a leading cause for needing reserve crew.

The problem that is tackled in this work is stochastic in nature
so we now consider the various stochastic methods that have been
used for similar problems in the past. In particular, there have
been a number of stochastic approaches to airline crew schedul-
ing, including Schaefer et al. (2005); Yen and Birge (2006);
Weide et al. (2010); Burke et al. (2010); Duck et al. (2012).

Schaefer et al. (2005) solve the traditional crew pairing prob-
lem as a set partitioning problem, but the operational costs of
crew pairings that are used in the traditional objective function
for this problem are replaced with operational costs that are de-
rived from an airline simulator (SimAir). Their approach re-
quires the assumption that the operational cost of one crew pair-
ing can be evaluated in isolation from other crew pairings. They
require this assumption because the evaluation of crew pairings
using a simulation model can become prohibitively slow. This
problem is avoided in this current work by using a probabilistic
model to replace the simulation as a method of solution evalua-
tion.

Yen and Birge (2006) describe an iterative approach to increas-
ing crew schedule robustness. In each iteration the traditional
crew pairing model is solved, followed by a recourse problem
that allows or disallows crew connections that may lead to delay
in the next iteration. Pairings that involve aircraft changes hold
more potential for delay and are eliminated and not branched
upon in their “flight pair branching algorithm”. The recourse
problem which calculates “switch delays” does so by considering
a set of random scenarios and solving a set of decision variables
to compute how delay propagates through the schedule given the
most recent solution to the crew pairing problem. Their experi-
mental results indicate that their approach leads to solutions with
crew schedules involving fewer aircraft changes and as a result
reduces switch delays.

Weide et al. (2010) also consider increasing crew schedule ro-
bustness, introducing an iterative approach to solving the inte-
grated crew pairing and aircraft routing problems with the ob-
jective of minimising the overall cost and minimising what are
termed “restricted aircraft changes”. They take the approach that
airline schedule robustness can be increased by decreasing the
level of dependency between the crew and aircraft layers of the
schedule and therefore reduce the risk of delays caused by de-
layed crew who have to change to (and delay) another aircraft
mid-duty. The probabilistic model that is used for reserve crew
scheduling introduced in this current work is complementary to
such approaches, since it takes as input the airline schedule in-
cluding the crew schedule, so will maintain any additional sched-
ule robustness that an approach such as that used in Weide et al.
(2010) introduced during other stages of airline schedule plan-
ning. The proposed approach then further increases the robust-
ness of the airline’s crewing operations through the process of
reserve crew scheduling with the objective of minimising can-
cellations and delays.

Burke et al. (2010) consider a memetic approach to improv-
ing the robustness of airline schedules by allowing flight retim-
ings and aircraft rerouting. They use reliability and flexibility
objectives. Reliability measures the ability of the schedule to ab-
sorb small disruptions whilst the flexibility objective measures
the number swap recovery actions that are possible. Their simu-

lation study of their results showed that the reliability objective
had the most impact on schedule robustness whilst the flexibility
objective showed some potential for increasing schedule robust-
ness.

Duck et al. (2012) introduce an integrated approach to the crew
pairing and aircraft routing problems. Their objective includes
cost terms from the usual crew pairing and aircraft routing for-
mulations, plus an expected propagated delay term. To avoid
a non-linear stochastic recourse function, the problem is decom-
posed into separate crew and aircraft routing problems, each with
their own recourse problem. Delays for a given schedule are cal-
culated by considering a stochastically generated set of scenar-
ios, where each scenario specifies realised departure and arrival
event times. An iterative approach (based on the iterative algo-
rithm of Weide et al. (2010)) is used in which crew pairing and
aircraft routing subproblems are solved in each iteration.

The proposed model is also based on a hub-and-spoke net-
work. For further information about this type of network, as well
as a description of airline networks in general and a comprehen-
sive treatment of airline operations and delay management, see
Wu (2010). For a more general discussion of airline networks
and the generation of non-commercial demand data see Akartu-
nal et al. (2013).

As previously mentioned, the predictive model introduced in
this current work is used for off-line scheduling, but could also be
used in an on-line context to help decision makers decide when
to use reserve crew, called the airline schedule recovery problem.
Previous work which focusses on the airline schedule recovery
problem includes that of Abdelghany et al. (2004), Chang (2012)
and Peterson et al. (2012).

Abdelghany et al. (2004) introduce an approach for solving the
hub-and-spoke network crew recovery problem which considers
crew swaps, reserve crew and deadheading as possible recovery
actions. Their Mixed Integer Programming model takes the cur-
rent crew schedule and disruptions as inputs. They reason that
crew disruptions that occur at spokes are often difficult to deal
with as there are few connecting flights to spokes, and reserve
crew tend to be stationed at the hub. They take the approach of
implicitly solving crew disruptions at spokes by solving them at
the hub before they occur. This is similar to the model considered
in the approach proposed in this paper. Their objective is to re-
cover as many disrupted crew pairings as possible, with the least
incurred recovery cost. Their objective function has cost con-
tributions for crew swaps, reserve crew, deadheading and can-
cellations. Their solution approach solves crew disruptions se-
quentially in chronological order (earliest disruptions first). This
means that the recovery decisions for disruptions are determined
as disruptions occur. Such an approach is convenient for air-
lines who operate a rule-based approach to recovery as opposed
to an optimisation based approach. The work of Abdelghany
et al. (2004) can be considered to be complementary to this cur-
rent work, in that this work attempts to assess the robustness
of schedules across potential disruptions, whereas Abdelghany
et al. (2004) attempts to recover from specific disruptions.

Chang (2012) focusses on the pilot recovery problem. A ge-
netic algorithm approach is presented which takes the original in-
feasible schedule as input. Crew feasibility constraints in Chang
(2012) require a maximum of 10 flying hours per day and 32 fly-
ing hours per week. The author introduces an object oriented ma-
trix chromosome structure, where each row corresponds to a pilot
and specifies the flights assigned to that pilot. Although Chang
(2012) does not directly compare the proposed method with any
alternative methods it does appear to be capable of solving large
problem instances.
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Peterson et al. (2012) address the full airline recovery problem
from schedule recovery to passenger re-routing. They argue that
sequential approaches to the airline recovery problem naturally
lead to sub-optimal solutions because of the conflicting objec-
tives that exist between each problem. On the other hand a fully
integrated approach is intractable, a problem which in this case
is dealt with by considering a subset of the full airline recovery
problem at a time, i.e. only a selection of the disrupted flights
and the affected aircraft, crew and passengers are rescheduled at
a time.

The method proposed here features a predictive model based
on propagating-probabilities. We believe that this approach is
more appropriate than some alternative methods of prediction,
which we will consider here, because it is designed specifically
to reflect the logic of the process that is being modelled. Specif-
ically the predicted cancellation probabilities of flights are func-
tions of the probabilities of cancellations of previous flights and
the probabilities that reserve crew remain available given their
probabilities of not having been used to cover prior disruptions.
The proposed approach uses the structure of the problem to prop-
agate probabilities through a schedule. If the calculations were
to be written as a single equation, the result would be a highly
non-linear binary decision variable problem. This non-linearity
causes problems for many approaches, as well as for solution
methods to the sub-problems, as will be explained in Section
4.2. In addition, approaches such as regression methods or neural
networks (e.g. Amita et al. (2015)) are unnecessary because the
underlying structure of the process is already well understood,
so it is not necessary to fit the parameters of a general model
to data. However a possible future study might consider a neu-
ral network approach that uses the proposed model to generate
training data. The neural network could then facilitate fast ap-
proximate reserve crew schedule evaluation. In addition to the
problems caused by the non-linearity of the problem, prediction
methods such as SVMs (e.g. Gu et al. (2015); Gu and Sheng
(2017)) are not appropriate because this problem is concerned
with probability prediction rather than binary classification.

In this work the proposed model for evaluating candidate re-
serve crew schedules is utilised within heuristic and metaheuris-
tic algorithms including simulated annealing Kirkpatrick et al.
(1983) and genetic algorithms Goldberg (1989). Other work is
concerned with the development and testing of more advanced
metaheuristic algorithms such as that introduced in Deng et al.
(2012) which features a hybridised metaheuristic based on ideas
from genetic algorithms, particle swarm optimisation and ant
colony optimisation. Other novel developments in metaheuris-
tic algorithms include Deng et al. (2015, 2017b,a); Xue et al.
(2018).

In previous work which considered the problem of airline re-
serve crew scheduling under uncertainty, a probabilistic model
of crew absence and the reserve crew who are used to cover ab-
sent crew was introduced Bayliss et al. (2012). In this current
work this model is extended to remove a variety of simplifying
assumptions. The previous model is detailed in Section 4.2, the
improvements since Bayliss et al. (2012) are explained in Section
4.3, then the remainder of Section 4 details the improved model.

In other previous work, Bayliss et al. (2013) introduce a prob-
abilistic model of propagating crew-related delay (but not crew
absence) and the effect that reserve crew have on absorbing crew-
related delays and any resultant knock on delays. A matrix
was used to model the propagation of crew-related delay, with
columns corresponding to the source flights of the crew-related
delay and rows corresponding to the flights which are affected
by the delay. In the probabilistic crew-related delay model in

Bayliss et al. (2013), use of reserve crew meant teams of reserve
crew completely replacing a team of crew who were on a delayed
connecting flight. The model proposed in this current paper pro-
vides for much more flexibility.

