
British Journal of Educational Technology
doi:10.1111/bjet.12756

Vol 0 No 0 2019 1–18

© 2019 British Educational Research Association

Fruitful student interactions and perceived learning improvement
in DSLab: A dynamic assessment tool for distributed
programming

Joan Manuel Marquès Puig, Thanasis Daradoumis , Laura Calvet Liñan and
Marta Arguedas

Joan Manuel Marquès Puig holds a PhD in Computer Science from the Universitat Politècnica de Catalunya. He
is an Associate Professor at Computer Sciences, Multimedia & Telecommunication Studies at Universitat Oberta
de Catalunya a (UOC) since 1997. His research interests include the design of scalable and cooperative Internet
services and applications, privacy and e-learning. Thanasis Daradoumis holds a PhD in Computer Science from the
Polytechnic University of Catalonia. He combines his role as Associate Professor at the University of the Aegean with
his collaboration at the UOC. His research interests are: Emotional Intelligence, Alternative (Holistic) Education,
Learning Analytics, E-learning, Collaborative, Affective and Adaptive Systems, CSCL. Laura Calvet Liñan holds a
PhD in Network and Information Technologies from the Open University of Catalonia (UOC). She is a lecturer at the
Department of Computer Science, Multimedia and Telecommunication (EIMT) at the UOC. Her research is related
to Applied Statistics, Metaheuristics, Simulation, and e-Learning. Marta Arguedas holds a PhD in Education and
ICT (eLearning) from the UOC. She is collaborating professor and tutor for the Master in Education and ICT at the
UOC. Her research interests are: Emotional Intelligence, Learning Analytics, E-learning, Collaborative, Affective
and Adaptive Systems, Interaction Analysis, CSCL, CSCW, Knowledge Management. Address for correspondence:
Thanasis Daradoumis, Department of Computer Science, Multimedia and Telecommunications, Open University
of Catalonia, Rambla Poblenou 156, 08018 Barcelona, Spain; Department of Cultural Technology and
Communication, University of Aegean, University Hill, 81100 Mytilini, Greece. Email: adaradoumis@uoc.edu

Abstract
This work presents an automated assessment tool for online distributed programming,
called DSLab. It is a web-based environment that provides a transparent deployment
and execution of assignments in remote computers, a transparent initialization and the
possibility to add new logs by the students. DSLab has been evaluated in a real distributed
learning environment by analysing students’ own perceptions on their learning
improvement and exploring whether students’ interactions with the tool yielded a
fruitful learning experience. Current research provides no evidence that the effects of
such a tool have been investigated in the field of online distributed programming. Two
types of analysis were performed: a quantitative analysis of data coming from students
answering a questionnaire and an analysis of the log files of students’ interactions with
the tool. Our results showed that students perceived substantial learning improvement
from the use of the automated assessment tool. Moreover, students produced fruitful
interaction with the tool as soon as they achieved high familiarization and constant
activity with it, which ultimately helped them improve their academic performance.
Finally, the limitations of the current study and directions for future research are
presented.

mailto:￼
https://orcid.org/0000-0001-9362-4469
mailto:adaradoumis@uoc.edu

© 2019 British Educational Research Association

2 British Journal of Educational Technology Vol 0 No 0 2019

Introduction
In Distributed Systems courses, both teaching and learning processes have to be assisted by ade-
quate methods and tools that enable students to acquire the necessary distributed programming
skills and thus produce robust and efficient code. Providing students the capability of submit-
ting their assignment multiple times would improve the code and support iterative learning,
especially if they use the feedback that a self-assessment tool provided in previous executions
(Suleman, 2008).

Though several automated assessment tools of programming assignments have been devel-
oped during many years, assessing programming assignments still remains a labour-intensive
task (Pettit, Homer, Holcomb, Simone, & Mengel, 2015). This is especially evident in distributed
programming, where, as far as we know, tools for self-assessing distributed programs sin real
long-term online educational settings are hardly found. Consequently, we developed DSLab, a
web-based tool that students can use for self-assessing distributed applications they build using a
real distributed deployment under realistic conditions. All the details about the DSLab web inter-
face, features and a real example of a student’s assignment are presented in Online Appendix A.

We argue that the benefits of online students employing this tool are manifold: (1) their solutions
are assessed in a consistent manner and get immediate feedback, which enables them to know
whether their code doesn’t work adequately, (2) they strive for a better solution and, therefore,

Practitioner Notes
What is already known about this topic

• Several automated assessment tools of programming assignments have been devel-
oped during many years.

• Assessing programming assignments still remains a labour-intensive task.
• Current research provides no evidence that the effects of such a tool have been inves-

tigated in the field of online distributed programming (DP).

What this paper adds

• Proposes a new automated assessment tool (AAT) for online DP, called DSLab.
• DSLab provides a transparent deployment and execution of assignments in remote

computers, a transparent initialization and the possibility to add new logs by the
students.

• Students perceive substantial learning improvement from the use of DSLab.
• Students produce fruitful interaction with the tool as soon as they achieve high famil-

iarization and constant activity with it.
• DSLab allows students to assess their code in a consistent manner, get immediate

feedback, strive for a better solution and better learning, by submitting their code
multiple times and improving it through the tool feedback.

Implications for practice and/or policy

• Supports both students in resolving complex DP assignments and teachers in evaluat-
ing time-consuming and labour-intensive tasks.

• Provides an approach and methodology for analysing the effects of AATs of DP as-
signments on students’ academic performance.

• Underlines the need for more rigorous experiments that can explore the effects of
AATs of DP assignments on student learning in more depth.

© 2019 British Educational Research Association

Fruitful student interactions and perceived learning improvement in DSLab 3

better learning, by submitting their code multiple times and improving it through the tool feed-
back and (3) they are provided with a grading facility, which lets them know the mark they obtain
at the end of the execution. Since their assignment consists of different phases, students can
decide when to stop because they have reached the desired mark (an interesting side effect for
online students that simultaneously study and work, which lets them manage their workload).