An alternative approach to the probabilistic models of crew-
related disruptions and reserve crew usage was investigated in
Bayliss et al. (2017), which introduced a mixed integer program-
ming approach to reserve crew scheduling (MIPSSM, mixed in-
teger programming simulation scenario model). In Bayliss et al.
(2017) disruption scenarios were derived from an airline sim-
ulation, which were then used to form the objective and con-
straints of a mixed integer programming formulation with the
goal of finding the reserve crew schedule that minimises delay
and cancellations over all of the disruption scenarios included in
the formulation. In contrast to Bayliss et al. (2012) and Bayliss
et al. (2013), the MIPSSM in Bayliss et al. (2017) also accounts
for both absence and delay disruptions as this paper does. The
MIPSSM approach from Bayliss et al. (2017) is compared with
the models introduced in this work in Section 5 further indicating
the benefits of the approach described in this paper. We refer the
reader to Bayliss et al. (2017) for a review of additional literature
in robust optimisation.

3 Reserve Crew Scheduling Problem De-
scription

The structure of the problem being tackled by airlines is de-
scribed in this section.
Given the inputs: a scheduling horizon, an input airline sched-
ule (crew and aircraft routings), probabilities of crew absence
and an assumed on-line reserve policy, the objective is to assign
standby duty periods to reserve crew in a pre-emptive fashion
(off-line) to minimise the total expected number of flight can-
cellations and reserve crew induced delays which occur during
the scheduling horizon. The constraints of this problem include
that reserve crew are on standby duty for a fixed amount of time
after their duty periods begin and can only be used to replace
disrupted crew if the expected final arrival time of the flight duty
they are used for finishes within their assigned duty length plus
any additional duty length slack (permissible overtime). Given
this overview of the problem, we now provide the important def-
initions and describe the key problem aspects and assumptions
that are taken into account in our solution approach.

In the airline industry, flight legs are single flights from one lo-
cation (origin) to another (destination). Crew schedules consist
of sequences of flight legs. A sequence of flight legs to be com-
pleted within a single day is referred to as a duty. A sequence of
duties which begins and ends at the crew’s home base is referred
to as a crew pairing. The required crew for a flight include pilots
and cabin attendants. Different aircraft types (called fleets) each
have specific minimum crew requirements. This work focusses
on a single crew type and assumes a single fleet type (Section 6
considers the more general case, but scheduling fleet types inde-
pendently is actually common in practice). Therefore, the crew
requirements for all flights are equal. The example case of 4 crew
per flight is considered in this work, but the model holds for dif-
ferent numbers of crew as well. Additionally, crew serve out their
crew pairings in teams of crew who stay together throughout their
crew pairings.

This work considers the situation where reserve crew are on
standby duty at the hub station of an airline which operates a
single hub and spoke network. In a hub and spoke network all
flights involve the hub station as an origin or a destination. This is
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efficient from an airline’s perspective as it maximises the number
of connections that can be made, but passengers often have to
change aircraft at the hub station to get to different destinations.

Each reserve crew has a start time for their standby duty, and
a duty length. This work focusses on the problem of allocating
the standby duty periods for reserve crew who are used on the
day of operation to replace absent crew so that flight cancella-
tion is avoided. The key contribution of this work is an improved
model for crew absence uncertainty, which allows reserve crew
schedules to be evaluated. Two assumptions are made within this
model: 1) Absent crew miss their entire assigned crew pairing.
If absent crew then become available they are often assigned to
other open pairings which have no crew assigned to them; 2) All
crew have a probability of being absent. In this work a constant
1% chance of crew absence for each individual member of crew
is assumed. A value of 1% was used since the value in the actual
crew absence data was approximately this, however the model
could equally well utilise other values, and is general enough to
cope with separate probabilities of crew absence for each indi-
vidual crew, if desired.

A metaheuristic approach has been developed to use this eval-
uation model to find reserve crew schedules which are predicted
to perform well. This work considers the case where the number
of reserve crew available for scheduling is fixed, and the possible
start times for reserve crew standby duties are discretised accord-
ing to the scheduled departure times at the hub. Reserve crew are
feasible for disrupted duties which can be completed by the re-
serve crew within their maximum allowable duty length, which
includes permissible overtime.

Flights which are delayed beyond a cancellation threshold
(CT ) of 180 minutes are assumed to be cancelled. The same as-
sumption is used in Rosenberger et al. (2003). Thus, reserve crew
feasibility also requires that reserve crew begin their standby duty
period no later than 180 minutes after the scheduled departure
time of the affected flight. If a flight is cancelled, the crew ab-
sence rolls over to the next scheduled hub departure on the same
crew pairing, at which time there is another opportunity to re-
place the absent crew with reserve crew to avoid further flight
cancellations.

All of the absent crew affecting a given departure have to be
replaced in order to avoid a flight cancellation. Reserve crew
are only used if all of the absent crew can be replaced. It is
assumed that crew absence becomes known at the scheduled de-
parture time of the first flight in a crew pairing, and reserve crew
are considered for use in earliest start time order.

The objective here is to schedule reserve crew in such a way
that the expected number of cancellations due to crew absence is
minimised. For the purpose of this evaluation, delays are counted
as partial cancellations, so that they are avoided. Reserve in-
duced delays occur when reserve crew have standby duty start
times that are greater than the departure times of the departures
they are used for, so that the flight is delayed until the reserve is
available. A term is included in the objective function to penalise
these reserve induced delays. A delay threshold (DT ) of 15 min-
utes is used (also used by Sohoni et al. (2011)), which means that
the delay stopwatch is started after 15 minutes and delay below
this is not considered delay.

The proposed model is a predictive model of cancellations due
to crew absence, using as input the probabilities that the assigned
crew are absent and calculating the reduction in cancellations due
to crew absence for any given reserve crew schedule. The model
is used within an off-line heuristic search for good schedules
within this research, solving the problem that the airlines face
of determining when to schedule the reserve crew. (The quality

of the results is here evaluated using a Monte-Carlo simulation,
with the same constraints and objective function.)

In addition to solving the off-line planning problem, airlines
also often have to consider an on-line problem of deciding on
the day of operation when to actually use the available reserves.
The developed model would also be valuable for this purpose, en-
abling the decision makers to see the effects of different decisions
very quickly, without the need for lengthy simulation. Despite
being under consideration at the time of writing, the application
of the model for this problem is not evaluated here, however we
note that in an on-line application the primary difference is that
the probability matrix P of crew absences (see Section 4.2) would
be updated as crew absence outcomes are realised. i.e. realised
outcomes have a probability of 1. The model presented here is
therefore of use for other variants of the reserve crew scheduling
problem beyond the off-line problem for which it is evaluated in
this paper.

4 Probabilistic Model
In contrast to the work of Schaefer et al. (2005) and that of Yen
and Birge (2006), which capture uncertainty in the form of ran-
domly generated scenarios and then evaluate how the solutions
perform in each of those scenarios, the probabilistic approach
proposed in this work evaluates solutions in a single probabilistic
scenario in which all disruptions have a probability of occurring.
This probabilistic model is explained in this section.

Due to the number of definitions needed by the model, these
have been collected into Section 4.1. The similar (simplified)
model which was presented in Bayliss et al. (2012) is then sum-
marised in Section 4.2. Following this, the various improvements
to the model are detailed in Section 4.3 and the model changes
to support these improvements are explained in Sections 4.4 and
following.

The aim of this work is to provide a model which is as effec-
tive as a simulation/scenario-based approach without requiring
the same amount of time as such an approach. The prediction ac-
curacy of the model will be evaluated in Section 5.3 and Section
5.4 considers the use of the model within a reserve crew sched-
uler to solve the reserve crew scheduling problem.

4.1 Definitions

The variable and constant definitions are summarised in the fol-
lowing table, along with details of which sections they are used
in:

ad,e : The probability that a total of e reserve crew are available to cover
a total of e absent crew affecting departure d (Section 4.4)

Ad : Scheduled arrival time of departure d (Section 4.5)
CM : A vector of cancellation measures for reserve induced delay (Sec-

tion 4.6)
CMd : An element of CM, cancellation measure of reserve crew use in-

duced delay at departure d (Section 4.6)
CT : Cancellation threshold (maximum delay before a flight is can-

celled). A value of 3 hours was used for the experiments in this
paper. (Section 4.6)

Dd : Scheduled departure time of departure d (Section 4.5)
delExp : Delay exponent used in the delay cancellation measure function (a

value of 2 is used in this work) (Section 4.6)
DL : Maximum duration of a reserve standby duty period (Section 4.5)
EDTd : Expected departure time for departure d (Section 4.6)
Fd : Crew pairing assigned to hub departure d (Section 4.7)
Feast,d : Binary matrix for the feasibility of a reserve crew member with start

time index t covering crew absence affecting departure d (Section
4.5)

Ll,d : departure number of the last flight of the day of crew pairing l on
the day of departure d (Section 4.5)

lea f Nodes : The number of leaf nodes currently in the reserve crew combination
tree (Section 4.8)

Leaves : The set of leaf nodes in the reserve crew combination tree at any
given time (Section 4.8)
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M : The set of reserve crew feasible for a given departure to cover crew
absence (Section 4.7)

maxCA : Maximum number of crew that can be absent from a pairing. Equals
the number of scheduled crew in each crew team (Section 4.8)

n : Number of hub departures in the airline schedule (Section 4.7)
Nδ : δ th reserve crew node (Section 4.8)
N len

δ
: Number of reserve crew in the reserve crew combination correspond-

ing to node δ in the reserve combination tree (Section 4.8)
N par

δ
: Parent node of node δ in the reserve crew combination tree (Section

4.8)
Nres

δ
: Reserve number of the reserve crew member corresponding to node

δ in the reserve crew combination tree (Section 4.8)
nodeProb : Probability that a given combination of reserve crew are simultane-

ously available for covering crew absence (Section 4.8)
P : The matrix of probabilities that a given number of crew will be miss-

ing from a given flight (Section 4.4)
pd,e : An element of P, the probability that e crew are unavailable for de-

parture d (Section 4.4)
Q : The matrix of probabilities that a given number of crew will be miss-

ing from a given flight before reserve crew are used (Section 4.4)
qd,e : An element of Q, the initial probability of e absent crew at departure

d before the affects of a reserve crew schedule are taken into account
(Section 4.4)

rd,k : Probability that reserve crew member k is available to cover crew
absence affecting departure d (Section 4.4)