The rest of the paper is organized as follows: Section 2 presents related work on automated assess-
ment tools of programming, emphasizing the lack of such tools in distributed programming; then
it defines the purpose of our study and research questions. Section 3 describes our automated
assessment tool. Section 4 presents the implementation and experimentation of our tool. The
results of this experimental study are presented in Section 5. In Section 6, we discuss and anal-
yse these results with regard to the research questions. Finally, conclusions and future work are
presented.

Literature review
An early review of Ihantola, Ahoniemi, Karavirta, and Seppälä (2010) revealed that various au-
tomated assessment tools of programming assignments were developed for many years; how-
ever, most of them had a limited lifespan due to the short-term or limited nature of the overall
system. Later, the need for effective assessment of programming skills of MOOC students has
shifted interest to more practical, intuitive and automated online assessment of programming
(Staubitz, Klement, Renz, Teusner, & Meinel, 2015).

Moreover, Git is an open-source version control system which students use to submit and check
their codes continuously until the code meets the assignment requirements (Kelleher, 2014;
Lawrance, Jung, & Wiseman, 2013; Loeliger & McCullough, 2012). However, Git is not a fully
automated tool, since there are several tasks that teachers and students have to perform manu-
ally. An extension of Git (a platform, called ProgEdu), provided by Chen, Chen, Hsueh, Lee, and Li
(2017), enables automatic assessment of assignments in programming courses; however, their
tool has not been tested in real long-term educational settings.

Recent assessment tools utilize new mechanisms for assessing programming assignments,
examining the type and nature of student errors and providing meaningful feedback, such as
edit distance (Barker-Plummer, Dale, & Cox, 2012), control flow graph similarity measurement
(Vujošević-Janičić, Nikolić, Tošić, & Kuncak, 2013), or Euclidian and Levenshtein word distance
(Stajduhar & Mausa, 2015). However, these systems fail to detect “informal” errors, but most
importantly they lack of a systematic way to cope effectively with the whole formative assessment
process. Our work presents an initial effort to fill this gap by analysing the factors and features
that can contribute toward a systematic development of an efficient and useful assessment tool
in distributed programming.

Virtual programming lab systems and other programming assessment plugins have also
been implemented over Course Management Systems (CMS), like Moodle, such as: the Virtual
Programming Lab (VPL) developed by Rodríguez-del-Pino, Rubio-Royo, and Hernández-Figueroa
(2012), a tool for automated evaluation of VHDL and Matlab programming assignments (Ramos,
Trenas, Gutiérrez, & Romero, 2013), and an online compiler and plagiarism detection tool for
assessing programming assignments (Kaya & Özel, 2014). However, these tools are still far from
providing an environment for a systematic assessment of programming.

Automated assessment tools have also been implemented as part of bigger Intelligent Tutoring
Systems (ITS). As such, ITSs are capable of: employing systematic assessment and grading meth-
ods (Baker & Rossi, 2013); allowing students to correct their errors in real time (Malmi et al .,

© 2019 British Educational Research Association

4 British Journal of Educational Technology Vol 0 No 0 2019

2004); offering students appropriate formative feedback to enhance their knowledge construc-
tion (Clark, 2012; Heffernan & Heffernan, 2014); and updating students’ models and making
them aware of their misconceptions, knowledge gaps and their own learning more accurately
and in a timely manner (Grivokostopoulou, Perikos, & Hatzilygeroudis, 2017). Other tutoring
systems apply similar data-driven approaches that use hints to incrementally generate a solu-
tion space for programming problems, supporting different computer science competencies, from
deductive logic (Mostafavi & Barnes, 2017), Python Programming (Rivers & Koedinger, 2017) to
functional programming (Gerdes, Heeren, Jeuring, & van Binsbergen, 2017), leading to model
correct student programs.

Robinson and Carroll (2017) describe an open-source online learning platform that provides
new methods for automated formative and formal summative assessment, allowing both
standard compiler/interpreter feedback and customized contextual instructor guidance. The
system can also keep track of students’ actions and the resulting analysis can provide infor-
mation about student participation and progress. However, a real appreciation of the system’s
utility and efficiency is lacking, since an in-depth evaluation of the perceptions of its users is
needed.

Pettit et al. (2015) conducted an interesting survey into the real usefulness of automated assess-
ment tools (AAT) in programming courses. They discovered that AATs are helpful in improving
student learning, supporting instructors, and assuring assessment accuracy. However, they also
found that students’ opinions about the helpfulness of AATs are inconclusive.

Recently, some web tools have been created that include frameworks to run students’ assignments
in distributed computational resources in a transparent and less cumbersome manner, relieving
also instructors or administrative staff of creating a remote login for each student and then train-
ing them to use the running environment. Maggi and Sisto (2007) present a framework to create
web portals for running assignments on distributed computers automatically. Foley et al. (2017)
present OnRamp, a web portal that allows students to have an easy hands-on exploration of par-
allel and distributed computing concepts. Sukhoroslov (2018) presents a more advanced design
and implementation of a web-based environment on top of a general-purpose platform Everest
(Sukhoroslov, Volkov, & Afanasiev, 2015) for executing students’ assignments in parallel and dis-
tributed computing.

On the one hand, the design of our DSLab tool was based on our analysis of the literature review,
more specifically, of the characteristics that were developed by related assessment tools for dis-
tributed programming. On the other hand, through experimentation with our tool, we identified
some more important features that might facilitate the use of the tool by students and improve
the learning process through feedback, like transparent initialization, and the possibility to add
new logs by the students.

Table 1 outlines the strengths of our DSLab tool by comparing DSLab features with those of the
existing software.

Based on DSLab functioning described in Online Appendix A, Figures 13 and 14 present the web-
based environment that DSLab offers to students to execute their Java-based programming assign-
ments and view the results generated by the correction process (features 1, 2 and 4). Moreover,
Figure 16 presents the library that transparently initializes the code to be executed and coordi-
nates its execution (feature 3), whereas Figures 15 and 17 show an extract of the logs generated
during an execution and how students can add new logs to be collected during the execution
respectively (feature 5). Features 3 and 5 are two distinctive attributes of DSLab that differentiate
it from the existing systems presented in Table 1.

© 2019 British Educational Research Association

Fruitful student interactions and perceived learning improvement in DSLab 5

Eventually, despite the large number of automated assessment tools and published papers, the
above survey showed that only a small percentage of the current research work includes formal
results about the effects of tool use. Hence, the authors underline the need for more rigorous
experiments that can explore the effects of AATs on student learning in more depth.

Purpose of the study
To fill this gap, this study examines the effects of our automated assessment tool on students’
academic performance in a real distributed programming environment based on the analysis of
students’ perceptions of their learning improvement and the analysis of their interactions with
the tool. The former is explored by quantitative analysis of data coming from students answering
a questionnaire. The latter is achieved through an analysis of the log files of students’ interac-
tions with the tool. In particular, the study seeks to answer the following research questions:

• RQ1 – Did the students perceive learning improvement from the use of the DSLab automated
assessment tool?

• RQ2 – Does a fruitful interaction occur between students and the tool which helps them im-
prove their academic performance?

In this work, a “fruitful interaction” can be related to two important aspects:

• Students’ success: in terms of successful executions of their assignments; the number of exe-
cutions and their failures as these executions evolved during the learning activity; and, the
number of times a student tried to carry out an execution in each particular phase.

• Students’ learning: in terms of the effect of studying the execution logs on passing or failing
the assignments; the effect of starting using the tool as early as possible on improving their
learning and marks; and, the effect of working in group on achieving better interaction and
learning results than those who did the assignments alone.

Research design and testing
Participants and experimental procedure
Our case study was performed in an undergraduate Distributed Systems online course at our
university. Students had to implement a distributed algorithm, upload and execute their code to

Table 1: Comparison of DSLab features with existing software

Feature
software

1. Web-based
environment for
transparent deploy-
ment and execution of
assignments in remote
computers

2. Supported
program-
ming
languages

3. Library
that
transpar-
ently
initializes
the code to be
executed and
coordinates
its execution

4. Access to
the files or
data
generated by
the
correction
process

5. Students can
add new logs to
be collected
during the
execution and
access them
from the web
interface

Maggi and Sisto
(2007)

YES Java NO YES NO

OnRamp Foley
et al . (2017)

YES any NO YES NO

Sukhoroslov
(2018)

YES any NO YES NO

DSLab YES Java YES YES YES

© 2019 British Educational Research Association

6 British Journal of Educational Technology Vol 0 No 0 2019

DSLab and assess its correctness. The multiple submissions capability of DSLab—which allows
students to improve their code using the feedback from previous executions—supports iterative
learning (Suleman, 2008).

The assignment consisted of several implementation phases that were assessed using DSLab
(phases: 2, 3 and 4.1). Each phase is an extension of the previous one, has an increasing level of
difficulty and is assessed separately as it uses different configuration and execution conditions.

More specifically, the aim of the assignment was to implement and evaluate the weak-consistency
protocol Time Stamped Anti-Entropy (TSAE) (Golding, 1992). In this assignment, TSAE was used
to maintain the consistency between replicas of an application that stores cooking recipes in a set
of servers. TSAE uses three data structures: a Vector clock, a Matrix clock and a Log of operations.
The assignment has then been divided in three different phases:

• Phase 2 : Implementation of a reduced version of the TSAE protocol to support only the Add
operation. This is done by implementing the consistency sessions and the Vector clock as well
as the Log data structure. In this phase, the Log data structure was never purged.

• Phase 3 : Extension of Phase 2 to purge the Log data structure with unsynchronized clocks.
This is done by extending the consistency sessions to include the purging functionality, imple-
menting the Matrix clock and extending the Log data structure to allow purging.

• Phase 4.1 : Implementation of the Remove recipe operation.

The course was carried out fully online for seven weeks. A total of 110 adult students partici-
pated, divided into three classes. All students performed the same assignment. Among the stu-
dents, 13 were female (11.81%) and 97 were male (88.18%).

The assignment could be implemented individually or in group of two members, applying the
same task and assessment criteria. In each assignment phase, students could submit their code as
many times as they wished. For each submission, they received DSLab assessment and feedback,
and thus could look at the execution logs to check for possible errors.

At the end of the course, students answered a customized questionnaire that was specifically
designed to respond to RQ1, whereas log data were collected and analysed with the aim to respond
to RQ2.

Data collection
The 110 students who participated in the study were asked to answer the questionnaire
anonymously at the end of the learning activity on a voluntary basis. The questionnaire
was finally answered by 54 students, that is, about 49% of the participants. This sample can
be considered random since any participant could have decided to answer it independently
whether he/she has completed all the assignments or not. The questionnaire included nine
items divided into two categories (as shown in Table 2): six items related to the tool use
(MU) and three items related to the tool feedback (MF). We used a five-point Likert-type
scale ranging from 1 (Strongly disagree) to 5 (Strongly agree), requiring a quantitative
answer.

Regarding the statistics employed in the questionnaire data analysis, we used descriptive statis-
tics, calculating relative frequencies (%), as well as bivariate correlation and variance analysis to
find relationships between the variables under study.

Additionally, tool log files, which automatically record interactions between tool and students,
provided a rich data set for analysing the way students carried out a fruitful interaction with the
tool.

© 2019 British Educational Research Association

Fruitful student interactions and perceived learning improvement in DSLab 7

Results
The results with regard to RQ1
We analyse students’ perceptions about their learning improvement in relation to two param-
eters: (1) the use of the DSLab tool by evaluating items MU1-MU6 and (2) the feedback provided
by the DSLab tool by analysing items MF1-MF3 (see the corresponding descriptive statistic mea-
sures in Table 3 and Figure 1).As concerns both MU1 and MU2, 45% of the students (strongly)
agree that the tool has helped them learn better and more easily the concepts required to program
the distributed algorithms effectively. It is also important to note that nearly 30% of the students
were rather neutral when asked whether they perceived DSLab to improve their programming
knowledge and skills.