R : Number of reserve crew in a reserve crew schedule (Section 4.4)
ResCom : Vector containing the combination of reserve crew corresponding to

a given node in the reserve crew combination tree (Section 4.6)
ud,k : Probability that reserve crew member k is used to cover crew absence

affecting departure d (Section 4.4)
X : Reserve crew schedule (Section 4.2)
Xk : Start time index of the kth reserve scheduled to begin a reserve pairing

(Section 4.2)
ξ : Number of nodes currently in the reserve crew combination tree (Sec-

tion 4.8)

4.2 Basic Probabilistic Model
We first summarise the simplified probabilistic crew absence
model (SPCAM) from Bayliss et al. (2012). The aim of the model
is to determine the probability of cancellation due to crew ab-
sence (pd) for each flight (d). Given a reserve crew schedule, the
model works through the flights in the schedule, considering the
probabilities of crew absence and which reserve crew are avail-
able, and using reserve crew where useful. Each reserve crew
member (k) is modelled as having a probability (rd+1,k) of re-
maining available immediately after the possibility of being used
to replace absent crew affecting each flight d. Reserve crew are
assumed to be feasible to replace absent crew for the first L flights
that departed during their standby duty period. xk denotes the
standby duty start time index of reserve crew k, where potential
start times are discretised according to the airline’s scheduled de-
parture times.

Based on this, Algorithm 1 calculates the effect that any given
reserve crew schedule would have on reducing the probabilities
of cancellations due to crew absence. i.e. it calculates the proba-
bilities of cancellations due to crew unavailability (pd)—regular
or reserve crew.

Algorithm 1 Scheme for calculating crew unavailability proba-
bilities given a reserve crew schedule

1: P = Q
2: for k = 1 to R do
3: rxk,k := 1
4: for d = xk to min(n,xk +L−1) do
5: rd+1,k := rd,k(1− pd)
6: pd := pd(1− rd,k)
7: end for
8: end for

Line 1 of Algorithm 1 initialises the probabilities of cancel-
lation due to crew unavailability (P) to the probabilities that the
crew assigned to each flight are absent (the probability vector
Q). In line 2 the algorithm considers each reserve crew member
in turn, in earliest start time order (X is sorted in non-decreasing
order of start time index).

Each reserve crew’s probability of availability is initially set
to 1 (line 3). For each reserve crew the algorithm cycles through
each flight for which that reserve could feasibly be used to re-
place absent crew affecting that flight (line 4). For each such
flight, the reserve crew’s probability of remaining available for
subsequent flights is calculated to allow for the possibility that
they are required to replace absent crew affecting the flight. This
is their probability of still being available for flight d, multiplied
by the probability that the reserve crew is not required to replace
absent crew affecting flight d (line 5). At the same time the prob-
ability that flight d is cancelled due to crew unavailability is up-
dated to allow for the possibility that the reserve is available to
replace absent crew affecting flight d (line 6).

The order in which reserve crew are considered (line 2) has
the effect of modelling a preference order for the use of reserve
crew, which in this case is assumed to be the earliest start time
order. This rule of thumb reserve order policy maximises the
total remaining reserve crew standby duty time. Lines 5 and 6
represent the fundamental equations of the SPCAM.

A heuristic approach will be used later to solve this prob-
lem. Before considering (in Section 4.3) the model improve-
ments which have been made, we first consider here the diffi-
culties that exact approaches such as (mixed integer) linear pro-
gramming and dynamic programming would face, and hence
why heuristic solution methodologies are appropriate for solving
the (extended) version of Algorithm 1 to find disruption min-
imising reserve crew schedules. If the reserve crew schedule
is encoded as a binary vector, and Algorithm 1 is written as a
closed form equation, the resulting mathematical programming
formulation is a highly non-linear function of the binary reserve
crew schedule decision variables. In fact, there would effectively
be one non-linear term for each possible reserve crew sched-
ule. This makes the problem impractical for solution by linear
programming methods. An alternative approach may be a dy-
namic programming formulation of the problem. We note, how-
ever, that with a state definition based on the number of reserve
crew remaining to be scheduled and current departure number,
the Markov property would not hold, since both future disrup-
tions and the availability of previously scheduled reserve crew
are strongly dependent upon the exact duty start times allocated
to previously scheduled reserve crew. This interaction between
previous and later decisions ensures that the state space for a dy-
namic program will be impractically large1, resulting in an in-
tractably large problem to solve. We will therefore opt for meta-
heuristic solution techniques in Section 5.

4.3 Improvements Over Previous Model

The assumptions from Bayliss et al. (2012) that are addressed in
this work are as follows:

1) Crew absence was accurately modelled with a single
probability per departure. This simplification did not allow
for the possibility that a number of the crew assigned to a flight
can be absent simultaneously. In this improved model the sin-
gle probability of crew absence for each flight is replaced with
a probability distribution containing the probabilities that differ-
ent numbers of crew are simultaneously absent. As a result of
considering the possibility of multiple crew from a crew team
being simultaneously absent, reserve crew feasibility depends on
the combined feasibility of a group of individual reserve crew.
Furthermore, flight cancellation due to crew unavailability can

1The state space would consist of all possible subsets of all possible reserve
crew schedules with start times bounded by each possible reserve duty start time
interval plus the cancellation threshold
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only be avoided if all absent crew are replaced, one for one, with
reserve crew.

2) The probabilities of crew absence affecting flights in a
schedule were independent. This simplification ignores the
structure of an airline’s schedule, that is, crew teams are often as-
signed to multiple flights, and therefore the probabilities of crew
absence affecting those flights are dependent upon one another.
In this work the assumption is made that crew, if absent, are un-
available for all flights in their assigned crew pairing. The im-
proved probabilistic crew absence model therefore better takes
the structure of the crew schedule into account.

3) Reserve crew were feasible to cover for crew absence
disruptions affecting a fixed number of departures after the
beginning of their standby duty. The simplified probabilistic
crew absence model ignored the details of the airline’s sched-
ule, such as departure times and arrival times. In this work, re-
serve crew feasibility depends on whether the disrupted duty is
expected to finish within the reserve crew standby duty period.

4) Reserve crew were not feasible to cover crew absence
disruptions affecting flights whose scheduled departure time
was before the start of their standby duty. This simplifica-
tion did not allow for the possibility that a flight which was af-
fected by crew absence could wait for reserve crew to begin their
standby duties. The relaxation of this simplification introduces
the possibility that using reserve crew to avoid flight cancellation
can introduce a delay. In this work reserve use induced delays are
incorporated into the objective function using a function which
converts delays into a measure of cancellations. The delay can-
cellation measure function is introduced in Section 4.6.

4.4 Enhanced Probabilistic Model
The SPCAM can be extended to the case where we do not assume
that crews come in inseparable teams. To allow for this, the im-
proved probabilistic crew absence model (CAM) requires as input
a discrete probability distribution which specifies the probabili-
ties that different numbers of crew are simultaneously absent for
each departure.

Let Q now be a matrix containing the set of all crew absence
distributions, so that qd,e corresponds to the probability that a to-
tal of e crew are simultaneously absent for a departure d, whereas
pd,e is the probability of crew unavailability—assigned crew or
reserve crew.

The required crew absence distributions for each team of crew
are calculated using binomial distribution probabilities, based on
the assumed 1% chance of any given member of crew being ab-
sent and the assumption that crew teams consist of 4 individ-
uals (see Section 3). For example, the probability that exactly
two crew are simultaneously absent (5.881E-4) is calculated as
6× ((0.992)× (0.012)), since there are 6 ways that exactly two
out of four crew can be absent simultaneously—6 is a binomial
coefficient. These probabilities turn out to be (0.9606, 0.0388,
5.881E-4, 3.96E-6, 1E-8) respectively for (0,1,2,3,4) crew being
simultaneously absent.

In the CAM the fundamental equations, equivalent to those of
the SPCAM given in lines 5 and 6 of Algorithm 1, are replaced
with the following.

rd+1
k := rd

k −ud,k (1)
pd,e := pd,e

(
1−ad,e

)
(2)

Where ad,e is the probability that a total of e reserve crew are
simultaneously available at departure d.

Equation 1 gives the probability that reserve k remains avail-
able for subsequent use given that they have a probability of ud,k

of being used to cover absence at departure d. Equation 2 states
that the probability that a total of e crew are unavailable for de-
parture d depends on the probability that a total of e crew are ab-
sent in the first place and the probability that a total of e reserve
crew are not available (simultaneously) to cover the absence af-
fecting departure d. Just as in Algorithm 1, Equations 1 and 2 are
applied in an iterative fashion to probabilistically model reserve
crew use (in a propagating probabilities approach) see Algorithm
2. The calculation of ad,e requires the enumeration of all combi-
nations of e reserve crew which are feasible simultaneously for
departure d, which is considered in detail in Section 4.8. Just as
in the SPCAM, the CAM requires a preference order for speci-
fying the order in which reserve crew are to be considered for
use for covering crew absence disruptions affecting each depar-
ture. This approach captures the feature that the probability that
a lower preference combination of reserve crew are used to cover
crew absence depends on the probability that higher preference
reserve crew combinations are not available to cover the same
disruption. Algorithm 2 (which is the focus of Section 4.7) is to
the CAM what Algorithm 1 is to the SPCAM.