With respect to MU3, 53% of the students (strongly) agree that the tool has helped them get a
better mark using the tool. Again, DSLab appeared to have little impact on the improvement of
the mark of almost 25% of the students.

In relation to MU4, more than 61% of the students did not perceive the multiple submission fea-
ture of the tool as a factor to neglect their work. However, nearly 37% of the students had this
negative perception.

As regards MU5, students’ perceptions were divided in almost three equal parts; that is, only
around 33% believed that the continuous use of the tool caused them to adopt standard coding
patterns, suggested by the tool logs, which tend to be more logical and thus restricted their own
coding creativity. The rest of the students were either neutral or negative to that perception.

Table 2: Questionnaire of nine (9) question items related to students’ Learning iMprovement (RQ1)

Use of the DSLab automated assessment tool

MU1 The fact of using the DSLab automated assessment tool has contributed
to that you have learned to write better distributed algorithm
program codes?

MU2 Have you learned the required concepts better and more easily by using
the DSLab tool (which would not have happened if you had not used
it)?

MU3 Do you think you have got a better mark by using the tool (which you
would not have achieved if you had not used it)?

MU4 The fact that DSLab tool allowed you to perform multiple submissions of
your assignment has caused you to work carelessly during the initial
submissions?

MU5 The fact that the tool allowed you to make multiple submissions has
prompted you to follow a standard coding pattern, re-submission and
correction according to the response (the result and the log traces)
you received from the tool? (which prevented you thinking of other
actions that could be different from the ones suggested by the
interpretation of the logs).

MU6 When you have found yourself in difficult situations doing the assign-
ment, do you think that the use of the tool has helped you not to
abandon the assignment and continue to learn and improve?

Feedback provided by the DSLab tool

MF1 The logs associated with each execution that the tool gives you have
served to improve your performance?

MF2 The logs have been difficult to understand?
MF3 Would you have preferred the logs to be much more descriptive with a

log level aimed at novice programmers?

© 2019 British Educational Research Association

8 British Journal of Educational Technology Vol 0 No 0 2019

Ta
bl

e
3:

 F
re

qu
en

cy
 d

at
a

co
nc

er
ni

ng
 le

ar
ni

ng
 iM

pr
ov

em
en

t b
as

ed
 o

n
D

SL
ab

 U
se

 &
 F

ee
db

ac
k

M
U

1
M

U
2

M
U

3
M

U
4

M
U

5
M

U
6

M
F1

M
F2

M
F3

Fr
%

Fr
%

Fr
%

Fr
%

Fr
%

Fr
%

Fr
%

Fr
%

F
r

%

1
9

16
,3

9
16

,3
8

14
,3

19
36

,7
8

14
,3

6
10

,2
9

16
,3

3
4,

1
7

12
,2

2
6

10
,2

6
10

,2
5

8,
2

13
24

,5
10

18
,4

10
18

,4
7

12
,2

17
32

,7
4

6,
1

3
15

28
,6

15
28

,6
13

24
,5

2
2

,0
18

34
,7

24
46

,9
10

18
,4

18
34

,7
8

14
,3

4
18

34
,7

18
34

,7
19

36
,7

14
26

,5
12

22
,4

10
18

,4
22

4
2

,9
8

14
,3

16
30

,6
5

6
10

,2
6

10
,2

9
16

,3
6

10
,2

6
10

,2
4

6,
1

6
10

,2
8

14
,3

19
36

,7

N
ot

e.
 T

h
e

gr
ey

 s
h

ad
ed

 v
al

u
es

 in
 T

ab
le

 a
re

 u
se

d
to

 h
ig

h
lig

h
t t

h
e

m
os

t s
ig

n
if

ic
an

t v
al

u
es

 o
bt

ai
n

ed
.

© 2019 British Educational Research Association

Fruitful student interactions and perceived learning improvement in DSLab 9

Finally, in MU6, only 25% of the students had a positive perception that the tool was a good rea-
son for not quitting but continuing their efforts despite the difficulties. More than 28% had just
the opposite perception, whereas 47% expressed neutrality.

In conclusion, MU1, MU2 and MU3 show that the use of DSLab automated assessment tool in
principle contributes to the improvement of the learning and academic performance of a remark-
able number of students; however, a rather small number of students praised the tool’s ability to
help overcome very difficult situations (MU6). In addition, a large number of students considered
that the multiple submission feature of the tool neither caused them to neglect their work nor
to restrict their own coding creativity (MU4 and MU5); however, the rest of the students (about
33–37%) who had an opposite perception cannot be considered insignificant either.

With respect to the items that evaluated the feedback provided by the tool, their analysis presents
the results shown below.

As concerns MF1, 53% of the students considered that the feedback offered by the tool in each
execution through its logs has definitely helped them improve their performance. However, there
was a number of students (a bit less than 30%) that had a negative perception of the feedback
utility, a fact that is worthy of attention.

The latter is also confirmed regarding MF2. A bit less than 30% of students (strongly) agreed
that the logs have been difficult to understand. However, about 37% of students had no problem
of interpreting the logs, whereas the rest of students (about 35%) expressed neutrality in this
matter.

Finally, as regards MF3, a large number of students (more than 67%) prefer that the type of feed-
back logs offered by the tool be much more descriptive at a level oriented to novice programmers.
Only about 18% of students had no problem with the current log format.

Figure 1: The descriptive statistic measures concerning learning iMprovement based on DSLab Use & Feedback

© 2019 British Educational Research Association

10 British Journal of Educational Technology Vol 0 No 0 2019

In conclusion, the feedback offered by the tool was highly appreciated by the students to improve
their algorithms and re-run their code until they achieve optimal performance of their algo-
rithms. However, a notable number of students (around 30%) had to make a big effort in order
to understand the logs and thus achieve some improvement in their performance. In this sense, a
lot of students expressed their preference for more descriptive and explanatory logs, an issue that
should be addressed in future versions of the tool.