4.5 Reserve Crew Feasibility
This section defines the feasibility of reserve crew scheduled at
different times for covering flights which may be affected by
crew absence, and is required to replace the simplified model
for reserve crew feasibility used by the SPCAM (see line 4 of
Algorithm 1). In contrast to the SPCAM, reserve feasibility in
the CAM depends on the exact structure of crew pairings and the
duration of the cancellation threshold (CT ).

Feast,d =

 1 Dt < Dd +CT and Dt +DL≥ As
(s = LFd ,d)

0 otherwise
(3)

Equation 3 states that reserve crew with start time index t are fea-
sible for a disrupted departure d, if: 1) they begin their standby
duty before the cancellation threshold of the disrupted departure,
and 2) their duty finishes (Dt +DL) at or after the final arrival
time of the disrupted pairing (As). In the event that e crew are
absent, a combination of e reserve crew is feasible if and only
if each of the individual reserve crew are feasible. The feasibil-
ity of a reserve crew with start time index t being available to
cover crew absence disrupted departure d can be pre-calculated
and stored in the form of a binary matrix.

4.6 Reserve Use Induced Delay
The SPCAM did not allow for the possibility of reserve crew be-
ing used for crew absence disruptions which occur before the
start of their standby duties. The CAM relaxes this constraint,
which means that delays can be introduced when using reserve
crew who begin their standby duties after the scheduled departure
time of a crew absence disrupted departure. This section adds a
term to the objective function of the CAM that penalises reserve
induced delays.

This model is referred to as the static delay model (SDM),
which is simply the CAM with a delay penalty term in the ob-
jective function (see Equation 9 of Section 4.9 for the objective
function based on this model). To penalise reserve induced de-
lay (Equation 4) a delay cancellation measure function is used
(Equation 5). This approach means that the SDM returns a single
objective value for any given reserve crew schedule, i.e. expected
cancellations. EDTd is the expected delay of departure d before
the effects of reserve crew are considered, which accounts for
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delays due to unexpectedly high journey times of a prior flight,
which cannot be prevented through reserve crew use. Such de-
lays can be estimated from a simulation, in which no reserve
crew are scheduled. The use of expected delays EDTd in Equa-
tion 4 motivates the name: static delay model. In contrast to a
static model, a dynamic model of delay would mean that EDTd
is responsive to the given reserve crew schedule, because reserve
induced delays can have knock on effects in terms of how delays
propagate and how airlines respond to future delays, and is an
interesting topic for further research.

Equation 4 gives the delay associated with using a given com-
bination of reserve crew (ResCom) to cover crew absence affect-
ing departure d. The delay depends on the utilised reserve crew
(k) with the latest duty start time.

delay = max
k∈ResCom

(Dk−Dd , EDTd) (4)

Cancellation measure =
(

delay
CT

)delExp

(5)

Equation 5 gives the cancellation measure of a delay as the
ratio of the delay relative to the cancellation threshold (CT ),
raised to the power delExp (delay exponent). The same delay
cancellation measure function was used in Bayliss et al. (2017).
The choice of delay exponent (delExp) represents the subjec-
tive equivalence of the perceived level of disruption between de-
lays of different sizes and a flight cancellation. The cancellation
measure of a delay is 1 if the delay equals the CT . The higher
the value of delExp the less delays are penalised. As delExp
approaches infinity the delay cancellation measure approaches a
step function, returning 1 if a flight is cancelled due to delay, and
0 otherwise. The effect of the value of delExp which is used in
a reserve crew scheduling application is shown in Section 5.1.

CMd :=CMd +g
(

delay
CT

)delExp

(6)

Equation 6 gives the objective value contribution (penalty) as-
sociated with reserve induced delay due to a combination of re-
serve crew who have a probability of g of being used to cover
for absent crew affecting departure d. The calculation of g is
addressed in section 4.8.

4.7 Evaluating Expected Cancellations Associ-
ated With A Given Reserve Crew Schedule

Algorithm 2 outlines the procedure followed by the CAM
when evaluating the expected number of cancellations due to
crew absence associated with a given reserve crew schedule (X).
Algorithm 2 is analogous to Algorithm 1, Algorithm 2 allows for
the simplifications that were made in Algorithm 1. In general,
Algorithm 2 considers each scheduled departure in order. For
each, it enumerates feasible combinations of reserve crew and
their associated probabilities of being considered for use. The
probabilities that different numbers of reserve crew are simulta-
neously available are used to update the probabilities that flights
are cancelled due to crew unavailability. The probabilities that
reserve crew remain available for subsequent disruptions depend
on the probabilities that they are used for crew absence affecting
the given departure.

In more detail, the algorithm first initialises (line 3) the prob-
abilities of different numbers of crew being unavailable for each
departure (P) to the probabilities of different numbers of crew
being absent for each departure (Q). Then (line 4) the reserve
crew availability probabilities are initialised to 1. The algorithm

Algorithm 2 Outline of reserve crew schedule evaluation proce-
dure

1: Inputs: airline schedule, the assumed reserve policy, crew
absence probabilities (Q), expected delays before reserve re-
covery

2: Outputs: For all flights: cancellation probabilities, reserve
use induced delay cancellation measure contributions

3: P := Q
4: rxk

k := 1, ∀k ∈ {1...R}
5: for d = 1 to n do
6: Reset a and u
7: M ={Feasible reserves for departure d in earliest start

time order}
8: For all feasible reserves in M generate all reserve combi-

nations containing between 1 to |pd | reserve crew
9: Determine the probability that each combination is used,

given that reserves are used in earliest start time order
10: Determine (a) the total probability of different numbers of

reserve crew being simultaneously available
11: Determine (u) the probability that each individual reserve

is used to cover crew absence in departure d
12: Update probabilities of cancellation due to different num-

bers of crew absence and reserve availability for subse-
quent crew absence

13: pd,e := pd,e
(
1−ad,e

)
, ∀e ∈ {1...|pd |}

14: pw,e := pd,e, ∀w ∈ {subsequent departures assigned to
crew pairing Fd}, ∀e ∈ {1...|pd |}

15: rd+1,k := rd,k−ud,k, ∀k ∈M
16: end for

then considers each scheduled departure (line 5) in earliest de-
parture time order. For each departure, all combinations of the
reserve crew which are feasible to cover absent crew affecting
that departure are generated (line 8) and their probabilities of be-
ing considered for use, given that more preferable combinations
are not available, are calculated (line 9). The probabilities that
different numbers of reserve crew are simultaneously available
(line 10) are used to calculate the probabilities that crew absence
disruptions affecting the given crew pairing still go uncovered
(line 13). Line 14 updates the probabilities of crew unavailabil-
ity for downstream flights on the same crew pairing, i.e. to the
probabilities that were calculated on line 13. This step captures
the assumption stated in the second part of Section 4.3 regarding
the dependency of the crew absence probabilities between flights
which are assigned to the same crew team. After this, the proba-
bilities that each individual reserve crew is used to cover absence
at the given departure (which are calculated on line 11) are used
to update the probabilities that each reserve crew remains avail-
able for subsequent crew absence disruptions (line 15).

The details of how the feasible combinations of reserve crew
are actually generated (line 8) and their corresponding probabil-
ities calculated (line 9) are the subject of Section 4.8.

4.8 Enumerating Feasible Combinations Of Re-
serve Crew And Associated Probabilities

Lines 8 to 11 of Algorithm 2 involve enumerating feasible com-
binations of reserve crew of different sizes and calculating their
probabilities of actually being utilised. These probabilities de-
pend on the probabilities that different numbers of crew are not
available and the probabilities that more preferable combinations
of reserve crew are available for the same disruptions. Reserve
combination preference is defined by the reserve use order pol-
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icy, which in this case is assumed to be the earliest start time
order, so as to minimise reserve induced delay. Note that any
other order based policy could be used instead.

Algorithm 3 enumerates the feasible combinations of reserve
crew for each possible crew absence disruption. It turns out that
simply enumerating all combinations of reserve crew of different
sizes also yields combinations that in reality would never occur,
given the reserve use policy. Such combinations include:

1. Combinations that have been generated for a previous flight
in the same crew pairing, as crew absence is covered at the
earliest opportunity since it makes no sense to hold reserve
crew when they can be used to cover crew absence to pre-
vent flight cancellation. Such combinations are filtered out
by line 15 of Algorithm 3.

2. Combinations involving non-consecutive reserve crew num-
bers with identical duty start times or identical flight feasi-
bility. This is because reserve crew are used in order (which
is the order specified by the given reserve policy) and an or-
dering is applied to reserve crew with the same start time,
to reduce symmetries. Such combinations are not generated
by Algorithm 3, see lines 24 to 26.

Another aspect of reserve combination generation that requires
careful consideration is the derivation of the probabilities that
given combinations are considered for use, given that they pass
reserve combination filters 1 and 2 (above). For example, sup-
pose that using reserve crew 1, 2, 3 and 4 are feasible recovery
actions when 2 crew are absent from a given crew team, then a
feasible reserve combination such as (1,4) (which implies 2 and 3
have different start times/flight feasibility to 1 and 4) has an asso-
ciated probability of (r1 (1− r2)(1− r3)r4) of being considered
for use to cover the disruption. However, the (1− r2) term can
be removed if the reserve crew combination (1,2) was a feasible
combination for a previous flight on the same crew pairing, be-
cause had this been the case, the reserve crew combination (1,2)
would have been used to cover the two absent crew at that time.
In this case, the use of reserve 4 does not depend on reserve 2 not
being available, in fact their usage is mutually exclusive to each
other. The same reasoning applies to the (1− r3) term. This
concept is referred to as reserve non dependency later on, and is
enforced in lines 17 to 21 of Algorithm 3.

Algorithm 3 outlines the procedure for generating feasible
combinations of reserve crew and calculating their associated
probabilities of being used. The algorithm is based on build-
ing a tree of nodes, where nodes correspond to particular feasi-
ble reserve crew, and paths from the root to a leaf correspond to
combinations of reserve crew.

Figure 1 illustrates how starting from a root node (top) the re-
serve crew combination tree is generated in stages, where in each
stage the next preferred reserve crew is added to the tree. The
node probabilities for the new reserve combinations generated in
each iteration are stated below the newly generated nodes. The
new reserve crew combinations generated at each stage are listed
at the bottom of the diagram.

In Algorithm 3, Leaves denotes the set of leaf nodes and
Lea f Nodes the number of leaf nodes in the reserve combination
tree at any given stage of the algorithm (|Leaves|). Nlen

ξ
corre-

sponds to the number of reserves in the combination of reserves
beginning at the root node and ending at node ξ . N par

ξ
is the

parent node of node ξ in the tree. Nres
ξ

gives the reserve number

Algorithm 3 Generation of reserve combinations and associated
probabilities at departure d

1: Inputs: departure number (d), the probabilities of reserve
crew availability (r), flights in each crew pairing (F), reserve
crew feasibility (Feas)

2: Outputs: probabilities that different numbers of reserve
crew are available to replace different numbers of simultane-
ously absent crew (a), the probability that each reserve crew
member is used for the given departure (u)

3: Create root node N1 corresponding to the empty reserve crew
combination, with no parent node of its own, path length 0
and node probability 1, Nres

1 := null, N par
1 := null, Nlen

1 := 0,
N p

1 := 1
4: ξ := 1 (nodes used)
5: Leaves← N1
6: lea f Nodes := |Leaves| (nodes to be branched on)
7: for each k ∈M do
8: for δ = 1 to lea f Nodes do
9: if Nlen

δ
< maxCA then

10: Branch on Nδ with reserve k
11: increment ξ

12: Nres
ξ

:= k, N par
ξ

:= Nδ , Nlen
ξ

:= Nlen
δ

+1, N p
ξ

:= N p
δ
×

rk
13: Leaves← Nξ

14: ResCom =The combination of reserve crew corre-
sponding to the path from Nξ to the root node

15: if ResCom was not feasible for any previous flight on
crew pairing Fd then

16: nodeProb := N p
ξ

17: for each feasible reserve crew s which is not in
ResCom, with start time≤ DXk do

18: if replacing reserve k with reserve s in ResCom
results in a combination of reserve crew that was
feasible for any previous flight on crew pairing
Fd then

19: ResCom probability does not depend on
reserve s not being available, therefore
nodeProb := nodeProb

(1−rs)

20: end if
21: end for
22: Update the probabilities that Nlen

ξ
reserve are avail-

able (ad,Nlen
ξ

), that each reserve in ResCom is used

for the departure (uk∈resCom) and add a delay can-
cellation measure contribution corresponding to
ResCom

23: end if
24: if Nres

δ
has identical feasibility to reserve k then

25: Remove Nδ from Leaves
26: decrement δ

27: else
28: N p

δ
:= N p

δ
× (1− rk)

29: end if
30: end if
31: end for
32: lea f Nodes := |Leaves|
33: end for

corresponding to node ξ . Line 4 defines the root node as node
1, corresponding to a reserve combination of 0 reserves, with-
out it’s own parent node and a node probability of 1. Lines 5
and 6 add the root node to the set of nodes (Leaves) that are to
be branched on (with nodes corresponding to the first feasible
reserve) in the first iteration of the algorithm.
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The reserve combination tree is grown by branching on each
leaf node with branch nodes for each feasible reserve crew in
turn, in earliest start time order (lines 7 and 8). This means that
each path from the root node to a leaf node defines a combina-
tion of reserve crew listed in earliest start time order, with no
repeat reserve crew. Additionally, no leaf nodes are more than
‘the maximum number of absent crew’ away from the root node
(line 9), as such reserve crew combinations are never required.
ξ is the number of nodes in the reserve crew combination tree
at any given time. So node ξ always corresponds to the newest
reserve crew combination (ResCom) generated by the tree.

The probability that the reserve combination (ResCom) cor-
responding to node Nξ is used depends on the probability that
more preferable reserve crew are not available (enforced on line
28) and whether or not the reserve combination is subject to the
reserve non dependency described above (enforced on lines 17 to
21).

Every time a node is branched on by a new reserve node,
the node which was branched on remains a leaf node, but the
node probability is updated so that it corresponds to the newest
reserve not being available (line 28). The branch node then
corresponds to the combinations which that reserve is a member
of. The branch node is added to the set Leaves, to be branched on
by subsequent reserve crew. Given the probability (nodeProb)
that the reserve crew combination ResCom is considered for
use, line 22 updates: the probabilities that the individual reserve
crew in ResCom are used (u) to cover crew absence in the given
departure (d); the probability that a total of Nlen

ξ
reserve crew

are available (a) to cover Nlen
ξ

absent crew at departure d; and
the delay cancellation measure contribution for departure d,
corresponding to ResCom (see Equations 4 and 6). Lines 24 to
29 ensure that reserve combinations that fall into the category of
reserve combination filter 2 (see above) are not generated. Line
32 sets the number of nodes that are to be branched on when
nodes corresponding to the reserve with the next highest start
time are added to the reserve crew combination tree.

In this work metaheuristic algorithms (Section 5.2) use Algo-
rithm 3 to evaluate candidate solutions in the search for a can-
cellation and delay minimising reserve crew schedule. The al-
gorithmic complexity of such algorithms depends on the number
of times Algorithm 3 is executed, which is equal to n (the num-
ber of scheduled departures from the hub station) multiplied by
the evaluation budget E of the metaheuristic algorithm in ques-
tion. The algorithmic complexity is closely approximated and
bounded above by the following:
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Figure 1: A growing reserve crew combination tree
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n

∑
i=1

|Mi|

∑
j=1

2 j−1

)
. (7)

The computational cost of a single implementation of Algo-
rithm 3 depends on the size of the reserve crew combination tree
(Figure 1) which depends on the number of reserve crew whose
duty period overlaps with each hub departure i which is denoted
|Mi|.

The solution space of this reserve crew scheduling problem is
considered in the next section.

4.9 Solution Space
The number of possible reserve schedules is as follows.

R

∑
j=ceil( R

MaxCA )

n!
j!(n− j)!

y( j,R) (8)

Equation 8 gives the number of ways R reserve crew can be
assigned to the n different possible reserve standby duty start
time indices (scheduled departure times), where no more than
MaxCA (maximum number of crew absent from each crew pair-
ing) reserve crew are assigned to any individual start time in-
dex, where y( j,R) is the number of combinations of j integers
(1≤ integers≤MaxCA) that sum to R. For the case where no
restriction is placed on the number of reserve crew that can begin
duties at the same time the y( j,R) values are in the ‘Bell number’
sequence.

The reserve crew schedule X specifies the start time index in
start time order of each reserve crew scheduled. Where a start
time index Xk corresponds to the beginning of a standby reserve
pairing, where standby duties begin at time DXk daily. A fea-
sible solution must contain the correct total number of reserves
(R) and have no more than maxCA scheduled to begin their duty
at the departure time d (as no more than this will be required to
cover crew absence at departure d).
The objective of the probabilistic crew absence model is to min-
imise cancellations due to crew absence plus the cancellation
measure contributions due to reserve induced delay, as expressed
by Equation 9. The objective when using the probabilistic crew
absence model is to find a reserve crew schedule X , such that the
cost of the resulting probabilities P and cancellation measures
CM are minimised. For this research, the objective function can
be expressed by Equation 9, which sums the cancellations plus
reserve induced delay.

Ob jVal =
n

∑
d=1

|pd |

∑
e=1

pd,e +
n

∑
d=1

CMd (9)

4.10 Improved Model
Early work with the CAM as presented so far identified a prob-
lem in that the CAM was underestimating the probabilities of
cancellations due to crew absence. The reason for this is that the
CAM implicitly assumes that the total number of absent crew is
always exactly the expected value. However, in simulation the
total number of crew that are absent in any given run of the sim-
ulation varies a great deal, and on bad days, once reserve crew
have been used, cancellations spike. In fact, when all crew have
equal probabilities of absence (as assumed in this work) the total
number of absent crew follows a binomial distribution. For air-
line schedules involving many crew the Poisson distribution can
be used as an approximation because it is the limiting case of the
binomial distribution.
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Figure 2 illustrates this problem of underestimation by dis-
playing the predicted cancellation probabilities derived from the
CAM (purple) in comparison to those from repeat simulations
(blue) for the example airline schedule described at the start of
Section 5, with a reserve crew schedule, consisting of 12 individ-
uals, derived from a greedy heuristic algorithm. The predictions
from the SPCAM are also shown (cyan).

To remedy the cancellation underestimation problem, a re-
fined probabilistic crew absence model (CAM∗) uses the dis-
tribution of the total number of absent crew (i.e. the binomial
distribution) to evaluate reserve crew schedules simultaneously
over a distribution of P matrices, denoted O, where matrix Oz
corresponds to a Q matrix where the total expected number
of absent crew is z. With z expected crew absences, n pair-
ings, and up to MaxCA crew absences per pairing, the prob-
ability of any given crew member being absent for a specific
crew absence will be p1 = z

MaxCA×n . The probability that there
will be exactly z simultaneous crew absences is then given by
binomP(z;n×MaxCA, p1). Equation 10 can then be used to ob-
tain an improved estimation of the cancellation probabilities due
to crew absence, where eval (Oz,X) is a function to evaluate re-
serve crew schedule X using matrix Oz. The details of that func-
tion constitute Sections 4.4 through 4.8.This is identical to the
approach used by the CAM (see Equation 9) except that the pro-
cedure is repeated over the distribution of Q matrices (Oz ∈ O)
and a P matrix is calculated for each one.