Moreover, in order to provide a more comprehensive response regarding the students’ perceptions
on learning improvement from the use of the tool , we analysed the Pearson correlations between the
two dependent variables: the use of the tool (MU) and the tool feedback (MF) with respect to the
independent variable learning improvement (M), so that to identify the strong positive or negative
linear relationships that exist among these variables (see Figure 2). We analyse these results in
the Discussion section.

The results with regard to RQ2: Log data analysis of students’ behaviour
Here we describe the use of DSLab tool by students throughout the entire learning activity.

A total of 1340 executions were carried out by 82 participants, where participants were either
individuals or groups of two students (54 individuals and 28 groups). Thus, there were 16.34
executions per participant on average. The percentage of executions by phase (2, 3 or 4.1) is rela-
tively similar (29.85%, 36.19%, and 33.96% respectively); being the highest that of phase 3. As
shown in Figure 3, the proportion of successful executions is higher in phase 2, whereas it is rela-
tively similar in the others.Figure 4 depicts the number of executions during the learning activity
by phase. A few participants start to execute soon but the number of executions gets much higher
during the last month of the course. As expected, at the beginning participants focus on phase
2, but at the end there are executions of all phases. Figure 5 shows this evolution highlighting
the proportion of failures.Eighty-two participants run executions for phase 2, but only 80% and
56% of them continue to the phase 3 and phase 4.1 respectively. Boxplots in Figure 6 show the
distribution of the number of executions per participant for each phase (considering those par-
ticipants that may execute 0 times the code for a given phase) and the total. The distributions
are highly asymmetric. Interestingly, the mean value associated with the last phase is the lowest
(many participants don’t even try). According to the boxplot at the left, there are five participants
that run their codes around 50 times or more. Moreover, 50% of the participants run them more
than 10 times.Taking into account that only one successful execution was required to pass each
phase, the percentage of participants that passed compared to those who tried was: 91%, 75%,
and 70% respectively.

Table 4 shows the mean number of executions and the standard deviation (in parentheses) by
phase and result. It can be concluded that those who passed the assignments had made more
executions on average, but they also had much more variability (ie, most students did a relatively
low number of executions while others did many more).

Regarding the execution logs, a total of 2326 logs were read by 48 participants (49.5 on average).
The proportion of logs read belonging to each phase was: 41%, 46% and 12% respectively. Most
of the logs read fall into the following categories: info (28%), trace (26%) and debug (22%).

The effect of reading the logs on passing or failing the assignments is inconclusive. For the first
phase, the number of participants not passing is too low to make comparisons (7 participants).
For the second phase, 81% of the participants who read the logs passed, whereas 72% passed the
assignment without readings the logs. In the third phase, only 14 participants read the logs and
64% passed the assignment, whereas 72% passed the assignment without readings the logs. In

© 2019 British Educational Research Association

Fruitful student interactions and perceived learning improvement in DSLab 11

our opinion, this “incoherence” is due to two opposing trends: (1) students that read more logs
may have more time to do the assignments and are more motivated; and (2) students that read
more logs do that because they may have problems solving the assignments as well as fewer clues
about how to solve the mistakes.

Figure 2: The correlations between Use of the DSLab (MU) and Feedback (MF) items

Figure 3: Percentage of successful executions for each assignment

Phase 2 Phase 3 Phase 4.1

Pe
rc

en
ta

ge
 (%

)

0
20

40
60

80
10

0

Success
Failure

© 2019 British Educational Research Association

12 British Journal of Educational Technology Vol 0 No 0 2019

We also analyse which is the effect of starting using the tool at the very beginning of the learning
activity on improving student marks. First, we compute the median of the day when each par-
ticipant starts using it. Then, the participants are split according to whether they started before
or after the median—participants B (before) or A (after) respectively. Figure 7 shows the num-
ber of participants per result, considering the phase and participants. As expected, those who
started before the median (participants B) had a better result.Finally, we compare those who do
the assignment individually (I) versus those who do it in group (G). The median value of groups’
starting date is December 6, whereas that of those doing the assignments alone is December 15,
ie, one week and a half later. In general, groups achieve better results (Figure 8).

Discussion
In the previous section, the presentation of questionnaire results based on descriptive statistics
as well as the analysis of log data provided us insights about the perceptions of students on their

Figure 4: Evolution of the number of executions during the learning activity by phase

nov 15 des 01 des 15

0
10

20
30

40
50

60

Date

Fr
ec

ue
nc

y

Phase 2
Phase 3
Phase 4.1

Figure 5: Evolution of the number of executions during the learning activity by result

nov 15 des 01 des 15

0
50

10
0

15
0

Date

Fr
ec

ue
nc

y

Failure
Execution

© 2019 British Educational Research Association

Fruitful student interactions and perceived learning improvement in DSLab 13

learning improvement (RQ1) and whether students’ interaction with the tool resulted in a fruit-
ful learning experience (RQ2). Based on these results, in this section we attempt to take a closer
look at the two research questions within the context of the existing literature.

Analysis for RQ1
The results of the Pearson correlations presented in Figure 2 (in the Results section) show that
there is a strong positive relationship between variable MF1 and variables MU1, MU2 and MU3.