Equations 9 and 10 are used as the objective functions in the
search performed by the heuristic algorithms described in Sec-
tion 5.2.

Ob jVal∗=
n

∑
z=1

binomP(z;n×MaxCA, p1)× eval (Oz,X) (10)

For high values of z (total number absent) the associated
binomial distribution probabilities become very small and can
be ignored. For instance, the iteration could be stopped once the
cumulative probability reaches a specific value, such as 0.95,
0.99 or 0.999. 0.999 was used as a stopping criterion in the
experiments considered here. This approach vastly decreases
the amount of time required for evaluating Equation 10, whilst
maintaining the accuracy of the model. Validation experiments
showed that accounting for more than the first 0.999 of the
cumulative probability distribution of total number of absent
crew resulted in no noticeable benefit in terms of prediction
accuracy or the quality of the reserve crew schedule which was
derived using the model.

Figure 2 also shows the results for the modified model (blue)
and demonstrates that the CAM∗ gives cancellation predictions
of greater accuracy compared to the CAM, where the simulation
predictions are treated as the target values.

5 Experimental Results
The models are used within a heuristic search to find a good re-
serve crew schedule. To test the validity of the model which has
been developed, the cancellation probabilities for the resulting
reserve crew schedules are compared with those from a Monte-
Carlo simulation, which is the common method of evaluating
schedules. Despite its popularity, the existing Monte-Carlo simu-
lation approach has a potentially prohibitively long runtime. The
aim of this work is two-fold: firstly, to find a model which will
be a good proxy for the simulation results, but without the long

simulation time; and secondly, to find an effective method for off-
line scheduling of reserve crew using this model. Two questions
will therefore be answered here: how accurate is the cancella-
tion prediction from the model in comparison to using a simula-
tion approach; how effective is the reserve crew schedule which
is found by the heuristic search in comparison to that which is
found by other approaches.

The SPCAM, CAM and SDM are tested through experimen-
tation. Two further models are also tested: CAM∗ and SDM∗,
which correspond to CAM and SDM respectively, with the addi-
tion of the model refinement of Section 4.10. The SPCAM im-
plementation uses the probability of at least one crew absence
affecting each departure as the single input probability for each
departure. Apart from this the SPCAM is the same as the CAM.

The experiments are based on a real airline schedule. We note
that the general results and conclusions in the following have
been replicated in a variety of test instances including those from
a random airline schedule generator (See Chapter 10 of Bayliss
(2015). We now focus the analysis by considering the (represen-
tative) results from a single realistic representative test instance.
The test schedule is 2 days in length, with 283 departures from
the hub station. There are 209 teams of crew and 74 aircraft cov-
ering a total of 566 flights. 140 of the crew teams begin their
pairings at the hub station, these crew teams are subject to crew
absence uncertainty. Each member of crew has a 1% chance of
being absent. The 1% figure was derived from real airline crew
absence data as a representative average crew absence rate. The
proposed approach could also take as input all of the individ-
ual crew absence probabilities. Each team of crew consists of
4 members. There are 12 reserve crew available for scheduling.
The aircraft routings are taken directly from real airline sched-
ule data, the scheduled departure and arrival times are adjusted
so that the scheduled block times are equal to the average ac-
tual block times. The journey time distributions for each origin-
destination pair are derived from real flight data. The aircraft
turn times and crew sit times are set to the minimum values. As a
result of the preceding, the average delay risk in the test schedule
was exactly 50% because the allocated block times were set so
that each flight has a 50% chance of taking longer than the allo-
cated flight time. This means that we have made the test instance
more challenging in terms of the risk of delay by tightening them.

The input crew schedules were generated using a set partition-
ing model (described in Barnhart et al. (2003)) solved in CPLEX.
The average rate of mid duty crew aircraft changes is 0.44. For
full details of the test instance, see Bayliss et al. (2015).

The following experiments were implemented on a laptop with
an 2.4GHz dual core Intel Core i7-5500U CPU, with 8Gb of
RAM. All models, algorithms and the simulation were imple-
mented in Java. The validation simulation reflects exactly the
problem structure description of Section 3.

SPCAM CAM CAM∗ SDM SDM∗ SIM
2.134 11.79 27.23 14.07 32.58 18192

Table 1: Comparison of evaluation times (in milliseconds) of dif-
ferent versions of the probabilistic model and 20000 repeat sim-
ulations

Table 1 displays the time in milliseconds for a single eval-
uation of each variant of the probabilistic model (the first five
columns) compared with the time required to run 20000 repeat
simulations (labelled SIM). In order to determine an appropriate
number of repeat simulations for comparison, the convergence
of a 10-fold cross validation (Hastie et al., 2008) was analysed.
The average cancellation measure RMSE, converges to approxi-
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Figure 2: Cancellation predictions from evaluations of the SPCAM, CAM and refined probabilistic crew absence model (CAM∗)
compared to those derived from repeat simulations

mately 0.004, for a simulation sample size of 20000. The conclu-
sion here is that the proposed model offers significant speed ben-
efits in comparison to the simulation based evaluation method.
Additionally the probabilistic model approach circumvents the
problem of noise associated with simulation based approaches.

5.1 The Effect Of The Value Of delExp

The SDM and SDM∗ both include a penalty term for reserve in-
duced delays, as shown in Equation 5. In order to understand
the influence of the value of delExp in the penalty term, reserve
crew schedules were derived using a simulated annealing algo-
rithm (see Section 5.2) for each value of delExp from 0 to 10 in
increments of 1, with 10 repeats for each. Each was then tested
in 20000 repeat simulations to derive the associated cancellation
rate and the average delay. Figure 3 shows the effect that varying
the value of delExp has on the cancellation rate and the average
delay.
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Figure 3: The effect of the value of delExp used when schedul-
ing reserve crew on the (per flight) cancellation rate and the av-
erage delay

Figure 3 shows how the average delay increases and the can-
cellation rate decreases as delExp is increased. The choice of
the value of delExp requires a decision maker input, to select an
appropriate trade off between cancellation minimisation and de-
lay minimisation. In the following delExp = 2 is assumed. In
general delExp > 1 is advised because multiple delays that sum
to CT are assumed to be preferable to an actual cancellation, and

because a large delay is considered more damaging than a num-
ber of small delays that sum to the same large delay.

5.2 Experimental Design And Heuristic Search
As previously mentioned, the primary aim of this research is to
find an effective surrogate for the lengthy simulation process, and
the secondary aim of this research is to evaluate the feasibility of
utilising the proposed model within a search for effective sched-
ules. For this latter purpose, the SPCAM, CAM, CAM∗, SDM
and SDM∗ are now all used within a variety of different heuristic
searches, attempting to derive good reserve crew schedules. The
following heuristics are considered:

GH: The greedy heuristic adds reserve crew one at a time to a
reserve crew schedule, each time selecting the start time that re-
duces the objective function the most, continuing in this fashion
until all of the reserve crew have been scheduled.

LS: Local search starts from a randomly generated initial so-
lution (randomly generated start time indices). In each iteration
all solutions neighbouring the incumbent solution are evaluated,
the solution which reduces the objective value the most is ac-
cepted. If no improving solution is available the algorithm termi-
nates. Local search uses the cut-and-insert neighbourhood struc-
ture, considering all potential solutions that have one reserve start
time different to that of the incumbent solution.

GH+LS: LS starting from the GH solution.
SA: The simulated annealing Kirkpatrick et al. (1983) imple-

mentation uses the cut-and-insert neighbourhood. Each iteration
randomly selects a neighbouring solution, which is accepted if
it is an improving move. A non-improving move is accepted
with probability e−∆/T . ∆ is the increase in the objective value
associated with the non-improving move, T is the current tem-
perature. The cooling scheme (value of T at any given iteration)
is based on an exponential decay starting from T0 equal to the
maximum number of hub departures in a crew pairing and reach-
ing a final temperature of 0.000001 after 20000 iterations. The
cooling scheme is a function of the number of evaluations that
have been performed so far. Given that the exponential decay
cooling scheme is fully defined by T0 and the final temperature,
these are the only free parameters. In this case they have been set
deterministically so that only in the first iteration is the largest
possible increase in cancellation measure in the cut and insert
neighbourhood accepted with probability 1. We refer to this as
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the boiling point initial temperature.
GA1: The first genetic algorithm Goldberg (1989) implemen-

tation uses a population size of 50, uses nine competitor tour-
nament selection, a mutation rate of 0.01, single point cross-
over which is applied with probability 1 and all parent chromo-
somes are replaced with children chromosomes in each genera-
tion. These parameters were the best on average in a full facto-
rial experiment of various populations sizes, mutation rates and
tournament sizes. The average cancellation measures associated
with each parameter value are given in Tables 2, 3 and 4. The ge-
netic algorithm returns the best solution found after 20000 func-
tion evaluations. For best results the genetic algorithm param-
eters have to be reconsidered with each new application of the
approach.

GA2: The second genetic algorithm implementation is the
same as GA1, except that the mutation operator is replaced with
a single iteration of the SA algorithm (only one random neigh-
bouring solution is considered), which is applied to each member
of the population, in each generation. The SA uses the same tem-
perature scheme as the SA algorithm. GA2 is limited to a total
of 20000 evaluations, which means that GA2 uses half as many
generations as GA1, the other half are used evaluating SA gen-
erated mutations. GA2 is similar to a memetic algorithm (Hart
et al., 2005), because of the addition of a local search based ap-
proach, to the algorithm. The main difference being that, because
only one iteration of simulated annealing is used, the approach is
actually closer to a mutation operator than an application of local
search.