Figure 6: Boxplots of the number of executions by phase

Total Phase 2 Phase 3 Phase 4.1

0
20

40
60

80
10

0

Fr
eq

ue
nc

y

Table 4: Mean number of executions made by phase and result (standard deviation in parentheses)

Phase 2 Phase 3 Phase 4.1

Fail 3.29 (1.80) 4.06 (4.33) 4.86 (5.17)
Pass 5.03 (5.14) 8.40 (8.57) 12.09 (18.46)

Figure 7: Results by phase and starting date (before or after the median)

2 - B 2 - A 3 - B 3 - A 4.1 - B 4.1 - A

Phases

Pe
rc

en
ta

ge
 (%

)

0
20

40
60

80
10

0

Fail
Pass
Not tried

© 2019 British Educational Research Association

14 British Journal of Educational Technology Vol 0 No 0 2019

This means that, for most students (<65%), the feedback they receive with each execution has
served to improve their learning. This finding is consistent with previous research that revealed
a positive impact on student learning with the introduction of an automated assessment tool
into a programming course (Chen et al. , 2017; Kelleher, 2014; Pettit et al. , 2015). Unique to this
study was the differentiation of our analysis between three fundamental aspects that influence
learning improvement: write better distributed algorithm program codes, learn the required
concepts better and more easily, and get a better mark. Tool feedback helped improve students’
performance in all three aspects. Unlike previous research (Malmi et al. , 2004; Rodríguez-
del-Pino et al. , 2012), where it was observed that “resubmissions can both cause students to
work carelessly during early submissions and also create a pattern of coding, resubmitting, and
fixing in response to feedback without putting any thought into actions outside of what the tool
suggests,” our study showed that: on the one hand, more than 61% of the students did not per-
ceive that the multiple submission feature of the tool caused them to neglect their work; on the
other hand, there is some kind of relationship between variables MF1 and MU5 which indicates
that feedback had only a relative influence on prompting students to follow a standard coding
pattern. While more research is necessary to confirm and better understand this relationship,
it may not be too early to suggest that tool feedback has in general not hindered students’ own
creativity as a counterpoint for their learning improvement.

In the previous section, our analysis showed that almost 30% of students agreed that the logs
have been difficult to understand, whereas about 35% of students expressed neutrality. In line
with previous studies (Becker et al ., 2016; Denny, Luxton-Reilly, & Carpenter, 2014), our analysis
shows that there is a strong negative relationship between variable MF2 and variables MU1, MU2
and MU5. This indicates that several students had difficulty to understand the current format
of feedback logs, which in turn has negatively influenced both learning the theoretical concepts
and writing better code, since they were unable to follow the correction suggested by the result
and the log traces of the feedback. This confirms our previous hypothesis that students would
have preferred more extensive and specific feedback related to the detected errors and a clearer
guidance to error correction (MF3). In fact, the absence of relationships between MF3 and all MU
variables indicates that the current feedback content has to be significantly improved in order to
cause major benefits to learning improvement.

Analysis for RQ2
With regard to the second question (Does a fruitful interaction occur between students and the tool
which helps them improve their academic performance?), at a first level of log data analysis, it is

Figure 8: Results by phase differentiating between individuals (I) and groups (G)

2 - I 2 - G 3 - I 3 - G 4.1 - I 4.1 - G

Phases

Pe
rc

en
ta

ge
 (%

)

0
20

40
60

80
10

0

Fail
Pass
Not tried

© 2019 British Educational Research Association

Fruitful student interactions and perceived learning improvement in DSLab 15

interesting to highlight that most executions were performed during the last month of the se-
mester (Figure 4), when students focus more their efforts to cope with and pass the assignment,
or to improve their academic performance. This fact suggests that student do perceive the useful-
ness of the tool and make the most of it during the last month of their learning activity.

Moreover, while students perform the assignments progressively, starting from the easiest one
(Phase 2), the proportion of successful executions is constant through the semester (Figure 5).
This fact may indicate that a relative progress is achieved. However, the dropout rates are not
insignificant: 20% of the students who execute code for the first assignment do not even try the
second one; similarly, 24% of the latter do not try the last one. This finding is consistent with the
study of Rubio-Sanchez, Kinnunen, Pareja-Flores, and Velázquez-Iturbide (2014) that showed
no significant difference in the dropout rate between a course that used an automated assessment
tool and a course that did not. Our analysis suggests that dropout occurs because each assign-
ment is an extension of the previous one, the level of difficulty is progressively increased, and
some participants start to make executions relatively late, so they end up without enough time.

As in previous research (Robinson & Carroll, 2017; Stajduhar & Mausa, 2015; Staubitz et al. ,
2015), those who pass the assignments have carried out more executions on average (though the
dispersion was higher too). Thus, the more students use the tool the more possibilities they have
to complete their assignment successfully. In our study, regarding the built-in event log reports of
the tool, more than half of the participants have read at least one log report. This means that the
majority of students found the logs useful in their effort to recover from errors and improve their
code, so they learnt something from log use. However, there is no a clear relationship between
checking the logs and passing the assignments. Log data display and exploitation is an issue that
surely needs more improvement, so more work has to be done in order to improve the presenta-
tion of log results.

It can be also noted that students who started using the tool at the very beginning of the learning
activity, they first get used to the tool, then they get more engaged in using it and finally they have
more chances to complete their assignment successfully and pass the course (Figure 7).

At a second level of log data analysis, it has been found that the number of executions per partic-
ipant (16.34 on average) is high. This means that students found the tool engaging or they were
curious to try it at least.

Phase 3 is the phase where the most failed executions occur (Figure 3), which forces students
to carry out more executions, to experiment with the tool through trial and error learning and
a try-action-feedback process (Falkner, Vivian, Piper, & Falkner, 2014). The more students take
action the more feedback they get from the tool. Since feedback is instant, each action (execution)
provides them a new learning experience that helps them adjust and improve their code.

According to Figure 8, group work makes the most of the tool features, whereas it proves to be a
more engaging, fruitful and rewarding activity. The more students use the tool and consult the
tool log report, the more possibilities they have to recover from errors, improve their code and
thus complete their assignment successfully. This process certainly contributes to making the tool
a useful and worthwhile experience.

Conclusion and limitations
This work presented a new automated assessment tool in real online distributed programming
assignments which has been evaluated at two levels: first, analysing students’ own perceptions
on their learning improvement and, second, exploring whether students’ interactions with the
tool yielded a fruitful learning experience. As shown in our review of the literature, this research

© 2019 British Educational Research Association

16 British Journal of Educational Technology Vol 0 No 0 2019

work is one of the first attempts to thoroughly examine the effects of an automated assessment
tool in the area of online distributed programming. As such, we are conscious that this is the
beginning of a complex and challenging endeavour and that more work still needs to be done in
order to improve both the tool design and achieve a really worthwhile learning experience for
both students and teachers. Limitations of the current work provide challenging opportunities
for future research, such as: the generation of a more descriptive and explanatory feedback that
is more adaptable to students’ knowledge level, a more rigorous analysis of the log files of stu-
dents’ interactions with the tool using artificial intelligence methods, the use of log data analysis
not at the end but during the learning process so that teachers can intervene to monitor and
scaffold students’ progress at critical points. Finally, our analysis showed that fruitful learning
was evident only when students achieved high familiarization and constant activity with the
tool. At this point, our tool should care for an efficient workload and time management, which
are very important issues for online higher education students. Future work will consider an
experimental research design involving an improved version of the tool with a control and an
experimental group in order to provide a more thorough analysis of the values of the new tool.
Moreover, another interesting issue could be establishing a categorization between those stu-
dents who passed the course successfully and those who did not. Based on this, we will be able
to perform a different critical analysis of the advantages and disadvantages of using our tool.

Statements on open data, ethics and conflict of interest
A request to access data can be directed to authors. All student data is de-identified and stored
in the university database.

The research performed in this work is the sole work of the named authors. It has not been previ-
ously published or submitted elsewhere.

There is no conflict of interest.

References
Baker, R. S., & Rossi, L. M. (2013). Assessing the disengaged behaviors of learners. In R. Sottilare, A.

Graesser, X. Hu, & H. Holden (Eds.), Design recommendations for intelligent tutoring systems (Vol. 1, pp.
155–166). Orlando, FL: Learner Modeling. U.S. Army Research Lab.

Barker-Plummer, D., Dale, R., & Cox, R. (2012). Using edit distance to analyse errors in a natural lan-
guage to logic translation corpus. Proceedings of the 5th International Conference on Educational Data
Mining (pp. 134–141). Chania, Greece.

Becker, B. A., Glanville, G., Iwashima, R., McDonnel, C., Goslin, K., & Mooney, C. (2016). Effective compiler
error message enhancement for novice programming students. Computer Science Education, 26(2–3),
148–175. https://doi.org/10.1080/08993408.2016.1225464

Chen, H.-M., Chen, W.-H., Hsueh, N.-L., Lee, C.-C., & Li, C.-H. (2017). ProgEdu – An automatic assessment
platform for programming courses. In Meen, Prior & Lam (Eds.), Proceeding of the 2017 IEEE International
Conference on Applied System Innovation (pp. 173–176). Sapporo, Japan.

Clark, I. (2012). Formative assessment: Assessment is for self-regulated learning. Educational Psychology
Review, 24(2), 205–249. https://doi.org/10.1007/s10648-011-9191-6

Denny, P., Luxton-Reilly, A., & Carpenter, D. (2014). Enhancing syntax error messages appears ineffectual.
Proceedings of the 19th ACM annual Conference on Innovation & Technology in Computer Science
Education (pp. 273–278). Uppsala, Sweden: ACM.

Falkner, N., Vivian, R., Piper, D., & Falkner, K. (2014). Increasing the effectiveness of automated assessment
by increasing marking granularity and feedback units. Proceedings of the 45th ACM technical sympo-
sium on Computer Science Education (pp. 9–14). Atlanta, GA: ACM.

https://doi.org/10.1080/08993408.2016.1225464
https://doi.org/10.1007/s10648-011-9191-6

© 2019 British Educational Research Association

Fruitful student interactions and perceived learning improvement in DSLab 17

Foley, S. S., Koepke, D., Ragatz, J., Brehm, C., Regina, J., & Hursey, J. (2017). Onramp: A web-portal for
teaching parallel and distributed computing. Journal of Parallel and Distributed Computing, 105, 138–149.
https://doi.org/10.1016/j.jpdc.2017.01.014

Gerdes, A., Heeren, B., Jeuring, J., & van Binsbergen, L. T. (2017). Ask-Elle: An adaptable programming
tutor for haskell giving automated feedback. International Journal of Artificial Intelligence in Education,
27(1), 65–100. https://doi.org/10.1007/s40593-015-0080-x

Golding, R. (1992). Weak-consistency group communication and membership (Ph.D. thesis). University of
California, Santa Cruz.

Grivokostopoulou, F., Perikos, I., & Hatzilygeroudis, I. (2017). An educational system for learning search al-
gorithms and automatically assessing student performance. International Journal of Artificial Intelligence
in Education, 27(1), 207–240. https://doi.org/10.1007/s40593-016-0116-x

Heffernan, N. T., & Heffernan, C. L. (2014). The ASSISTments ecosystem: Building a platform that brings sci-
entists and teachers together for minimally invasive research on human learning and teaching. International
Journal of Artificial Intelligence in Education, 24(4), 470–497. https://doi.org/10.1007/s40593-014-0024-x

Ihantola, P., Ahoniemi, T., Karavirta, V., & Seppälä, O. (2010). Review of recent systems for automatic
assessment of programming assignments. In Proceedings of the 10th Koli Calling International
Conference on Computing Education Research (pp. 86–93). Koli, FL: ACM.

Kaya, M., & Özel, S. A. (2014). Integrating an online compiler and a plagiarism detection tool into the moo-
dle distance education system for easy assessment of programming assignments. Computer Applications
in Engineering Education, 23(3), 363–373. https://doi.org/10.1002/cae.21606

Kelleher, J. (2014). Employing git in the classroom. In Computer Applications and Information Systems
(WCCAIS), 2014 World Congress (pp. 1–4). Hammamet, Tunisia.

Lawrance, J., Jung, S., & Wiseman, C. (2013). Git on the cloud in the classroom. In Proceedings of the 44th
ACM Technical Symposium on Computer Science Education (pp. 639–644). New York, NY: ACM.