The parameters for the cooling scheme of the SA mutation
steps are the same as those for SA (boiling point initial tempera-
ture), but in this case the temperature drops twice as fast because
the computational budget is shared equally between the GA and
SA aspects of this method.

All heuristics except for the GH are limited to 20000 func-
tion evaluations. The GH only requires around 3000 function
evaluations to derive a reserve crew schedule for the given prob-
lem. 20000 function evaluations take around 10 minutes on the
above described hardware/software combination. This approach
enables a fair test of the different heuristics in a situation where
solutions are required within a set time limit. Furthermore a fixed
computational budget increases the comparability of the results
derived from each solution methodology. Each heuristic is then
repeated 10 times using each probabilistic reserve crew schedule
evaluator (SPCAM, CAM, CAM∗, SDM and SDM∗).

For validation purposes each derived reserve crew schedule is
then tested in 20000 new repeat simulations to derive cancella-
tion and delay based performance measures. Each repeat simu-
lation uses different stochastic inputs to instantiate numbers of
absent crew for each crew pairing. There are two main reasons
for the simulation testing of the reserve crew schedules derived
above. Firstly, it will demonstrate that the improved probabilistic
models (CAM and CAM∗) provide accurate cancellation proba-
bilities for individual flights (Section 5.3), and secondly this will
confirm that the use of the probabilistic models as surrogate ob-
jective functions has been effective (Section 5.4).

5.3 Cancellation Prediction Accuracy

This section compares the predicted average cancellations due
to crew absence from the SPCAM, CAM and CAM∗ with the
average cancellation rates observed in repeat simulations. The
aim is to verify whether the predictions from the models match
those from the simulation approaches. These experiments were
repeated for each reserve crew schedule derived from the exper-

iment described above in Section 5.2. Note that the cancellation
predictions of the SDM and SDM∗ match those of the CAM and
CAM∗ respectively.
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Figure 4: Cancellation predictions from evaluations of the
SPCAM, CAM and CAM∗ compared to those derived from re-
peat simulations

Figure 4 confirms that the CAM (and the SPCAM) underes-
timates cancellations due to crew absence, and that the CAM∗
successfully alleviates this problem. The CAM∗ does however
systematically overestimate cancellations due to crew absence,
each time in a manner similar to that demonstrated in Figure
2. Possible reasons for this include: 20000 repeat simulations
are not enough to capture a representative sample of the worst
case scenarios in which cancellation spikes occur; cumulative
rounding errors; the probabilities of reserve combinations calcu-
lated based on filters 1 and 2 of Section 4.8 have additional fac-
tors/intricacies which have not yet been uncovered. Despite this,
the CAM∗ consistently gives the most accurate cancellation pre-
dictions, which is supported by the linear trend equation, which
has a gradient close to one, an intercept close to zero and a high
correlation coefficient compared to those of the SPCAM and the
CAM. On the plus side, overestimations of cancellations due to
crew absence are not as potentially damaging as underestima-
tions, because cancellations are the most severe outcome from
crew absences. A systematic overestimation of cancellations due
to crew absence could actually be beneficial, as this corresponds
to a more risk averse approach to reserve crew scheduling.

5.4 Reserve Crew Scheduling Application
The results of the experiment described in Section 5.2 are now
used to show the effects that the probabilistic models and the
search heuristics which were used to schedule reserve crew have
on the quality of the resultant reserve crew schedules. The aver-
age cancellation measures (cancellations plus cancellation mea-
sures of delay) derived for each reserve crew schedule tested in
20000 repeat simulations are used as the measures of reserve
crew schedule quality. Figure 5 shows the average cancellation
measure of the best reserve crew schedules from 10 repeats of
each heuristic used in conjunction with each evaluator. The re-
sults show that as the evaluator complexity increases (SPCAM to
SDM∗) the average cancellation measure decreases - i.e. the ap-
proach is able to better utilise the reserves to avoid cancellations.

Table 5 shows the effectiveness of the different approaches
to crew scheduling, illustrating for each approach the cancella-
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Population size 10 20 50 100 200 500 1000
Average cancellation measure 0.3127 0.3046 0.2997 0.2997 0.3032 0.3168 0.3510

Table 2: Population size effect on average cancellation measure

Mutation rate 1 0.5 0.1 0.05 0.01 0.005 0.001 0.0005 0.0001
Average cancellation measure 0.3119 0.3150 0.3096 0.3133 0.3094 0.3125 0.3145 0.3148 0.3115

Table 3: Mutation rate effect on average cancellation measure
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Figure 5: The effect of each variant of the probabilistic crew ab-
sence model and the search heuristics used to schedule reserve
crew on the resultant simulation derived average cancellation
measure

tion measure results, the average number of cancellations due
to (uncovered) crew absence and excessive delay, the average
size of the delays which are greater than the delay threshold,
the probability of having a delay over the threshold, the rate of
reserve crew utilisation and the maximum cancellation measure
over 20000 repeat simulations. The CAM∗ and SDM∗ evaluators
typically lead to respectively higher quality reserve crew sched-
ules than the CAM and SDM evaluators. This result is supported
by the results given in Table 5, which validates the model refine-
ment of Section 4.10.

The variation in Figure 5 between the average cancellation
measures for reserve crew schedules derived from the SPCAM,
CAM and CAM∗ evaluators can be explained by them not allow-
ing for reserve induced delay. This is confirmed by the results of
Table 5.

The low variation in Figure 5 between the results for the SDM
and SDM∗ evaluators can be explained by the fact that each
heuristic is capable of deriving a good quality solution, provided
that the evaluator used includes all of the aspects on which solu-
tion quality is judged. For the SPCAM, CAM and CAM∗ evalu-
ators, GA2 always gave the best reserve crew schedule. For the
SDM evaluator, GA1 gave the best solution. For the SDM∗, SA
gave the best (overall) reserve crew schedule.

The LS approach did not attain any of the best reserve crew
schedules found. An explanation for this is that the cut-and-insert
neighbourhood structure had a size of 3396 neighbouring solu-
tions at any given iteration, which all had to be evaluated before
accepting the best neighbouring solution. This meant that the LS
approach never reached a local optimum, because only 5 full it-
erations could be performed within the 20000 evaluations limit.
For this reason a Tabu Search was not implemented, as it would
not have had the chance to exploit a tabu list.

Figure 5 also implies that the accuracy of the evaluator is, in
general, more important than the complexity of the search algo-
rithm used to derive a reserve crew schedule.

5.5 Comparison With Alternative Approaches

In this section the best reserve crew schedules derived using each
variant of the probabilistic crew absence model are compared
with each other and with a range of alternative approaches to
reserve crew scheduling. The alternative approaches considered
are as follows:

USR: The uniform start rate heuristic schedules the available
reserve crew at times corresponding to equal intervals of hub de-
partures. E.g. if there are 25 hub departures and 5 reserve crew,
X = {1,6,11,16,21}.

AREA: The area under the graph approach uses repeat simu-
lations to determine the cumulative demand for reserve crew at
each hub departure. Then, the available reserve crew are sched-
uled at equal intervals of cumulative demand, or equivalently at
intervals of equal areas under the demand graph. The AREA ap-
proach was also used in Bayliss et al. (2013) and Bayliss et al.
(2017).

MIPSSM: The mixed integer programming simulation sce-
nario model Bayliss et al. (2017) was described in Section 2. In
contrast to the probabilistic approaches developed in this work,
this method represents a scenario-based approach to solving the
same problem. For each repeat, the MIPSSM is solved using 20
randomly generated input scenarios.

SSH: The scenario selection heuristic Bayliss et al. (2017) is a
heuristic approach for selecting the scenarios which are included
in the MIPSSM formulation. The scenario selection heuristic is
based on adding the scenario which increases the objective value
of the MIPSSM the most, then resolving the MIPSSM to obtain
a more robust reserve crew schedule. This process continues un-
til no new scenario can be found which increases the objective
value of the MIPSSM more than the single largest objective con-
tribution of any scenario which is already included in the model.

The results in Table 5 correspond to the best of 10 repeats
of each of the above described alternative approaches. These
are compared with the best reserve crew schedules derived using
each of the probabilistic evaluators considered in this work. Note
that when the best single repeats are replaced with the average
of the 10 repeats of each method, the ordering of the methods,
in terms of average cancellation measure, is the same. The av-
erage cancellation measure for the best repeats of each method
are given to indicate the potential of each approach. The stan-
dard deviation from the 10 repeats indicates the reliability of each
method.

In Table 5 the average cancellation measures show that the
SDM∗ results in the lowest average cancellation measure. The
SSH also attains a very low average cancellation measure, how-
ever the variance, as measured by the standard deviation of the
repeats for the scenario-based approaches, was much greater
than that of the SDM∗, which is because the scenario-based ap-
proaches only ever have an incomplete picture of crew absence
uncertainty, which is that captured by a limited number of input
scenarios (See Bayliss et al. (2017) for more details). In compar-
ison, the SDM∗ is much more reliable across repeat experiments.
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Tournament size 2 3 4 5 6 7 8 9 10
Average cancellation measure 0.3570 0.3227 0.3129 0.3120 0.3040 0.3040 0.3006 0.2980 0.3015

Table 4: Tournament size effect on average cancellation measure

Method Method Average Cancellation Average Delays > Reserve Maximum
measure name measure cancellations delay threshold utilisation cancellation
type best St dev due to due to Average probability rate measure

repeat (10 repeats) absence delay (minutes)
- no res 10.1668 0 10.0991 0 6.802 0.0818 0 37.02
Probabilistic SPCAM 1.3282 0.4078 0.0882 0.0122 17.293 0.1073 0.4630 20.06

CAM 1.0167 0.2573 0.0712 0.0112 15.326 0.1050 0.4629 19.41
CAM∗ 0.6196 0.3754 0.0515 0.0066 12.186 0.1005 0.4627 19.07
SDM 0.3147 0.1057 0.0958 0.0010 8.574 0.0942 0.4588 12.35
SDM∗ 0.2720 0.0124 0.1026 0.0006 8.019 0.0933 0.4577 15.45

Heuristic USR 1.3963 0 0.2967 0.00785 16.535 0.102 0.4543 19.17
Simulation AREA 0.9823 0 0.3366 0.0061 12.44 0.0983 0.4378 14.48
Scenario MIPSSM 0.4452 0.0899 0.1452 0.0006 9.191 0.0928 0.4555 13.37
based SSH 0.2953 0.1161 0.096 0.0032 8.241 0.0932 0.458 15.55

Table 5: Comparison of all approaches to reserve crew scheduling considering additional performance measures

Table 5 gives the average expected number of cancellations
due to crew absence and due to delays exceeding the cancellation
threshold, for each method. When no reserve crew are scheduled,
there are an average of 10 cancellations, all of which are due
to absence. This means that all of the observed cancellations
due to delay, in Table 5, are caused by reserve induced delays
which have been propagated and have caused delays above the
cancellation threshold later on.

Cancellations due to delay are highest for the SPCAM, which
is because this approach does not penalise reserve induced de-
lays. The SDM and SDM∗ reduce cancellations due to delay,
because they do penalise reserve induced delay. The MIPSSM
minimised cancellations due to delay, but not the average cancel-
lation measure, which is its objective. The CAM∗ achieved the
lowest cancellations due to absence, which can be attributed to it
overestimating cancellations due to absence, resulting in reserve
crew schedules which are highly risk averse in terms of this type
of disruption.

The delay based performance measures show that the lowest
results for delays above the delay threshold and their probabili-
ties of occurring were achieved by the approaches which penalise
reserve induced delay, i.e. SDM and SDM∗.

The reserve utilisation rate results show that reserve utilisation
rate is not an indicator of the quality of a reserve crew schedule,
because the maximum reserve utilisation rate (that of the CAM)
also attained a relatively high average cancellation measure. This
means that it is possible to obtain worse results even when more
reserves are allocated, if these reserves are allocated poorly.

It is interesting to note that the SDM∗ attains the lowest aver-
age cancellation measure by finding a balanced trade off between
cancellations due to absence and reserve-induced delays, i.e. it
trades cancellations due to absence for reduced delays and can-
cellations due to delays.

The maximum cancellation measure performance attribute
(last column) gives the worst case total cancellation measure
from the 20000 repeat simulations. When no reserve crew were
scheduled, a total cancellation measure of 37 was accumulated in
the worst case. The MIPSSM has the lowest maximum cancella-
tion measure, which may be a particular strength of the scenario-
based approaches.

In terms of a comparison between the different types of
approaches to reserve crew scheduling, the probabilistic and

Reserve Cancellation Crew Aircraft
use swap swap

SDM 0.019435 0.000326 0.001788 0.001825
SSH 0.019422 0.000350 0.001690 0.001824
AREA 0.018565 0.001211 0.002200 0.001869
USR 0.019266 0.001076 0.002578 0.001850

Table 6: Comparison of recovery action rates (per hub departure)
for the 4 main types of reserve crew schedule (20000 repeat sim-
ulations)

scenario-based approaches are the strongest. The results given
here suggest that the SDM∗ has the edge on the SSH approach,
however future improvements of the scenario-based approaches
could possibly change this. In fact, each of these general ap-
proaches has their own unique strengths and weaknesses. Prob-
abilistic approaches model all possible outcomes as a single sce-
nario, in which all disruption events have some probability of
occurring. This approach may not be able to capture the in-
tricacies associated with any particular scenario, which is the
strength of the scenario-based approaches. The weakness of the
scenario-based approaches is that the models become intractable
very quickly as the number of input scenarios is increased. As a
result, scenario-based approaches only ever have access to a lim-
ited sample of all possible scenarios, which is the strength of the
probabilistic approaches.

Table 6 shows the recovery action rates per hub departure for
the best approach from each of the four main types of reserve
crew scheduling approach (as indicated by the results from Table
5). It shows that the more effective approaches reduce the rate at
which crew swap recovery actions are required. The explanation
for this is that crew schedules are more time-constrained than
the aircraft routings. In particular a poor reserve crew schedule
will cause delays which propagate and increase the need for crew
swaps later on.

Figure 6 displays the (log10) average cancellation measures
from 20000 repeat simulations of the best reserve crew sched-
ules derived from each of the main approaches to reserve crew
scheduling. It displays the similarity in the quality of reserve
crew schedules derived from the SDM and SSH approaches (al-
though SDM is the more reliable method, see column 4 of Table
5). Each percentile data series features three points of inflexion,
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Figure 6: Average (log10) cancellation measure percentiles for
the best reserve crew schedules from each of the main approaches
to reserve crew scheduling

these corresponding to: best case performance (low average can-
cellation measures); worst case performance measures; and the
spike in cancellation measures referred to in Section 4.10, which
is observed more often in the poorer reserve crew schedule ap-
proaches.

6 Conclusion
This work has described and evaluated a new mathematical
model for reserve crew scheduling, which is an expansion and
modification of a model which was previously introduced by the
authors. The improved model improves the accuracy of the ear-
lier model by accounting for: the possibility of multiple crew
being absent simultaneously from crew teams; the structure of
crew pairings in terms of the effect that these have on the de-
pendencies of the probabilities of cancellations between flights
associated with the same crew team; and the potential for reserve
induced delay. The improved model required an algorithm for
enumerating feasible combinations of reserve crew for all pos-
sible crew absence disruptions and a function for converting re-
serve induced delays into a measure of cancellation. The resul-
tant model, was found to underestimate cancellations due to crew
absence, which was found to be the result of not accounting for
the variance in the total number of crew that can be absent on
the day of operation. A model refinement allowed for this effect,
which led to more accurate predictions.

Each variant of the probabilistic crew absence model was used
as the evaluator in a range of heuristic search algorithms, seeking
good reserve crew schedules. The results were used to confirm
the increased prediction accuracy of the model refinement and
also to find the best reserve crew schedules which could be de-
rived from each evaluator. The reserve crew schedules derived
from the SDM∗ gave the best overall results, thus validating each
of the model improvements proposed in this work. It was found
that the success of the SDM∗ approach owed to it finding a trade
off between cancellations due to absence and reserve induced de-
lays. The SDM∗ accepted a slightly increased risk of cancellation
due to crew absence in return for significant reductions in aver-
age delays and cancellations due to delays. The approaches were
also compared to a variety of alternative approaches, including
scenario-based approaches, one of which gave results of com-
parable, although slightly lower quality. It was concluded that

probabilistic and scenario-based approaches, are polar extremes
in terms of their respective strengths and weaknesses.

This work focussed on a single fleet, crew rank and crew qual-
ification example. Future work could involve modifying the cur-
rent model to apply to the case where there are multiple fleet
types, crew ranks and qualifications. To do this, Algorithm 3
would have to generate combinations of feasible reserve crew
involving crew of a variety of ranks and qualifications. This is
because crew qualifications can overlap with respect to the fleet
types they are qualified to operate on. Additionally, high rank
crew have the possibility of flying-below-rank, so any given com-
bination of reserve crew has the potential to be used to cover a
range of different-rank combinations of absent crew. For a two
crew rank example, the probability matrix element pd,e would be-
come pd,e, f , to correspond to the probability that e low rank crew
and f high rank crew are unavailable for flight d. An additional
consequence of considering a multiple fleet, crew rank and quali-
fication example, would be that the assumed earliest reserve start
time order policy would have to be able to differentiate between
reserve crew with equal start times but different rank and quali-
fication combinations. One possibility would be to order reserve
crew according to earliest start time, and break ties according to
the preferred rank and qualification for the given disruption. If
flying-below-rank is deemed undesirable, high rank reserve crew
could be considered last for covering low rank absent crew.

Additional future work includes the potential use of the pro-
posed model as an on-line decision tool. In order to implement
the approach in an on-line context the model would require, as
input, a snapshot of the current schedule in addition to the most
recent information regarding the crew who are known to be ab-
sent. One of the main complexities of an on-line implementation
is the integration of the model into an airline’s existing decision
support systems. This is complex because each new method has
its own set of required inputs and outputs. Mathaisel (1996) pro-
vides an account of how such complexities can be addressed by
integrating recovery for the different layers (passenger, crew and
aircraft) of an airline’s schedule. In order to evaluate a single re-
serve crew use decision (compared to holding the reserve crew
for later use) two evaluations of the model would be required. In
the current implementation evaluations can be performed within
a fraction of a second. However evaluation time increase lin-
early with the length of the scheduling horizon that is considered
and exponentially as the number of reserve crew increase. There
are many useful approximations that can reduce this problem,
including truncating calculations for reserve crew who have a
below-threshold probability of remaining available or being used
in the first place. One such approximation was considered in
Section 4.10.

In this work we have focussed on minimising absence disrup-
tion propagation through reserve crew scheduling. Reserve in-
duced delays were taken into account but delay propagation was
not modelled. In general, delay propagation increases throughout
the day as disruptions from many different sources accumulate,
including from weather, ground and air congestion, unscheduled
maintenance requirements and crew absence. Future work will
combine an explicit delay propagation model with the model pre-
sented here, and evaluate the benefits for the resulting reserve
crew schedules of doing so.
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