Loeliger, J., & McCullough, M. (2012). Version control with git: Powerful tools and techniques for collaborative
software development. Sebastopol, CA: O’Reilly Media Inc.

Maggi, P., & Sisto, R. (2007). A grid-powered framework to support courses on distributed programming.
IEEE Transactions on Education, 50(1), 27–53. https://doi.org/10.1109/TE.2006.879806

Malmi, L., Karavirta, V., Korhonen, A., Nikander, J., Seppälä, O., & Silvasti, P. (2004). Visual algorithm sim-
ulation exercise system with automatic assessment: TRAKLA2. Informatics in Education, 3(2), 267–288.

Mostafavi, B., & Barnes, T. (2017). Evolution of an intelligent deductive logic tutor using data-driven el-
ements. International Journal of Artificial Intelligence in Education, 27(1), 5–36. https://doi.org/10.1007/
s40593-016-0112-1

Pettit, R. S., Homer, J. D., Holcomb, K. M., Simone, N., & Mengel, S. A. (2015). Are automated assess-
ment tools helpful in programming courses? In Proceedings of the 122nd ASEE Annual Conference &
Exposition (pp. 1–20). Seattle, WA.

Ramos, J., Trenas, M. A., Gutiérrez, E., & Romero, S. (2013). E-assessment of Matlab assignments in Moodle:
Application to an introductory programming course for engineers. Computer Applications in Engineering
Education, 21(4), 728–736. https://doi.org/10.1002/cae.20520

Rivers, K., & Koedinger, K. R. (2017). Data-driven hint generation in vast solution spaces: A self-improving
python programming tutor. International Journal of Artificial Intelligence in Education, 27(1), 37–64.
https://doi.org/10.1007/s40593-015-0070-z

Robinson, P. E., & Carroll, J. (2017). An online learning platform for teaching, learning, and assessment of pro-
gramming, global engineering education conference (pp. 547–556). Athens, Greece: IEEE.

Rodríguez-del-Pino, J. C., Rubio-Royo, E., & Hernández-Figueroa, Z. J. (2012). A Virtual Programming
Lab for Moodle with automatic assessment and anti-plagiarism features. In Proceedings of the 2012
International Conference on e-Learning, e-Business, Enterprise Information Systems, & e-Government
(pp. 80–85). Las Vegas, NV: CSREA Press.

Rubio-Sánchez, M., Kinnunen, P., Pareja-Flores, C., & Velázquez-Iturbide, A. (2014). Student perception
and usage of an automated programming assessment tool. Computers in Human Behavior, 31, 453–460.
https://doi.org/10.1016/j.chb.2013.04.001

https://doi.org/10.1016/j.jpdc.2017.01.014
https://doi.org/10.1007/s40593-015-0080-x
https://doi.org/10.1007/s40593-016-0116-x
https://doi.org/10.1007/s40593-014-0024-x
https://doi.org/10.1002/cae.21606
https://doi.org/10.1109/TE.2006.879806
https://doi.org/10.1007/s40593-016-0112-1
https://doi.org/10.1007/s40593-016-0112-1
https://doi.org/10.1002/cae.20520
https://doi.org/10.1007/s40593-015-0070-z
https://doi.org/10.1016/j.chb.2013.04.001

© 2019 British Educational Research Association

18 British Journal of Educational Technology Vol 0 No 0 2019

Stajduhar, I., & Mausa, G. (2015). Using string similarity metrics for automated grading of SQL state-
ments. In Proceedings of the 38th IEEE International Convention on Information and Communication
Technology, Electronics and Microelectronics (pp. 1250–1255). Opatija, Croatia: IEEE.

Staubitz, T., Klement, H., Renz, J., Teusner, R., & Meinel, C. (2015). Towards practical programming ex-
ercises and automated assessment in Massive Open Online Courses. Proceedings of the 2015 IEEE
International Conference on Teaching, Assessment, and Learning for Engineering (pp. 23–30). Zhuhai.
China: IEEE.

Sukhoroslov, O. (2018). Building web-based services for practical exercises in parallel and distributed
computing. Journal of Parallel and Distributed Computing, 118(1), 177–188. https://doi.org/10.1016/j.
jpdc.2018.02.024

Sukhoroslov, O., Volkov, S., & Afanasiev, A. (2015). A web-based platform for publication and distributed
execution of computing applications. In Proceedings of the 14th International Symposium on Parallel
and Distributed Computing (pp. 175–184). Limassol, Cyprus: IEEE.

Suleman, H. (2008). Automatic marking with Sakai. Proceedings of the 2008 Annual Conference of
the South African Institute of Computer Scientists and Information Technologists on IT Research in
Developing Countries (pp. 229–236). Wilderness, South Africa: ACM.

Vujošević-Janičić, M., Nikolić, M., Tošić, D., & Kuncak, V. (2013). Software verification and graph sim-
ilarity for automated evaluation of students’ assignments. Information and Software Technology, 55(6),
1004–1016. https://doi.org/10.1016/j.infsof.2012.12.005

Supporting Information

Additional supporting information may be found in the online version of this article at the publish-
er’s web site:

Figure A1: Architecture of DSLab tool.
Figure A2: Login into DSLab tool.
Figure A3: Files uploaded by student s when submitting his/her assignment.
Figure A4: List of all the assignments uploaded by student’s.
Figure A5: Submitting an assignment.
Figure A6: A completed assessment of an assignment.
Figure A7: An extract of the execution logs of level INFO and TRACE generated during the execution
of an assignment.
Figure A8: Example of an application that uses LSim library to get initialization parameters, wait to
start its execution and send final result.
Figure A9: Example that shows how to add a log message at any point of the code.

https://doi.org/10.1016/j.jpdc.2018.02.024
https://doi.org/10.1016/j.jpdc.2018.02.024
https://doi.org/10.1016/j.infsof.2012.12.005

